SCALABILITY IN IP-ORIENTED NETWORKS

Forwarding State Scalability for
Multicast Provisioning in IP Networks

Baoxian Zhang and Hussein T. Mouftah, University of Ottawa

ABSTRACT

Forwarding state scalability is one of the critical
issues that delay the multicast deployment in IP
networks. With traditional multicast routing proto-
cols, a forwarding tree is built for each multicast
session, and each router is required to maintain a
forwarding entry for each multicast session whose
distribution tree passes through the router. This
poses the multicast forwarding state scalability
issue when the number of concurrent multicast ses-
sions is very large. In this article we first present a
survey of existing work addressing this scalability
issue for providing scalable IP multicast. Then we
extend an existing multicast routing protocol, Mul-
ticast Extension to OSPF (MOSPF), to scale well
with respect to the number of concurrent multicast
sessions by introducing tunnel support. This exten-
sion aims to reduce the protocol overhead associat-
ed with MOSPF. Simulation results show that the
extension can significantly reduce multicast for-
warding state and computational overhead at
routers without affecting the per-destination short-
est path characteristic of a resulting tree or intro-
ducing extra control overhead.

INTRODUCTION

IP multicast is an efficient point-to-multipoint
delivery mechanism because packets disseminat-
ed from the source of a group to members of the
group travel only once through common parts of
the network. IP multicast has been a hot topic of
research and development for more than one
decade. However, there are still some open
issues that make it difficult for IP multicast to be
deployed in the global Internet.

The multicast forwarding state scalability is
one of the critical issues that delay the deploy-
ment of IP multicast. With traditional Internet
protocols, each router is required to maintain a
forwarding entry for each multicast session whose
distribution tree passes through the router. When
there is a very large number of concurrent multi-
cast sessions, the number of the corresponding
multicast forwarding entries at routers is also
very large. This could consume more router
memory and might also result in slower packet
forwarding as each packet forwarding involves a
routing table lookup. This is the forwarding state
scalability issue in providing scalable IP multicast.

To support unicast packet forwarding well,
techniques such as hierarchical address allocation
and packet forwarding based on the longest prefix
match help to achieve scalability. However, this
cannot easily be applied to IP multicast in the cur-
rent Internet. The reason is as follows. For sup-
porting IP multicast today, a class D IP address is
allocated for each multicast session, and a multi-
cast routing protocol is used to build a forwarding
tree to cover members of the session. As a result, a
class D IP address corresponds to a logical group
and is not related to any topological information.

The forwarding state scalability issue in providing
IP multicast has received much attention in recent
years. A variety of work has been carried out to pro-
vide scalable multicasting in the Internet. In this
article we first give a review of existing work address-
ing this scalability issue and discuss their advantages
and disadvantages. Then we present a scalable mul-
ticasting mechanism to improve the scalability of an
existing protocol, Multicast Extension to Open
Shortest Path First (MOSPF) [1], by introducing
tunnel support to reduce multicast forwarding state
as well as computational overhead at routers.

EXISTING WORK

The forwarding state scalability issue in IP multi-
cast has received much attention in recent years.
A variety of scalable mechanisms have been pro-
posed to address this critical issue.

In some mechanisms (e.g., [2]), multicast state
at routers is completely eliminated by using appli-
cation layer multicast, which pushes the complexity
to endpoints. With such mechanisms, only unicast
service is provided at the network layer, and end-
points implement all multicast-related functionali-
ties, including membership management, packet
replication, as well as error, flow, and congestion
control. Compared with network layer multicast,
duplicate transmission on some physical links may
occur, and longer end-to-end delay can be intro-
duced. These are not friendly to multimedia
applications, which are usually delay-sensitive and
require high transmission bandwidth. In the rest
of this article we will not discuss this kind of
mechanism in detail. Instead, we will focus exclu-
sively on those mechanisms providing scalable
multicasting at the network layer. For simplicity,
the terms node and router will be used inter-
changeably unless otherwise specified.

46

0163-6804/03/$17.00 © 2003 IEEE

IEEE Communications Magazine * June 2003

Methods Category Strategy Multicast QoS tree Small groups
topology support required

Router-centric State aggregation Multistate Any tree Yes No
aggregation [3] aggregation

Interface-centric ~ State aggregation Multistate Any tree Yes No
aggregation [4] aggregation

Tree-centric State aggregation Multitree Any tree Limited No
aggregation [5] aggregation

Dynamic Steiner Nonbranching state Tunnel-based Tunnel tree Limited Yes

tree [7] elimination multicasting

DTM [8] Nonbranching state Tunnel-based Shortest path tree No Yes

elimination multicasting or core-based tree
REUNITE [9] Nonbranching state Recursive unicast Shortest path tree No Yes

elimination

M Table 1. Comparison of mechanisms addressing the multicast forwarding state scalability issue at the net-

work layer.

Before discussing mechanisms addressing the
scalability issue at the network layer, we first
give the information maintained in a multicast
forwarding entry according to traditional proto-
cols. In its most general form, the following
information is usually maintained in such an
entry: a globally unique class D IP address
assigned for the group, source address, incoming
interface, outgoing interface set, and possibly a
timer associated with each outgoing interface
depending on the selected routing protocol.

Next, we review recent work proposed to
reduce multicast forwarding state at routers
through state aggregation and nonbranching
state elimination, respectively.

STATE AGGREGATION

Mechanisms implementing the concept of state
aggregation reduce multicast forwarding state by
aggregating entries for multiple groups as one if
these groups have certain characteristics in com-
mon. Existing work performing multicast state
aggregation works on a per-router [3], per-inter-
face [4], or per-tree [5] basis as follows.

In [3], the authors present three approaches
performing state aggregation on a per-router
basis. In detail, at a router the state for multiple
groups with both the same address prefix! and
the same interface set (i.e., same incoming inter-
face and outgoing interface set) can be aggregat-
ed into one entry locally maintained for
forwarding packets belonging to each of these
groups. Since a perfect match of the interface set
is required, this is called strict aggregation. Pseu-
do aggregation is developed as a variant of strict
aggregation, with which a non-locally-active
group? can be among those groups to be aggre-
gated if it has the same address prefix, because
no data packets belonging to such a group will
be received at the current router. In reality, it is
unlikely that there will be many group prefixes
that satisfy the above conditions. To further
reduce state, leaky aggregation is developed as
an alternative by relaxing the requirement of
perfect match of the outgoing interface set of
the groups (to be aggregated) to leaky match.
The performance of this leaky aggregation

approach in achieving high-level aggregation of
adjacent groups can largely benefit if group
addresses can be allocated in such a way that
groups with the same prefix are rooted at the
same domain, as suggested in [6]. A disadvan-
tage of leaky match is that some bandwidth is
wasted to deliver data to nodes not leading to
any group member(s). An overall comparison of
mechanisms addressing the multicast forwarding
state scalability issue can be found in Table 1.
Instead of aggregating state for adjacent
groups with an identical interface set as in [3], an
alternative strategy [4] describes an interface-cen-
tric model to implement the concept of state
aggregation on a per-interface basis. Entries for a
number of groups with adjacent addresses at an
interface can be aggregated as a single range if
these groups make the same decision at this inter-
face. Moreover, a non-locally-active group can be
one of these groups to be aggregated if its address
is located in the range. Accordingly, the forward-
ing table structure is reorganized such that for
each packet, a per-interface decision is made on
whether to forward a packet out or not if at an
outgoing interface, or on whether to accept a
received packet or not if at an incoming interface,
based on the range to which the address of the
packet belongs. This alternative organization
promises greater non-leaky aggregation because
there is more likelihood of adjacent groups mak-
ing the same decision at a single interface than of
adjacent groups making the same decision on the
identical set of incoming and outgoing interfaces.
Results in [4] show that state aggregation is possi-
ble by a factor of four using this approach. The
cost of implementing this approach is that a pro-
cessor is required at each interface of a router,
which can lead to a much higher router cost.
Another strategy [5] achieves state reduction
through intergroup tree sharing; it is targeted as
an intradomain multicast provisioning mecha-
nism. The key idea behind this strategy is that
instead of constructing a tree for each individual
group in the core network (backbone), multiple
groups can be forced to share a single aggregated
tree if their trees are of the same “ shape” on the
backbone. In contrast to the mechanisms in [3, 4],

|
The performance

of this leaky
aggregation
approach in
achieving
high-level
aggregation of
adjacent groups
can largely benefit
if group addresses
can be allocated
in such a way that
groups with the
same prefix are
rooted at the

same domain.

1 In this case, these groups
must be with adjacent
addresses. In this work,
groups with adjacent
addresses are called adja-
cent groups without caus-
ing confusion.

2 A non-locally-active
group means its address is
not in use at the current
router.

IEEE Communications Magazine * June 2003

47

|
One major issue

scheme supporting

converging to the

correct one when

related to the
design of a

tunnel-based
multicasting is
how to keep a
multicast tree

there is group
membership

dynamics.

d, v w X d, d, v

5 s

u u

ds ds
OO0 o

—— Link

X d, d; v

Tunnell

M Figure 1. An example of tunnel-based multicasting with a source node s and a set of destinations S = {d},

d>, d3}.

these aggregated groups do not necessarily have
adjacent group addresses. Edge routers maintain
state for each “pass-by” group, while core routers
only need to maintain state per aggregated tree
instead of per group. The more groups share an
aggregated tree, the more state reduction can be
achieved. Leaky aggregation can help further
improve intergroup tree sharing at the cost of
additional bandwidth to deliver packets to nodes
not leading to any members of a group.

The mechanism in [5] has some limitations.
First, it relies on a central manager for tree
management and matching between groups and
aggregated trees, which could become a bottle-
neck of the network. Second, compared to tradi-
tional protocols, a larger latency can be observed
for tree migration to another aggregated tree
when group dynamics occur. Other penalties
paid include the CPU overhead of packet encap-
sulation/decapsulation at edge routers and the
extra communication overhead.

NONBRANCHING STATE ELIMINATION

Different from the concept of state aggregation,
the strategy discussed next works by reducing the
number of routers that must locally maintain a
forwarding entry for a group. More specifically,
state reduction is achieved by exempting those
nonbranching nodes on a tree from maintaining
group-specific forwarding state.

Mechanisms following this strategy are motivat-
ed by an observation that, in today’s Internet, the
typical group size is small for dominant multicast
applications. That is, the number of group member
routers (i.e., routers with host(s) subscribed to a
particular group in its subnet) is significantly small-
er than the number of routers in the network. In
this case, the majority of routers simply forward
packets from one incoming interface to one outgo-
ing interface, and their maintenance of multicast
forwarding state is unnecessary. In other words,
the minority of routers are branching nodes. This
is also referred to as sparse mode multicast. Results
in [10] show that methods using nonbranching
state elimination can achieve up to an order of
magnitude in forwarding state reduction, which
makes it a promising approach to address the mul-
ticast forwarding state scalability issue.

To exempt nonbranching on-tree nodes from
maintaining forwarding state for a pass-by group,
schemes in [7, 8] use the strategy of tunnel-based

multicasting. The key idea behind these schemes is
to view each multicast tree as a collection of uni-
cast paths (tunnels). Each tunnel is a simple uni-
cast route, on which all routers use the same
routing metric for packet forwarding. A multicast
datagram is encapsulated [11] inside a standard
unicast datagram to go through a tunnel. That is,
the entire multicast datagram is carried as the pay-
load of an IP unicast datagram. Intermediate
nodes of a tunnel do not have to maintain any for-
warding state for the multicast session because
they are involved only in regular unicast routing.
The penalty paid is the CPU overhead of perform-
ing packet encapsulation and decapsulation, extra
communication overhead, and additional state for
more logical interfaces at tunnel endpoints.

One major issue related to the design of a
scheme supporting tunnel-based multicasting is
how to keep a multicast tree converging to the
correct one in the presence of group membership
dynamics. To address this issue, the scheme in [7]
imposes a restriction: only the source and multi-
cast destinations can be endpoints of tunnels. This
restriction, however, may lead to the creation of
inefficient trees. Consider the example shown in
Fig. 1a. The resulting structure is shown in Fig.
1b, in which duplicate transmissions of datagrams
can be observed on link (d3, w) because node w is
not eligible to be a tunnel endpoint according to
the scheme in [7]. Tian et al. [8] proposed the
idea of dynamically establishing tunnels to replace
unbranched path-segments on a tree. Periodic
tunnel request messages, sent from each down-
stream tunnel endpoint to its upstream tunnel
endpoint, are required for dynamic tunnel man-
agement. A major disadvantage of this scheme is
that the periodic transmission of tunnel request
messages introduces a large amount of extra com-
munication overhead, which may overshadow its
gain in multicast forwarding state reduction.

Different from the strategy of tunnel-based mul-
ticasting discussed above, a recursive unicast
approach, called REUNITE, is designed in [9] to
remove multicast forwarding state at nonbranching
routers on a delivery tree. REUNITE does not use
class D IP addresses. Instead, both group identifica-
tion and data forwarding are based on unicast IP
addresses. More specifically, a multicast group is
identified by a two tuple (unicast_
IP_address, port_number). The basic idea of this
recursive unicast approach is that a packet has the

48

IEEE Communications Magazine ¢ June 2003

address of a group member as its unicast destination
address, based on which nonbranching routers sim-
ply forward such a packet further downstream. A
router that acts as a branching node is responsible
for creating packet copies with modified destination
addresses in such a way that all group members in
the downstream subtree of the router can receive
the packet. REUNITE supports incremental deploy-
ment, load balancing, and graceful degradation
when there are hot spots in the network.

Disadvantages of REUNITE are listed as fol-
lows. First, its implementation can partly affect
the efficiency of unicast packet forwarding due to
its addressing mechanism. Upon receiving a pack-
et, a REUNITE router first performs a lookup in
its multicast forwarding table. If no entry is found,
it then performs a second lookup in its unicast
forwarding table. Two lookups are therefore
required to forward a regular unicast packet. Sec-
ond, REUNITE is sensitive to dynamics of net-
work and group membership. Network or
membership dynamics may result in duplicate
transmission of data packets on certain links. A
change in a unicast route that acts as a branch of
a delivery tree caused by network dynamics may
result in a failure of a branching node sitting on
that route to receive data packets from the source.
In this case, downstream members of the branch-
ing node cannot receive data packets either. As a
result, a rejoin process has to be enforced by each
affected member to stay in the group.

SUMMARY

A variety of work has been carried out to address
the forwarding state scalability issue in IP multi-
cast. Some mechanisms perform state aggrega-
tion to reduce forwarding state by aggregating
state for multiple groups into one entry when
these groups have certain common characteris-
tics. Some other mechanisms perform non-
branching state elimination to reduce forwarding
state by minimizing the number of routers that
must locally maintain a forwarding entry for a
group. As discussed earlier, each of these mech-
anisms has its advantages and also introduces a
certain extra cost for its implementation. Some
more results are listed here to provide better
understanding of these mechanisms:

* A mechanism falling into the category of
state aggregation can work with any multicast
routing protocol since it performs state aggrega-
tion independent of the characteristics of for-
warding trees.

* A mechanism falling into the category of
nonbranching state elimination can only work on
a tree that can be decomposed into a collection of
unicast paths on which all routers use the same
routing metric for packet forwarding. This, how-
ever, would not be a big issue in its application
because typical tree structures such as shortest
path trees (SPTs), core-rooted trees, and ren-
dezvous-point-rooted trees meet this requirement.

MULTICAST EXTENSION TO

OSPF ProTOCOL

MOSPF is one of the protocols currently
employed to provide IP multicast in the Internet,
and it is the only one that builds SPTs. An SPT
is a widely used type of tree for multicast provi-

sioning due to its simplicity and low per-destina-
tion cost. As shown in the following, MOSPF
also has the scalability issue over multicast for-
warding state as well as computational overhead.

MOSPF is designed to work on top of OSPF
and works as follows. Basically, an MOSPF router,
if it is a group member router, floods a group
membership link state advertisement (LSA)
throughout the network, which allows all routers
to have the same view of group membership for a
multicast session. Accordingly, each MOSPF
router can construct an identical SPT for each
[source network, multicast destinations] combina-
tion by using Dijkstra’s SPT algorithm. To ease
the computational demand at routers, these trees
are built on demand when the first datagram with
a particular combination of source network and
multicast destinations is received. The MOSPF
router then determines its on-tree position and
creates a forwarding entry for the session.

PROBLEMS IN THE MOSPF PrROTOCOL

One major disadvantage of MOSPF is the pro-
cessing cost of the Dijkstra’s SPT calculations
required to compute the delivery tree for each
pass-by group, which could be a big burden at
routers when the number of concurrent multi-
cast sessions is large. Furthermore, the mainte-
nance of a group-specific forwarding entry at
each on-tree router also creates the multicast
forwarding scalability issue.

AN EXTENSION TO MOSPF

To improve the scalability of MOSPF, we intro-
duce the concept of tunnel-based multicasting
into its implementation. The reason for selecting
tunnel-based multicasting is that it requires near-
ly no change to the current IP multicast model,
introduces little extra protocol overhead, and
can achieve a high state reduction ratio, as
reported in related work [7, 8]. The scheme
designed in this work is therefore referred to as
Tunnel-MOSPF (T-MOSPF). T-MOSPF works
differently from those in [7, 8] for tunnel man-
agement and has the following characteristics:

* It removes both multicast forwarding state
and Dijkstra’s SPT computational overhead
associated with a multicast session at inter-
mediate nodes of tunnels.

* It supports dynamic group membership
well.

* No extra control overhead for tunnel man-
agement is introduced.

PROCEDURES FOR T-MOSPF

T-MOSPF maintains the following properties of
MOSPF in its implementation. First, each router
maintains global network state information and
the same view of group membership via net-
work-wide flooding of group membership LSAs.
Second, a multicast tree is built on demand
when the first multicast datagram with a particu-
lar [source network, multicast destinations] com-
bination is received. Accordingly, we can see
that protocol processing associated with a multi-
cast session at a router is triggered upon arrival
of the first multicast datagram of the session.
T-MOSPF extends MOSPF to achieve scal-
able multicasting by introducing tunnel support.

|
A variety of work

has been carried
out to address the
forwarding state
scalability issue in
IP multicast. Some
mechanisms
perform state
aggregation to
reduce forwarding
state by
aggregating state
for multiple
groups into one
entry when these
groups have
certain common

characteristics.

IEEE Communications Magazine * June 2003

49

M Figure 2. An example network.

Unlike the scheme in [7], with T-MOSPF all
branching nodes, in addition to the source node
and each multicast destination, are eligible to be
endpoints of tunnels. To support tunnel-based
multicasting, two types of downstream neighbors
are defined and maintained in the routing table
of an on-tree router for a particular group. A
downstream router is said to be a direct neighbor
if it is directly connected via a link, and if it is
either a branching router or a group member
router. Multicast datagrams are directly forward-
ed to such a neighbor without encapsulation. The
other type of neighbor is a logical neighbor, which
is a router connected via a tunnel with at least
two hops. Multicast datagrams are encapsulated
and unicast to such logical neighbors via tunnels.
In this way, intermediate nodes of tunnels are
not aware of the existence of the forwarding tree
and then can be exempted from tree calculation
and maintenance associated with the group.
Consider again the example shown in Fig. 1a.
The resulting tree by T-MOSPF is shown in Fig.
1c, which can be viewed as a collection of three
tunnels (i.e., s - d3, w - dy, w —> d,) and one

Average number of protocol processing

nodes per group

25

N
o

-
(O3}

-
o

—~—MOSPF
—A—T-MOSPF

7 10 13
Group size

M Figure 3. Comparison of the average number of protocol processing nodes
per group vs. group size for the example network in Fig. 2.

link d3 — w because node w is a direct downstream
neighbor of d; on the tree. Endpoints of these tun-
nels are nodes in {s}\USUB, where s is the source,
S is the set of group members, and B is the set of
nodes not in SU{s}, which have at least three on-
tree neighboring links (e.g., node w in Fig. 1c is
such a node and is called a branching node).

One issue related to the above extension to
MOSPF is how to deal with group membership
dynamics. This proves to be very easy with the
assistance of the same view of group membership
stored at each router. With MOSPF, when a
change in group membership occurs (reflected by
a change in group membership LSAs), all cache
entries associated with the particular multicast
group at a router must be cleared. A new for-
warding tree will be built for the multicast appli-
cation upon arrival of the next multicast
datagram. Since all MOSPF routers have the
same view of the updated group membership, it
is easy for each router associated with the multi-
cast application to calculate the correct SPT after
receiving the first multicast datagram with a com-
bination of the source network and the (updated)
multicast destinations, and then to determine its
position on the new forwarding tree. Likewise,
when the network topology changes, an MOSPF
router must clear its entire forwarding cache
because all the SPTs must be rebuilt.

SIMULATION RESULTS

The cost performance of a resulting tree by T-
MOSPF is the same as that by MOSPF since both
of them return SPTs by using Dijkstra’s SPT algo-
rithm. Here, we focus on the protocol overhead
associated with T-MOSPF for tree constructions.
More specifically, we compare the average num-
ber of protocol processing nodes associated with a
group by using T-MOSPF and MOSPF, respec-
tively. A protocol processing node is a node that
is required to perform the multicast-related func-
tionalities (including forwarding state mainte-
nance and tree calculation) for a group. The
average number of protocol processing nodes per
group is defined as the sum of protocol process-
ing nodes for each multicast request over the
total number of multicast requests.

The first experiment was designed to run on
top of the network shown in Fig. 2. In the exper-
iment, 100 trees were generated for each group
size by T-MOSPF and MOSPF, respectively. For
each group, the source and group members are
randomly selected.

From Fig. 3 we can see that, compared to
MOSPF, T-MOSPF significantly reduces the
average number of protocol processing nodes
per group, especially for small-size groups. Here,
we define a measure called a reduction ratio,
which is the difference between the average
number of protocol processing nodes on a tree
by MOSPF and the average number of such
nodes on a tree by T-MOSPF, normalized to the
average number of such nodes on a tree by T-
MOSPF. In Fig. 3 the reduction ratio is up to 54
percent, which occurs when the group size is 4.
This ratio decreases with the increase in group
size. This is because all multicast destinations
must be endpoints of tunnels, and hence with
the group size increasing, the number of nodes

50

IEEE Communications Magazine ¢ June 2003

that can be bypassed as intermediate nodes (i.e.,
neither destinations nor branching nodes) of
tunnels decreases.

The second experiment was run on an 8 x 8
grid mesh network. Figure 4 shows that the
reduction ratio can be up to 68 percent.

In summary, from both experiments we
observe that T-MOSPF scales well over MOSPF
in terms of multicast forwarding state and com-
putational overhead. Thus, the performance of
T-MOSPF is quite satisfactory, particularly con-
sidering that no extra control overhead is intro-
duced. Of course, the performance improvement
comes at the cost of encapsulation/decapsulation
overhead at endpoints of tunnels and extra com-
munication overhead. However, this turns out to
be trivial compared to the significant reduction
in computational overhead and multicast for-
warding state at routers.

CONCLUSIONS

IP multicast suffers from the multicast forward-
ing state scalability issue when the number of
concurrent multicast sessions is very large. Tech-
niques used to reduce unicast forwarding table
size such as hierarchical address allocation and
forwarding based on the longest prefix match
cannot easily be applied to IP multicasting.
Recently, a variety of work has been proposed to
reduce multicast forwarding state at routers to
provide scalable multicasting.

In this article we first present a review of
existing work addressing this scalability issue to
provide scalable multicasting at the network
layer. In this work, some mechanisms reduce
multicast state by aggregating state for multiple
groups into one entry when these groups have
certain characteristics in common, and perform
state aggregation on a per-interface, per-router,
or per-tree basis. Some other mechanisms reduce
multicast forwarding state by removing forward-
ing state at nonbranching nodes on a tree, and
are designed to support small groups.

Second, we extend an existing protocol,
MOSPF, by introducing tunnel support to
improve its scalability in terms of forwarding
state and computational overhead. Simulation
results show that the extension can significantly
reduce forwarding state and computational over-
head at routers. The extended protocol supports
dynamic membership well and introduces no
extra control overhead. Therefore, it is a simple
and practical protocol for providing scalable
multicast.

ACKNOWLEDGMENT

We would like to thank the anonymous review-
ers for their helpful comments and also Dr. D.
Thaler for valuable discussion of his algorithm.

REFERENCES

[1] J. Moy, “Multicast Extension to OSPF,” RFC 1584, Mar.
1994.

[2] Y. H. Chu, S. G. Rao, and H. Zhang, “A Case for End
System Multicast,” Proc. ACM SIGMETRICS 2000, June
2000, pp. 1-12.

[3] P. I. Radoslavov, D. Estrin, and R. Govindan, “Exploiting
the Bandwidth-memory Tradeoff in Multicast State
Aggregation,” Tech. rep. 99-697, Dept. of Comp. Sci.,
USC, Feb. 1999.

45

—~—MOSPF

30 +

Average number of protocol processing
nodes per group

40 || —A-T-MOSPF |

RO o

4 8 12
Group size

16

20

M Figure 4. Comparison of the average number of protocol processing nodes

per group vs. group size for an 8 x 8 grid mesh network.

[4] D. Thaler and M. Handley, “On the Aggregatability of
Multicast Forwarding State,” Proc. INFOCOM 2000,
Mar. 2000, pp. 1654-63.

[5] A. Fei et al., “Aggregated Multicast: An Approach to
Reduce Multicast State,” Proc. IEEE GLOBECOM 01,
Nov. 2001, pp. 1595-99.

[6] K. Kumar et al., "The MASC/BGMP Architecture for
Inter-Domain Multicast Routing,” Proc. ACM Sigcomm
‘98, Sept. 1998.

[7] E. Aharoni and R. Cohen, “Restricted Dynamic Steiner
Trees for Scalable Multicast in Datagram Networks,”
IEEE/ACM Trans. Net., vol. 6, no. 3, Jun. 1998, pp.
286-97.

[8] J. Tian and G. Neufeld, “Forwarding State Reduction for
Sparse Mode Multicast Communication,” Proc. INFO-
COM 98, Apr. 1998, pp. 711-19.

[9] I. Stoica, T. S. Eugene Ng, and H. Zhang, “REUNITE: A
Recursive Unicast Approach to Multicast,” Proc. INFO-
COM 2000, Mar. 2000, pp. 1644-53.

[10] T. Wong and R. Ratz, “An Analysis of Multicast For-
warding State Scalability,” Proc. ICNP 2000, Nov. 2000,
pp. 105-15.

[11] C. Perkins, “Minimal Encapsulation within IP,” RFC
2004, Oct. 1996.

BIOGRAPHIES

BAOXIAN ZHANG [M] (bxzhang@site.uottawa.ca) received his
B.S., M.S., and Ph.D. degrees in electrical engineering from
Northern Jiaotong University, Beijing, China, in 1994, 1997,
and 2000, respectively. From January 2001 to August
2002, he worked with the Department of Electrical and
Computer Engineering, Queen’s University, as a postdoc-
toral fellow. He is now a researchassociate at the School of
Information Technology and Engineering, University of
Ottawa. His research interests include routing algorithm
and protocol design, QoS management, and wireless ad
hoc networks.

HuUSSEIN MOUFTAH [F] (mouftah@site.uottawa.ca) joined the
School of Information Technology and Engineering (SITE)
of the University of Ottawa in September 2002 as a Cana-
da Research Chair Professor (Tier 1). He was with the
Department of Electrical and Computer Engineering at
Queen's University since 1979, where prior to his departure
in August 2002 he was a full professor and department
associate head. He has served as Editor-in-Chief of IEEE
Communications Magazine (1995-1997) and IEEE Commu-
nications Society Director of Magazines (1998-1999). He is
the author or co-author of three books and more than 700
technical papers and 8 patents in the area of broadband
packet switching networks, mobile wireless networks, and
quality of service over the optical Internet. He was the
recipient of the 1989 Engineering Medal for Research and
Development of the Association of Professional Engineers
of Ontario (PEO).

IEEE Communications Magazine * June 2003

51

