
1 
 

Protocol Efficiencies of NETCONF versus SNMP for 
Configuration Management Functions 

Brian Hedstrom, Akshay Watwe, Siddharth Sakthidharan 
b.hedstrom@cablelabs.com, akshay.watwe@colorado.edu, 

Sakthidharan.Siddharth@colorado.edu 

A capstone paper submitted as partial fulfillment of the requirements for the degree of 
Masters in Interdisciplinary Telecommunications at the University of Colorado, Boulder, 
May 2, 2011. Project directed by Mark Dehus. 

1 Introduction 

This paper focuses on the quantitative analysis of the performance characteristics of two 
different network management protocols, the Simple Network Management Protocol (SNMP) 
[1] and the Network Configuration Protocol (NETCONF) [2]. SNMP is a legacy protocol which 
has been widely deployed and in use for several decades and is based on a request-response 
messaging protocol using a connectionless transport, generally the User Datagram Protocol 
(UDP) [3]. NETCONF is an emerging technology that has limited deployment. NETCONF is 
based on an XML messaging protocol using a connection-oriented transport, generally the 
Transmission Control Protocol (TCP) [4]. Additionally, NETCONF is often invoked within a 
secure shell (SSH) session [5]. 

Today’s complex and vast communication networks span the globe and include multiple 
equipment venders and technologies. The problem that Communication Service Providers 
(CSPs) face today is that SNMP no longer scales as an efficient and effective means for 
performing many network management functions (e.g., configuration) in such complex 
environments. New network management protocols have been designed, such as NETCONF, 
with goals of overcoming limitations encountered with SNMP. Several questions are posed with 
the advent of this new technology. The first question posed is: Can it be established that 
NETCONF could meet the current and future needs as a scalable, efficient, and effective method 
for performing configuration management functions within Communication Service Providers’ 
networks? The second question posed is: Is the NETCONF protocol more efficient, in terms of 
protocol bandwidth utilization, number of packets, number of transactions and operation time, 
than SNMP for performing configuration network management functions? And the third 
question posed is: By what factor is NETCONF more efficient than SNMP, if it is truly more 
efficient? 

If quantitative measurements can show that NETCONF is more efficient (in terms of 
bandwidth utilization, packet counts, transaction counts and operation time), than SNMP, and by 
some factor of N, this may be applied to the SNMP scalability problem where NETCONF could 
be the replacement protocol to achieve the desired scalability in configuration network 
management functions. 

2 Definitions 
This section defines the terms used in this paper. 



2 
 

A Communication Service Provider (CSP) is any network operator owning and operating 
a network covering one or more geographic areas and offering voice, video and/or data services 
to their residential and/or business customers. Examples include Verizon, Comcast, AT&T, etc. 

Network management includes the processes and functions which a network operator 
performs in order to maintain, provision, administer, monitor and operate their network [6]. 
Configuration management is the function specific to provisioning components within the 
network (e.g., configuration of one or more devices to enable a specific service or feature). 

Simple Network Management Protocol (SNMP) is a protocol used to perform 
management functions including monitoring and provisioning [7]. The protocol is based on a 
manager-agent model where one or more manager applications reside within a CSPs operations 
center and many agents are deployed in the network, embedded within networking devices. 
Managers make requests of agents. The SNMP SET operation is used for configuration 
management functions. 

Network Configuration Protocol (NETCONF) is another protocol used to perform 
management functions, mainly targeted at provisioning but capable of monitoring certain 
configuration and operational state information [3]. The protocol is based on a client-server 
architecture where one or more client applications reside within a CSPs operations center and 
many servers are deployed in the network, embedded within network devices similar to how 
SNMP agents are embedded. Remote procedure calls (e.g., <rpc>, <rpc-reply>) are invoked to 
exchange information, and the NETCONF <edit-config> operation is used for configuration 
management functions. 

A network management transaction is the exchange of one request and a corresponding 
response to that request. A single transaction may be composed of several protocol messages 
(e.g., Ethernet frames) due to protocol message size limits. For example, since NETCONF is a 
session-based protocol, an <edit-config> operation may require several Ethernet frames to 
transmit the full session containing the request-response transaction. 

Managed objects are parameters within a network device which may be configured using 
the SET SNMP operation [1] or the <edit-config> NETCONF operation [3]. 

Python is an interpreted high level programming language and was used to develop the 
manager-side applications for performing the device configuration as explained in the Analysis 
section of this paper. 

A log-log plot is a data graph with logarithmic scales on both the horizontal X-axis and 
vertical Y-axis. 

Operation time is the duration, in seconds, for a configuration operation to complete once 
the manager sends the configuration change request and the agent acknowledges the change has 
been completed.  Operation time does not include any manager processing time used to 
dynamically build the configuration. 

Data models are implementation specific representations of managed objects and are 
specified using a defined syntax or language. In the scope of this paper, data models were 
developed using SMIv2 [8] for SNMP and YANG [9] for NETCONF. Data models are 
implemented at both the manager and agent side. 

3 Scope and Assumptions 

This paper is intended for architects and engineers who are planning and designing the next 
generation network management architectures for Communication Service Providers. This 



3 
 

network management architecture evolution might be rolled out as emerging services are 
deployed (e.g., such as new cloud based services or Ethernet services), since new services have 
higher demands for various network management functions such as monitoring (e.g., quality 
assurance). As such, the target audience includes network architects planning and designing 
these new services. The intention is to demonstrate the performance of NETCONF vs. SNMP 
within the constraints of device configuration. If NETCONF yields superior results, it is believed 
this paper could stimulate the CSP architects to create purchase orders or request for product to 
their vendors that contain requirements for the NETCONF protocol, so that they can begin 
deploying the technology. This paper might also be useful for standards organizations such as the 
TeleManagement Forum and the ITU-T. Each organization has working groups which focus on 
standards setting activities within the scope of network management (e.g., ITU-T Study Group 2 
Question 8). 

Characterizing the configuration network management efficiencies of the two protocols is 
limited to a CSP’s network which provides services to their end customers. The CSP’s internal 
IT network or Enterprise network is not within this scope. Network exchanges across different 
Service Provider boundaries are not within scope (e.g., scope is limited to a single CSP network 
footprint). SNMPv3 will not be considered, since this protocol is rarely used within CSP network 
operations due to its operational complexities. It is assumed that the SNMP agent and 
NETCONF server devices all have equivalent memory and processing capabilities. 

SNMP uses a data modeling language based on the Structure of Management Information 
[8]. NETCONF uses a data modeling language called YANG, based on XML [9]. Although 
many data types exist and map between the two data modeling languages, not all do. For the 
purposes of this paper, equivalent data types will be used when constructing the SNMP and 
NETCONF data sets. 

4 Importance 

This research is important in the evolution of complex and expanding communication networks, 
specifically with the growing need to efficiently and effectively maintain, administer and 
provision these vast networks while reducing operational costs at the same time. As the 
networks, and the network devices that form the building blocks of those networks, grow smarter 
and more complex in their capabilities, so should the tools that manage them. Figure 1 below 
highlights this linear relationship of the increasing complexity of both the network and the 
network device. 



4 
 

 
Figure 1 – Complexity of Network vs. Network Element 

 
The services being offered by these networks are becoming more complex, with higher customer 
demands, lending to a greater demand for richer network monitoring and provisioning 
applications and protocols. Tail-f [10] provides an example of a new generation management 
system platform built around the NETCONF protocol and YANG data modeling language with 
these specific goals in mind. If the research can show that NETCONF is significantly more 
efficient than SNMP, this fact could be used to advocate for CSPs to transition their network 
management technology away from SNMP towards a newer, XML-based technology. 
Furthermore, if standards organizations such as ITU-T and TeleManagement Forum begin to 
adopt this new technology and its associated data modeling language [9] within the 
specifications they develop it will reshape the network operations industry. 

Previous research has been lacking in characterizing a side-by-side comparison of the 
efficiencies of SNMP versus NETCONF for Configuration Management functions. One research 
group [11] examined performance improvements within the NETCONF protocol, but their 
testing and characterization were based on an early IETF draft version of the NETCONF 
standard and a prototype implementation. Today, off the shelf vendor implementations of 
NETCONF clients and servers are available. Another research group performed a comparison of 
SNMP to Web Services [12] for network management performance characterization. Although 
this compared the performance of SNMP to an XML-based technology, it did not compare 
SNMP to the new NETCONF protocol; this paper fills that gap. Finally, an empirical study of 
NETCONF was performed by a research team [13] where SNMP and NETCONF were 
comparatively tested under a lab environment using an open source Yencap NETCONF server 
implementation. While this study performed a comparative analysis of a few hundred managed 
object queries with both protocols, it performed no comparison of Configuration Management 
functions using these protocols. This paper focuses strictly on the device configuration aspects 
and pushes the boundaries of 100,000 managed objects, as discussed in the Analysis section 
which follows. 



5 
 

5 Analysis 

The objectives for performing quantitative measurements on the performance of the two 
protocols were to perform configuration operations on a number of managed objects M in a 
staircase-type function where M = 1, 10, 100, 1000, 10000, and 100000. In order to perform 
measurements for the configuration operations, a Linux based client-server architecture was 
constructed as illustrated in Figure 2. 

 
Figure 2 – Lab Environment for Protocol Testing and Data Collection 

 
The SNMP Manager and NETCONF Client applications were developed as Python 

modules which leveraged the Net-SNMP [14] and ncclient [15] open source Python libraries. As 
the scalability of this project exceeded 50,000 managed objects, several software bugs were 
found in the ncclient Python library requiring the authors to work with the open source library 
owner to identify and resolve the issues [15]. The ConfD NETCONF Server, which contains the 
managed object database, is a commercial application available from Tail-f Systems [16]. The 
ConfD Server also included an embedded SNMP Agent [16]. This simulates a network device 
that contains configuration information which may be updated by both the SNMP and 
NETCONF protocols. 

The managed object database within the ConfD Server was constructed by developing an 
SNMP MIB and YANG Module which were equivalent data models. This created an 
environment where a single object existed within the ConfD Server and managed object 
database, rather than defining separate database objects for each protocol. Figure 3 illustrates the 
Unified Modeling Language class definition on how the two data modules were developed in 
order to achieve the goal of reaching a maximum of 100,000 managed objects. A List-N object 
was defined with an Integer id which was a key or index. Ten leaf[1..10] attributes were defined, 
with each being a String type, with a maximum string length constraint of 255 characters (SMIv2 
introduces this constraint). The SNMP MIB and YANG Modules definitions are not included in 
this paper. 



6 
 

 
Figure 3 – Class Definition for Data Model Design for MIB and YANG Modules 

 
Three Manager-side applications were developed using the Python programming 

language as follows: 
• NETCONF client application to perform configuration of M managed objects and 

record operation time 
• SNMP Manager application to perform configuration of M managed objects and 

record operation time 
• Packet sniffer and packet analysis application to perform measurements and 

calculations of protocol applications 
The NETCONF client and SNMP Manager applications included methods to dynamically 

build the configurations to be sent to the simulated network device. For example, in the 
NETCONF client application, where M=100,000, the application dynamically constructed the 
YANG data tree instance populating values for all manage object instances. To maintain a 
comparative test environment, both applications configured the leaf[1..10] attributes with 
identical values; each attribute was configured with a 255 length character string to maximize the 
payload size of the configuration operations.  

The SNMP Manager application, which utilized the SET operation, was optimized to 
carry more than a single object request per message (referred to as a SET Protocol Data Unit). It 
was determined through testing that a single SET PDU could carry up to 36 managed object 
configuration requests, along with their corresponding 255 length character string values. 
Therefore, this optimization approach was utilized for all M staircase-style operations for the 
SNMP protocol. A non-optimized approach would have included only a single managed object 
request per SET PDU. 

In order to perform the analysis and measurement calculations for the configuration 
management applications, a packet sniffer and analysis application was developed using the pcap 
[17] and dpkt [18] Python Library modules respectively. This application was run 
simultaneously with the NETCONF and SNMP management applications to capture, analyze and 
compute the performance statistics of the management traffic exchanged between the 
management system and simulated network device. 

5.1 Measurement Results 

This section details the measurement results obtained for both the SNMP and NETCONF 
protocols. For the measurement calculations, each experiment was executed twenty times 
(number of transactions was performed five times). The mean values for each performance 
statistic is plotted on a log-log plot, along with error bars on the Y-axis as shown in the graphs 



7 
 

below. A table of the mean values and standard deviations is also provided.  The Q1 and Q2 
values shown on each plot represents the percentage ratio of SNMP-to-NETCONF for the M=1 
and M=100,000 values respectively. It should be noted that a linear regression analysis was also 
performed to determine if the data sets for each performance parameter would fit to a straight 
line model, which they did not. 

Figure 4 and Table 1 present the measurement results for the number of Ethernet frames 
(i.e., data packets). The results illustrate that as M increases, SNMP continually utilizes fewer 
Ethernet Frames to carry the configuration payload when compared to NETCONF. However, at 
smaller values of M, NETCONF requires a higher number of Ethernet frames, due to connection-
oriented TCP transport. As M approaches 10,000, the gap between the two protocols diminishes 
considerably. In general, NETCONF will require greater processing overhead on the network, 
especially at the lower number of managed objects. Refer to the next section for a discussion on 
the messaging and bandwidth overhead and the tradeoffs in the features NETCONF adds along 
with this overhead. 

 

1

10

100

1000

10000

1 10 100 1000 10000 100000

N
um

be
r o

f E
th

er
ne

t F
ra

m
es

Number of Managed Objects (M)

Log-Log Plot for Number of Packets

SNMP

NETCONF

Q1: SNMP = 4.1%(NETCONF)
Q2: SNMP = 72%(NETCONF)

Q2

Q1

 

Figure 4 – M versus Number of Ethernet Frames 
 

Table 1: Mean Values for Number of Ethernet Frames 

Operation on # 
of Managed 
Objects (M) 

Number of Ethernet Frames Standard Deviation 

SNMP Protocol NETCONF Protocol 
SNMP 
Protocol 

NETCONF 
Protocol 

SET <edit-config> SET <edit-config> 
1 2 48 0 0 

10 2 50 0 0 
100 6 65 0 0 

1000 56 138.2 0 2.852 
10000 557.8 740.3 0.616 23.295 

100000 5558 7622.4 0 82.289 
 



8 
 

Figure 5 and Table 2 present the measurement results for the number of bytes. The results 
illustrate that the NETCONF protocol consistently carries a higher amount of bytes in the 
protocol payload as compared to SNMP and thus has higher bandwidth utilization requirements. 
This is likely due to several reasons. It should be noted that the measurements included the UDP 
and TCP header lengths (UDP header length is fixed at 8 bytes whereas the minimum TCP 
header length is 20 bytes and the maximum is 60 bytes, therefore the packet header overhead is 
higher for NETCONF). NETCONF is running over SSH and therefore has security built into the 
transport, requiring further protocol overhead and messaging. For this experiment, SNMPv2 was 
utilized, which includes no security mechanism. In addition, NETCONF is a session-based 
protocol, where-as SNMP is a session-less protocol running over UDP. This adds additional 
overhead for the connection handshaking and reliability of TCP. Finally, the NETCONF protocol 
adds a level of handshaking to allow a client and server the ability to discover capabilities in a 
<hello> message exchange. All of these added features which SNMP does not have include 
additional messaging overhead at the protocol layer. 

 

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000

N
um

be
r o

f B
yt

es

Number of Managed Objects (M)

Log-Log Plot for Number of Bytes

SNMP

NETCONF

Q2

Q1

Q1: SNMP = 8%(NETCONF)
Q2: SNMP = 29%(NETCONF)

 

Figure 5 – M versus Number of Bytes 
 

Table 2: Mean Values for Number of Bytes 

Operation on # 
of Managed 
Objects (M) 

Number of Bytes2 Standard Deviation 

SNMP Protocol NETCONF Protocol 
SNMP 
Protocol 

NETCONF 
Protocol 

SET <edit-config> SET <edit-config> 
1 642 7931 0 0 

10 2960 10475 0 0 
100 8800 36539 0 0 

1000 82880 295891.4 0 96.716 
10000 825544 2885174.4 911.069 1580.762 

100000 8225840 28820676.5 0 3840.356 
2Number of bytes includes the TCP and UDP headers 

 



9 
 

Figure 6 and Table 3 present the measurement results for the operation time. The results 
illustrate that even with the entire message overhead that NETCONF introduces, the operation 
time of the protocol performed faster when compared to SNMP as M approached 1000 and 
beyond. Figure 6 shows that when M has a small value (M < ~500) SNMP operations perform 
faster; however as M increases in size, NETCONF becomes operationally faster than SNMP. 
This may likely be due to the transaction benefits of NETCONF which will be discussed next. 

 

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000

O
pe

ra
tio

n 
Ti

m
e 

(s
ec

)

Number of Managed Objects (M)

Log-Log Plot for Operation Time

SNMP

NETCONF
Q1

Q2
Q1: SNMP = 4.5%(NETCONF)
Q2: SNMP = 139%(NETCONF)

 

Figure 6 – M versus Operation Time 
 

Table 3: Mean Values for Operation Time 

Operation on # 
of Managed 
Objects (M) 

Operation Time3 Standard Deviation 

SNMP Protocol NETCONF Protocol 
SNMP 
Protocol 

NETCONF 
Protocol 

SET <edit-config> SET <edit-config> 
1 0.00865 0.19555 0 0.036 

10 0.01675 0.19505 0.002 0.033 
100 0.11045 0.23520 0.003 0.026 

1000 1.17280 0.83565 0.254 0.040 
10000 11.27050 7.16690 0.469 0.241 

100000 129.05590 93.90900 12.735 11.007 
3Operation time excludes processing time for dynamically building the configuration 

 

For the operation time performance attribute, the 99% confidence intervals were calculated as shown in 
Table 4 below.  It’s important to highlight that for M=100,000 the calculations in Table 4 show there is 
significance in the data which supports that NETCONF performs faster than SNMP. 



10 
 

Table 4: 99% Confidence Intervals for Operation Time 

 

Figure 7 and Table 5 present the measurement results for the number of transactions. The 
results highlight the performance parameter where NETCONF is superior to SNMP and where 
SNMP cannot compete. When M ≤ 10 both protocols perform identically, but beyond this point, 
SNMP’s performance dramatically decreases as the number of transactions required spike. 
NETCONF can configure 100,000 managed objects in a network device with a single 
transaction. In the optimized SNMP case, this takes 2,779 transactions. This equates to nearly 
3000 UDP messages that have the possibility of not reaching their destination. This leads to a 
significantly higher amount of development complexity in developing the management tools and 
on-device software to handle those individual 3000 operations. In addition, this eliminates the 
ability to perform a backup and restore of the device’s configuration using the SNMP protocol. 
With a single transaction, this type of operation can be easily performed. In addition, SNMP 
cannot perform a configuration validation, where a full configuration is checked against the 
configuration stored on a management system. Just imagine if an operator had 100,000 devices 
on their network, and each device had 100,000 managed objects and they needed to perform a 
full configuration of all the devices. These results exemplify a significant disadvantage of the 
performance of the SNMP protocol for configuration management functions. 

 



11 
 

1

10

100

1000

10000

1 10 100 1000 10000 100000

N
um

be
r o

f T
ra

ns
ac

tio
n

Number of Managed Objects (M)

Log-Log Plot for Number of Transactions

SNMP

NETCONF

Q1

Q2

Q1: SNMP = NETCONF
Q2: SNMP = 2779(NETCONF)

 

Figure 7 – M versus Number of Transactions 
 

Table 5: Mean Values for Number of Transactions 

Operation on # 
of Managed 
Objects (M) 

Number of Transactions Required1 Standard Deviation 

SNMP Protocol NETCONF Protocol 
SNMP 
Protocol 

NETCONF 
Protocol 

SET <edit-config> SET <edit-config> 
1 1 1 0 0 

10 1 1 0 0 
100 3 1 0 0 

1000 28 1 0 0 
10000 279 1 0 0 

100000 2779 1 0 0 
1Management transactions include request and response message pair for the Operation 

 

6 Conclusions 

This paper has brought both the NETCONF and SNMP protocols head-to-head in a 
performance comparison to help answer the research question, is the NETCONF protocol more 
efficient, in terms of protocol bandwidth utilization, number of packets, number of transactions 
and operation time, than SNMP for performing configuration network management functions? 
By what factor is NETCONF more efficient than SNMP, if it is more efficient? A lab 
environment was constructed to exercise both protocols under a controlled scenario using a 
staircase-style function of managed objects configured in a simulated network device. Using 
quantitative measurement results and statistical data analysis, it was determined that the 
NETCONF protocol had a higher bandwidth utilization for number of Ethernet frames (i.e., 
packets) and bytes due to the overhead required for security, connection-oriented (session-based) 
and capability exchange features that are lacking in the SNMP protocol. However, these are 



12 
 

necessary features for managing complex networks. At a lower number of managed objects, 
SNMP had a faster operation time, but as the managed objects exceeded ~500, NETCONF’s 
operation time efficiency surpassed SNMP. Finally, and most importantly, NETCONF is most 
powerful when it stacks up against SNMP for number of transactions. NETCONF is able to 
configure 100,000 managed objects in a single transaction, using XML configuration data as its 
payload, while SNMP’s best case scenario is 2779 transactions for the same number of managed 
objects. This performance advantage alone outweighs the higher bandwidth utilization that 
NETCONF carries with the protocol (but again, these include those necessary features listed 
above). Due to the number of performance variables analyzed, it cannot be established by what 
factor NETCONF is more efficient than SNMP. 

The conclusions are clear; NETCONF is a viable alternative solution to SNMP for 
Configuration Management functions for today’s complex networks and emerging new 
generation back office systems. The NETCONF protocol clearly has the ability to displace 
SNMP as the incumbent Configuration Management protocol and provide Communication 
Service Provider’s with a more powerful back office tool to meet their higher network operation 
demands. 

References:  
[1] William Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Addison-Wesley, Third Edition, 1999. 
[2] R. Enns, “NETCONF Configuration Protocol”, IETF RFC 4741, December 2006 
[3] J. Postel, “User Datagram Protocol”, IETF RFC 768, August 1980. 
[4] J. Postel, “Transmission Control Protocol”, IETF RFC 793, September 1981. 
[5] M. Wasserman, T. Goddard, “Using the NETCONF Configuration Protocol over Secure SHell (SSH)”, IETF 

RFC 4742, December 2006. 
[6] ITU-T, “Series M: TMN and Network Maintenance: International Transmission Systems, Telephone Circuits, 

Telegraphy, Facsimile and Leased Circuits; Telecommunications management network; TMN management 
functions”, ITU-T Recommendation M.3400, February 2000. 

[7] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network Management Protocol (SNMP)”, IETF 
RFC 1157, May 1990. 

[8] K. McCloghrie, et al., “Structure of Management Information Version 2 (SMIv2)”, IETF RFC 2578, April 
1999.  

[9] M. Björklund, “YANG – A Data Modeling Language for the Network Configuration Protocol (NETCONF)”, 
IETF RFC 6020, October 2010. 

[10] Tail-f Systems White Paper, “EMS/NMS – Beyond Alarms and Maps”, 2011, Available at http://www.tail-
f.com/ems-beyond-alarms. 

[11] S. M. Yoo, H. T. Ju, and J. W. Hong, “Performance Improvement Methods for NETCONF-Based 
Configuration Management”, Proceedings from 9th Asia-Pacific Network Operations and Management 
Symposium, APNOMS 2006, Busan, Korea, September 27-29, 2006, pp. 242–252. 

[12] A. Pras, T. Drevers, R. v.d. Meent and D. Quartel, “Comparing the Performance of SNMP and Web Services-
Based Management”, IEEE eTNSM, Vol. 1, No. 2, Dec. 2004, pp. 1-11. 

[13] J. Yu, I. Ajarmeh, “An Empirical Study of the NETCONF Protocol”, Sixth International Conference on 
Networking and Services, ICNS 2010, Cancun, Mexico, March 7-13, 2010, pp. 253-258. 

[14] G. S. Marzot, The Python 'netsnmp' Extension Module for the Net-SNMP Library, v5.4.3, Project 
Documentation Page, viewed March 26, 2011, https://net-snmp.svn.sourceforge.net/svnroot/net-
snmp/trunk/net-snmp/python/README. 

[15] S. Bhushan, ncclient – A Python Library for NETCONF Clients, v0.3.1, Project Page, viewed March 2, 2011, 
http://oss.schmizz.net/ncclient/. 

http://www.tail-f.com/ems-beyond-alarms
http://www.tail-f.com/ems-beyond-alarms
https://net-snmp.svn.sourceforge.net/svnroot/net-snmp/trunk/net-snmp/python/README
https://net-snmp.svn.sourceforge.net/svnroot/net-snmp/trunk/net-snmp/python/README
http://oss.schmizz.net/ncclient/


13 
 

[16] Tail-f Systems, ConfD – A Commercial On Device Management Solution,  v3.3.4, Product Marketing Page, 
viewed March 26, 2011, http://www.tail-f.com/products-and-services/confd, Software obtained under Non-
disclosure Agreement. 

[17] D.Song, pcap – A Python packet capture library, Project Page, viewed March 26, 2011, 
http://pypi.python.org/pypi/pcap. 

[18] D.Song, dpkt – A fast, simple packet creation /parsing library, with definitions for basic TCP/IP protocols, 
Project Page, viewed March 26, 2011, http://code.google.com/p/dpkt/. 
 

http://www.tail-f.com/products-and-services/confd
http://pypi.python.org/pypi/pcap
http://code.google.com/p/dpkt/

	1 Introduction
	2 Definitions
	3 Scope and Assumptions
	4 Importance
	5 Analysis
	5.1 Measurement Results

	6 Conclusions
	References: 


