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Abstract—The idea of programmable networks has recently
re-gained considerable momentum due to the emergence of
the Software-Defined Networking (SDN) paradigm. SDN, often
referred to as a “radical new idea in networking”, promises
to dramatically simplify network management and enable in-
novation through network programmability. This paper surveys
the state-of-the-art in programmable networks with an emphasis
on SDN. We provide a historic perspective of programmable
networks from early ideas to recent developments. Then we
present the SDN architecture and the OpenFlow standard in
particular, discuss current alternatives for implementation and
testing of SDN-based protocols and services, examine current
and future SDN applications, and explore promising research
directions based on the SDN paradigm.

Index Terms—Software-Defined Networking, programmable
networks, survey, data plane, control plane, virtualization.

I. INTRODUCTION

COMPUTER networks are typically built from a large
number of network devices such as routers, switches and

numerous types of middleboxes (i.e., devices that manipulate
traffic for purposes other than packet forwarding, such as a
firewall) with many complex protocols implemented on them.
Network operators are responsible for configuring policies to
respond to a wide range of network events and applications.
They have to manually transform these high level-policies into
low-level configuration commands while adapting to changing
network conditions. Often, they also need to accomplish these
very complex tasks with access to very limited tools. As a
result, network management and performance tuning is quite
challenging and thus error-prone. The fact that network de-
vices are usually vertically-integrated black boxes exacerbates
the challenge network operators and administrators face.

Another almost unsurmountable challenge network practi-
tioners and researchers face has been referred to as “Internet
ossification”. Because of its huge deployment base and the
fact it is considered part of our society’s critical infrastructure
(just like transportation and power grids), the Internet has
become extremely difficult to evolve both in terms of its phys-
ical infrastructure as well as its protocols and performance.
However, as current and emerging Internet applications and
services become increasingly more complex and demanding,
it is imperative that the Internet be able to evolve to address
these new challenges.

The idea of “programmable networks” has been proposed as
a way to facilitate network evolution. In particular, Software
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Defined Networking (SDN) is a new networking paradigm
in which the forwarding hardware is decoupled from con-
trol decisions. It promises to dramatically simplify network
management and enable innovation and evolution. The main
idea is to allow software developers to rely on network
resources in the same easy manner as they do on storage
and computing resources. In SDN, the network intelligence is
logically centralized in software-based controllers (the control
plane), and network devices become simple packet forwarding
devices (the data plane) that can be programmed via an open
interface (e.g., ForCES [1], OpenFlow [2], etc).

SDN is currently attracting significant attention from both
academia and industry. A group of network operators, ser-
vice providers, and vendors have recently created the Open
Network Foundation [3], an industrial-driven organization, to
promote SDN and standardize the OpenFlow protocol [2]. On
the academic side, the OpenFlow Network Research Center [4]
has been created with a focus on SDN research. There have
also been standardization efforts on SDN at the IETF and IRTF
and other standards producing organizations.

The field of software defined networking is quite recent,
yet growing at a very fast pace. Still, there are important
research challenges to be addressed. In this paper, we survey
the state-of-the-art in programmable networks by providing a
historic perspective of the field and also describing in detail
the SDN paradigm and architecture. The paper is organized
as follows: in Section II, it begins by describing early efforts
focusing on programmable networks. Section III provides an
overview of SDN and its architecture. It also describes the
OpenFlow protocol. Section IV describes existing platforms
for developing and testing SDN solutions including emulation
and simulation tools, SDN controller implementations, as well
as verification and debugging tools. In Section V, we discuss
several SDN applications in areas such as data centers and
wireless networking. Finally, Section VI discusses research
challenges and future directions.

II. EARLY PROGRAMMABLE NETWORKS

SDN has great potential to change the way networks oper-
ate, and OpenFlow in particular has been touted as a “radical
new idea in networking” [5]. The proposed benefits range
from centralized control, simplified algorithms, commoditiz-
ing network hardware, eliminating middleboxes, to enabling
the design and deployment of third-party ‘apps’.

While OpenFlow has received considerable attention from
industry, it is worth noting that the idea of programmable
networks and decoupled control logic has been around for
many years. In this section, we provide an overview of early
programmable networking efforts, precursors to the current
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SDN paradigm that laid the foundation for many of the ideas
we are seeing today.

a) Open Signaling: The Open Signaling (OPENSIG)
working group began in 1995 with a series of workshops
dedicated to “making ATM, Internet and mobile networks
more open, extensible, and programmable” [6]. They believed
that a separation between the communication hardware and
control software was necessary but challenging to realize; this
is mainly due to vertically integrated switches and routers,
whose closed nature made the rapid deployment of new
network services and environments impossible. The core of
their proposal was to provide access to the network hardware
via open, programmable network interfaces; this would allow
the deployment of new services through a distributed program-
ming environment.

Motivated by these ideas, an IETF working group was
created, which led to the specification of the General Switch
Management Protocol (GSMP) [7], a general purpose pro-
tocol to control a label switch. GSMP allows a controller
to establish and release connections across the switch, add
and delete leaves on a multicast connection, manage switch
ports, request configuration information, request and delete
reservation of switch resources, and request statistics. The
working group is officially concluded and the latest standards
proposal, GSMPv3, was published in June 2002.

b) Active Networking: Also in the mid 1990s, the
Active Networking [8], [9] initiative proposed the idea of
a network infrastructure that would be programmable for
customized services. There were two main approaches being
considered, namely: (1) user-programmable switches, with in-
band data transfer and out-of-band management channels;
and (2) capsules, which were program fragments that could
be carried in user messages; program fragments would then
be interpreted and executed by routers. Despite considerable
activity it motivated, Active Networking never gathered crit-
ical mass and transferred to widespread use and industry
deployment, mainly due to practical security and performance
concerns [10].

c) DCAN: Another initiative that took place in the
mid 1990s is the Devolved Control of ATM Networks
(DCAN) [11]. The aim of this project was to design and
develop the necessary infrastructure for scalable control and
management of ATM networks. The premise is that con-
trol and management functions of the many devices (ATM
switches in the case of DCAN) should be decoupled from the
devices themselves and delegated to external entities dedicated
to that purpose, which is basically the concept behind SDNs.
DCAN assumes a minimalist protocol between the manager
and the network, in the lines of what happens today in
proposals such as OpenFlow. More on the DCAN project can
be found at [12].

Still in the lines of SDNs and the proposed decoupling of
control and data plane over ATM networks, amongst others,
in the work proposed in [13] multiple heterogeneous control
architectures are allowed to run simultaneously over single
physical ATM network by partitioning the resources of that
switch between those controllers.

d) 4D Project: Starting in 2004, the 4D project [14],
[15], [16] advocated a clean slate design that emphasized

separation between the routing decision logic and the pro-
tocols governing the interaction between network elements.
It proposed giving the “decision” plane a global view of the
network, serviced by a “dissemination” and “discovery” plane,
for control of a “data” plane for forwarding traffic. These ideas
provided direct inspiration for later works such as NOX [17],
which proposed an “operating system for networks” in the
context of an OpenFlow-enabled network.

e) NETCONF: In 2006, the IETF Network Configu-
ration Working Group proposed NETCONF [18] as a man-
agement protocol for modifying the configuration of network
devices. The protocol allowed network devices to expose an
API through which extensible configuration data could be sent
and retrieved.

Another management protocol, widely deployed in the past
and used until today, is the SNMP [19]. SNMP was proposed
in the late 80’s and proved to be a very popular network
management protocol, which uses the Structured Management
Interface (SMI) to fetch data contained in the Management
Information Base (MIB). It could be used as well to change
variables in the MIB in order to modify configuration settings.
It later became apparent that in spite of what it was originally
intended for, SNMP was not being used to configure network
equipment, but rather as a performance and fault monitoring
tool. Moreover, multiple shortcomings were detected in the
conception of SNMP, the most notable of which was its lack
of strong security. This was addressed in a later version of the
protocol.

NETCONF, at the time it was proposed by IETF, was
seen by many as a new approach for network management
that would fix the aforementioned shortcomings in SNMP.
Although the NETCONF protocol accomplishes the goal of
simplifying device (re)configuration and acts as a building
block for management, there is no separation between data
and control planes. The same can be stated about SNMP.
A network with NETCONF should not be regarded as fully
programmable as any new functionality would have to be
implemented at both the network device and the manager so
that any new functionality can be provided; furthermore, it is
designed primarily to aid automated configuration and not for
enabling direct control of state nor enabling quick deployment
of innovative services and applications. Nevertheless, both
NETCONF and SNMP are useful management tools that
may be used in parallel on hybrid switches supporting other
solutions that enable programmable networking.

The NETCONF working group is currently active and the
latest proposed standard was published in June 2011.

f) Ethane: The immediate predecessor to OpenFlow was
the SANE / Ethane project [20], which, in 2006, defined
a new architecture for enterprise networks. Ethane’s focus
was on using a centralized controller to manage policy and
security in a network. A notable example is providing identity-
based access control. Similar to SDN, Ethane employed two
components: a controller to decide if a packet should be
forwarded, and an Ethane switch consisting of a flow table
and a secure channel to the controller.

Ethane laid the foundation for what would become
Software-Defined Networking. To put Ethane in the context of
today’s SDN paradigm, Ethane’s identity-based access control
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would likely be implemented as an application on top of an
SDN controller such as NOX [17], Maestro [21], Beacon [22],
SNAC [23], Helios [24], etc.

III. SOFTWARE-DEFINED NETWORKING
ARCHITECTURE

Data communication networks typically consist of end-
user devices, or hosts interconnected by the network infras-
tructure. This infrastructure is shared by hosts and employs
switching elements such as routers and switches as well as
communication links to carry data between hosts. Routers
and switches are usually “closed” systems, often with limited-
and vendor-specific control interfaces. Therefore, once de-
ployed and in production, it is quite difficult for current
network infrastructure to evolve; in other words, deploying
new versions of existing protocols (e.g., IPv6), not to mention
deploying completely new protocols and services is an almost
insurmountable obstacle in current networks. The Internet,
being a network of networks, is no exception.

As mentioned previously, the so-called Internet “ossifica-
tion” [2] is largely attributed to the tight coupling between
the data– and control planes which means that decisions about
data flowing through the network are made on-board each
network element. In this type of environment, the deployment
of new network applications or functionality is decidedly non-
trivial, as they would need to be implemented directly into
the infrastructure. Even straightforward tasks such as config-
uration or policy enforcement may require a good amount
of effort due to the lack of a common control interface to
the various network devices. Alternatively, workarounds such
as using “middleboxes” (e.g., firewalls, Intrusion Detection
Systems, Network Address Translators, etc.) overlayed atop
the underlying network infrastructure have been proposed and
deployed as a way to circumvent the network ossification
effect. Content Delivery Networks (CDNs) [25] are a good
example.

Software-Defined Networking was developed to facilitate
innovation and enable simple programmatic control of the
network data-path. As visualized in Figure 1, the separation of
the forwarding hardware from the control logic allows easier
deployment of new protocols and applications, straightforward
network visualization and management, and consolidation of
various middleboxes into software control. Instead of enforc-
ing policies and running protocols on a convolution of scat-
tered devices, the network is reduced to “simple” forwarding
hardware and the decision-making network controller(s).

A. Current SDN Architectures

In this section, we review two well-known SDN architec-
tures, namely ForCES [1] and Openflow [2]. Both OpenFlow
and ForCES follow the basic SDN principle of separation
between the control and data planes; and both standardize
information exchange between planes. However, they are
technically very different in terms of design, architecture,
forwarding model, and protocol interface.

1) ForCES: The approach proposed by the IETF ForCES
(Forwarding and Control Element Separation) Working Group,
redefines the network device’s internal architecture having
the control element separated from the forwarding element.
However, the network device is still represented as a single
entity. The driving use case provided by the working group
considers the desire to combine new forwarding hardware with
third-party control within a single network device. Thus, the
control and data planes are kept within close proximity (e.g.,
same box or room). In contrast, the control plane is ripped
entirely from the network device in “OpenFlow-like” SDN
systems.

ForCES defines two logic entities called the Forwarding
Element (FE) and the Control Element (CE), both of which
implement the ForCES protocol to communicate. The FE
is responsible for using the underlying hardware to provide
per-packet handling. The CE executes control and signaling
functions and employs the ForCES protocol to instruct FEs on
how to handle packets. The protocol works based on a master-
slave model, where FEs are slaves and CEs are masters.

An important building block of the ForCES architecture is
the LFB (Logical Function Block). The LFB is a well-defined
functional block residing on the FEs that is controlled by CEs
via the ForCES protocol. The LFB enables the CEs to control
the FEs’ configuration and how FEs process packets.

ForCES has been undergoing standardization since 2003,
and the working group has published a variety of documents
including: an applicability statement, an architectural frame-
work defining the entities and their interactions, a modeling
language defining the logical functions within a forwarding
element, and the protocol for communication between the
control and forwarding elements within a network element.
The working group is currently active.

2) OpenFlow: Driven by the SDN principle of decoupling
the control and data forwarding planes, OpenFlow [2], like
ForCES, standardizes information exchange between the two
planes.

In the OpenFlow architecture, illustrated in Figure 2, the
forwarding device, or OpenFlow switch, contains one or more
flow tables and an abstraction layer that securely communi-
cates with a controller via OpenFlow protocol. Flow tables
consist of flow entries, each of which determines how packets
belonging to a flow will be processed and forwarded. Flow
entries typically consist of: (1) match fields, or matching
rules, used to match incoming packets; match fields may
contain information found in the packet header, ingress port,
and metadata; (2) counters, used to collect statistics for the
particular flow, such as number of received packets, number
of bytes and duration of the flow; and (3) a set of instructions,
or actions, to be applied upon a match; they dictate how to
handle matching packets.

Upon a packet arrival at an OpenFlow switch, packet header
fields are extracted and matched against the matching fields
portion of the flow table entries. If a matching entry is
found, the switch applies the appropriate set of instructions,
or actions, associated with the matched flow entry. If the flow
table look-up procedure does not result on a match, the action
taken by the switch will depend on the instructions defined
by the table-miss flow entry. Every flow table must contain a
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Fig. 1. The SDN architecture decouples control logic from the forwarding hardware, and enables the consolidation of middleboxes, simpler policy management,
and new functionalities. The solid lines define the data-plane links and the dashed lines the control-plane links.
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Fig. 2. Communication between the controller and the forwarding devices happens via OpenFlow protocol. The flow tables are composed by matching rules,
actions to be taken when the flow matches the rules, and counters for collecting flow statistics.

table-miss entry in order to handle table misses. This particular
entry specifies a set of actions to be performed when no
match is found for an incoming packet, such as dropping the
packet, continue the matching process on the next flow table,
or forward the packet to the controller over the OpenFlow
channel. It is worth noting that from version 1.1 OpenFlow
supports multiple tables and pipeline processing. Another
possibility, in the case of hybrid switches, i.e., switches that
have both OpenFlow– and non-OpenFlow ports, is to forward
non-matching packets using regular IP forwarding schemes.

The communication between controller and switch happens
via OpenFlow protocol, which defines a set of messages that

can be exchanged between these entities over a secure channel.
Using the OpenFlow protocol a remote controller can, for
example, add, update, or delete flow entries from the switch’s
flow tables. That can happen reactively (in response to a packet
arrival) or proactively.

3) Discussion: In [26], the similarities and differences
between ForCES and OpenFlow are discussed. Among the
differences, they highlight the fact that the forwarding model
used by ForCES relies on the Logical Function Blocks (LFBs),
while OpenFlow uses flow tables. They point out that in
OpenFlow actions associated with a flow can be combined
to provide greater control and flexibility for the purposes
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of network management, administration, and development. In
ForCES the combination of different LFBs can also be used
to achieve the same goal.

We should also re-iterate that ForCES does not follow the
same SDN model underpinning OpenFlow, but can be used
to achieve the same goals and implement similar functional-
ity [26].

The strong support from industry, research, and academia
that the Open Networking Foundation (ONF) and its SDN
proposal, OpenFlow, has been able to gather is quite impres-
sive. The resulting critical mass from these different sectors
has produced a significant number of deliverables in the form
of research papers, reference software implementations, and
even hardware. So much so that some argue that OpenFlow’s
SDN architecture is the current SDN de-facto standard. In
line with this trend, the remainder of this section focuses on
OpenFlow’s SDN model. More specifically, we will describe
the different components of the SDN architecture, namely:
the switch, the controller, and the interfaces present on the
controller for communication with forwarding devices (south-
bound communication) and network applications (northbound
communication). Section IV also has an OpenFlow focus as it
describes existing platforms for SDN development and testing,
including emulation and simulation tools, SDN controller im-
plementations, as well as verification and debugging tools. Our
discussion of future SDN applications and research directions
is more general and is SDN architecture agnostic.

B. Forwarding Devices

The underlaying network infrastructure may involve a num-
ber of different physical network equipment, or forwarding
devices such as routers, switches, virtual switches, wireless
access points, to name a few. In a software-defined network,
such devices are often represented as basic forwarding hard-
ware accessible via an open interface at an abstraction layer, as
the control logic and algorithms are off-loaded to a controller.
Such forwarding devices are commonly referred to, in SDN
terminology, simply as “switches”, as illustrated in Figure 3.

In an OpenFlow network, switches come in two vari-
eties: pure and hybrid. Pure OpenFlow switches have no
legacy features or on-board control, and completely rely on a
controller for forwarding decisions. Hybrid switches support
OpenFlow in addition to traditional operation and protocols.
Most commercial switches available today are hybrids.

1) Processing Forwarding Rules: Flow-based SDN archi-
tectures such as OpenFlow may utilize additional forwarding
table entries, buffer space, and statistical counters that are
difficult to implement in traditional ASIC switches. Some
recent proposals [27], [28] have advocated adding a general-
purpose CPU, either on-switch or nearby, that may be used
to supplement or take over certain functions and reduce the
complexity of the ASIC design. This would have the added
benefit of allowing greater flexibility for on-switch processing
as some aspects would be software-defined.

In [29], network processor based acceleration cards were
used to perform OpenFlow switching. They proposed and
described the design options and reported results that showed a
20% reduction on packet delay. In [30], an architectural design

to improve look-up performance of OpenFlow switching in
Linux was proposed. Preliminary results reported showed a
packet switching throughput increase of up to 25% com-
pared to the throughput of regular software-based OpenFlow
switching. Another study on data-plane performance over
Linux based Openflow switching was presented in [31], which
compared OpenFlow switching, layer-2 Ethernet switching
and layer-3 IP routing performance. Fairness, forwarding
throughput and packet latency in diverse load conditions were
analyzed. In [32], a basic model for the forwarding speed
and blocking probability of an OpenFlow switch was derived,
while the parameters for the model were drawn from mea-
surements of switching times of current OpenFlow hardware,
combined with an OpenFlow controller.

2) Installing Forwarding Rules: Another issue regarding
the scalability of an OpenFlow network is memory limitation
in forwarding devices. OpenFlow rules are more complex
than forwarding rules in traditional IP routers. They support
more flexible matchings and matching fields and also differ-
ent actions to be taken upon packet arrival. A commodity
switch normally supports between a few thousand up to tens
of thousands forwarding rules [33]. Also, Ternary Content-
Addressable Memory (TCAM) has been used to support
forwarding rules, which can be expensive and power-hungry.
Therefore, the rule space is a bottleneck to the scalability of
OpenFlow, and the optimal use of the rule space to serve
a scaling number of flow entries while respecting network
policies and constraints is a challenging and important topic.

Some proposals address memory limitations in OpenFlow
switches. Devoflow [34] is an extension to OpenFlow for high-
performance networks. It handles mice flows (i.e. short flows)
at the OpenFlow switch and only invokes the controller in
order to handle elephant flows (i.e larger flows). The perfor-
mance evaluation conducted in [34] showed that Devoflow
uses 10 to 53 times less flow table space. In DIFANE [35],
“ingress” switches redirect packets to “authority” switches that
store all the forwarding rules while ingress switches cache
flow table rules for future use. The controller is responsible
for partitioning rules over authority switches.

Palette [36] and One Big Switch [37] address the rule
placement problem. Their goal is to minimize the number
of rules that need to be installed in forwarding devices and
use end-to-end policies and routing policies as input to a rule
placement optimizer. End-to-end policies consist of a set of
prioritized rules dictating, for example, access control and
load balancing, while viewing the whole network as a single
virtual switch. Routing policies, on the other hand, dictate
through what paths traffic should flow in the network. The
main idea in Palette is to partition end-to-end policies into
sub tables and then distribute them over the switches. Their
algorithm consists of two steps: determine the number k of
tables needed and then partition the rules set over k tables.
One Big Switch, on the other hand, solves the rule placement
problem separately for each path, choosing the paths based on
network metrics (e.g. latency, congestion and bandwidth), and
then combining the result to reach a global solution.
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Fig. 3. The separated control logic can be viewed as a network operating
system, upon which applications can be built to “program” the network.

C. The Controller

The decoupled system has been compared to an operating
system [17], in which the controller provides a programmatic
interface to the network. That can be used to implement
management tasks and offer new functionalities. A layered
view of this model is illustrated in Figure 3. This abstraction
assumes the control is centralized and applications are written
as if the network is a single system. It enables the SDN
model to be applied over a wide range of applications and
heterogeneous network technologies and physical media such
as wireless (e.g. 802.11 and 802.16), wired (e.g. Ethernet) and
optical networks.

As a practical example of the layering abstraction accessi-
ble through open application programming interfaces (APIs),
Figure 4 illustrates the architecture of an SDN controller
based on the OpenFlow protocol. This specific controller is
a fork of the Beacon controller [22] called Floodlight [38].
In this figure it is possible to observe the separation between
the controller and the application layers. Applications can be
written in Java and can interact with the built-in controller
modules via a JAVA API. Other applications can be written in
different languages and interact with the controller modules
via the REST API. This particular example of an SDN
controller allows the implementation of built-in modules that
can communicate with their implementation of the OpenFlow
controller (i.e. OpenFlow Services). The controller, on the
other hand, can communicate with the forwarding devices via
the OpenFlow protocol through the abstraction layer present
at the forwarding hardware, illustrated in Figure 3.

While the aforementioned layering abstractions accessible
via open APIs allow the simplification of policy enforce-
ment and management tasks, the bindings must be closely
maintained between the control and the network forwarding
elements. The choices made while implementing such layering
architectures can dramatically influence the performance and

scalability of the network. In the following, we address some
such scalability concerns and go over some proposals that aim
on overcoming these challenges. We leave a more detailed
discussion on the application layer and the implementation of
services and policy enforcement to Section VI-C.

1) Control Scalability: An initial concern that arises when
offloading control from the switching hardware is the scalabil-
ity and performance of the network controller(s). The original
Ethane [20] controller, hosted on a commodity desktop ma-
chine, was tested to handle up to 11,000 new flow requests per
second and responded within 1.5 milliseconds. A more recent
study [39] of several OpenFlow controller implementations
(NOX-MT, Maestro, Beacon), conducted on a larger emulated
network with 100,000 endpoints and up to 256 switches, found
that all were able to handle at least 50,000 new flow requests
per second in each of the tested scenarios. On an eight-
core machine, the multi-threaded NOX-MT implementation
handled 1.6 million new flow requests per second with an
average response time of 2 milliseconds. As the results show,
a single controller is able to handle a surprising number of new
flow requests, and should be able to manage all but the largest
networks. Furthermore, new controllers under development
such as McNettle [40] target powerful multicore servers and
are being designed to scale up to large data center workloads
(around 20 million flows requests per second and up to 5000
switches). Nonetheless, multiple controllers may be used to
reduce latency or increase fault tolerance.

A related concern is the controller placement problem [41],
which attempts to determine both the optimal number of
controllers and their location within the network topology,
often choosing between optimizing for average and worst
case latency. The latency of the link used for communication
between controller and switch is of great importance when
dimensioning a network or evaluating its performance [34].
That was one of the main motivations behind the work in [42]
which evaluated how the controller and the network perform
with bandwidth and latency issues on the control link. This
work concludes that bandwidth in the control link arbitrates
how many flows can be processed by the controller, as well
as the loss rate when under saturation conditions. The switch-
to-control latency on the other hand, has a major impact on
the overall behavior of the network, as each switch cannot
forward data until it receives the message from the controller
that inserts the appropriate rules in the flow table. This interval
can grow with the link latency and impact dramatically the
performance of network applications.

Also, control modeling greatly impacts the network scal-
ability. Some important scalability issues are presented
in [43], along with a discussion about scalability trade-offs
in software-defined network design.

2) Control models: In the following, we go over some of
these SDN design options and discuss different methods of
controlling a software-defined network, many of which are
interrelated:

• Centralized vs. Distributed
Although protocols such as OpenFlow specify that a
switch is controlled by a controller and therefore ap-
pears to imply centralization, software-defined networks
may have either a centralized or distributed control-
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Fig. 4. The Floodlight architecture as an example of an OpenFlow controller.

plane. Though controller-to-controller communication is
not defined by OpenFlow, it is necessary for any type of
distribution or redundancy in the control-plane.
A physically centralized controller represents a single
point of failure for the entire network; therefore, Open-
Flow allows the connection of multiple controllers to a
switch, which would allow backup controllers to take
over in the event of a failure.
Onix [44] and HyperFlow [45] take the idea further
by attempting to maintain a logically centralized but
physically distributed control plane. This decreases the
look-up overhead by enabling communication with local
controllers, while still allowing applications to be written
with a simplified central view of the network. The po-
tential downside are trade-offs [46] related to consistency
and staleness when distributing state throughout the con-
trol plane, which has the potential to cause applications
that believe they have an accurate view of the network
to act incorrectly.
A hybrid approach, such as Kandoo [47], can utilize local
controllers for local applications and redirect to a global
controller for decisions that require centralized network
state. This reduces the load on the global controller by
filtering the number of new flow requests, while also
providing the data-path with faster responses for requests
that can be handled by a local control application.
A software-defined network can also have some level of
logical decentralization, with multiple logical controllers.
An interesting type of proxy controller, called Flowvi-

sor [48], can be used to add a level of network virtualiza-
tion to OpenFlow networks and allow multiple controllers
to simultaneously control overlapping sets of physical
switches. Initially developed to allow experimental re-
search to be conducted on deployed networks alongside
production traffic, it also facilitates and demonstrates the
ease of deploying new services in SDN environments.
A logically decentralized control plane would be needed
in an inter-network spanning multiple administrative do-
mains. Though the domains may not agree to centralized
control, a certain level of sharing may be appropriate
(e.g., to ensure service level agreements are met for traffic
flowing between domains).

• Control Granularity
Traditionally, the basic unit of networking has been
the packet. Each packet contains address information
necessary for a network switch to make routing decisions.
However, most applications send data as a flow of many
individual packets. A network that wishes to provide
QoS or service guarantees to certain applications may
benefit from individual flow-based control. Control can
be further abstracted to an aggregated flow-match, rather
than individual flows. Flow aggregation may be based
on source, destination, application, or any combination
thereof.
In a software-defined network where network elements
are controlled remotely, overhead is caused by traffic
between the data-plane and control-plane. As such, using
packet level granularity would incur additional delay as
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the controller would have to make a decision for each
arriving packet. When controlling individual flows, the
decision made for the first packet of the flow can be ap-
plied to all subsequent packets of that flow. The overhead
may be further reduced by grouping flows together, such
as all traffic between two hosts, and performing control
decisions on the aggregated flows.

• Reactive vs. Proactive Policies
Under a reactive control model, such as the one proposed
by Ethane [20], forwarding elements must consult a
controller each time a decision must be made, such as
when a packet from a new flow reaches a switch. In
the case of flow-based control granularity, there will be
a small performance delay as the first packet of each
new flow is forwarded to the controller for decision
(e.g., forward or drop), after which future packets within
that flow will travel at line rate within the forwarding
hardware. While the delay incurred by the first-packet
may be negligible in many cases, it may be a concern if
the controller is geographically remote (though this can
be mitigated by physically distributing the controller [45])
or if most flows are short-lived, such as single-packet
flows. There are also some scalability issues in larger
networks, as the controller must be able to handle a larger
volume of new flow requests.
Alternatively, proactive control approaches push policy
rules from the controller to the switches. A good example
of proactive control is DIFANE [35], which partitions
rules over a hierarchy of switches, such that the controller
rarely needs to be consulted about new flows and traffic is
kept within the data-plane. In their experiments, DIFANE
reduces first-packet delay from a 10ms average round-trip
time (RTT) with a centralized NOX controller to a 0.4ms
average RTT for new single-packet flows. It was also
shown to increase the new flow throughput, as the tested
version of NOX achieved a peak of 50,000 single-packet
flows per second while the DIFANE solution achieved
800,000 single-packet flows per second. Interestingly, it
was observed that the OpenFlow switch’s local controller
implementation becomes a bottleneck before the central
NOX controller. This was attributed to the fact that com-
mercial OpenFlow switch implementations were limited
to sending 60-330 new flows requests per second at the
time of their publication (2010).

As shown in Figure 5, a controller that acts as a network
operating system must implement at least two interfaces: a
“southbound” interface that allows switches to communicate
with the controller and a “northbound” interface that presents
an API to network control and high-level applications/services.

D. Southbound Communication: Controller-Switch

An important aspect of SDNs is the link between the
data-plane and the control-plane. As forwarding elements are
controlled by an open interface, it is important that this link
remains available and secure.

The OpenFlow protocol can be viewed as one possible im-
plementation of controller-switch interactions, as it defines the
communication between the switching hardware and a network

Fig. 5. A controller with a northbound and southbound interface.

controller. For security, OpenFlow 1.3.0 provides optional
support for encrypted Transport Layer Security (TLS) com-
munication and a certificate exchange between the switches
and the controller(s); however, the exact implementation and
certificate format is not currently specified. Also outside the
scope of the current specification are fine-grained security
options regarding scenarios with multiple controllers, as there
is no method specified to only grant partial access permissions
to an authorized controller. We examine OpenFlow controller
implementation options in greater detail in Section IV.

E. Northbound Communication: Controller-Service

External management systems or network services may
wish to extract information about the underlying network or
control an aspect of network behavior or policy. Additionally,
controllers may find it necessary to communicate with each
other for a variety of reasons. For example, an internal control
application may need to reserve resources across multiple
domains of control or a “primary” controller may need to
share policy information with a backup, etc.

Unlike controller-switch communication, there is no cur-
rently accepted standard for northbound interactions and they
are more likely to be implemented on an ad hoc basis for
particular applications. We discuss this further in Section VI.

F. Standardization Efforts

Recently, several standardization organizations have been
turning the spotlights towards SDN. For example, as previ-
ously mentioned, the IETF’s Forwarding and Control Element
Separation (ForCES) Working Group [1] has been working
on standardizing mechanisms, interfaces, and protocols aim-
ing at the centralization of network control and abstraction
of network infrastructure. The Open Network Foundation
(ONF) [3] has been trying to standardize the OpenFlow
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TABLE I
CURRENT SOFTWARE SWITCH IMPLEMENTATIONS COMPLIANT WITH THE OPENFLOW STANDARD.

Software Switch Implementation Overview Version
Open vSwitch [55] C/Python Open source software switch that aims to implement a switch platform v1.0

in virtualized server environments. Supports standard management
interfaces and enables programmatic extension and control of the
forwarding functions. Can be ported into ASIC switches.

Pantou/OpenWRT [56] C Turns a commercial wireless router or Access Point into an OpenFlow-enabled switch. v1.0
ofsoftswitch13 [57] C/C++ OpenFlow 1.3 compatible user-space software switch implementation. v1.3
Indigo [58] C Open source OpenFlow implementation that runs on physical switches and uses v1.0

the hardware features of Ethernet switch ASICs to run OpenFlow.

protocol. As the control plane abstracts network applications
from underlying hardware infrastructure, they focus on stan-
dardizing the interfaces between: (1) network applications and
the controller (i.e. northbound interface) and (2) the controller
and the switching infrastructure (i.e., southbound interface)
which defines the OpenFlow protocol itself. Some of the Study
Groups (SGs) of ITU’s Telecommunication Standardization
Sector (ITU-T) [49] are currently working towards discussing
requirements and creating recommendations for SDNs under
different perspectives. For instance, the SG13 focuses on
Future Networks, including cloud computing, mobile and
next generation networks, and is establishing requirements for
network virtualization. Other ITU-T SGs such as the SG11
for protocols and test specifications started, in early 2013,
requirements and architecture discussions on SDN signaling.
The Software-Defined Networking Research Group (SDNRG)
at IRTF [50] is also focusing on SDN under various perspec-
tives with the goal of identifying new approaches that can be
defined and deployed, as well as identifying future research
challenges. Some of their main areas of interest include
solution scalability, abstractions, security and programming
languages and paradigms particularly useful in the context of
SDN.

These and other working groups perform important work,
coordinating efforts to evolve existing standards and proposing
new ones. The goal is to facilitate smooth transitions from
legacy networking technology to the new protocols and archi-
tectures, such as SDN Some of these groups, such as ITU-T’s
SG13, advocate the establishment of a Joint Coordination Ac-
tivity on SDN (JCA-SDN) for collaboration and coordination
between standardizing efforts and also taking advantage of the
work performed by the Open Source Software (OSS) commu-
nity, such as OpenStack [51] and OpenDayLight [52] as they
start developing the building blocks for SDN implementation.

IV. SDN DEVELOPMENT TOOLS

SDN has been proposed to facilitate network evolution and
innovation by allowing rapid deployment of new services and
protocols. In this section, we provide an overview of currently
available tools and environments for developing SDN-based
services and protocols.

A. Emulation and Simulation Tools

Mininet [53] allows an entire OpenFlow network to be
emulated on a single machine, simplifying the initial develop-
ment and deployment process. New services, applications and

TABLE II
MAIN CURRENT AVAILABLE COMMODITY SWITCHES BY MAKERS,

COMPLIANT WITH THE OPENFLOW STANDARD.

Maker Switch Model Version
Hewlett-Packard 8200zl, 6600, 6200zl, v1.0

5400zl, and 3500/3500yl
Brocade NetIron CES 2000 Series v1.0
IBM RackSwitch G8264 v1.0
NEC PF5240 PF5820 v1.0
Pronto 3290 and 3780 v1.0
Juniper Junos MX-Series v1.0
Pica8 P-3290, P-3295, P-3780 and P-3920 v1.2

protocols can first be developed and tested on an emulation
of the anticipated deployment environment before moving to
the actual hardware. By default Mininet supports OpenFlow
v1.0, though it may be modified to support a software switch
that implements a newer release.

The ns-3 [54] network simulator supports OpenFlow
switches within its environment, though the current version
only implements OpenFlow v0.89.

B. Available Software Switch Platforms

There are currently several SDN software switches available
that can be used, for example, to run an SDN testbed or when
developing services over SDN. Table I presents a list of current
software switch implementations with a brief description in-
cluding implementation language and the OpenFlow standard
version that the current implementation supports.

C. Native SDN Switches

One of the main SDN enabling technologies currently being
implemented in commodity networking hardware is the Open-
Flow standard. In this section we do not intend to present a
detailed overview of OpenFlow enabled hardware and makers,
but rather provide a list of native SDN switches currently
available in the market and provide some information about
them, including the version of OpenFlow they implement.

One clear evidence of industry’s strong commitment to SDN
is the availability of commodity network hardware that are
OpenFlow enabled. Table II lists commercial switches that
are currently available, their manufacturer, and the version of
OpenFlow they implement.

D. Available Controller Platforms

Table III shows a snapshot of current controller implemen-
tations. To date, all the controllers in the table support the



1626 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 3, THIRD QUARTER 2014

OpenFlow protocol version 1.0, unless stated otherwise. This
table also provides a brief overview of the listed controllers.

Included in Table III are also two special purpose controller
implementations: Flowvisor [48], mentioned previously, and
RouteFlow [66]. The former acts as a transparent proxy be-
tween OpenFlow switches and multiple OpenFlow controllers.
It is able to create network slices and can delegate control of
each slice to a different controller, also promoting isolation
between slices. RouteFlow, on the other hand, is an open
source project to provide virtualized IP routing over OpenFlow
capable hardware. It is composed of an OpenFlow Controller
application, an independent server, and a virtual network
environment that reproduces the connectivity of a physical
infrastructure and runs IP routing engines. The routing engines
generate the forwarding information base (FIB) into the Linux
IP tables according to the routing protocols configured (e.g.,
OSPF, BGP). An extension of RouteFlow is presented in [67],
which discusses Routing Control Platforms (RCPs) in the
context of OpenFlow/SDN. They proposed a controller-centric
networking model along with a prototype implementation of
an autonomous-system-wide abstract BGP routing service.

E. Code Verification and Debugging

Verification and debugging tools are vital resources for
traditional software development and are no less important
for SDN. Indeed, for the idea of portable network “apps” to
be successful, network behavior must be thoroughly tested and
verified.

NICE [68] is an automated testing tool used to help uncover
bugs in OpenFlow programs through model checking and
symbolic execution.

Anteater [69] takes a different approach by attempting to
check network invariants that exist in the data plane, such as
connectivity or consistency. The main benefit of this approach
is that it is protocol-agnostic; it will also catch errors that
result from faulty switch firmware or inconsistencies with the
control plane communication. VeriFlow [70] has a similar
goal, but goes further by proposing a real-time verification
tool that resides between the controller and the forwarding
elements. This adds the potential benefit of being able to halt
bad rules that will cause anomalous behavior before they reach
the network.

Other efforts proposed debugging tools that provide insights
gleaned from control plane traffic. OFRewind [71] allows
network events (control and data) to be recorded at different
granularities and later replayed to reproduce a specific sce-
nario, granting the opportunity to localize and troubleshoot the
events that caused the network anomaly. ndb [72] implements
breakpoints and packet-backtraces for SDN. Just as with the
popular software debugger gdb, users can pinpoint events that
lead to error by pausing execution at a breakpoint, or, using
a packet backtrace, show the sequence of forwarding actions
seen by that packet. STS [73] is a software-defined network
troubleshooting simulator. It is written in python and depends
on POX. It simulates the devices in a given network allowing
for testing cases and identifying the set of inputs that generates
a given error.

V. SDN APPLICATIONS

Software-defined networking has applications in a wide va-
riety of networked environments. By decoupling the control–
and data planes, programmable networks enable customized
control, an opportunity to eliminate middleboxes, as well
as simplified development and deployment of new network
services and protocols. Below, we examine different envi-
ronments for which SDN solutions have been proposed or
implemented.

A. Enterprise Networks

Enterprises often run large networks, while also having
strict security and performance requirements. Furthermore,
different enterprise environments can have very different re-
quirements, characteristics, and user population, For example,
University networks can be considered a special case of
enterprise networks: in such an environment, many of the
connecting devices are temporary and not controlled by the
University, further challenging security and resource alloca-
tion. Additionally, Universities must often provide support for
research testbeds and experimental protocols.

Adequate management is critically important in Enterprise
environments, and SDN can be used to programmatically
enforce and adjust network policies as well as help monitor
network activity and tune network performance.

Additionally, SDN can be used to simplify the network by
ridding it from middleboxes and integrating their functionality
within the network controller. Some notable examples of
middlebox functionality that has been implemented using
SDN include NAT, firewalls, load balancers [74] [75], and
network access control [76]. In the case of more complex
middleboxes with functionalities that cannot be directly im-
plemented without performance degradation (e.g., deep packet
inspection), SDN can be used to provide unified control and
management[77].

The work presented in [78] addresses the issues related
to consistent network updates. Configuration changes are
a common source of instability in networks and can lead
to outages, security flaws, and performance disruptions. In
[78], a set of high-level abstractions are proposed that allow
network administrators to update the entire network, guaran-
teeing that every packet traversing the network is processed
by exactly one consistent global network configuration. To
support these abstractions, several OpenFlow-based update
mechanisms were developed.

As discussed in earlier sections, OpenFlow evolved from
Ethane [20], a network architecture designed specifically to
address the issues faced by enterprise networks.

B. Data Centers

Data centers have evolved at an amazing pace in recent
years, constantly attempting to meet increasingly higher and
rapidly changing demand. Careful traffic management and
policy enforcement is critical when operating at such large
scales, especially when any service disruption or additional
delay may lead to massive productivity and/or profit loss. Due
to the challenges of engineering networks of this scale and
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TABLE III
CURRENT CONTROLLER IMPLEMENTATIONS COMPLIANT WITH THE OPENFLOW STANDARD.

Controller Implementation Open Source Developer Overview
POX [59] Python Yes Nicira General, open-source SDN controller written in Python.
NOX [17] Python/C++ Yes Nicira The first OpenFlow controller written in Python and C++.

OpenFlow controller that has a C-based multi-threaded infrastructure
MUL [60] C Yes Kulcloud at its core. It supports a multi-level north-bound interface

(see Section III-E) for application development.
A network operating system based on Java; it provides interfaces

Maestro [21] Java Yes Rice University for implementing modular network control applications and for them to
access and modify network state.

Trema [61] Ruby/C Yes NEC A framework for developing OpenFlow controllers written in Ruby and C.
Beacon [22] Java Yes Stanford A cross-platform, modular, Java-based OpenFlow controller that

supports event-based and threaded operations.
Jaxon [62] Java Yes Independent Developers a Java-based OpenFlow controller based on NOX.
Helios [24] C No NEC An extensible C-based OpenFlow controller that provides a

programmatic shell for performing integrated experiments.
Floodlight [38] Java Yes BigSwitch A Java-based OpenFlow controller (supports v1.3), based on the Beacon

implementation, that works with physical- and virtual- OpenFlow switches.
SNAC [23] C++ No Nicira An OpenFlow controller based on NOX-0.4, which uses a web-based, user-friendly

policy manager to manage the network, configure devices, and monitor events.
An SDN operating system that aims to provide logically centralized control

Ryu [63] Python Yes NTT, OSRG group and APIs to create new network management and control applications.
Ryu fully supports OpenFlow v1.0, v1.2, v1.3, and the Nicira Extensions.

NodeFlow [64] JavaScript Yes Independent Developers An OpenFlow controller written in JavaScript for Node.JS [65].
A simple OpenFlow controller reference implementation with Open vSwitch

ovs-controller [55] C Yes Independent Developers for managing any number of remote switches through the OpenFlow protocol;
as a result the switches function as L2 MAC-learning switches or hubs.

Flowvisor [48] C Yes Stanford/Nicira Special purpose controller implementation.
RouteFlow [66] C++ Yes CPqD Special purpose controller implementation.

complexity to dynamically adapt to application requirements,
it is often the case that data centers are provisioned for peak
demand; as a result, they run well below capacity most of the
time but are ready to rapidly service higher workloads.

An increasingly important consideration is energy con-
sumption, which has a non-trivial cost in large-scale data
centers. Heller et al. [79] indicates that much research has
been focused on improved servers and cooling (70% of total
energy) through better hardware or software management, but
the data center’s network infrastructure (which accounts for
10-20% of the total energy cost) still consumed 3 billion
kWh in 2006. They proposed ElasticTree, a network-wide
power manager that utilizes SDN to find the minimum-power
network subset which satisfies current traffic conditions and
turns off switches that are not needed. As a result, they
show energy savings between 25-62% under varying traffic
conditions. One can imagine that these savings can be further
increased if used in parallel with server management and
virtualization; one possibility is the Honeyguide[80] approach
to energy optimization which uses virtual machine migration
to increase the number of machines and switches that can be
shutdown.

However, not all SDN solutions may be appropriate in high
performance networks. While simplified traffic management
and visibility are useful, it must be sensibly balanced with
scalability and performance overhead. Curtis et al. [34] believe
that OpenFlow excessively couples central control and com-
plete visibility, when in reality only “significant” flows need
to be managed; this may lead to bottlenecks as the control-
data communication adds delay to flow setup while switches
are overloaded with thousands of flow table entries. Though
aggressive use of proactive policies and wild-card rules may
resolve that issue, it may undermine the ability of the con-
troller to have the right granularity to effectively manage traffic
and gather statistics. Their framework, DevoFlow, proposes
some modest design changes to keep flows in the data plane

as much as possible while maintaining enough visibility for
effective flow management. This is accomplished by pushing
responsibility over most flows back to the switches and adding
more efficient statistics collection mechanisms, through which
“significant” flows (e.g. long-lived, high-throughput) are iden-
tified and managed by the controller. In a load-balancing
simulation, their solution had 10-53 times fewer flow table
entries and 10-42 times fewer control messages on average
over OpenFlow.

A practical example of a real application of the SDN
concept and architecture in the context of data centers was
presented by Google in early 2012. The company presented at
the Open Network Summit [81] a large scale implementation
of an SDN-based network connecting its data centers. The
work in [82] presents in more detail the design, implementa-
tion, and evaluation of B4, a WAN connecting Google’s data-
centers world wide. This work describes one of the first and
largest SDN deployments. The motivation was the need for
customized routing and traffic engineering and the fact that the
level of scalability, fault tolerance, cost efficiency and control
required, could not be achieved by means of a traditional
WAN architecture. A customized solution was proposed and
an OpenFlow-based SDN architecture was built to control
individual switches. After three years in production, B4 is
shown to be efficient in the sense that it drives many links
at near 100% utilization while splitting flows among multiple
paths. Furthermore, the experience reported in the work shows
that the bottleneck resulting from control-plane to data-plane
communication and overhead in hardware programming are
important issues to be considered in future work.

C. Infrastructure-based Wireless Access Networks

Several efforts have focused on ubiquitous connectivity in
the context of infrastructure-based wireless access networks,
such as cellular and WiFi.
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For example, the OpenRoads project [83], [84] envisions a
world in which users could freely and seamlessly move across
different wireless infrastructures which may be managed by
various providers. They proposed the deployment of an SDN-
based wireless architecture that is backwards-compatible, yet
open and sharable between different service providers. They
employ a testbed using OpenFlow-enabled wireless devices
such as WiFi APs and WiMAX base stations controlled by
NOX– and Flowvisor controllers and show improved perfor-
mance on handover events. Their vision provided inspiration
for subsequent work [85] that attempts to address specific
requirements and challenges in deploying a software-defined
cellular network.

Odin[86] introduces programmability in enterprise wireless
LAN environments. In particular, it builds an access point
abstraction on the controller that separates the association state
from the physical access point, enabling proactive mobility
management and load balancing without changes to the client.

At the other end of the spectrum, OpenRadio [87] focuses
on deploying a programmable wireless data plane that provides
flexibility at the PHY and MAC layers (as opposed to layer-3
SDN) while meeting strict performance and time deadlines.
The system is designed to provide a modular interface that is
able to process traffic subsets using different protocols such
as WiFi, WiMAX, 3GPP LTE-Advanced, etc. Based on the
idea of separation of the decision and forwarding planes, an
operator may express decision plane rules and corresponding
actions, which are assembled from processing plane modules
(e.g., FFT, Viterbi decoding, etc); the end result is a state
machine that expresses a fully-functional protocol.

D. Optical Networks
Handling data traffic as flows, allows software-defined

networks, and OpenFlow networks in particular, to support
and integrate multiple network technologies. As a result, it is
possible to provide also technology-agnostic unified control
for optical transport networks and facilitating interaction be-
tween both packet and circuit-switched networks. According
to the Optical Transport Working Group (OTWG) created in
2013 by the Open Network Foundation (ONF), the benefits
from applying SDN and the OpenFlow standard in particu-
lar to optical transport networks include: improving optical
transport network control and management flexibility, enabling
deployment of third-party management and control systems,
and deploying new services by leveraging virtualization and
SDN [88].

There has been several attempts and proposals to control
both circuit switched and packet switched networks using the
OpenFlow protocol. In [89] a NetFPGA [90] platform is used
in the proposal of a packet switching and circuit switched
networks architectures based on Wavelength Selective Switch-
ing (WSS), using the OpenFlow protocol. Another control
plane architecture based on OpenFlow for enabling SDN
operations in optical networks was proposed in [91], which
discusses specific requirements and describes implementation
of OpenFlow protocol extensions to support optical transport
networks.

A proof-of-concept demonstration of an OpenFlow-based
wavelength path control in transparent optical networks is pre-

sented in [92]. In this work, virtual Ethernet interfaces (veths)
are introduced. These veths, are mapped to physical interfaces
of an optical node (e.g. photonic cross-connect - PXC), and
enable an SDN controller (e.g. the NOX controller in this
case) to operate the optical lightpaths (e.g., via the OpenFlow
protocol). In their experimental setup, they quantitatively
evaluate network performance metrics, such as the latency
of lightpath setup and release, and verify the feasibility of
routing and wavelength assignment, and the dynamic control
of optical nodes in an OpenFlow-based network composed by
four PXCs nodes in a mesh topology.

A Software Defined Optical Network (SDON) architecture
is introduced in [93] and a QoS-aware unified control protocol
for optical burst switching in OpenFlow-based SDON is devel-
oped. The performance of the proposed protocol was evaluated
with the conventional GMPLS-based distributed protocol and
the results indicate that SDON offers an infrastructure to
support unified control protocols to better optimize network
performance and improve capacity.

E. Home and Small Business

Several projects have examined how SDN could be used in
smaller networks, such as those found in the home or small
businesses. As these environments have become increasingly
complex and prevalent with the widespread availability of low-
cost network devices, the need for more careful network man-
agement and tighter security has correspondingly increased.
Poorly secured networks may become unwitting targets or
hosts for malware, while outages due to network configuration
issues may cause frustration or lost business. Unfortunately, it
is not practical to have a dedicated network administrator in
every home and office.

Calvert et al. [94] assert that the first step in managing home
networks is to know what is actually happening; as such, they
proposed instrumenting the network gateway/controller to act
as a “Home Network Data Recorder” to create logs that may
be utilized for troubleshooting or other purposes.

Feamster [95] proposes that such networks should operate
in a “plug in and forget” fashion, namely by outsourcing
management to third-party experts, and that this could be
accomplished successfully through the remote control of pro-
grammable switches and the application of distributed network
monitoring and inference algorithms used to detect possible
security problems.

In contrast, Mortier et al. [96] believe that users desire
greater understanding and control over their networks’ behav-
ior; rather than following traditional policies, a home network
may be better managed by their users who better understand
the dynamics and needs of their environment. Towards this
goal, they created a prototype network in which SDN is used
to provide users a view into how their network is being utilized
while offering a single point of control.

Mehdi et al. [97] argues that an Anomaly Detection System
(ADS) implemented within a programmable home network
provides a more accurate identification of malicious activity
as compared to one deployed at the ISP; additionally, the
implementation would be able to operate at line rate with no
performance penalty, while, at the same time, offloading the
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ISP from having to monitor these large number of networks.
The ADS algorithm could operate alongside other controller
services, such as a HomeOS that may react to suspicious
activity and report anomalies to the ISP or local administrator.

VI. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

As SDN becomes more widely adopted and protocols such
as OpenFlow are further defined, new solutions are proposed
and new challenges arise. In this section we discuss various
challenges posed by SDN as well as future research directions,
namely: (1) controller and switch design, (2) scalability and
performance in SDNs, (3) controller-service interfacing, (4)
virtualization and cloud service applications, (5) information
centric networking, and (6) enabling heterogeneous network-
ing with SDN.

A. Controller and Switch Design

SDN raises significant scalability, performance, robustness,
and security challenges. Below we review a number of re-
search efforts focusing on addressing these issues at the
switch– and controller design level.

In DIFANE [35], flow entries are proactively pushed to
switches in an attempt to reduce the number of requests to
the controller. Devoflow [34] proposes to handle “short-lived”
flows in switches and “long-lived” flows in the controller to
mitigate flow setup delay and controller overhead. The work
proposed in [28] advocates replacing counters on ASIC by
a stream of rule-matching records and processing them in the
CPU to allow efficient access to counters. FLARE [98] is a
new network node model focusing on “deeply programmable
networks” that provides programmability for the data plane,
the control plane, as well as the interface between them.
The work presented in [99] discusses important aspects in
controller design including hierarchical control, data model,
scalability, and extensibility.

As far as performance and scalability, the study presented
in [100] showed that one single controller can handle up
to 6 million flows per second. A more recent study [101],
focusing on the Beacon controller, showed that a controller
can handle 12.8 million new flows per second in a 12 cores
machine, with an average latency of 24.7 us for each flow.
However, for increased scalability and especially for reliability
and robustness purposes, it has been recognized that the
logically-centralized controller must be physically distributed.
Onix [44], Kando [47], and HyperFlow [45] use this approach
to achieve robust and scalable control plane. In [46], trade-
offs related to control distribution, such as staleness versus
optimality and application logic complexity versus robustness
to inconsistency are identified and quantified. In [41], the
controller placement problem is discussed in terms of the
number of controllers needed and where to place them in the
network. In more recent work on distributed control, the need
for dynamic assignment of switches to controllers is addressed
in [102], which proposes an algorithm to increase or decrease
the pool of controllers based on controllers’ load estimates.
They also propose a mechanism to dynamically handover
switches from one controller to another as needed.

In [103] an SDN variant inspired by MPLS was proposed
along with the notions of edge controllers and fabric con-
trollers: the former control ingress and egress switches and
handle the host-network interface, while the latter handle
fabric switches and the operator-network interface.

Although control and measurement are two important com-
ponents of network management, little thought has gone into
designing APIs for measurement. The work presented in [104]
proposes a software-defined traffic measurement architecture,
which separates the measurement data plane from the control
plane.

B. Software-Defined Internetworking
The Internet has revolutionized the way we, as individuals

and as a society, live, work, conduct business, socialize, get
entertainment, etc. As a result, the Internet is now considered
part of our society’s critical infrastructure much like the power,
water, and transportation grids.

Scalability and performance requirements from increasingly
complex applications have posed a variety of challenges
difficult to address with the current Internet architecture.
This has led the research community to examine “clean-
slate” solutions [105]. As the Internet has grown beyond
the point at which a “flag day”, such as the one used to
“upgrade” the ARPANET with the TCP/IP protocol suite,
would be realistic, another considerable challenge is evolving
its physical infrastructure and protocols. A notable example is
the deployment of IPv6: despite over a decade in the standards
track and two worldwide deployment events, IPv4 still makes
up the majority of Internet traffic.

Much of the current work on SDN examines or proposes
solutions within the context of a single administrative domain
which matches quite well SDN’s logically centralized con-
trol model. However, environments whose administration is
inherently decentralized, like the Internet, call for a control
plane that is logically distributed. This will allow participating
autonomous systems (ASes) to be controlled independently
by their own (logically centralized and possibly physically
distributed) controller. To-date, a few efforts have explored
the idea of a Software-Defined Internet. For example, the work
in [106] proposed a software-defined Internet architecture that
borrows from MPLS the distinction between network edge
and core to split tasks between inter-domain and intra-domain
components. As only the boundary routers and their associated
controller in each domain are involved in inter-domain tasks,
changes to inter-domain service models would be limited to
software modifications at the inter-domain controllers rather
than the entire infrastructure. Examples of how this archi-
tecture could be used to realize new Internet services such
as information-centric networking, and middlebox service
sharing are explored.

Another approach to inter-AS routing [107] uses NOX and
OpenFlow to implement BGP-like functionality. Alternatively,
an extensible session protocol [108] supports application-
driven configuration of network resources across domains.

C. Controller-Service Interaction
While controller-switch (“southbound”) interaction is fairly

well defined in protocols such as OpenFlow and ForCES,
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there is no standard for interactions between controllers and
network services or applications (“northbound”). One possible
explanation is that the northbound interface is defined entirely
in software, while controller-switch interactions must enable
hardware implementation.

If we think of the controller as a “network operating
system”, then there should be a clearly defined interface
by which applications can access the underlying hardware
(switches), co-exist and interact with other applications, and
utilize system services (e.g. topology discovery, forwarding),
without requiring the application developer to know the im-
plementation details of the controller. While there are several
controllers that exist, their application interfaces are still in
the early stages and independent from each other.

Some proposals (e.g., Procera [109], Frenetic [110],
FML [111], Nettle [112]) advocate the use of a network
configuration language to express policies. For example, Pro-
cera [109] builds a policy layer on top of existing controllers to
interface with configuration files, GUIs, and external sensors;
the proposed policy layer is responsible for converting high-
level policies to flow constraints given to be used by the
controller. In [113], network configuration and management
mechanisms are proposed that focus on enabling changes to
network condition and state, supporting network configuration
and policy definitions, and providing visibility and control
over tasks for network diagnostics and troubleshooting. The
specification of a northbound interface via a policy layer and
a high level language such as Procera is discussed.

Additionally, the northbound API should allow applications
to apply different policies to the same flow (e.g. forward-
ing by destination and monitoring by source IP). The work
in [114] proposed modularization to ensure that rules installed
to perform one task do not override other rules. This was
accomplished by means of an abstraction layer implemented
with a language based on Frenetic.

Until a clear northbound interface standard emerges, SDN
applications will continue to be developed in an “ad hoc”
fashion and the concept of flexible and portable “network
apps” may have to wait.

D. Virtualization and Cloud Services

The demand for virtualization and cloud services has been
growing rapidly and attracting considerable interest from in-
dustry and academia. The challenges it presents include rapid
provisioning, efficient resource management, and scalability
which can be addressed using SDN’s control model.

For example, FlowVisor [48] and AutoSlice [115] cre-
ate different slices of network resources (e.g., bandwidth,
topology, CPU, forwarding table), delegate them to different
controllers, and enforce isolation between slices. Other SDN
controllers can be used as a network backend to support
virtualization in cloud operating systems, such as Floodlight
for OpenStack [38] and NOX for Mirage [116]. FlowN [117]
aims to offer a scalable solution for network virtualization by
providing an efficient mapping between virtual and physical
networks and by leveraging scalable database systems.

In [118], an algorithm for efficient migration with band-
width guarantees using OpenFlow was proposed. LIME [119]

is an SDN-based solution for live migration of Virtual Ma-
chines, which handles the network state during migration and
automatically configures network devices at new locations.
NetGraph [120] provides a set of APIs for customers to access
its virtual network functions such as real-time monitoring and
diagnostics.

On the context of cloud data centers providing Infrastructure
as a Service (IaaS), [121] presents a management framework
for resources in cloud data centers and addresses multiple
management issues. In this paper, authors proposed a data-
centric and event-driven architecture with open management
interfaces, that leverages SDN techniques to integrate network
resources into datacenter orchestration and service provision-
ing with the aim of improving service-level agreements and
faster service delivery.

E. Information-Centric Networking

Information-Centric Networking (ICN) is a new paradigm
proposed for the future architecture of the Internet, which
aims to increase the efficiency of content delivery and content
availability. This new concept has been popularized recently
by a number of architecture proposals, such as Content-Centric
Networking (CCN), also known as the Named Data Network-
ing (NDN) project [122]. Their driving motivation is that the
current Internet is information-driven, yet networking technol-
ogy is still focused on the idea of location-based addressing
and host-to-host communication.By proposing an architecture
that addresses named data rather than named hosts, content
distribution is implemented directly into the network fabric
rather than relying on the complicated mapping, availability,
and security mechanisms currently used to map content to a
single location.

The separation between information processing and for-
warding in ICN is aligned with the decoupling of the data
plane and control plane in SDN. The question then becomes
how to combine ICN with SDN towards “Software-Defined
Information-Centric Networks”. A number of projects [123],
[124], [125], [126], [127], [128] have proposed using SDN
concepts to implement ICNs. As OpenFlow expands to support
customized header matchings, SDN can be employed as a key
enabling technology for ICNs.

F. Heterogeneous Network Support

Future networks will become increasingly more hetero-
geneous, interconnecting users and applications over net-
works ranging from wired, infrastructure-based wireless
(e.g., cellular–based networks, wireless mesh networks), to
infrastructure-less wireless networks (e.g. mobile ad-hoc net-
works, vehicular networks). In the meantime, mobile traffic
has been increasing exponentially over the past several years,
and is expected to increase 18–fold by 2016, with more
mobile-connected devices than the world’s population, which
is already a reality [129]. As mobile devices with multiple
network interfaces become commonplace, users will demand
high quality communication service regardless of location or
type of network access. Self-organizing networks (e.g., wire-
less multi-hop ad-hoc networks) may form to extend the range
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of infrastructure-based networks or handle episodic connec-
tivity disruptions. Self-organizing networks may thus enable
a variety of new applications such as cloud-based services,
vehicular communication, community services, healthcare de-
livery, emergency response, and environmental monitoring, to
name a few. Efficient content delivery over wireless access
networks will become essential, and self–organizing networks
may become a prevalent part of the future hybrid Internet.

A major challenge facing future networks is efficient uti-
lization of resources; this is especially the case in wireless
multi-hop ad-hoc networks as the available wireless capacity
is inherently limited. This is due to a number of factors
including the use of shared physical medium compounded,
wireless channel impairments, and the absence of managed
infrastructure. Though these self–organizing networks can be
used to supplement or “fill the gaps” in an overburdened
infrastructure [130], their lack of dedicated resources and
shifting connectivity makes capacity sharing difficult. The
heterogeneous characteristics of the underlying networks (e.g.,
physical medium, topology, stability) and nodes (e.g., buffer
size, power limitations, mobility) also add another important
factor when considering routing and resource allocation.

SDN has the potential to facilitate the deployment and
management of network applications and services with greater
efficiency. However, SDN techniques to–date, such as Open-
Flow, largely target infrastructure–based networks. They pro-
mote a centralized control mechanism that is ill–suited to
the level of decentralization, disruption, and delay present in
infrastructure-less environments.

While previous work has examined the use of SDN in
wireless environments, the scope has primarily focused on
infrastructure-based deployments (e.g., WiMAX, Wi-Fi access
points). A notable example is the OpenRoads project [83],
which envisioned a world in which users could freely move be-
tween wireless infrastructures while also providing support to
the network provider. Other studies such as [128], [131], [132]
have examined OpenFlow in wireless mesh environments.

VII. CONCLUDING REMARKS

In this paper, we provided an overview of programmable
networks and, in this context, examined the emerging field of
Software-Defined Networking (SDN). We look at the history
of programmable networks, from early ideas until recent
developments. In particular we described the SDN architecture
in detail as well as the OpenFlow [2] standard. We pre-
sented current SDN implementations and testing platforms and
examined network services and applications that have been
developed based on the SDN paradigm. We concluded with a
discussion of future directions enabled by SDN ranging from
support for heterogeneous networks to Information Centric
Networking (ICN).
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