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Abstract 
One of the major challenges for next generation IP networks is to provide multimedia teleconferencing services. 
Moreover, the introduction of new services includes the take over of traditional telephony. Besides the general 
problems with supporting realtime services in the IP network (e.g. QoS), this puts a special interest on the control of 
supplementary services and on the mechanisms for their fast and efficient development and deployment. The two 
most promising approaches in the multimedia over IP area are the protocol suites H.323 (ITU-T) and SIP (IETF). 
Several comparisons of these two protocols have been published already, but their service architectures have been 
rarely addressed. This survey provides a comparison of H.323 and SIP, focussing on their service architectures. The 
basic protocol architectures are reviewed, followed by an in-depth evaluation of their service implementation 
mechanisms. The studies are backed up by detailed examples for the control of supplementary services in H.323 and 
SIP. Although the two protocol architectures are quite similar, it is shown that there are considerable differences 
regarding their supplementary service architectures. H.323/H.450, which is still the more mature standard, has been 
focussed on supplementary services, smooth interworking with the PSTN and interoperability between different 
implementations. It has clear advantages for IP telephony applications. SIP has been designed with a broader scope, 
providing more generic syntax and semantics regarding feature definition and session description. Since the 
standards do not describe all details for broad range of possible applications and services, this bears the danger of 
interoperability problems. SIP has advantages for non-VoIP services. A coexistence of both protocols can be 
foreseen, stressing the importance of interworking between them. 

1 Introduction 
Fast and efficient development and deployment of new services are important drivers for advanced multimedia 
business. In the Internet world the standards of the ITU-T (H.323) and of the IETF (SIP) are of most importance for 
advanced telephony services. Although labeled with "Voice over IP" these architectures provide far more services 
than just setting up voice calls. The expectations and requirements are: Providing those services that are well known 
from traditional telephony and offering mechanisms to support the implementation and integration of new features. 
The comparison of the two standards in this paper focuses on their service implementation concepts. 

Some studies have already been published comparing H.323 and SIP (e.g. [26]). They mostly refer to the basic call 
architectures and focus on issues like complexity and scalability. Paper [27] focuses on service aspects and 
investigates the usage of the two standards for an overall service architecture according to criteria derived from 
TINA. Up to now, concrete service implementation issues have not been discussed in detail. 

In this paper, H.323 and SIP are compared according to the following criteria: standardization status, supported 
services, supplementary service architecture, proprietary extension and negotiation mechanisms, interoperability of 
services and features, interworking with GSTN, and service creation issues. Basic call features like call setup and 
session modification are distinguished from supplementary services. It is important to understand, that extensibility 
not only means being open to all kinds of extensions but also means implementation and interoperability issues. 
Quality of Service issues, network services like conferencing and addressing as well as aspects regarding the 
complexity and performance are not in the scope of this paper. 

The remainder of the paper is structured as follows. In Section 2, a brief overview over the protocols’ architecture 
and their standardization status is given, concluded by a discussion of the general similarities and differences of the 
two approaches. In Section 3, H.323 and SIP are investigated with respect to their principle methods for service 
implementation. A comparison highlights the significant differences that show up. Our statements are illustrated in 
Section 4 by means of concrete service examples. Finally, summarizing the results concludes this survey. 

2 The Basic Protocol Architectures 

2.1 H.323 Basic Protocol 
The ITU-T started work on defining VoIP signaling protocols in May 1995. In December 1996, Study Group 16 
passed the H.323 v.1, referred to as a “standard for realtime videoconferencing over non-guaranteed quality of 
service LANs” [1]. This recommendation describes terminals and other entities (Gatekeepers, Gateways, Multipoint 
Control Units) that provide multimedia communication over packet based networks. Support for audio is 
mandatory, while data and video are optional. A rapid standardization process and straightforward interworking 
with the PSTN have been the main goals from the very beginning. Some existing protocols could be reused directly 
(RTP, RTCP) others were derived from the ITU-T H.320 [2] protocol suite (H.245, H.225.0-CC) while the RAS 
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(Registration, Admission and Status) protocol had to be designed from scratch. H.323 v.1 defines the basic call 
control and signaling for setting up multipoint multimedia conferences. The basic call procedure comprises RAS 
signaling functions and call signaling functions. RAS signaling functions are required for endpoint registration, 
admission control and address resolution. Call signaling function includes connection setup, capability exchange 
and open logical channel procedures. Conferences in H.323 are normally tightly coupled and can be established out 
of a point-to-point connection via a multipoint controller which performs conference and floor control. To provide 
scalability an extension for loosely coupled conferences has been defined in H.332 [15].  

Figure 1: H.323 Protocol Suite 

Among other enhancements, the version 2 of H.323 enables enhanced services on top of H.323. ITU-T SG16 
evolved the H.450 series recommendations in order to support supplementary services over IP-networks. The scope 
of H.323 v.2 is depicted in Figure 1 and shows the optional (white) as well as the mandatory components (gray). 
H.450.1 defines a generic functional protocol on top of H.225.0-CC for all supplementary services [3]. It also 
defines the control procedures for the terminal equipment involved in handling the protocol messages. The most 
important features have been standardized already and new features are being added in an ongoing process. Table 1 
shows the list of currently standardized and drafted features: 

Standard Feature Name Subfunctions Status 

H.450.1 „Generic Functions for 
Supplementary Services in H.323“ 

 Approved 

H.450.2 „Call Transfer for H.323“ Single step transfer 
Transfer with consultation 

Approved 

H.450.3 „Call Diversion for H.323“ Call Forwarding Unconditional 
Call Forwarding on Busy 
Call Forwarding on No Reply 
Call Deflection 

Approved 

H.450.4 „Call Hold for H.323“ Near End Hold 
Remote End Hold 

Approved 

H.450.5 „Call Park and Call Pickup in H.323“ Directed Park and Pickup 
Group Park and Pickup 
Pickup of Alerting Call 

Approved 

H.450.6 „Call Waiting in H.323“  Approved 

H.450.7 „Message Waiting Indication for 
H.323” 

Unified Messaging System 
Message Waiting Call Back 

Approved 

H.450.8 „Names Identification for H.323“  Approved 

H.450.9 „Call Completion for H.323“ Call Completion on Busy 
Call Completion on No Reply 

Approved 

H.450.10 „Call Offering for H.323“  Approval 
Pending 

H.450.11 „Call Intrusion for H.323“ Conference Type of 
Connection 
Held Type of Connection 
Silent Monitoring 
Forced Release 
Wait on Busy 

Approval 
Pending 

H.450.12 „Common Information for H.323“  Draft 

Table 1: List of currently standardized features in H.450 
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2.2 SIP Basic Protocol 
The IETF Multiparty Multimedia Session Control Working Group (MMUSIC WG) has defined a control 
architecture for telephony features over wide area Internet that integrates stored and conference multimedia. The 
main component is the Session Initiation Protocol (SIP), which was specified by the MMUSIC WG as a proposed 
standard in 1999 (IETF RFC 2543, [17]). SIP provides advanced signaling and control functionality for a large 
range of multimedia communications. The main functions are: location of resources/parties, invitation to service 
sessions, and negotiation of session parameters. To fulfill this functionality, SIP provides a small number of text-
based messages to be exchanged between the SIP peer entities (SIP user agent in a user terminal). Network entities 
like proxy servers or redirect servers that can be traversed by the messages, can be used for support, e.g. for address 
resolution. In this way, baseline SIP according to RFC 2543 includes all basic call control functionality in one 
signaling transaction using the INVITE request message. 

The session itself is described in two levels. Whereas the SIP protocol contains the parties’ addresses and protocol 
processing features, the description of the media streams that are exchanged between the parties of a multimedia 
session are defined by another protocol. The IETF suggests the Session Description Protocol (SDP, IETF RFC 
2327, [18]), which in fact is not a protocol, but a structured, text-based media description format that can be carried 
in the SIP message body. Since the message body is transparent to SIP any session description can be transferred, 
including e.g. a weblink. In this way SIP sessions are not restricted to telephony style calls or conferences but can 
also include information retrieval or broadcast like sessions depending on the session description. SDP also allows 
to schedule session start and stop time or to describe recurrent sessions. In the following, we refer to SDP in the 
context of SIP unless stated otherwise. 

In addition to the baseline SIP RFC, several IETF drafts complete the architecture regarding e.g. call control 
supplementary services, service and feature programming, conferences, preference management and interworking 
issues. In this way the IETF SIP IP telephony standardization is still work in progress and has not reached a final 
state yet – the RFCs and drafts are under continuous refinement by the separately set up IETF SIP WG. 

In addition to the basic session setup that is specified in the SIP baseline RFC there is no standard of supplementary 
call control services other than some proposals in IETF drafts. The SIP baseline protocol provides some limited 
support for call control like call hold, media stream modification, or call termination, but the use of these features 
cannot explicitly be signaled as supplementary services.  

The IETF has generally recognized the importance of advanced call control supplementary services. In July 2000 
the SIP WG issued a Draft describing a framework for SIP call control extensions [19]. Up to now only a few 
supplementary services have been described based on this proposal [20],[21],[22]. 

Conferences in SIP are normally lightweight multicast conferences, to which a user can be invited. Some SIP 
extensions for the management of distributed multipoint conferences have been drafted, but have expired [25]. 
Advanced conference control like floor control or the support of roles is not in the scope of SIP. 

In addition to the session processing using SIP, the IETF IPTEL WG proposes several possibilities for the 
programming of services either for administrators or for the users themselves [23]. This will be discussed in detail 
in one of the following sections. Figure 2 depicts the overall IETF SIP protocol suite. Work in progress extensions 
are included and the independence of SIP session signaling from audio/video media processing is shown. 
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Figure 2: IETF SIP Protocol Suite 

 

2.3 Comparing the Basic Architectures 

The two VoIP architectures SIP and H.323 are based on similar concepts. The tables below show the components 
and protocols of the two approaches. H.323 and SIP comprise a lot of analogies with respect to function split and 
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service location. In SIP as well as in H.323, basic call and feature control are performed mainly in the terminals. For 
features requiring network support, servers (gatekeeper resp. proxy server,…) are foreseen in the networks.  

It can be assumed, that H.323 and SIP will further converge in the near future, especially when SIP will obtain an 
adequate implementation status. When looking at the supplementary services, standardization maturity differs 
notably – with H.323 taking the clear lead. This makes it difficult to compare SIP with H.323. However, it can be 
anticipated that SIP takes a similar direction as H.323. Both define a general framework for call control features that 
defines a standardization process and rules for the implementation of new features. 

 

 Client Servers in the Network 
SIP (IETF) Terminal Proxy Server, Registrar Conference Server* Gateway* 

H.323 (ITU-T) Terminal Gatekeeper MCU Gateway 

*not standardized up to now 

Table 2: SIP and H.323 Components 

 

Feature Control  Realtime Data 
Transmission 

Call 
Control Framework Extensions 

Signaling Procedure 
Variants 

SIP  
(IETF) 

RTP/RTCP SIP 
(SDP) 

call control 
framework* 

Transfer* 
Diversion* 
Message 
Waiting* 

- SIP-
INVITE 

Transaction 

H.323  
(ITU-T) 

RTP/RTCP H.225.0, 
H.245 

H.450.1 H.450.2 – 
H.450.11, 
H.450.12* 

Basic Call 
Setup 

Fast 
Connect 

*Draft 

Table 3: Protocols running on the Terminal 

On the other side, H.323 becomes more lightweight like SIP. When looking at the H.323 call setup procedure, the 
ITU-T has additionally introduced the optional fast connect procedure and signaling via UDP. The fast connect is 
similar to the lightweight SIP session setup and combines the opening of a call control channel, the capability 
exchange and the open logical channel procedure in one single signaling transaction. 

The substantial difference between the two protocols lies in their targeted range of application. SIP has been 
designed as a general transaction protocol for setup and tear down of generic sessions. Voice and multimedia is only 
one possible application of SIP. When not supporting voice or multimedia, a core SIP user agent can be very slim 
(e.g. only containing the SIP protocol and a generic session description). H.323 on the other hand, has been 
designed as a control protocol suite with the focus on multimedia applications including telephony. Naturally, 
because the scope is more restricted as compared to SIP, the range of application for H.323 is not as wide as for SIP. 
A couple of simple endpoint types (SETs) comprising only a well-defined subset of the full H.323 functionality 
have already been specified. But even the SETs are more complex as compared to SIP user agents. On the other 
hand, H.323 provides a more precise and detailed specification of the voice and multimedia functionality. 

The focus of this paper is on comparing the service architectures of H.323 and SIP. The following chapters provide 
a deeper look into the service implementation process and compare the two approaches. This is backed up by 
explicit service examples. 

 

3 The Service Architectures 

3.1 H.323 Service Architecture 

In this section, the three main models for supplementary service control currently existing in H.323 are described. 
They are: Distributed feature control (H.450), Stimulus feature control (H.323 Annex L) and Application layer 
feature control (H.323 Annex K). 
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3.1.1 Distributed feature control using H.450 

Classification of features in H.323 

Features in H.323 can be categorized into three classes: local features, network-based features and supplementary 
services. 

Local features can be implemented in the endpoints without requiring specific signaling to other network entities. 
Examples for local features are: repeat a call, call history and call lists, local address book, speed dialing, privacy 
functions like do not disturb and mute, etc. 

There are a couple of features that require centralized control. These network-based features are implemented in a 
centralized fashion in the gatekeeper (GK) or as a backend service behind the GK.  
Examples are authorization, address resolution, call admission, call detail recording, name/number suppression, etc.  

The third category of features is the set of supplementary services (H.450). These are features that require special 
signaling between the corresponding entities. Examples for supplementary services are: call forwarding, call 
transfer, call completion, call hold, etc. 

H.450 design philosophy 

The H.450 supplementary service architecture uses a decentralized function split as far as possible. The peer entities 
(servers, clients, MCUs, GWs) communicate directly using H.450 signaling without involving centralized network 
control. For those features that require centralized control, a feature server is used, which is a special form of an 
H.323/H.450 endpoint. Examples where a feature server is required are: user not available proxy (acts on behalf of 
unavailable endpoints), messaging server, ACD (Automatic Call Distribution) server or Group-Server for group 
features. 

Besides the fully distributed feature control, H.450 also describes a model where parts of the H.450 functionality 
can be carried out in H.450 proxies on behalf of the endpoints. The H.450 proxy can e.g. be collocated with the 
gatekeeper (GK).  

One of the most important requirements for the design of H.450 was to simplify feature interworking with switched 
private (QSIG) and public networks (ISDN). Furthermore, H.450 was designed to be a highly extensible protocol as 
described in the next subsection. This includes also several mechanisms to ensure interoperability between 
endpoints with differing feature sets, which is a precondition for multivendor interoperability and smooth 
deployment of new features. 

Extension of H.450 

H.450 not only defines a set of supplementary services, it also provides several mechanisms that allow easy 
extension of this feature set. This subsection gives an overview of the H.450 architecture and its extension 
mechanisms. 

H.450 supplementary service information is sent in H.450 APDUs (application protocol data units) that may be 
contained in any H.225.0-CC message. H.450 APDUs are exchanged between supplementary service entities and do 
not influence the underlying H.225.0 call state. Among other information, H.450 APDUs contain ROS (remote 
operations service) operations that define the semantics of the supplementary services. As with the other H.323 
protocol components, H.450 APDUs are specified and coded using ASN.1 notation. 

As in many parts of the H.323 protocols, the H.450 APDUs can be extended by manufacturer specific information 
(NonStandardData). This can either be additional information elements or even new operations. Using this 
extension mechanism, new supplementary services can easily be defined. 

The standard H.450.1 (“Generic Functions”, GF) provides generic services for feature control that are common for 
all standardized and manufacturer specific supplementary services. H.450.1 provides call-related and call-
independent transport of H.450 APDUs. Further, H.450.1 defines in a generic way how to proceed with H.450 
APDUs that are not supported/known. This enables interoperability between endpoints with differing feature sets 
and a stepwise deployment of new supplementary services without having to support them in all endpoints at the 
same time. 

Another standard that facilitates interoperability between heterogeneous endpoints is the emerging H.450.12 
(“Common Information”). H.450.12 can be used to exchange the endpoints’ feature capabilities. This can be used 
e.g. to react in advance on these capabilities. One application for this is e.g. to not present to the user the opportunity 
to make a transfer if the other endpoint does not support it. 

As shown in Figure 3, the architecture of H.323/H.450 enables a separation between basic call and the 
supplementary services. H.225.0 messages are routed to the basic call entity, where they trigger the respective 
actions and state changes. H.450 information is passed on to H.450.1. The generic services are carried out and the 
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ROS operations are passed on to the respective supplementary service entity. The GF is also the place where 
simultaneously activated features can be coordinated or even blocked in case of feature interactions. Each 
supplementary service entity has its own state machine that defines the semantics of the supplementary service. The 
supplementary service state machine is only invoked when a supplementary service is requested. The H.450.x 
standards specify these state machines using SDL diagrams. 

This modular architecture is based on an object-oriented approach/principle and provides scalability with respect to 
features as it enables easy addition of new supplementary services. When creating a new feature, the new state 
machine is defined without the need for changing the state machines of the basic call and of other supplementary 
services. This even allows concepts for dynamic introduction of new features into running systems (“Feature 
pluggability”). In contrast, having only a single state machine including the supplementary services can grow very 
complex if many features are added. 

Basic Call 

H.225.0 

H.450.1 “Generic Functions” 

H.450.2 H.450.n 

Network 
 

Figure 3: H.323/H.450 Architecture in the Endpoints 

Building Feature Combinations for 1st Party Applications 

One of the basic ideas of the H.450 features is to define them in such a way that they can be used together with the 
basic call as building blocks. By combining the atomic feature blocks, more complex features and services can be 
built. This allows to create a huge set of features by using only a small set of carefully designed building blocks. 
Applications and further features are built by using telephony APIs on the local machine (e.g. TAPI, JTAPI). Some 
examples of such combined features are: 

• Consultation transfer = call hold + basic call + single step call transfer 

• Messaging = basic call + call transfer to announcement server + DTMF control (basic call) 

• Attendant console = basic call (multiple line) + call hold + call transfer 

Building Feature Combinations for 3rd Party Applications 

By introducing a CTI interface (Computer Telephony Integration) that hooks to the H.323/H.450 functionality in a 
remote endpoint, the H.323/H.450 building blocks may be remote controlled. This allows to create 3rd party call 
control applications. The functionality provided via the CTI interface may also include functions like monitoring 
endpoints (e.g. detect when a user is available, ...). The CTI interface is accessible via an API, a common protocol 
that may be used is CSTA (Computer Supported Telephony Applications). An example for a 3rd party application is 
ACD (Automatic Call Distribution). It can be built up by combining basic call, call transfer to a music/video server, 
monitoring an ACD agent using the CTI interface and CTI-initiated call transfer to an agent. Note that the CTI 
interface and protocol is an add on and is not specified in H.323.  

 

3.1.2 Stimulus feature control using H.323 Annex L     

Stimulus feature control is the opposite approach as compared to the decentralized H.450 architecture. A centralized 
feature server in the network is used to control the features in the endpoints. This approach is defined in H.323 
Annex L. Endpoints conforming to H.323 Annex L still use functional signaling (H.225.0) for controlling the basic 
call. This yields basic call interoperability with fully functional H.323/H.450 endpoints. For centralized feature 
control, a so-called feature key management protocol is defined. It contains basic procedures to control user 
interface functions such as key presses, display messages and feature indicators (e.g. LED’s). There is little 
intelligence in the endpoints, the feature logic and the semantic procedures are defined in the centralized feature 
server. This allows an easier deployment of features: only the feature server has to be updated, the endpoints do not 
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have to be changed. On the other hand, there are no standardized semantics for the features. The semantics are 
implementation dependent. Applications that want to use the feature functionality for 1st party call control need a 
functional interface (API), which can not easily be provided using the stimulus approach. A further downside of 
stimulus feature control is the scalability problem due to feature processing in centralized network components. 

 

3.1.3 Application layer feature control using H.323 Annex K 

H.323 Annex K defines an optional way for controlling services in H.323. It allows developing and deploying of 
new services without updating the H.323 protocol and endpoints. Annex K introduces a service plane above the 
H.323 call control plane. A service control session can be established after exchanging the relevant information (e.g. 
sessionID, URL for service control, ...) in RAS or H.225-CC messages. This mechanism allows for call- related and 
call-independent service control. Service control sessions can be maintained between endpoints or between 
endpoints and the network (e.g. GK). 

The HTTP protocol is used in the service control channel to actually offer, select and activate the services. The 
service logic is described in HTML pages, scripts, etc. that are transferred via the HTTP protocol. Thus, features can 
be controlled from any device running a conventional Web browser (including e.g. PDAs). 

Example applications may include transferring XML pages possibly including Java and scripts, download of tones 
and announcements or the upload of call processing scripts from a client to the GK. A concrete example scenario is 
explained in Section 4.3.2. 

3.2 SIP Service Architecture 

Like H.323/H.450, SIP feature control bases on a distributed feature control model. As SIP relies on true intelligent 
terminals, stimulus or transaction protocol based remote control is not addressed so far. For SIP the same feature 
categories can be applied as in H.323. Local features, network based features like authorization and address 
resolution in an outbound SIP proxy, and supplementary services. But, in defining supplementary services, SIP 
started with a different approach as compared to H.323 and standard telephony. Whereas traditional supplementary 
service implementation is explicitly standardized, SIP provides several elements (methods, headers) to allow the 
construction of services. Methods define SIP request messages like INVITE, whereas headers are identifiers for 
message parameters like receiver (To:) or route discriminators (Route:). 

Recently, with the proposal of the call control framework [19] of the SIP WG this has changed as rules are defined 
how to explicitly identify SIP extensions for supplementary services in order to allow a standardized way of feature 
invocation and feature negotiation. In addition to that, SIP offers several different possibilities for programming of 
services with dedicated languages. Implementing services in SIP can in general be done by 

• using SIP baseline protocol mechanisms, 

• defining extensions (headers, methods - SIP call control framework), or by 

• dedicated languages (SIP-CPL, SIP-CGI, SIP Servlets) for network server based service programming. 

 

3.2.1  Supplementary services: baseline SIP and protocol extensions 

Referring to the proposed standard (RFC 2543) there are no explicitly standardized supplementary services in SIP. 
RFC 2543 only describes a possible realization of the Call Hold Feature based on SDP parameters. In addition there 
are drafts showing sample sequence diagrams for certain features [24] like Call Hold, etc. Some of these 
supplementary services can be realized by the baseline SIP protocol functionalities i.e. by SIP requests and the 
transported session description, but they could not be explicitly signaled to the corresponding party. 

For other supplementary services the definition of new headers and new methods has been done in several draft 
proposals. Whereas the definition of new protocol elements is in general applicable for any new feature, a recently 
issued draft proposes a special framework for call control extensions regarding features like Call Transfer, 
Conferences, Call Park/Pickup, and Call Monitoring [19]. The authors want to make sure that supplementary 
services are modularly defined and are separated to each other. This allows a standardized support of call control 
supplementary services negotiation. Until the writing of this survey the SIP WG has only drafted Call Transfer [20], 
Call Diversion Indication [21] and Message Waiting [22] based on this framework. This shows the evolution of SIP 
towards the H.323/H.450 supplementary services definitions. 

For feature negotiation SIP provides are three possibilities. To make sure that new SIP headers indicating a new 
feature are known by the peer server in advance, SIP provides the Require header. Features identified by new 
headers are referenced by their name that has to be registered with IANA or by their reverse name of location (e.g. 
de.tum.ei.lkn.server) to guarantee correct functionality. For the negotiation of features based on new methods 
(=request messages) the Allow header can be inserted in a SIP request. The Supported header indicates to the server 
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which features are supported by the client. Unless the support of a feature is not explicitly requested (e.g. by 
Require:), unknown extensions are simply discarded by the receiving server. Otherwise an appropriate error 
message is sent (e.g. 501: Not Implemented) to allow the initiator to alter its request message.  

Conveying a message body other than SDP may also be regarded as an extension. For example the message body 
may include a web page showing a map with the current location of the callee. Therefore SIP can also be used for 
other session signaling tasks, e.g. the PINT protocol [28] uses SIP to set up calls between two PSTN phones via an 
ISDN third party call setup gateway. Since these calls are normally terminated in the PSTN the SIP BYE message 
only ends the signaling relationship between the PINT entities. Paper [28] provides rules for the application of BYE 
in this special case. 

3.2.2 Service Programming Languages 

In general service creation in SIP can be done using any programming language. Service creation means to 
implement a service logic that either controls a specific message flow (cf. the feature combinations approach of 
H.450) or that reacts on a message request. Targeted for the implementation in SIP proxy servers the IETF has 
drafted several programming languages that can be used for the implementation of services started by message 
requests [23].  

The IETF generally distinguishes between trusted and untrusted users. For untrusted users i.e. the end-users, the 
Call Processing Language (CPL) provides means how to handle SIP INVITE transactions. This means to decide 
whether an incoming request should be rejected, forwarded, or proxied. Addressing inexperienced users, the CPL-
functions are very restrictive to avoid security and performance problems (e.g. loops). 

Two approaches for service creation are proposed for trusted users e.g. server administrators: SIP-CGI and SIP 
Servlets. SIP-CGI Scripts are derived from HTTP-CGI scripts, but have a number of enhancements for 
supplementary service control like the generation of multiple responses or the ability to handle additional requests. 
Unlike HTTP-CGI, SIP-CGI Scripts can be reinvoked in order to manage a complete SIP transaction. Whereas SIP-
CGI Scripts are independent from any programming language, SIP Servlets require a JAVA environment like Java 
Servlets. As it is well known from web programming SIP Servlets can be called by incoming messages and instruct 
SIP Servers how to handle requests. 

In this way SIP provides a number of mechanisms for service programming that can all be easily applied since they 
are based on well-known programming methods. This is a great advantage compared to the proprietary 
programming methods of the traditional telephony service creation environments e.g. Intelligent Networks. For all 
service implementations on SIP proxy servers, it has to be made sure that the request traverses the responsible SIP 
proxy. Since IP networks are not route aware, SIP provides the Route header to determine the path a message has to 
take. 

In addition to the programming methods described above that are aimed to program services with dedicated 
languages on a dedicated SIP server, a new approach suggests the use of java applets to be used in SIP requests 
[23]. 

3.3 Comparing the Service Architectures 

The comparison of the implementation methods between the SIP and the H.323 service architecture in this survey is 
based on the following criteria: architecture, protocol extensions, message coding, service programming. 

The key characteristic of the H.323 service architecture is its explicit definition of separate state machines for each 
feature independent from the basic call state machine. From the signaling point of view the function split of feature 
control into framework and extensions is a consequence of this separation. The ITU-T has already standardized the 
feature state machines of the most important telephony features, with further features being added every few 
months. The syntax is specified with ASN.1 and the semantics are described using SDL diagrams.  

This elaborated and object-oriented approach is based on a long period of experience with the implementation and 
maintenance of telephony services. As a consequence, important challenges like the subsequent integration of new 
features into a running system, the interoperability with heterogeneous endpoints and the often neglected but very 
important field of feature interaction can be dealt with. By reusing the PSTN protocols, ease of interworking with 
already existing telephony systems (ISDN / Q.SIG) have been taken into consideration, too. Altogether, this 
approach allows very short product cycles. 

The SIP WG on the other side provides only rudimentary implementation instructions. According to the SIP 
baseline standard [17], SIP features are not explicitly signaled and may even be hidden in the carried session 
description. However shortcomings in defining features have been recognized and a more stringent standardization 
process regarding the implementation of features has been postulated. The IETF has to make a strong effort in the 
near future in order to keep up with H.323.  

For the negotiation of proprietary extensions, H.450 allows the transmission of individual rules inline with the 
request messages. These rules instruct the receiver what to do if the extension is unknown. In SIP on the other side 
only standard processing is foreseen. To identify features H.450 defines a hierarchical name space using vendor 
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specific extensions. Therefore no central authority is required for changes as soon as the vendor has an official 
vendor ID. This is quite different to SIP. SIP does not use vendor identifiers and every change has to be registered 
with IANA to securely avoid interworking problems. 

Several programming languages are defined in the context of SIP for the programming of SIP servers. Although 
missing in H.323, they could also be applied for it. Since these programming languages are derived from the HTTP 
context they are more easily applicable for SIP as SIP is based on HTTP. To activate the appropriate service in the 
route unaware IP network, SIP can specify the proxy servers that must be traversed by a SIP message; in H.323 this 
is not possible. 

In [26], the use of ASN.1 syntax for coding H.323 messages is criticized as an overhead in complexity contrary to 
the text based SIP-approach. Of course text based coding has advantages in rapid prototyping of individual 
solutions. A second point is the analysis of signaling messages. For example a network administrator can interpret 
the content of a message without an interpreter. On the other hand, when using ASN.1, there is a systematic support 
of the software development process. Tools for syntax checking and automatic code generation speed-up and ease 
the implementation of message processing functions. Further, the Packed Encoding Rules (PER) used in H.323 
compress ASN.1 signaling messages very effectively. 

4 Detailed Service Examples 

After having discussed the characteristics and the functionality of the two IP telephony standards separately, 
detailed examples are presented to illustrate some significant differences between H.323 and SIP in the following. 
Two typical supplementary service examples (Call Hold and Call Transfer) and one non-VoIP service scenario 
(Click to fax using PINT) have been chosen. 

4.1 Call Hold 

The feature Call Hold allows the holding party A to interrupt the communication to party B during an active call. 
The signaling association between the two parties is not terminated. There are two basic variants of Call Hold: Near 
End Hold and Remote End Hold (in SIP: Far End Hold). With Near End Hold, the bearer channels remain open, but 
they no longer carry voice/video data from user A. Instead, they can be used to transmit media on hold (MoH), 
which is for example an announcement, a melody or a video clip. The second form is Remote End Hold, where the 
communication channels are idle during the hold condition. Endpoint B may play MoH to user B locally. We 
describe Remote End Hold in our example scenario. Using Call Retrieve procedures, the communication channels 
can be activated again and the call returns to the active condition.  

4.1.1 SIP 

The following example shows the SIP realization of a Far End Hold scenario. SIP compliant client/server 
implementations are assumed in the participating endpoints. Since proxy servers do not play a role in this example, 
they are not shown in the scenario. Figure 4 shows the Far End Hold Scenario. For completeness, the basic call 
setup has been included the message flows. SIP [17] defines call states only for call setup explicitly.  

As there is no explicit message (SIP method or header) defined for the request of a Call Hold feature one has to rely 
on the basic SIP transaction mechanism. To set User B on hold, User A according to the SIP standard [17] re-invites 
User B (second INVITE message) with the connection address parameter of the connection attribute in the session 
description (SDP) set to zero (e.g. SDP: … c=IN IP4 0.0.0.0 …). This indicates endpoint B that A stops sending 
media streams. Endpoint B has to detect the request of the Call Hold feature from within the SDP carried as SIP 
payload. Another re-INVITE from User A with the original address parameter terminates Call Hold.  

This ambiguous feature activation may cause severe implementation problems. It remains to the developers of the 
SIP user agents to recognize the “setting of the destination address for media streams to be put on hold to zero” [17] 
as a Call Hold request. There is no explicit feature invocation since the method name (INVITE) and the headers are 
the same as for a basic call. That means, that the same message with identical parameters my cause different 
reactions by the receiver depending on the actual context of the session. This approach will not scale for a large 
number of features. The SIP Working Group has already recognized this with the call control framework, which 
will be illustrated in the next section.  

Another problem left open by the standard is the feature awareness. The status of User B being a held party and 
User A having set somebody on hold has to be remembered to insure robust call processing. Again, it remains to the 
implementers if it is the users themselves (or a higher layer proprietary application) or the (extended) SIP state 
machine to remember what feature(s) they are involved. The implementation of e.g. User B playing Music on Hold 
to her/himself depends on this decision. 
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The problem of feature (non-) awareness is even worse in combination with other features or in a more complex 
context, where Call Hold should be not allowed respectively carefully processed. Imagine being involved in a 
tightly coupled conference, controlled by a conference server. The correct function of the Call Hold service will 
depend on the feature awareness of the conference server. Since this is not signaled explicitly the whole conference 
group may be set idle or even worse in case of Near End Hold music is played to all parties. A typical feature 
interaction situation occurs. 

 

Figure 4: SIP: Far End Hold Figure 5: H.323/H.450.4: Remote End Hold 

 

4.1.2 H.323/H.450 

The following scenario describes the supplementary service Call Hold in H.323/H.450 as standardized in H.450.4 
[6]. The examples assume the fully distributed model with H.450 implementation in the participating endpoints. The 
GK is transparent in this case, and is therefore not shown in the diagrams. 

Figure 5 shows the Remote End Hold scenario in H.323/H.450. The two vertical lines represent the state machines 
for basic call and the feature state machine of each endpoint for the call hold feature. 

In the beginning, the served user A has an active call with user B. User A pushes e.g. a hold button on his endpoint, 
which results in a FACILITY message containing a remoteHold.inv operation. This clearly identifies a remote end 
hold. At the same time, endpoint A interrupts the existing media (voice, video, ...) from/to B. No bandwidth is 
consumed any longer. The feature state of A changes to Hold_RE_Requested to remember locally that a remote 
hold has been initiated. The basic call state machine does not have to be changed when introducing the 
supplementary service, since the feature state machine defines the states and actions. Further, feature interaction is 
facilitated since all involved endpoints can determine by looking at their feature states that they are in a hold 
condition and whether new events and actions lead to unwanted interactions with other features. 

Upon reception of the remoteHold.inv operation, B checks whether he can support remote end hold. In the positive 
case, endpoint B interrupts the media channels, too and provides local media on hold to the user. The confirmation 
of this action is signaled to A in a FACILITY message. 

If B did not support the operation Remote End Hold, the rejection would be signaled to A. Note that B needs no 
support of H.450.4 to reject the request. The Generic Functions H.450.1 contain a generic mechanism that indicates 
the required actions when a requested operation is not supported (e.g. ignore, reject, ...). Even if Remote End Hold 
is supported by endpoint B, there might be situations where the hold operation should be rejected (e.g. if B is in a 
conference). This can be signaled including the respective reject cause. 
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4.2 Call Transfer 

The feature Call Transfer allows a transferring user A to transfer an active call with transferred user B to a 
transferred-to user C. The outcome of the actions is that the previous call between A and B is cleared and a new call 
between B and C is in the active state. There are two basic forms of Call Transfer: Single Step Transfer (or 
Unattended Transfer) and Multi Step Transfer (or Consultation Transfer). The Single Step Transfer is described in 
the example. 

 

Figure 6: SIP: Single Step Transfer Figure 7: H.323/H.450: Single Step Transfer 

 

4.2.1 SIP 

Other than with Call Hold, for Call Transfer the IETF has recently issued a draft that defines a new method to be 
used explicitly to signal call transfer: the method REFER [20]. Figure 6 shows a sample message flow for an 
unattended (single step) transfer starting from an active call between A and B. A initiates the Call Transfer with 
setting the transferred user B on hold. When B accepts Call Hold, A initiates the transfer procedure by sending a 
REFER request with C’s address to B. This indicates that B should invite C and issue a success response ('200 OK') 
to the originator, A in this case. On reception of a success response, A terminates its signaling relationship with B 
issuing a BYE request. When the REFER method is not supported by a SIP entity it simply returns an error message 
('501 not implemented') to the initiator. 

Other than within basic call based features (see previous section), the use of REFER clearly determines a Call 
Transfer supplementary service call. Nevertheless the IETF draft lacks important information for the 
implementation of this feature. We marked in Figure 3 points where call states have to change in order to provide 
appropriate message handling. The missing of a finite state machine in the standards causes interoperability 
problems with different implementations. But even if these new states are added to the basic call state machine the 
basic call would get more and more complex by adding more features. This causes scalability problems. 

4.2.2 H.323/H.450 

Figure 7 shows a Single Step Transfer according to H.450.2. Starting from an active call with endpoint B, the 
endpoint A initiates the transfer by sending a FACILITY message with the ctInitiate.Invoke operation. This 
operation contains the transferred-to address of party C. In the case of a multistep transfer, it would contain 
information about the call identity of the consultation call, which is required to associate the two calls at endpoint C. 

Upon receiving the ctInitiate.Invoke operation, endpoint B starts a new call with party C using a SETUP message 
with a ctSetup.Invoke operation. This new call may inherit the media capabilities of the call with A or negotiate the 
media capabilities from scratch. The ctSetup.Invoke operation contains information about the transferring user A 
(transferringNumber), which can be displayed to the user or examined by other features and applications. It may 
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also be required for call admission and/or billing purposes. The H.450.1 GF would indicate to ignore the 
ctSetup.Invoke operation if it is not supported by endpoint C. This would result in a normal call setup taking place 
even if endpoint C did not support H.450.2. 

After an ALERTING message containing a ctSetup.rr operation is received, endpoint B disconnects the first call 
with endpoint A. The user B will hear a ringing tone until user C goes off hook. Up to that point in time, the 
intermediate feature states in A, B and C allow to rollback the call transfer and restore the original call between A 
and B if anything fails. After the CONNECT message is received from endpoint C, the communication between B 
and C is established. 

4.3 Non-VoIP Feature Example 

4.3.1 SIP 

In addition to the invitation of parties to participate in a multimedia session, SIP allows to initiate sessions that go 
beyond VoIP and are not bound to a specific media.  Even non IP-based sessions e.g. a PSTN-call may be invoked 
by SIP. To illustrate this open character of SIP regarding session initiation, the PINT service protocol is explained in 
the following. 

The PINT protocol (PSTN/Internet Interworking, RFC 2848511[28]) uses SIP and SDP for the invocation of 
telephony services in the GSTN from an IP network. All SIP extensions specified in PINT are in line with the SIP 
baseline behavior. The SIP INVITE message is used as a transport container for the assured exchange of service 
control information (e.g. a GSTN service description) between a PINT user (SIP client) and a PINT gateway (SIP 
server). The PINT gateway relays the request to a specific GSTN network control component and the latter 
performs the requested GSTN telephony service. Services scenarios are for example "click to dial" or "click to fax 
back". 

Whereas the PINT user applies SIP to invite a remote PINT server into a session, which will be set up in the 
telephony network, the particular description of the telephone network session is carried as SDP payload in the 
INVITE message body. SDP has been enhanced with additional parameters for the support of new network types 
(ISDN, GSM, …), new media types (fax, image, …) and format specific attribute tags. The SDP session description 
is transparent for the SIP INVITE transaction and only the PINT gateway knows how to process. Figure 8 shows an 
example message flow for a "request to fax content" service. 
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Figure 8. SIP: Click to Fax with PINT Figure 9. H.323: Click to Fax using H.323 Annex K 

 

4.3.2 H.323 

Although H.323 has put its focus on multimedia and voice services, it is also possible to provide non-VoIP services. 
In the following, an approach using H.323 Annex K is sketched which gives similar functionality as for the 
SIP/PINT example. With Annex K, it is possible to construct very simple endpoints for service control, containing 
only parts of the RAS protocol and an HTTP client (e.g. Web browser). Upon RAS registration with the GK, the 
endpoint receives a URL of the Faxback GW to contact for the service control session. Using HTTP, a selection of 
service options is presented to the user. W hen the user requests an action (e.g. Click to Faxback), this is again 
transferred to the Faxback GW using HTTP. The Faxback GW then carries out the respective actions towards the 
PSTN network (e.g. by using IN call control as in the PINT approach). 

Compared to the SIP/PINT example, it becomes clear that the function split is different. Whereas SIP provides a 
transaction protocol to transmit a session description, in H.323 Annex K the transaction handling has to be 
programmed in the HTML (or other means) description of the service. 
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5 Conclusion 

This survey has given an overview over the two VoIP standards H.323 and SIP, focussing on the service 
architecture and the mechanisms to develop and deploy services using the two standards. Although both protocols 
may be used for VoIP applications, their original focus is very different. While SIP has been designed as a generic 
transaction protocol for session initiation not bound to any specific media like audio or video, the focus of H.323 
has been set to handle voice and multimedia calls including supplementary services. 

As far as standardization of call control and supplementary services are concerned, SIP still shows some 
shortcomings regarding the number of standardized features and their implementation status. Currently SIP is going 
to be extended, in order to keep up with the respective functionality in H.323. 

Comparing the service architectures and the resulting consequences for feature implementations, H.323 describes 
and enables an object-oriented approach based on QSIG, separating supplementary services from basic call control. 
The feature descriptions seen in SIP reveal, that SIP tends to extend the basic call to control supplementary services, 
which leads to migration and interoperability problems. In conclusion, H.323 provides better functionality, 
interoperability and interworking (PSTN and PBX) with respect to supplementary services. 

SIP has advantages with respect to the design of low cost non-voice terminals. A SIP client does not have to support 
e.g. voice, SDP, capability exchange for data, and therefore very lightweight SIP clients can be built to control non-
VoIP services. Therefore, SIP has its strengths for lightweight and easy to implement solutions with focus on 
flexible session initiation. SIP’s broader scope forms the basis for a wider range of possible applications. H.323 had 
not been targeted to non-VoIP services in the beginning, but there are already some extensions to the standard in 
that direction: H.323 Annex K is applicable in that arena with some limitations. Summarizing, SIP provides better 
mechanisms for controlling non-VoIP services. 

With the focus set on supporting voice and multimedia over IP including supplementary services, H.323 is the better 
choice for IP telephony applications. This includes replacement scenarios for legacy PBXs, but is especially true 
when IP telephony supplements and coexists with legacy telephone systems. Although this may sound like a typical 
application for enterprise scenarios, the trend of outsourcing applications (ASP solutions) can also be observed for 
IP telephony. Thus, supplementary services and H.323 become more important for carrier implementations, too. 

Although the two standards are approaching each other, their focus and applicability is still different. It can be 
expected that neither of the two protocols will succeed over the other. They will probably coexist in different 
environments and implementations over a longer time, putting also a strong requirement on interworking between 
them. 
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