

Abstract—This paper presents an overview and empirical study
of NETCONF, which is a new network management protocol
approved by IETF in December 2006. The traditional
approaches of CLI, SNMP, and CORBA are discussed, along
with their deficiencies in network management. In this paper we
present an empirical study based on a standard NETCONF
implementation. We highlight the major capabilities of
NETCONF, which is a document-oriented approach based on
XML, and how these capabilities could be used to address the
challenges of configuration management in a complex network
environment. To demonstrate the NETCONF capability, we
installed an open source implementation of NETCONF, EnSuite
(Yencap), on our lab Linux environment. Our preliminary
results show that NETCONF provides more functionality (more
advanced features), and is more efficient (single transaction for
complex configuration data), more secure (embedded in the
transport protocol), and easier to develop new services than CLI
and SNMP.

Index Terms—Computer Network Management, NETCONF,
SNMP, XML-Based Network Management

I. INTRODUCTION
HE continual growth of telecommunications and data
networks in terms of size and service functions result in

increased complexity of the network management process. The
legacy approach of Command-Line Interface (CLI) is a
vendor-dependent approach where each vendor has its own
commands to perform the network management functions.
There is no concept of network managers and clients in this
approach. When there are more nodes on the network, the
need is obvious for a central network manager to provision,
configure, monitor, and trouble-shoot various network devices
at different locations. However, the lack of standard CLIs
prevents interoperability of equipment from different vendors
where the manager of Vendor-A could administer only devices
of Vendor-A, and cannot communicate with devices of
Vendor-B.

Over the years, there have been many standards for network
management from different organizations, such as OSI-System
Management, ITU-T, IETF and OMG. Based on the
acceptance of the industry, it is clear that Simple Network
Management Protocol (SNMP) is probably the most successful
one, as almost every vendor supports SNMP in their network
equipment. In addition, there is still an active working group
for SNMP since its introduction in 1988 [1]. During the past
20 years, many new functions and security measures were
added to the SNMP (in SNMPv2 and SNMPv3). However, the

SNMP is primarily used for network fault management and
performance management, while its application in
configuration management is very limited, especially in
system configuration (involving multiple nodes) and service
provisioning [2]. The weaknesses of SNMP lead to
investigating alternative approaches to network management.
This paper explores the newly approved IETF protocol,
Network Configuration Protocol (NETCONF) [3] and studies
its capabilities based on the EnSuite/yencap implementation
[4]. A major issue of NETCONF is a lack of support from the
industry, and few publications on the Netconf implementation.
This paper bridges this gap and provides performance
benchmarks for SNMP and a standard NETCONF
implementation.

II. NETWORK MANAGEMENT REQUIREMENTS

The Open System Interconnect (OSI) network management
framework specifies five functional areas for managing
telecommunications networks, known as FCAPS:

1. Fault management,
2. Configuration management,
3. Accounting management,
4. Performance management, and
5. Security management.

Although there are differences between telecommunications

networks and the Internet, these functional areas are still the
same. The Internet Architecture Board (IAB) held a milestone
workshop on network management in 2002. The fundamental
core of the workshop was to establish a common ground
between network operators and protocol developers. The
workshop published RFC3535 [5] to guide the IETF efforts on
future network management work. The recommendations and
conclusions of the IAB workshop based on network operators’
requirements can be summarized as follows:

1. The network management system must be easy to use for
the operators who could perform the configuration of the
whole network rather than individual devices.

2. The management protocol should support a standard
mechanism to save and restore complete device
configuration rather than individual entities.

3. Managed devices should support multiple configurations.
The protocol should support the distribution of multiple
configurations to devices, and then activate any

An Empirical Study of the NETCONF Protocol

James Yu, and Imad Al Ajarmeh
DePaul University, Chicago, IL, USA

jyu@cdm.depaul.edu iajarmeh@cdm.depaul.edu

T

2010 Sixth International Conference on Networking and Services

978-0-7695-3969-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICNS.2010.41

253

configuration. In addition, rollback between
configurations should be supported.

4. The management protocol should support configuration
transactions across multiple devices simultaneously in
order to avoid configuration inconsistency. This function
significantly simplifies network configuration tasks.

5. Device configuration should be distributed in human-
readable format so that text processing tools and version
control systems can be used to manage and process
configuration data.

6. The management protocol should provide authentication,
secured transport as well as robust access control that are
integrated with the existing key and credential
infrastructure.

The IAB workshop resulted in a recommendation that the
IETF/IRTF should work on the development and
standardization of XML-based device configuration and
management technologies.

III. NETWORK MANAGEMENT APPROACHES

A. Command-Oriented Approach

In the Command Line Interface (CLI) approach, the
network administrator logins to the device, and enters
commands as illustrated in Fig 1.

Fig 1. Management Network for CLI

If a device supports IP, the administrator can telnet or ssh

to the device. If the device does not support IP or the IP
interface is not configured, the administrator uses a terminal
server to access the console interface of the device. To
automate the configuration procedure, it is common to compile
a sequence of commands in a script file and then send the
script file to the device. The following example is a telnet
script to show the IP routing table of a Cisco router:

A major issue with the CLI approach is the lack of standards

because each vendor has its own command sets and
proprietary procedure for device configuration. Also, there is
no centralized scheme for network management, and each
vendor has its own tool sets to address the needs. Although

there are many issues with the CLI-approach to network
management, it is still the most common approach to network
configuration management.

B. Variable-Oriented Approach

SNMP is an IETF standard protocol. It is an application-
layer network management protocol used to read and write
simple variables to/from network devices. These variables
have no data structures associated with them. SNMP
operations involve using Get, Get-Next, and Get-Bulk requests
to read variables on devices. It also employs the Set request to
write (or update) variables on devices. In addition, SNMP
employs Trap operations for device monitoring where the
managed device sends management data upon certain events
(Notifications).

The SNMP management system employs manager-agent
architecture as illustrated in Fig 2. Note that the web server
and client are not part of the SNMP network, and it shows a
typical environment for SNMP-based network management.

Fig 2. Web-Based SNMP System

The management data structures on the devices are defined

and standardized using data structures known as Management
Information Base (MIB) modules. MIB’s are written in
Structure of Management Information (SMI), which is a data-
oriented language adopted from Abstract Syntax Notation 1
(ASN.1). It does not support advanced programming concepts
such as structured data types, methods, or objects. Therefore, it
is difficult to develop practical applications [2]. SNMP is
widely supported on almost all managed network devices, and
the standards for MIBs are comprehensive, covering almost all
data network devices. The increasing complexity of modern
networks exposed several serious issues related to using
SNMP-Based Network Management systems. A summary of
those issues are given as follows [5]:

1. SNMP does not support the retrieval of complete device
configuration as a whole. As a result, it does not have
the capability to compare the current running
configuration with another configuration (for the same
or different devices) for consistency or integrity checks.

2. SNMP suffers poor performance for bulk data transfers
even for simple task as the retrieval of a routing table.

3. SNMP lacks query and aggregation mechanisms which
reduce the efficiency and scalability of the protocol.
SNMP Get or Get-Bulk operations can retrieve

LAN
Terminal Server Network device

telnet/ssh

#/bin/sh
host="192.168.1.101"
(echo <password>
sleep 1
echo "show ip route"
sleep 1
echo exit) | telnet $host

254

management information from only one device at a
time. To collect the same information from multiple
devices, the manager needs to issue the Get/Get-Bulk
request multiple times.

4. The development process of MIB modules is slow and
behind the development of devices. When MIBS are
released, they usually lack comprehensive
documentation and description for their usage. In
addition MIB modules often lack writable objects for
device configuration.

5. SNMP programming interfaces is too low-level and too
time-consuming; therefore, SNMP programming/
scripting is inconvenient for practical use. Tools
developed based on SNMP are expensive.

6. SNMP does not employ the standard security
mechanisms; instead the security is self-contained
within the protocol itself which makes SNMP
credentials and key management complex and difficult
to integrate with other existing credential and key
management systems.

7. SNMP traps do not provide comprehensive description
of an event, and Get operations are usually required to
collect additional information to describe the event.

Although SNMP is widely used for Fault Management

and Performance Management, its capability to support
Configuration Management is limited. Few, if any, network
administrators would use SNMP (Set request) for
configuration management. Many network management
tools are still using CLI scripts, instead of SNMP Set, for
configuration management.

C. Object-Oriented Approach

The limitations of SNMP (a variable-oriented approach) lead
to the research of object-oriented approach to Network
Management. Common Object Request Broker Architecture
(CORBA) from the Object Management Group (OMG)
received a lot of interests in the network community in the late
90’s. CORBA is a standard that supports the collaboration of
software components written in different languages on
different devices. The standard includes an Interface
Definition Language (IDL) which provides a formal
specification of the network interfaces. IDL could be
implemented in Java, C/C++, or other languages. This
mechanism allows a management server to communicate with
any network device, even a hand-held device that supports the
CORBA agent. However, CORBA-based network is simply a
portal and it requires another standard body to define
management objects. We searched the RFC documents in the
IETF web site, and there is ONLY one information-only
document (RFC 2714). The interest in the object-oriented
approach to network management is diminishing.

D. Document-Oriented Approach

The document-Oriented Approach is based on eXtensible
Mark-up Language (XML) which is standardized by the World
Wide Web Consortium (W3C). XML is widely used for
exchanging documents of web services, and it supports several
standard API’s for accessing and manipulating XML
documents, such as XML Schema, Document Object Model
(DOM), Extensible Stylesheet Language (XSL), XSL
Transformation (XSLT), and XML Path language (XPath).
The XML-Based approach was introduced to solve the
weaknesses of SNMP, and to satisfy the demand of managing
the current complex networks. The IETF Network
Configuration Working Group (NETCONF WG) is
responsible for the standardization of XML-Based network
management. The working group proposed a new protocol,
called NETCONF, to manage diverse network devices
manufactured by different vendors.

In the XML-based network management, the device
configuration can be specified in an XML document, which is
then exchanged between the manager and the managed device
(i.e., agent). Unlike a variable-oriented approach, the XML-
based approach could provision or update a complex
configuration change on a device by a single transaction.

IV. NETCONF
NETCONF protocol is a major step towards an automated

XML-Based network management system. It is a new
management protocol that defines operations for managing
network devices where configuration data can be uploaded,
retrieved, and manipulated as a whole or partially. NETCONF
protocol is based on a XML-encoded Remote Procedure Call
(XML-RPC) to communicate between the manager and the
agent. Although NETCONF is proposed for network
configuration, it may also be used for network fault
management [6].

A. NETCONF Architecture

NETCONF architecture is designed to distinguish between
writable configuration data used to control the operation of a
device and state data containing device statistics and status
description. Configuration data can be retrieved by <get-
config> and modified by <edit-config>, <copy-config>, and
<delete-config>, whereas <get> is used to retrieve available
state and configuration data [3]. In addition, NETCONF
distinguishes between three configurations on a managed
device [7]:

1. Running: configuration currently active on the device
2. Candidate: a standby configuration, which can be

manipulated without affecting the current device’s
running configuration.

3. Startup: the initial configuration of a device

NETCONF uses a layered architecture for transmitting

messages in order to provide a clear separation between
management data (content) and the underlying protocol for

255

transporting the data. In this architecture, the protocol is
divided into four layers as shown in Table I [8].

Table I. NETCONF Protocol Layers

Layer Content and Examples

Content Device configuration data

Operation Operations invoked as RPC methods
encoded in XML
<get-config> and <edit-config>

RPC A transport independent framing
mechanism also in an XML encoding
scheme.

<rpc> and <rpc-reply>
Transport Transmission protocol between agent and

manager.
SSH, SOAP, and BEEP

There are many advantages to using XML such as the

flexibility of defining data structures, the availability of free
tool kits and API’s, human readability, and the ease of
transport over existing secured channels.

B. NETCONF Transport Layer

IETF provides three different transport mechanisms for
NETCONF to send the XML-based configuration data:

1. Secure Shell (SSH) – RFC 4742 [9] defines how to
establish an SSH session to transport the NETCONF data
in a secured channel. The default TCP port for the
NETCONF SSH session is <830>. The support of SSH
is considered mandatory for NETCONF implementation.

2. Simple Object Access Protocol (SOAP) – RFC 4743 [10]
defines how to use SOAP to transport NETCONF
messages. Although SOAP is a transport independent
protocol, it is usually implemented on HTTP(S).
Therefore, security consideration is covered in HTTPS. A
major feature of SOAP is Web Service Definition
Language (WSDL) file, which is the advertisement of the
services. A manager could query the device WSDL file to
understand the available services and use the services to
build management applications.

3. Blocks Extensible Exchange Protocol (BEEP) – RFC
4744 [11] defines an application mapping of NETCONF
over BEEP, which is a peer-to-peer protocol. A major
feature of BEEP is to support a large number of serially
connected devices, even in the face of firewall and
Network Address Translators (NAT). Security is
supported by the use of Simple Authentication and
Security Layer (SASL).

One commonality of these protocols is that security is

supported and implemented in the transport layer, and this is
an important feature of NETCONF.

C. NETCONF Implementation

Given that SNMP is a popular and widely supported network
management protocol, it is important that NETCON should
interwork with the SNMP-based network environment. Two
major approaches have been investigated:

The first approach is to develop a NETCONF manager to

interface with SNMP agents via a mediator as shown in Fig 3.
Because NETCONF is a new protocol, many legacy devices
do not support NETCONF-capable agents. This approach
introduces a mediator/gateway to translate between XML and
SNMP data.

Fig 3. NETCONF and SNMP Interworking

The 2nd approach requires the installation (software

upgrade) of a NETCONF agent on the managed device as
illustrated in Fig. 4, and it is the ideal solution because it does
not involve NETCONF/SNMP gateway for translation.

Fig 4. NETCONF Manager and Agents

V. NETCONF EXPERIMENTS
To explore the capabilities of NETCONF, we installed the

open source NETCONF implementation Yencap [4] on our lab
Linux environment. In order to capture the XML documents
exchanged between NETCONF agent and manager, we
implemented the instrumentation code to trace the XML
messages sent and received on the agent. In this paper we
compare the performance and functionality of NETCONF with
the legacy SNMP where we used the same environment to
install an SNMP agent and manager. The test environment is
illustrated in Fig 5.

256

Fig 5. NETCONF Lab Test Environment

We used NETCONF and SNMP to manage VoIP SIP server

(Asterisk), and we chose this particular server since we could
find a NETCONF module and a SNMP MIB for this server.
Our evaluation metrics will be based on the functionality,
number of transactions, the overall size of exchanged
messages, and the number and average size of packets.

The first experiment is to retrieve all available management
information using SNMP and NETCONF. The ASTERISK-
MIB used in this experiment contains 62 readable objects.
Walking through the entire MIB using SNMP get-bulk results
in 227 data objects from our Asterisk server. Although our
ASTERISK NETCONF module has more data objects than the
MIB, we customized the module to retrieve the same MIB
objects for comparison. Table II shows the results of this test.

Table II. Retrieving large number of objects

 Transactions Size
(kB)

Num
pkts

Avg pkt
size (Byte)

SNMP 23 8.5 45 189
NETCONF 1 9.2 14 676

The second experiment is to retrieve a single data object

using SNMP and NETCONF. Table III shows the results.

Table III. Retrieving a single data object

 Transactions size
(kB)

num
pkts

Avg pkt
size (Byte)

SNMP 1 0.152 2 76
NETCONF 1 1.460 3 486

The third experiment is to write configuration data. Using
NETCONF, we are able to write any configuration objects into
Asterisk configuration files. On the other hand, the available
SNMP ASTERISK-MIB does not have any writable objects.
This issue makes SNMP fail to support any configuration for
the Asterisk server. Fig. 6 shows an example of NETCONF
XML request for adding a SIP peer (i.e., a new subscriber with
an assigned telephone number). Fig 7 shows the XML reply
message.

Fig. 6. NETCONF request (add SIP peer)

Fig 7. NETCONF reply (add SIP peer)

The forth experiment is to explore some of the new features

of NETCONF that provide the network configuration process
with increased security, automation, robustness and
consistency. In this experiment we explored the configuration
locking features of NETCONF, where a management session
can completely or partially lock the configuration on one or
multiple devices to ensure consistency.

To demonstrate the locking feature we modified our test
environment by adding another management station as
illustrated in Fig 8.

Fig 8. NCONF Lab with 2 mgmt stations

We established two separate NETCONF sessions using
station 1 and station 2 (Session-1, and Session-2), and we used
the same NETCONF credentials for both sessions. Session-1
locked the startup configuration of the Asterisk server, and the
locking mechanism is illustrated in Fig 9. Session-2 tried to
lock the same configuration again, and the operation failed as
shown in Fig 10. Session-2 tried again to modify the locked
configuration by trying to add a new SIP user, and the
operation failed as shown in Fig 11.

NETCONF
over SSH HTTPS

Yencap
Manager

Web
Server

Mgmt
Station 1

Yencap
Agent

Mgmt
Station 2

NETCONF
over SSH HTTPS

SNMP Manager
and

YencapManager

Web
Server

Web
Client

SNMP Agent
and

Yencap Agent

257

Fig 9. NETCONF Lock Configuration request-response

Fig 10. NETCONF Lock operation failure

Fig 11. Error modifying a locked configuration

As illustrated in Table II, NETCONF provides significantly

better performance in terms of number of transactions and
packet utilization compared to SNMP when retrieving many
objects at once. The reason is that NETCONF retrieves the
entire configuration using a single transaction. It sends one
request (get-config) for the required object tree defined by the
XML schema, and the response comes in a single XML
document. This document is transferred by the underlying
transport protocol with high packet utilization.

As shown in Table III, retrieving a single data object
requires more bandwidth for NETCONF than SNMP and that
is due to the verbose nature of XML documents in addition to
the overhead associated with establishing and terminating
NETCONF application and TCP transport sessions. In this
extreme case, SNMP outperforms NETCONF; however, this
case is not very common in network management operations.
Data compression can be used to mitigate NETCONF
overhead issue at the cost of some increase in CPU usage. For
the configuration experiment, SNMP completely fails due to
the lack of writable MIB objects. This issue is very common
in many MIBs and not restricted to the ASTERISK-MIB used
in this experiment.

Yencap supports many of the standard NETCONF features
such as Validate Configuration, Lock Configuration, rollback,
and multiple configurations on the device (startup, running,
and candidate). Our lab experiments were able to validate
many of these features, but we present only the Lock
Configuration feature and demonstrate it in this paper. As
illustrated in Fig 10 and Fig 11 a configuration locked by a
certain NETCONF session cannot be locked or modified by

any other sessions. This feature is very important to ensure
configuration consistency, especially among several devices.
SNMP lacks any configuration locking mechanisms. In
addition, SNMP lacks the concept of management sessions,
leaving the devises open to any SNMP requests to modify the
configuration as long as they carry the correct credentials.

VI. CONCLUSION
This study provides an overview of the current approaches

to network management, and identifies the major deficiencies
of command-oriented and variable-oriented approaches. The
new approach based on XML is considered essential in
supporting the increasing complex and diverse network
environment. NETCONF is the standard to address this
challenge. To explore the capability of NETCONF, we
conducted an experiment to study an open source
implementation based on EnSuite/Yencap. The experiment
demonstrates that NETCONF is more efficient, more effective,
and more secure than SNMP to support various network
configuration functions. NETCONF is associated with more
transmission when accessing small number of objects due to
XML, application and transport session overheads. This issue
can be mitigated by data compression. We also identified the
need for a data model to standardize the configuration
information, and this issue is been addressed in YANG [12]

REFERENCES
[1] A Simple Network Management Protocol, RFC 1067, August 1988.
[2] Jürgen Schönwälder, Aiko Pras, and Jean-Philippe Martin-Flatin, “On

the Future of Internet Management Technologies”, IEEE
Communications Magazine, October 2003.

[3] NETCONF Configuration Protocol, RFC 4741, December 2006.
[4] EnSuite Software Site,

http://ensuite.sourceforge.net/yencap_user_doc.html.
[5] J. Schoenwaelder, “Overview of the 2002 IAB Network Management

Workshop”, IETF, RFC3535, May 2003.
[6] G. Munz, A. Anthony, F. Dressler, and G. Carle, “Using Netconf for

Configuring Monitoring Probes,” 10th IEEE/IFIP Network Operation and
Management Symposium, April 2006

[7] Torsten Klie, Florian Muller and Stefan Fischer: “Network Monitoring
with Asynchronous Notifications in Web Service Environments”, in
Proc. Communication in Verteilten Systemes (KIVS), Bern, Switzerland,
Mar 2007

[8] Sun-Mi Yoo, Hong-Taek Ju, and James Won-Ki Hong, “Web Services
Based Configuration Management for IP Network Devices”, J. Dalmau
and G. Hasegawa (Eds.): MMNS 2005, LNCS 3754, pp. 254 - 265,
2005.

[9] Using the NETCONF Configuration Protocol over Secure Shell (SSH),
RFC 4742, December 2006

[10] Using NETCONF over the Simple Object Access Protocol (SOAP),
RFC 4743, December 2006

[11] Using the NETCONF Protocol over the Blocks Extensible Exchange
Protocol (BEEP), RFC 4744, December 2006

[12] YANG – A Data Modeling Language for NETCONF, draft-ietf-netmod-
yang-03, January 2009.

258

