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SCALABILITY IN IP-ORIENTED NETWORKS

SCALE VS. SERVICE

Two years ago, I was faced with a peculiar situ-
ation at the University of Linz: I was one of
two faculty members who were in charge of
teaching approximately 300 students how to
write simple programs in Java. With 150 stu-
dents for each of us, this could have become a
severe problem: by default, each of these stu-
dents felt that we were the ones who would
answer each and every question they had. While
it would not be a problem to serve around 50
students in this manner, with a number as large
as 150, it becomes impossible.

We dealt with this problem in a way that has
been common at our university for ages: six
tutors were employed, three for each of us. The
most important task of these tutors was answer-
ing questions as we would personally had there
been fewer students. Being students themselves,
these tutors did not have the knowledge we had;
thus, every once in a while they were not capable
of answering a question. The rule we agreed
upon was that they would collect questions they
could not answer, meet us, and bring up these
points on a weekly basis.

Now let us consider what happened on an
abstract level: at first, we were experiencing
problems due to the large scale of users we were
facing; we could not provide the fine-grained ser-
vice we were able to provide when there were

more faculty members. As a logical layer
between students and us, the tutors aggregated
the questions and brought them to us. Our ser-
vice had a coarser granularity, but, from our per-
spective, the number of students we had to
communicate with was reduced. The total system
worked — it was scalable. Notably, the quality of
service experienced by individual students suf-
fered because we could not answer each ques-
tion personally.

A similar thing happened on the Internet. To
stay with our metaphor, early quality of service
(QoS) provisioning concepts simply assigned
some students a higher priority than others;
these students would obtain better treatment
from my colleague or myself (e.g., while others
would only be allowed to pay us a visit at specif-
ic office hours, questions from these students
would be answered at any time). Depending on
the number of high- and low-priority students,
this method may or may not yield an acceptable
service; since the quality of the service degrades
in a linear manner as the number of students
grows, the process obviously does not scale well
(Fig. 1).

The network counterpart of our students
being end-to-end traffic flows (source/destina-
tion pairs), the integrated services (IntServ) QoS
model realizes just this type of mechanism: ser-
vices are established by informing routers about
the necessary details with the Resource Reserva-
tion Protocol (RSVP) signaling protocol; at
intermediate routers encountered via standard
routing, packets belonging to individual traffic
flows are identified and handled appropriately.
Separating packets that need preferential treat-
ment from others can be a difficult task: in the
case of end-to-end flows, tables of source/desti-
nation addresses and port numbers must be
maintained (this process is known as multifield
classification). Since port numbers are not part
of the IP header, they may not be readable due
to encryption mechanisms or IP packet fragmen-
tation. Additionally, it may be necessary to save
special information (e.g., the type of service
requested) for each flow; such saved information
is called per-flow state and grows linearly with
the number of traffic flows just as the work for
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ABSTRACT

During the last decade, two big efforts on
Internet quality of service were made. The first,
IntServ, promises precise per-flow service provi-
sioning but never really made it as a commer-
cial end-user product, which was mainly
accredited to its lack of scalability. Its succes-
sor, DiffServ, is more scalable at the cost of
coarser service granularity — which may be the
reason why it is not yet commercially available
to end users either. This leaves us with the
question: is there a fundamental trade-off
between QoS and scalability? A trade-off that,
in the long run, could prevent deployment of
QoS for end users altogether?

Scalability and Quality of Service:
A Trade-off?
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my colleague and me grows linearly with the
number of questions we have to answer. Since
RSVP typically sets up per-flow state, it is said
to not scale well.

At this point, it is important to distinguish
between scalability issues that have to do with
service granularity and scalability of signaling: in
the case of RSVP, the state associated with
reservations can even grow like O(N2), where N
is the number of individual traffic flows. As an
alternative, more scalable routing protocols were
proposed (e.g., [1]), some of which also provide
functionality for state aggregation. Still, the
inherent scalability of a signaling protocol is a
fundamentally different issue than the scalability
of a service model, which is our concern in this
article.

The next milestone in the history of Inter-
net QoS provisioning is differentiated services
(DiffServ). Here, routers have different roles:
edge routers (routers at domain endpoints) clas-
sify users into separate user groups in order to
reduce the amount of state for core routers to a
handful of user classes; these classes can be
determined by looking at the DiffServ code
point (DSCP) f ield in the IP header.  Edge
routers can be seen as the equivalent of tutors,
while core routers act as my colleague and I
did in our example. Thus, DiffServ achieves
scalability through aggregation just like us at
the University of Linz. To summarize, the fol-
lowing scalability facts can be learned from
looking at the teaching example and at com-
puter networks:
• For a mechanism to be scalable, the “work”

(in terms of processing power, memory
space, etc.) for an entity should not directly
depend on the number of users.

• Aggregation is a key concept to reduce the
number of users with which an entity has to
deal.

• The scalability enhancement achieved by
aggregation appears to come at the cost of
degraded QoS.
In particular, the latter point is true in our

example (students are given more useful
answers when they ask us directly instead of
asking tutors) and in DiffServ (the services
defined by DiffServ are not as strict as IntServ
services — DiffServ is an incremental improve-
ment on the best effort Internet service model).
Fundamentally, there seems to be a trade-off
between the granularity of services and the
scalability of the underlying QoS provisioning
method. In the remainder of this article, we
will take a closer look at this claim and ques-
tion its validity by explaining three approaches
to the problem; we refer readers interested in
further detail on the IntServ and DiffServ QoS
models to [2].

APPROACH 1:
COMBINING INTSERV AND DIFFSERV
By design, the DiffServ architecture is relatively
static. In particular, it lacks a signaling protocol
to dynamically reserve resources; users may want
to join and leave a particular behavior aggregate,
and change their traffic profile at any time while

the service provided through DiffServ is limited
through static service level agreements (SLAs).
IntServ, on the other hand, is more flexible but
less scalable. As a result, several proposals for
combining the flexibility of service provisioning
through RSVP or a similar, possibly more scal-
able, signaling protocol with the fine service gran-
ularity of IntServ and the scalability of DiffServ
have emerged; some examples are [3, 4], where a
whole new simplified framework for guaranteed
services is proposed.

Whether RSVP is associated with traffic
aggregates instead of individual flows (so-called
microflows) or a new signaling protocol is used,
the scenario always resembles the example
depicted in Fig. 2: signaling takes place between
end nodes and IntServ edge routers or just
between IntServ routers; some IntServ-capable
routers act like DiffServ edge routers in that
they associate microflows with a traffic aggre-
gate, with the difference that they use the
IntServ traffic profile for their decision. From
the perspective of an IntServ network (e.g., a
domain or a set of domains), these routers sim-
ply tunnel through a non-IntServ region. From
the perspective of DiffServ routers, there is no
such thing as an IntServ network: packets merely
carry the information required to associate them

� Figure 2. An example IntServ over DiffServ scenario.

IntServ router DiffServ edge router DiffServ core router

� Figure 1. Me serving six students in two ways.
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with a DiffServ traffic aggregate. The network
cloud in the upper left corner of Fig. 2 is such a
DiffServ domain that is being tunneled through,
while the domain shown in the upper right cor-
ner represents an independent IntServ network.
It is up to the network administrators to decide
which parts of their network should act as Diff-
Serv tunnels and when the full IntServ capability
could be used.

All such combinations of IntServ and Diff-
Serv clearly represent a trade-off between ser-
vice granularity and scalability: as soon as flows
are aggregated, they are not as isolated from
each other as they possibly were in the IntServ
part of the network. This means that, for
instance, unresponsive flows can degrade the
quality of responsive flows. The strength of the
IntServ/DiffServ combination is the fact that it
gives network operators yet another opportunity
to customize their network and fine-tune it
based on QoS and scalability demands.

APPROACH 2:
DYNAMIC PACKET STATE

Dynamic packet state (DPS) is a simple and pow-
erful concept that approximates the QoS
achieved with per-flow mechanisms without
requiring routers to maintain per-flow state.
State is kept in packet headers instead; it influ-
ences packet processing and causes routers to
update their internal state and the state in the
packet before forwarding it. In [5], DPS is
explicitly called an attempt to “bridge the long-
standing gap between stateless and stateful solu-
tions in packet switched networks such as the
Internet.”

The network scenario for DPS resembles the
DiffServ scenario: edge routers — routers at
edges of a contiguous trusted network region
called the stateless core (SCORE) — differenti-
ate between individual end-to-end flows to prop-
erly determine the state inserted in the header
of a packet as it enters the network. Core routers
apply the DPS technique and thus only require
internal state that does not depend on the num-
ber of flows. As a packet leaves the SCORE, an
edge router removes the state from the header.
DPS-based mechanisms are designed in two
steps. First, a reference stateful network is iden-
tified; second, this network is approximated with
the DPS technique.

Let us take a closer look at two prominent
examples: a realization of fair queuing called
core-stateless fair queuing (CSFQ) and a method
to provide guaranteed services.

Fair queuing is a queuing discipline where
responsive flows are protected from the impact
of nonresponsive ones in that each flow receives
the same share of the link bandwidth. CSFQ,
its DPS approximation, realizes a simple proba-
bilistic dropping algorithm that only depends
on state inserted by edge routers (a per-flow
rate estimate) and the calculated fair share.
The latter value is computed by core routers
based on the information in packet headers.
After the computation is finished, fair queuing
is enforced at each core router by dropping cer-
tain packets.

The reference network for the guaranteed
service model approximated with DPS consists
of routers implementing the so-called Jitter-
Virtual Clock (JVC) algorithm: as a new packet
arrives, it is assigned an eligible time and a
deadline; the packet is then held until the time
is right. The scheduler orders the transmission
of eligible packets according to their deadlines.
While guaranteed services can also be realized
with different algorithms, a reason to assume
JVC was that it  only relies on information
about a single data flow, which makes it easier
to approximate than algorithms that take all
active flows into account. The distributed
derivation of JVC based on DPS is called Core-
Jitter-Virtual Clock (CJVC). Basically, it has
edge routers precompute the necessary parame-
ters, and core routers perform the packet
scheduling based on these and additionally cal-
culated data (once again, each packet state is
updated by core routers as it  traverses the
SCORE). CJVC is shown to yield the same
QoS as JVC in [5].

In addition to these two examples, [5]
explains a distributed algorithm that performs
relative service differentiation. While it is not
clear whether each and every stateful mechanism
can be approximated in a way that yields satis-
factory results, the DPS technique is certainly a
promising alternative to the stateful QoS meth-
ods we have today. Of all the approaches exam-
ined in this article, it is the most direct attempt
to realize a mechanism in a scalable manner
without sacrificing service granularity.

APPROACH 3:
CONGESTION CONTROL AND QOS

As explained in [6], unresponsive traffic can
lead to a phenomenon called congestion col-
lapse: after a certain point, increasing rates of
senders that do not perform congestion control
causes the total throughput of a network to
decrease. Therefore, congestion control is nec-
essary for a network to operate in a stable and
efficient manner. The mechanisms found in
modern TCP variants represent an example of
possibly the most scalable bandwidth manage-
ment method ever: with the exception of the
explicit congestion notification (ECN) bit, there
is no explicit signaling between end nodes and
interior network nodes at all; roughly, the work
for routers is a function of the total amount of
traffic and does not depend on the number of
end-to-end flows. (At this point, we are ignor-
ing details such as traffic phase effects that may
render this claim false. However, while it can-
not necessarily be reached under all circum-
stances, independence of the number of flows is
clearly a goal of congestion control mechanism
designers).

From a QoS perspective, TCP has several dis-
advantages. First of all, it provides a connection-
oriented service (lost segments of a data stream
are resent), which may not be desirable for a
streaming media application — the type of appli-
cation for which QoS architectures are mainly
made. Properly adapting the rate of a sender is
difficult because the bandwidth utilized by TCP
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is constantly changing and can underlie wild
fluctuations in a highly congested network; since,
in the case of an interactive application such as
IP telephony, too much buffering causes unwant-
ed delay, it would be desirable to have a conges-
tion control mechanism that changes its rate
more smoothly. Moreover, the rate of TCP is
hard to predict without monitoring every lost
packet, which makes load (QoS)-based charging
a difficult task.

In the world of congestion control research,
the common solution is to enforce fairness
toward TCP (so-called TCP-friendliness) and
thus be downward compatible; an overview of
mechanisms that conform to this rule can be
found in [7]. A flow is said to be TCP-friendly if
it is responsive to congestion notification and, in
steady state, uses no more bandwidth than con-
forming TCP running under comparable condi-
tions. Since the throughput of such a flow is
roughly given by

(1)

this prescription does not necessarily lead to
ideal link utilization. For instance, dependence
on the round-trip time (RTT) may be unwanted;
also, TCP (without ECN) loses packets on a reg-
ular basis, while it may be desirable to have a
mechanism with a lower loss ratio. In other
words, the limitation of TCP-friendliness hinders

the deployment of new, fundamentally different
congestion control mechanisms that yield signifi-
cantly better QoS.

Two examples of mechanisms that outper-
formed TCP in simulations are the Explicit
Control Protocol (XCP) [8] and Performance
Transparency Protocol (PTP) with CADPC1

end-to-end behavior [9]. Both use additional
signaling of precise bandwidth information
(XCP via an additional header in payload pack-
ets, PTP via extra packets), and both are scal-
able in that they do not require routers to keep
per-flow state. Additionally, the functionality of
CADPC does not depend on the frequency of
PTP packets, which means its signaling traffic
can be limited in a way that ensures indepen-
dence of the number of flows: if PTP packets
do not exceed x percent of the generated pay-
load, PTP traffic in general will not exceed x
percent of the total traffic in the network; thus,
if properly restricted, the overhead from PTP
scales linearly with traffic and not with the
number of flows.

Neither mechanism is designed to be TCP-
friendly, but when isolated from other traffic,
they show (among other advantages) better
link utilization while maintaining a smaller
loss ratio than TCP in a wide range of scenar-
ios; in the case of CADPC/PTP, this is shown
in comparison with several TCP variants and
TCP-friendly mechanisms in Fig. 3. The dia-
grams are results of ns-2 simulations where

Throughput
Packetsize

RTT PacketLossRatio
= 1 22.  

,

� Figure 3. QoS of CADPC compared to several TCP variants and TCP-friendly mechanisms.
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1 CADPC, which stands
for congestion avoidance
with distributed propor-
tional control, realizes
logistic growth based on
explicit performance data
from PTP.

2 Note that the best
throughput could be
achieved by simply send-
ing at a very high rate and
not performing congestion
control at all in these sim-
ulations. Therefore, the
high throughput of TFRC
is not necessarily a good
sign because it comes at
the cost of increased loss.
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10–100 flows of one type at a time shared a
single 100 Mb/s bottleneck link.2 Payload pack-
ets consisted of 1000 bytes, each simulation
lasted 160 s, all flows were started at the same
time, and drop-tail queuing was used. GAIMD
was realized by tuning RAP parameters (α =
0.31, β = 7/8). Notably, CADPC only required
one message in the forward and backward
direction every 4 RTTs to achieve this result;
all other mechanisms acknowledged each and
every packet.

Given these results (a performance study of
XCP can be found in [8]) and the high scalability
of both mechanisms, one obvious way to provide
good QoS and remain scalable is to co-design a
traffic class with a corresponding congestion
control mechanism: within a particular fully iso-
lated traffic aggregate, it should be mandatory to
use a special (non-TCP-friendly) congestion con-
trol mechanism; the new Datagram Congestion
Control Protocol (DCCP) could be used as a
means to enforce conforming behavior [10]. An
even better but presumably more complicated
method would be to design a new framework for
congestion control, a certain set of rules to be
followed by mechanisms within a traffic aggre-
gate instead of a single mechanism.

CONCLUSION
As we have seen, IntServ and DiffServ funda-
mentally represent a trade-off between fine ser-
vice granularity and scalability. Three ways to
alleviate this strict relationship were described:
• Combining both approaches enables a net-

work administrator to fine-tune the rela-
tionship between scalability and QoS to suit
customer demands and network capabili-
ties.

• A totally different and highly scalable
approach is Dynamic Packet State; it has
the potential to eliminate per-flow state
(and thereby any dependence on the num-
ber of flows) while approximating the ser-
vice granularity achieved with stateful
approaches. Its main disadvantage is that it
is radically different than existing approach-
es, which potentially limits its chances of
being gradually deployed — as some
believe, a prerequisite for widespread use in
the Internet.

• With the service isolation provided by Diff-
Serv (or DPS, for that matter), it would be
possible to use new and better congestion
control mechanisms that rely on scalable
signaling to achieve better QoS than tradi-
tional ones. Since some kind of congestion
control is necessary as soon as flows are
aggregated, it is better to use a traceable
and predictable method that provides satis-
factory QoS for, say, a streaming media
application.
Given the remarkably good results that can

be achieved with each of these three approach-
es, the future looks promising; while it is obvi-
ous and rather straightforward to trade QoS

for scalability, this does not necessarily have to
be the only choice. On the other hand, no mat-
ter how hard I try, I cannot come up with a
way to apply these efforts to our initial exam-
ple — for the University of Linz, using some-
thing like DPS to serve students in a scalable
manner would just be too complicated. Can we
then expect these concepts to work for the
Internet? Personally, I have not given up hope:
some complex things that work for computer
networks just do not seem to work for other
things in life. For example, I am still waiting
for a traffic light to perform slow start and
congestion avoidance: instead of going green
for a fixed duration, it would allow only one
car to pass into the inner city at first, then two,
then four … until congestion is detected and
the car rate is halved. It will be interesting to
see whether such a traffic light or reasonable
end-to-end QoS differentiation will be built
and used first.
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