
INTRODUCTION

The management of the configuration of a large
number of networked devices remains a highly
important practical problem. Device configura-
tions and the mechanisms to retrieve and modify
them are largely vendor-specific, and the most
widely used configuration interfaces today are
proprietary command line interfaces (CLIs),
making it costly to achieve a high level of effi-
ciency and reliability through automation. In
2003 the Internet Engineering Task Force
(IETF) started an effort to develop and stan-
dardize a network configuration management
protocol, which led to the publication of the
Network Configuration (NETCONF) protocol
[1] at the end of 2006.

The NETCONF protocol supports several
features required for configuration management
that were lacking in other network management
protocols such as Simple Network Management
Protocol (SNMP) [2]. NETCONF operates on
so-called datastores and represents the configu-
ration of a device as a structured document, seri-
alized using the Extended Markup Language
(XML). The protocol distinguishes between run-
ning configurations, startup configurations, and
candidate configurations. In addition, it provides
primitives to assist with the coordination of con-
current configuration change requests and sup-
port distributed configuration change
transactions over several devices. Finally, NET-
CONF provides filtering mechanisms, validation
capabilities, and event notification support.

The work in the IETF initially focused on the

protocol design and its specification. It was,
however, clear that a common data modeling
language is needed in addition to the protocol to
express the structure and semantics of configura-
tion information in a vendor-neutral format. A
proposal for a NETCONF data modeling lan-
guage called YANG was developed in 2007 and
is being standardized in the IETF since 2008.

The aim of this article is threefold. First, we
provide an overview of the NETCONF protocol.
Second, we describe the recently defined YANG
data modeling language. Finally, we discuss
some of the available implementations and how
they have been used to provide a programmatic
configuration interface that integrates well with
other management interfaces of devices.

The rest of the article is structured as follows.
The next section provides additional background
information before the NETCONF protocol is
described. The YANG data modeling language
is then introduced. Implementation experience is
reported and related work is discussed before
the article concludes in the final section.

BACKGROUND AND MOTIVATION
In 2002 the Internet Architecture Board (IAB)
organized a workshop in order to guide future
network management standardization activities
in the IETF. The workshop was attended by net-
work operators and protocol developers, and
resulted in several concrete recommendations
[3]. One of the recommendations was to focus
IETF resources on the development of standards
for network device configuration management.
Another recommendation was to use XML for
data encoding purposes.

In 2003 a working group was formed in the
Operations and Management area of the IETF
to produce a protocol supporting network con-
figuration. The working group charter mandated
that XML be used for data encoding purposes.
The protocol produced by this working group is
called NETCONF [1]. The design of NETCONF
has been influenced by proprietary protocols
such as Juniper Networks’ JUNOScript applica-
tion programming interface (API).

Network operators today use differing
approaches to managing device configurations

IEEE Communications Magazine • September 2010166 0163-6804/10/$25.00 © 2010 IEEE

ABSTRACT

The Internet Engineering Task Force has
standardized a new network configuration man-
agement protocol called NETCONF, which pro-
vides mechanisms to install, manipulate, and
delete the configuration of network devices. This
article describes the NETCONF protocol and a
recently introduced NETCONF data modeling
language called YANG. The YANG language
allows data modelers to define the syntax and
semantics of device configurations, and supports
translations to several XML schema languages.

ACCEPTED FROM OPEN CALL

Jürgen Schönwälder, Jacobs University

Martin Björklund, Tail-f Systems

Phil Shafer, Juniper Networks

Network Configuration Management
Using NETCONF and YANG

SCHÖNWÄLDER LAYOUT 8/23/10 4:33 PM Page 166

(Fig. 1). In the Network is the Record approach,
operators directly modify the configuration of
devices. To make the configuration change pro-
cess (and any errors incurred due to configura-
tion changes) trackable, all configurations are
copied from the devices into a configuration
backup repository. In the Generate Everything
approach, a network-wide configuration database
is used to generate device configurations that
are pushed to the devices. In both approaches it
is necessary to be able to push configuration
changes to devices and dump/restore complete
configurations. In addition, it is vital that devices
distinguish between configuration data and data
describing operational state that has been
obtained via other means (e.g., via routing pro-
tocols or signaling protocols).

The driving force behind NETCONF is the
need for a programmatic cross-vendor interoper-
able interface to manipulate configuration state.
The approach of automating CLIs using pro-
grams and scripts has proven problematic, espe-
cially when it comes to maintenance and
versioning issues. Several operators reported
during the IAB workshop that they find it time
consuming to maintain programs or scripts that
interface with different versions of a CLI.

Figure 2 shows a NETCONF deployment sce-
nario. It assumes that a network-wide configura-
tion or policy system uses the NETCONF
protocol to push configuration changes to NET-
CONF enabled devices. In such a deployment a
policy-driven network manager acting as a policy
decision point includes a NETCONF client. The
managed devices include a NETCONF server
acting as a policy enforcement point. Of course,
the setup shown in Fig. 2 requires that a policy
manager can translate higher-level policies into
device configurations. How such a translation is
done is not considered part of IETF standardiza-
tion activities; NETCONF only provides the pro-
tocol to communicate either complete
configurations or configuration changes to
devices in a robust and scalable manner.

The right part of Fig. 2 shows a CLI that

talks NETCONF to a server in order to imple-
ment the functionality provided through the
CLI. NETCONF is designed to be powerful
enough to drive CLIs. Cost savings on the device
vendor side can only be achieved if there is a
single method to effect configuration changes,
which can be shared across programmatic and
human operator interfaces. This implies that the
scope of the NETCONF protocol is actually
broader than just device configuration.

NETWORK CONFIGURATION
PROTOCOL

The NETCONF protocol [1] has a simple lay-
ered architecture shown in Fig. 3. The core of
NETCONF is a simple remote procedure call
(RPC) layer running over secure transports such
as SSH, TLS, SOAP, or BEEP. Secure Shell
(SSH) [4] transport is mandatory to implement
as a means of promoting interoperability. The
operations layer residing on top of the RPC
layer provides specific operations to manipulate
configuration state. The configuration data itself
forms the content layer residing above the oper-
ations layer. The NETCONF specification main-
ly deals with generic operations to retrieve and
modify configuration state. An additional docu-
ment [5] defines operations to subscribe to noti-
fication streams and receive notifications.
Further operations are expected to be added in
the future in order to support data-model-specif-
ic management operations.

NETCONF assumes that the configuration
state of a device can be represented as a struc-
tured document that can be retrieved and manip-
ulated (document-oriented approach). In order
to deal with large configurations, the protocol
supports filtering mechanisms that allow clients
to retrieve only a subset of the configuration.

NETCONF supports multiple configuration
datastores. A configuration datastore contains
all information needed to get a device from its
initial default state into the desired configura-

IEEE Communications Magazine • September 2010 167

Figure 1. The Network is the Record vs. the Generate Everything approaches to configuration management: a) Network is the Record; b)
Generate Everything.

Configuration
data translator

Configuration
backup

repository

Network-wide
configuration

database

(a) (b)

Policy management
systems

Service management
systems

Network
topology

information

Network
status and

performance
information

D
ev

ic
e

co
nf

ig
ur

at
io

n

D
ev

ic
e

co
nf

ig
ur

at
io

n

D
ev

ic
e

co
nf

ig
ur

at
io

n

D
ev

ic
e

co
nf

ig
ur

at
io

n

D
ev

ic
e

co
nf

ig
ur

at
io

n

D
ev

ic
e

co
nf

ig
ur

at
io

n

D
ev

ic
e

co
nf

ig
ur

at
io

n

D
ev

ic
e

co
nf

ig
ur

at
io

n

D
ev

ic
e

co
nf

ig
ur

at
io

n

D
ev

ic
e

co
nf

ig
ur

at
io

n

Policy management
systems

Service management
systems

Network
topology

information

Network
status and

performance
information

SCHÖNWÄLDER LAYOUT 8/23/10 4:33 PM Page 167

IEEE Communications Magazine • September 2010168

tion state. The running datastore is always pre-
sent and describes the currently active configura-
tion. In addition, NETCONF supports the notion
of a startup configuration datastore, which is
loaded by the device as part of its initialization
when it reboots or reloads, and a candidate
datastore, which is a scratch buffer that can be
manipulated and later committed to the run-
ning datastore.

NETCONF features a rich set of protocol
operations. It is generally expected that new pro-
tocol operations will be added in the future by
vendors and standardization bodies. This essen-
tially means that NETCONF can easily support
a command-oriented approach in addition to the
already defined document-oriented approach to
manipulating configuration state.

Table 1 shows the protocol operations that
have been defined so far by the NETCONF
working group of the IETF. The first six opera-
tions all operate on configurations stored in con-
figuration datastores selected by the source or
target arguments. The lock and unlock
operations do coarse-grained locking, and locks

are intended to be short-lived. More fine-grained
locking mechanisms are currently being defined
in the IETF.

The get operation is provided to retrieve a
device’s configuration state together with its
operational state, while the get-config opera-
tion only returns configuration state. The distinc-
tion between operational state and configuration
state is a very important feature of NETCONF
missing from other network management proto-
cols, such as SNMP, where it is assumed that
management applications have the necessary
knowledge to identify which data item belongs to
the operational or configuration state.

The get and get-config operations both
support an optional filter parameter to select
the subset of the configuration and state data
that should be retrieved. Implementations can
support different filter mechanisms. The manda-
tory subtree filter mechanism selects the branch-
es of an XML tree matching a provided
template. As an optional feature, implementa-
tions can choose to support XPATH [6] expres-
sions as filters.

The most powerful and also most complex
operation is the edit-config operation. The
edit-config operation can be used to modify
the content of a configuration datastore by cre-
ating, deleting, replacing, or merging configura-
tion elements. In a nutshell, edit-config
works by applying a patch to a datastore in order
to generate a new configuration. Since a tree-
based representation is used to represent config-
uration state, it is necessary to describe which
branches in the tree should be created, deleted,
replaced, or merged. NETCONF solves this by
adding an operation attribute to the XML
payload of the edit-config operation. With
this approach, relatively complex configuration
changes can be achieved in a single edit-con-
fig invocation.

Notification support in NETCONF is based
on an event stream abstraction. The event stream
abstraction enables NETCONF to support sever-
al different event sources. Clients interested in
receiving notifications subscribe to event
streams. On systems that maintain event logs, it
is possible to subscribe to an event stream at

Figure 2. NETCONF deployment scenario including a policy manager and a CLI.

Server

Instrumentation

NETCONF device

NETCONF policy manager

Applications

Client

CLI

NETCONF CLI

Client

Server

Instrumentation

NETCONF device

Server

Instrumentation

NETCONF device

Figure 3. NETCONF protocol layers.

Layer Example

Content(4)

Operations(3)

Messages(2)

Secure transports

Configuration
data

<get>, <get-config>,
<edit-config>, ...

<rpc>, <rpc-reply>

Notification
data

<notification>

SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS, ...(1)

SCHÖNWÄLDER LAYOUT 8/23/10 4:33 PM Page 168

IEEE Communications Magazine • September 2010 169

some time in the past and the device will play-
back all recorded notifications at the beginning
of the notification stream. A subscription to an
event stream establishes a filter that is applied
before event notifications are sent to the client.
This allows one to select only the relevant notifi-
cations and improves scalability.

Finally, there are some housekeeping opera-
tions. The close-session operation initiates
a graceful close of the current session, while the
kill-session operation forces the termina-
tion of another session identified by the ses-
sion-id.

NETCONF supports several different config-
uration change transaction models as shown in
Fig. 4. The simplest model only requires a run-
ning configuration datastore, and all configura-
tion changes are directly applied to the running
configuration. The optional candidate model
introduces a candidate configuration datas-
tore acting as a scratchpad. Configuration
changes on the candidate configuration have
no effect until they are committed to the run-
ning configuration. To support configuration
change transactions involving several devices,
where the configuration change may lead to
transient connectivity problems, a confirmed
commit operation with automatic rollback is sup-
ported. Finally, the optional distinct startup
model assumes the existence of a special
startup configuration datastore that is loaded
by a device when it reboots or reloads. By using
the copy-config operation, the currently run-
ning configuration can be made the startup con-
figuration.

The design of the NETCONF protocol is
modular, and implementations with different
capabilities are possible. To promote interoper-
ability, a mechanism to exchange the capabilities
or servers and clients, and announce the sup-
ported data models and any deviations is used.
When a NETCONF session is established, both
client and server send a hello message to
announce the supported capabilities. Figure 5
shows a capability exchange followed by an
edit-config operation.

DATA MODELING LANGUAGE YANG
Since NETCONF uses XML to encode network
management data, it may seem obvious to use
one of the existing XML schema languages to
formally specify the format of these XML docu-
ments. While some parts of the industry favor
the XML Schema Definition Language (XSD)
[6], there is significant uptake of RelaxNG [7] in
recent years. But putting aside the differences
between XSD and RelaxNG, it is clear that addi-
tional NETCONF-specific information needs to
be specified that goes well beyond the capabili-
ties of these XML schema languages. Both XSD
and RelaxNG only address part of the problem
to be solved.

During the development of the NETCONF
protocol specifications, which are formally
defined using XSD, it has been observed that
XSD notation is difficult to read and verify by
humans. Other schema notations such as
RelaxNG (and especially its compact notation)
seem to be easier to read and write. Still, both

schema languages tend to be relatively far away
from an implementer’s view of a configuration
datastore and tend to become cumbersome to
use when all the necessary NETCONF-specific
extensions are added. Furthermore, the valida-
tion capabilities of standard tools have limited
value; what is most urgently needed is the vali-
dation of configuration datastores and not so
much the validation of individual protocol mes-
sages that contain the serialization of (parts of) a
configuration datastore. Given the nature of the
edit-config operation, individual messages
might not satisfy all data model constraints but
can still lead to a valid configuration datastore at
commit time.

The YANG data modeling language [8] there-
fore takes a different approach. YANG aims to
be a highly readable and compact domain-specif-

Table 1. NETCONF protocol operations (arguments in brackets are optional).

Operation Arguments

get-config source [filter]

edit-config target [default-operation]
[test-option] [error-option] config

copy-config target source

delete-config target

lock target

unlock target

get [filter]

close-session

kill-session session-id

discard-changes

validate source

commit [confirmed confirm-timeout]

create-subscription [stream] [filter] [start] [stop]

Figure 4. NETCONF configuration change transaction models.

Running
<commit>

Startup
<copy-config>

Direct model

Candidate model (optional)

Running
<edit-config>

Candidate
<edit-config>

Distinct startup model (optional)

Running
<edit-config>

<commit>

SCHÖNWÄLDER LAYOUT 8/23/10 4:33 PM Page 169

IEEE Communications Magazine • September 2010170

ic language for defining NETCONF data mod-
els. YANG comes with a twin called YIN, which
is an XML representation of YANG so that
standard XML tools can be used to process
YANG data model definitions. A lossless two-
way conversion between YANG and YIN is
defined. In addition, one-way conversions to
XSD and RelaxNG are available so that corre-
sponding tools can be used.

MODULES AND TYPES
All YANG definitions are contained in modules.
A module is identified by its name and has its
own XML namespace. A module can be further
subdivided into submodules to simplify the main-
tenance of complex modules. The submodule
structure, however, is not visible outside of the
module; all submodules share the same XML
namespace, and all definitions of all submodules
are accessible by importing the module.

YANG features a small set of built-in data
types and provides a library of commonly used
derived data types. The data type derivation
mechanisms of YANG are compatible with XSD
to achieve simple translations between YANG
and XSD or RelaxNG.

Figure 6 shows the acme-dns-resolver
YANG module modeling a Domain Name Sys-
tem (DNS) resolver. The module imports defini-
tions from the module ietf-inet-types and
defines, among other things, the derived enu-
merated type server-status. Figure 7 shows
possible configuration content consistent with
the YANG data model.

LEAFS, CONTAINER, LISTS
YANG stores all data in the leaf elements of
an XML tree. The leaf statement defines a sim-
ple leaf carrying a single value. A list of simple
leafs, each carrying a single value, can be
defined using the leaf-list statement. Inter-
mediate nodes of the XML tree are defined
using the container statement. The list
statement can be used to define complex struc-
tures that can have multiple instances. A list may
contain other leafs, leaf-lists,
containers, or lists.

The resolver YANG module shown in Fig. 6
defines a leaf domain and a leaf-list
search of domain suffixes to search through.
Since the order of this list is relevant, it is
marked to be ordered by the user. The list

Figure 5. NETCONF capability exchange followed by an edit-config exchange; the prefix S: indicates the server and the prefix C: the
client.

S: <?xml version="1.0" encoding="UTF-8"?>
S: <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
S: <capabilities>
S: <capability>urn:ietf:params:netconf:base:1.0</capability>
S: <capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
S: <capability>urn:ietf:params:xml:ns:yang:ietf-inet-types?revision=2009-05-13</capability>
S: <capability>http://acme.example.com/yang/acme-dns-resolver?revision=2009-08-12</capability>
S: </capabilities>
S: <session-id>232</session-id>
S: </hello>
C: <?xml version="1.0" encoding="UTF-8"?>
C: <nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
C: <nc:capabilities>
C: <nc:capability>urn:ietf:params:netconf:base:1.0</nc:capability>
C: </nc:capabilities>
C: </nc:hello>

C: <?xml version="1.0" encoding="UTF-8"?>
C: <nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1234">
C: <nc:edit-config>
C: <nc:target><nc:candidate/></nc:target>
C: <nc:config>
C: <dns xmlns="http://acme.example.com/yang/acme-dns-resolver">
C: <resolver>
C: <nameserver nc:operation="delete">
C: <address>192.0.2.4</address>
C: </nameserver>
C: <nameserver nc:operation="create">
C: <address>192.0.2.8</address>
C: <port>5353</port>
C: </nameserver>
C: </resolver>
C: </dns>
C: </nc:config>
C: </nc:edit-config>
C: </nc:rpc>
S: <?xml version="1.0" encoding="UTF-8"?>
S: <rpc-reply message-id="1234" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
S: <ok/>
S: </rpc-reply>

SCHÖNWÄLDER LAYOUT 8/23/10 4:33 PM Page 170

IEEE Communications Magazine • September 2010 171

nameserver lists the DNS server addresses.
The domain-name, search, and nameserver
configuration elements are embedded in the
container resolver. The resolver container
is marked to contain configuration data and
itself embedded in the dns container.

GROUPINGS, AUGMENTATIONS, CONSTRAINTS
The definition of the list nameserver makes
use of the grouping server-address . A
grouping can be seen as a reusable constructed
type. In fact, a grouping can contain an arbitrary
hierarchy of containers, lists, leafs, and
leaf-lists. However, unlike constructed types
in other languages, a grouping can be modified
when it is used.

With the goal of standardized configuration
interfaces in mind, it is necessary to provide lan-
guage mechanisms allowing vendors to extend
standardized definitions with vendor-specific
definitions. The augment statement allows one
to add definitions to some other part of the con-
figuration tree, which might be defined by some
external module. The example in Fig. 6 shows an
augmentation adding a leaf status to the list
nameserver in the container resolver.

The YANG language allows data modelers to
formally express constraints that must be validat-
ed by NETCONF servers. There are two types
of constraints: must constraints are used to
express constraints (in the form of XPATH
expressions) that must be satisfied by a valid
configuration; when constraints are used to
define sparse augmentations where nodes are
only added when a condition (in the form of an
XPATH expression) is true. Note that the usage
of XPATH at module design time does not
require that module implementations have to
support full XPATH at runtime.

NOTIFICATIONS AND OPERATIONS
The YANG language supports the formal defini-
tion of notifications and operations. The noti-
fication statement defines a notification
name and the content of the notification.

The rpc statement defines operations by giv-
ing them a name and defining the input and out-
put parameters. The usual YANG data
definition statements are used to define input
and output parameters as well as notification
content. By using the rpc statement, a YANG
modeler can define a command-oriented inter-
face that matches the features provided by CLIs.

FEATURES AND DEVIATIONS
The YANG language supports a mechanism to
mark a portion of a data model as optional. This
feature mechanism allows a data model designer
to break the data model for a complex protocol
into a set of optional features. YANG identifies
features by name. The names of the features
supported by a NETCONF server are advertised
through the capability exchange mechanism
when a NETCONF session is established.

In an ideal world all devices would be
required to implement a data model exactly as
defined, and deviations from the model would
not be allowed. But in the real world, devices
are often not able or willing to implement the
model as written. YANG provides a mechanism

Figure 6. YANG module to configure and monitor a DNS resolver.

module acme-dns-resolver {

namespace "http://acme.example.com/yang/acme-dns-resolver/1.0";
prefix "acme-res";

import "ietf-inet-types" { prefix "inet"; }

organization "ACME Inc.";
contact "support@acme.example.com";
description

"The YANG module for configuring the name resolver
library used by ACME products";

revision "2009-08-12" {
description "Initial revision.";

}

feature "status" {
description

"The status feature indicates that the server
provides status information for the configured
nameservers.";

}

typedef server-status {
type enumeration {

enum unknown;
enum answering;
enum failed;

}
description

"This type represents the status of a server.";
}

grouping server-address {
leaf address {

type inet:ip-address;
}
leaf port {

type inet:port-number;
}

}

container dns {
container resolver {

config true;

description
"The configuration of the resolver library.";

leaf domain {
type inet:domain-name;
description

"The host name of this system.";
}

leaf-list search {
type inet:domain-name;
ordered-by user;
description

"List of domain names to search.";
}

list nameserver {
key address;
description

"The list of known name servers.";

uses server-address {
refine port { default 53; }

}
}

}
}

augment "/dns/resolver/nameserver" {
leaf status {

type server-status;
config false;
if-feature "status";

}
}

}

SCHÖNWÄLDER LAYOUT 8/23/10 4:33 PM Page 171

IEEE Communications Magazine • September 2010172

to document any such deviations and to convey
the details to management applications. The
deviate statement is used to formally define
deviations, and the existence of deviations is
announced via NETCONF’s capability exchange
mechanism.

TRANSLATIONS
The YANG language must exist in environments
where a great number of languages and tools are
already used. Hence, it is important to develop
translation algorithms from YANG to other
schema languages and from existing network
management data modeling languages to YANG.
Some translation algorithms are being consid-
ered during the design of the YANG language
to ensure that feasible translation algorithms
exist.

YANG can be translated into other XML
schema languages, most notably XSD and
RelaxNG. This allows developers to use stan-
dard XML tools as they see fit. The translation
of YANG into RelaxNG is part of a bigger effort
of defining translation rules of YANG into Doc-
ument Schema Definition Languages (DSDL),
of which RelaxNG is a part.

In order to reuse the large amount of existing
SMIv2 definitions, a one-way translation of
SMIv2 into YANG has been realized. A transla-
tion of YANG into SMIv2 was not considered
since YANG is a much more powerful data mod-
eling language, and a generic translation to
SMIv2 would lead to either SMIv2 constraints
being carried over to YANG or to translations
to SMIv2 that are too clumsy to be used in prac-
tice.

IMPLEMENTATIONS
Several NETCONF implementations have been
created and are being deployed. Major network
device manufactures such as Juniper Networks,
Ericsson, Cisco Systems, and Nortel ship NET-
CONF as part of their device software. Other
companies such as Tail-f Systems, Netconf Cen-
tral, SNMP Research, and Silicon and Software
Systems license complete NETCONF develop-
ment kits to device manufacturers. Several open
source NETCONF implementations are under
development. Efforts to develop interoperability
test suites have started recently [9], and discov-
ered implementation bugs as well as ambiguities
in the protocol specification are being fleshed
out.

Several commercial and open source imple-
mentations of the YANG data modeling lan-
guage have been developed. Some YANG
compilers support translation of YANG models
to the YIN format, XSD, and RelaxNG. To
facilitate access to SNMP data models through
NETCONF, an SMIv2-to-YANG translation
algorithm has been implemented as part of an
open source SMIv2 toolset.

Finally, some high-level programming frame-
works are being developed to make it easy to
glue NETCONF into network-wide configura-
tion and policy systems. A good example is the
ncclient API for Python [10]. Figure 8 shows
a Python script modifying the nameservers used
by the set of hosts identified on the command
line. The script uses the candidate datastore
and protects itself against concurrent scripts by
locking the candidate datastore.

RELATED WORK
The YANG language has been influenced by the
design of the SMIng data modeling language
[11]. Different from SMIng, YANG does not
aim at being a protocol-independent language.
Based on the experience with the SMIng
approach [12], a design decision was taken very
early to design YANG as a domain-specific
NETCONF data modeling language.

An initial study of performance aspects of the
NETCONF protocol can be found in [13]. While
it has been acknowledged by the IETF working
group that an access control subsystem for NET-
CONF is needed, standardization work in this
area has not yet been started. Some early
research in this area can be found in [14].

CONCLUSIONS
The design of NETCONF and YANG incorpo-
rates decades of experience from network device

Figure 7. Configuration consistent with the DNS resolver data model.

<?xml version="1.0" encoding="UTF-8"?>
<dns xmlns="http://acme.example.com/yang/acme-dns-resolver/1.0">
<resolver>

<domain>test.example.com</domain>
<search>test.example.com</search>
<search>example.com</search>
<nameserver>

<address>192.0.2.4</address>
<status>answering</status>

</nameserver>
</resolver>

</dns>

Figure 8. The ncclient script uses the candidate datastore and locking to modify
the nameservers on a set of hosts identified on the command line.

#! /usr/bin/env python2.6

import sys, os, warnings
from ncclient import manager

template = """<config xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<dns xmlns="http://acme.example.com/yang/acme-dns-resolver/1.0">
<resolver><nameserver nc:operation="%s">
<address>%s</address>
</nameserver></resolver></dns></config>"""

def demo(host, user, changes):
with manager.connect(host=host, port=22, username=user) as m:

assert(":candidate" in m.server_capabilities)
with m.locked(target=’candidate’):

m.discard_changes()
for c in changes:

m.edit_config(target=’candidate’, config=template % c)
m.commit()

if __name__ == ’__main__’:
for device in sys.argv[1:]:

demo(device, os.getenv("USER"),
[("delete", "192.0.2.4"), ("create", "192.0.2.8")])

SCHÖNWÄLDER LAYOUT 8/23/10 4:33 PM Page 172

IEEE Communications Magazine • September 2010 173

vendors, standardization bodies, implementers,
and operators, and therefore has great potential
to make network configuration management
simpler, more effective, and more robust.

The NETCONF protocol addresses the
requirements for configuration management
protocols defined in [3] well and is therefore
a good choice for this task. The pragmatic
approach to layer NETCONF on top of a
secure and reliable transport greatly simpli-
fies the protocol. The development of the
YANG data modeling language and its stan-
dardization in the IETF is progressing well.
The availability of open source YANG tools
has already motivated IETF working groups
to use YANG for writing configuration data
models , even though some aspects of the
YANG language are still being finalized, and
some toolkit vendors have already replaced
their proprietary data modeling language with
YANG.

While NETCONF and YANG provide a
strong base technology for simpler, more effec-
tive, and more robust configuration manage-
ment, additional cost savings will be achieved by
the definition of standard configuration data
models. This will be a longer-term effort because
it requires identifying and agreeing on common
subsets of configuration information that can be
easily augmented with vendor-specific extensions
for the vendor-specific features that differentiate
their products. But even with just a small set of
common configuration data models, NETCONF
and YANG offer technology to deal with propri-
etary configuration data models in a much more
cost-effective and robust way.

ACKNOWLEDGMENTS
The work on this article was supported in part
by the EC IST-EMANICS Network of Excel-
lence (#26854).

REFERENCES
[1] R. Enns, “NETCONF Configuration Protocol,” Juniper

Networks, RFC 4741, Dec. 2006.
[2] J. Case et al., “Introduction and Applicability State-

ments for Internet Standard Management Framework,”
SNMP Research, Network Associates Laboratories, Erics-
son, RFC 3410, Dec. 2002.

[3] J. Schönwälder, “Overview of the 2002 IAB Network
Management Workshop,” International University Bre-

men, RFC 3535, May 2003.
[4] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Proto-

col Architecture,” SSH Communications Security Corp,
Cisco Systems, RFC 4251, Jan. 2006.

[5] S. Chisholm and H. Trevino, “NETCONF Event Notifica-
tions,” Nortel, Cisco, RFC 5277, July 2008.

[6] D. C. Fallside, “XML Schema Part 0: Primer Second Edi-
tion,” W3C Rec., Oct. 2004.

[7] J. Clark and M. Makoto, “RELAX NG Specification,”
OASIS Committee Spec., Dec. 2001.

[8] M. Björklund, “YANG -A Data Modeling Language for
NETCONF,” Tail-f Systems, RFC (to appear), 2010.

[9] H. M. Tran, I. Tumar, and J. Schönwälder, “NETCONF
Interoperabil ity Testing,” Proc. 3rd Int’l. Conf.
Autonomous Infrastructure, Mgmt., Sec. ‘09, ser. LNCS,
no. 5637, Springer, June 2009, pp. 83–94.

[10] S. Bhushan, H. M. Tran, and J. Schönwälder, “NCClient:
A Python Library for NETCONF Clients,” Proc. IPOM ‘09,
LNCS, no. 5843, Venice, Springer, Oct. 2009, pp.
143–54.

[11] F. Strauß and J. Schönwälder, “SMIng — Next Genera-
tion Structure of Management Information,” TU Braun-
schweig, IU Bremen, RFC 3780, May 2004.

[12] J. Schönwälder, “Protocol Independent Network Man-
agement Data Modeling Languages — Lessons Learned
from the SMIng Project,” IEEE Commun. Mag., vol. 46,
no. 5, May 2008, pp. 148–53.

[13] S.-M. Yoo, H. T. Ju, and J. W. Hong, “Performance
Improvement Methods for NETCONF-Based Configura-
tion Management,” Proc. APNOMS ‘06, ser. LNCS, no.
4238, Busan, Korea, Springer, Sept. 2006, pp. 242–52.

[14] V. Cridlig, R. State, and O. Festor, “An Integrated
Security Framework for XML-Based Management,”
Proc. 9th IFIP/IEEE Int’l. Symp. Integrated Net. Manage-
ment, May 2005, pp. 587–600.

BIOGRAPHIES
JÜRGEN SCHÖNWÄLDER (j.schoenwaelder@jacobs-university.de)
is an associate professor at Jacobs University Bremen,
where he leads the computer networks and distributed sys-
tems research group. He is an active member of the IETF,
where he has co-edited more than 25 network manage-
ment related specifications and standards. He is currently
serving as Chair of the NMRG of the Internet Research Task
Force and Co-Chair of the ISMS Working Group of the IETF.

MARTIN BJÖRKLUND is chief software architect and co-
founder of Tail-f Systems, and has more than a decade of
network management systems experience working for
companies such as Ericsson, Alteon, and Nortel. He serves
as an Editor in the IETF’s NETCONF and NETMOD Working
Groups. He holds an M.Sc. in computer science from the
Royal Institute of Technology in Stockholm.

PHIL SHAFER has worked for 12 years in the user interface
and network management areas for Juniper Networks, cre-
ating the JUNOS UI, defining features of the command line
interface, defining the XML API, and working to build a
user experience second to none. He has worked to add
features that simplify configuration and make life easier for
users. He serves as an Editor in the IETF’s NETMOD Work-

Even with just a

small set of common

configuration data

models, NETCONF

and YANG offers a

technology to deal

with proprietary

configuration data

models in a much

more cost effective

and robust way.

SCHÖNWÄLDER LAYOUT 8/23/10 4:33 PM Page 173

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

