
IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014 2181

A Survey on Software-Defined Network and
OpenFlow: From Concept to Implementation

Fei Hu, Qi Hao, and Ke Bao

Abstract—Software-defined network (SDN) has become one of
the most important architectures for the management of large-
scale complex networks, which may require repolicing or recon-
figurations from time to time. SDN achieves easy repolicing by
decoupling the control plane from data plane. Thus, the network
routers/switches just simply forward packets by following the flow
table rules set by the control plane. Currently, OpenFlow is the
most popular SDN protocol/standard and has a set of design
specifications. Although SDN/OpenFlow is a relatively new area,
it has attracted much attention from both academia and industry.
In this paper, we will conduct a comprehensive survey of the
important topics in SDN/OpenFlow implementation, including
the basic concept, applications, language abstraction, controller,
virtualization, quality of service, security, and its integration with
wireless and optical networks. We will compare the pros and cons
of different schemes and discuss the future research trends in this
exciting area. This survey can help both industry and academia
R&D people to understand the latest progress of SDN/OpenFlow
designs.

Index Terms—Software-defined network (SDN), OpenFlow,
network virtualization, QoS, security.

I. INTRODUCTION

A. Motivations

CONVENTIONAL networks utilize special algorithms im-
plemented on dedicated devices (hardware components)

to control and monitor the data flow in the network, manag-
ing routing paths and determining how different devices are
interconnected in the network. In general these routing algo-
rithms and sets of rules are implemented in dedicated hardware
components such as Application Specific Integrated Circuits
(ASICs) [1]. ASICs are designed for performing specific opera-
tions. Packet forwarding is a simple example. In a conventional
network, upon the reception of a packet by a routing device,
it uses a set of rules embedded in its firmware to find the
destination device as well as the routing path for that packet.
Generally data packets that are supposed to be delivered to the
same destination are handled in similar manner. This operation
takes place in inexpensive routing devices. More expensive
routing devices can treat different packet types in different

Manuscript received September 29, 2013; revised January 30, 2014 and
April 2, 2014; accepted May 15, 2014. Date of publication May 22, 2014; date
of current version November 18, 2014. (Corresponding author: Q. Hao.)

F. Hu and K. Bao are with the Department of Electrical and Computer
Engineering, The University of Alabama, Tuscaloosa, AL 35487 USA (e-mail:
fei@eng.ua.edu; kbao@crimson.ua.edu).

Q. Hao is with the Department of Electrical Engineering, The South Univer-
sity of Science and Technology of China, Shenzhen, Guandong 518055, China
(e-mail: hao.q@sustc.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/COMST.2014.2326417

manners based on their nature and contents. For example, a
Cisco router allows the users to mark out the priorities of
different flows through customized local router programming.
Thus we can manage the queue sizes in each router directly.
Such a customized local router setup allows more efficient
traffic congestion and prioritization control.

A problem posed by this methodology is the limitation of
the current network devices under high network traffic, which
poses severe limitations on network performance. Issues such
as the increasing demand for scalability, security, reliability
and network speed, can severely hinder the performance of
the current network devices due to the ever increasing network
traffic. Current network devices lack the flexibility to deal
with different packet types with various contents because of
the underlying hardwired implementation of routing rules [2].
Moreover, the networks, which make up the backbone of the In-
ternet, need to be able to adapt to changes without being hugely
labor intensive in terms of hardware or software adjustments.
However, traditional network operations cannot be easily re-
reprogrammed or re-tasked [3].

A possible solution to this problem is the implementation
of the data handling rules as software modules rather than
embedding them in hardware. This method enables the network
administrators to have more control over the network traffic
and therefore has a great potential to greatly improve the
performance of the network in terms of efficient use of network
resources. Such an idea is defined in an innovative technology,
called Software-Defined Networking (SDN) [4]. Its concept
was originally proposed by Nicira Networks based on their ear-
lier development at UCB, Stanford, CMU, Princeton [1]. The
goal of SDN is to provide open, user-controlled management of
the forwarding hardware in a network. SDN exploits the ability
to split the data plane from the control plane in routers and
switches [5]. The control plane can send commands down to
the data planes of the hardware (routers or switches) [6]. This
paradigm provides a view of the entire network, and helps to
make changes globally without a device-centric configuration
on each hardware unit [7]. Note that the control panel could
consist of one or multiple controllers, depending on the scale of
the network. If using multiple controllers, they can form a peer-
to-peer high-speed, reliable distributed network control. In any
case, all switches in the data plane should obtain the consistent
view of the data delivery. The switches in the data plane just
simply deliver data among them by checking the flow tables
that are controlled by the controller(s) in the control panel. This
greatly simplifies the switches’ tasks since they do not need to
perform control functions.

The concept of SDN is not entirely new. As a matter of
fact, a few decades ago people could use special infrastructure

1553-877X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto: fei@eng.ua.edu
mailto: hao.q@sustc.edu.cn

2182 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

Fig. 1. Comparison of traditional network (left) and SDN (right).

(such as cloud computing hardware) to decouple the network
operating system (similar to the control functions in SDN
control plane) from computing-intensive applications (similar
to the data delivery in data plane). Today cloud computing
enables the networked computation and storage without using
local resources. Such a decoupling of control and data plays a
critical role in large-scale, high-speed computing system.

SDN results in improved network performance in terms of
network management, control and data handling. SDN is a po-
tential solution to the problems faced by conventional network
(Fig. 1 [3]–[5]) and is gaining more acceptance in applications
such as cloud computing. It can be used in data centers and
workload optimized systems [8]. By using SDN, the adminis-
trators have the ability to control the data flow as well as to alter
the characteristics of the switching devices (or routing devices)
in the network from a central location, with control application
implemented as software module without the need of dealing
with each device individually [10]. This gives the network
administrators the ability to arbitrarily change routing tables
(routing paths) in network routing devices. It also allows an ex-
tra layer of control over the network data since the administrator
can assign high/low priorities to certain data packets or allow/
block certain packets flowing through the network [1]–[3].

From cloud computing perspective, SDN provides great
benefits. First, it makes cloud provider more easily deploy
different vendors’ devices. Traditionally the big cloud providers
(such as Google, Amazon, etc.), have to purchase the high-
performance switchers/routers from the same vendor in order
to easily re-configure the routing parameters (such as routing
table update period). Different vendors’ routers have their own
pros and cons. However, it is a headache to customize each
router since each vendor may have its own language syntax.
Now SDN allows a cloud provider to fast re-policy the routing
or resource distribution issues as long as each vendor’s routers
follow the SDN standard. Second, it enables a cloud user to
more efficiently use the cloud resources or conduct scientific
experiments by creating virtual flow slices. The OpenFlow
protocol is compatible to GENI standard, and this enables a user
to arbitrarily create slices/slivers without being aware of the
physical network infrastructure. No matter the infrastructure is
wireless or wired system, and no matter how the cloud provider
deploys different storage units in various locations, the concept
of virtual flow in a SDN makes data flow transparently route
through all cloud devices.

SDN is less expensive due to universal, data-forwarding
switching devices that follow certain standards, and provides
more control over network traffic flow as compared to the
conventional network devices. Major advantages of SDNs in-
clude [11]–[15], [17]–[19].

1) Intelligence and Speed: SDNs have the ability to op-
timize the distribution of the workload via powerful control
panel. This results in high speed transmissions and makes more
efficient use of the resources.

2) Easy Network Management: The administrators have a
remote control over the network and can change the network
characteristics such as services and connectivity based on the
workload patterns. This enables administrators to have more
efficient and instant access to the configuration modifications.

3) Multi-Tenancy: The concept of the SDN can be expanded
across multiple partitions of the networks such as the data
centers and data clouds. For example, in cloud applications,
multiple data center tenants need to deploy their applications in
virtual machines (VMs) across multiple sites. Cloud operators
need to make sure that all tenants have good cross-site perfor-
mance isolation for tenant specific traffic optimization. Exist-
ing cloud architectures do not support joint intra-tenant and
inter-tenant network control ability. SDN can use decoupled
control/data planes and resource visualization to well support
cross-tenant data center optimization [133].

4) Virtual Application Networks: Virtual application net-
works use the virtualization of network resources (such as traf-
fic queues in each router, distributed storage units, etc.) to hide
the low-level physical details from the user’s applications. Thus
a user can seamlessly utilize the global resources in a network
for distributed applications without direct management of the
resource separation and migration issues across multiple data
sites. Virtual application networks can be implemented by the
network administrators by using the distributed overlay virtual
network (DOVE) which helps with transparency, automation
and better mobility of the network loads that have been vir-
tualized [2], [5]. As a matter of fact, a large chunk of SDN is
along the rational of virtualization. Virtualization can hide all
lower level physical network details and allow the users to re-
policy the network tasks easily. Virtualization has been used in
many special networks. Within the context of wireless sensor
networks (WSNs), there was a laudable European initiative
called VITRO, which has worked precisely on this. The concept
of virtual WSN [131] separates the applications from the sensor
deployment details. Thus we can run multiple logic sensing
applications over the same set of physical sensors. This makes
the same WSN serve multiple applications.

B. SDN Implementation: Big Picture

Here, we briefly summarize the SDN design aspects. In
Sections II–VIII, we will provide the details of each design
aspect. Since SDN’s control plane enables software-based
re-policing, its re-programming should also follow general soft-
ware design principle [37]. Here, we first briefly review the soft-
ware design cycle. The design of a software module typically
follows 3 steps: (1) design; (2) coding and compiling; and (3)
unitary tests. SW debuggers are critical tools. (e.g., gdb [38]).
A next usability level is provided by the integrated development
environment (IDEs) such as Eclipse [39]. As a promising soft-
ware design principle, component-based software engineering
(CBSE) [40] has been proposed in the 4WARD project [41].
The Open Services Gateway initiative (OSGi) [42] has also

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2183

been used for a full life cycle of software design. The Agile
SW development methodology proposed in [43] has been used
to provide better feedback between different stages than con-
ventional waterfall methodologies [44].

Regarding controllers, examples include Nox [48] (written in
C), POX [49] (in Python), Trema [50], floodlight [51] (in Jave),
etc. NOX [48] was the first OpenFlow controller implementa-
tion. It is written in C++. An extension of NOX is implemented
in POX [49]. NOX can run in Windows, Linux, Mac OS,
and other platforms. A Java-based controller implementation
is called Beacon [52]. Its extension is Floodlight controller
[53]. It can virtualize the SDN control via the OpenStack [54]
architecture. Trema controller is now shipped with OpenFlow
network emulator based on Wireshark [55].

Before practical OpenFlow design, there are some good
simulating tools for initial proof-of-concept, such as NS-2
[56] with OpenFlow Software Implementation Distribution
(OF-SID) [57]. Recently, Mininet [15] has become a powerful
emulation tool.

SDN/OpenFlow programming languages have been studied
in some projects. For example, FML [58] enables easy SDN
network policy definitions. Procera [58] defines controller poli-
cies and behaviors. The Frenetic language [59] allows the
programs written for one platform to work in other platforms.

SDN/OpenFlow debuggers have been used to trace the
controller’s program execution status. ndb [60] mimics GNU
debugger gdb [38] and uses breakpoints and back-traces to
monitor the network behaviors. Tremashark [61] plugs Wire-
shark [55] into Treama [50]. It is now evolving to another
powerful debugging tool called OFRewind [62]. FlowCheck
[63] can check the updating status of flow tables. A more com-
prehensive tool called NICE [64], has generated a preliminary
version [65], and can be used to analyze the codes and packet
flows. Through the above tools, OpenFlow testbeds are able to
be established worldwide such as GENI [66] in the USA, Ofelia
[67] in the European Union and JGN [68] in Japan.

C. OpenFlow: A Popular Protocol/Standard of SDN

A number of protocol standards exist on the use of SDN in
real applications. One of the most popular protocol standards is
called OpenFlow [8]–[10], [16], [20]. OpenFlow is a protocol
that enables the implementation of the SDN concept in both
hardware and software. An important feature of OpenFlow
is that scientists can utilize the existing hardware to design
new protocols and analyze their performance. Now it is be-
coming part of commercially available routers and switches
as well.

As a standard SDN protocol, OpenFlow was proposed by
Stanford. Regarding testbeds of OpenFlow, many designs have
been proposed for OpenFlow protocols. They use open source
codes to control universal SDN controllers and switches. Re-
garding switches, OpenVSwitch (OVS) [45] is one of the most
popular, software-driven OpenFlow switch. Its kernel is written
in Linux 3.3 and its firmware including Pica8 [46] and Indigo
[47] is also available.

OpenFlow is flow-oriented protocol and has switches and
ports abstraction to control the flow [21]–[27]. In SDN, there
is a software named controller which manages the collection

Fig. 2. OpenFlow model.

of switches for traffic control. The controller communicates
with the OpenFlow switch and manages the switch through the
OpenFlow protocol. An OpenFlow switch can have multiple
flow tables, a group table, and an OpenFlow channel (Fig. 2
[22]–[26]). Each flow table contains flow entries and communi-
cates with the controller, and the group table can configure the
flow entries. OpenFlow switches connect to each other via the
OpenFlow ports.

Initially the data path of the OpenFlow routing devices has an
empty routing table with some fields (such as source IP address,
QoS type, etc.). This table contains several packet fields such
as the destination of different ports (receiving or transmission),
as well as an action field which contains the code for different
actions, such as packet forwarding or reception, etc. This table
can be populated based on the incoming data packets. When
a new packet is received which has no matching entry in the
data flow table, it is forwarded to the controller to be processed.
The controller is responsible for packet handling decisions, for
example, a packet is either dropped, or a new entry is added into
the data flow table on how to deal with this and similar packets
received in the future [27], [28].

SDN has the capability of programming multiple switches
simultaneously; but it is still a distributed system and, there-
fore, suffers from conventional complexities such as dropping
packets, delaying of the control packets etc. Current platforms
for SDN, such as NOX and Beacon, enable programming; but it
is still hard to program them in a low level. With new protocols
(such as OpenFlow) becoming more standard in industry, SDN
is becoming easier to implement. The control plane generates
the routing table while the data plane, utilizing the table to
determine where the packets should be sent to [3]. Many com-
panies utilize OpenFlow protocols within their data center net-
works to simplify operations. OpenFlow and SDN allow data
centers and researchers to easily abstract and manage the large
network.

The OpenFlow architecture typically includes the following
3 important components [8]–[10], [29].

1) Switches: OpenFlow defines an open source protocol
to monitor/change the flow tables in different switches and
routers. An OpenFlow switch has at least three components:
a) flow table(s), each with an action field associated with
each flow entry, b) a communication channel, which provides
link for the transmission of commands and packets between

2184 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

a controller and the switch, c) the OpenFlow protocol, which
enables an OpenFlow controller able to communicate with any
router/switch.

2) Controllers: A controller can update (revise, add, or
delete) flow-entries from the flow table on behalf of the user’s
experiments. A static (versus dynamic) controller can be a
simple software unit running on a computer to statically (versus
dynamically) establish packet path between a group of test
computers during a scientific experiment.

3) Flow-entries: Each flow-entry includes at least a simple
action (network operation) for that flow item. Most OpenFlow
switches support the following three actions: (a) sending this
flow’s packets to a port, (b) encapsulating this flow’s packets
and sending to a controller, and (c) dropping this flow’s packets.

OpenFlow has gone through many standard iterations, and it
is currently on version 1.3; however only version 1.0 is avail-
able for practical software and hardware design. The second
and subsequent versions of OpenFlow changed the match struc-
tures so that the number and bit count of each header field could
be specified. Thus new protocols would be easier to implement.
In [21] a special controller is used to separate control bits from
data bits, which allows for the network infrastructure to be
shared more easily. A server is often utilized for the controller
portion of OpenFlow architecture.

Currently, several projects are ongoing that utilize OpenFlow
in both Europe and Japan [27], [28]. In Europe, eight islands are
currently interconnected using OpenFlow. In Japan, there are
plans to create a network compatible with the one in Europe, as
well as a testbed that is much more widespread.

The existing OpenFlow standard assumes centralized con-
trol, that is, a single-point controller can manage all flow tables
in different switches. This concept works very well in a small-
scale, cable-based local area network. When OpenFlow was
proposed, it was tested in a wired campus network. However,
if many switches are deployed in a large area, it is difficult to
use a single-point control. Especially when wireless media have
to be used to connect long-distance devices, a central control
becomes difficult since wireless signals fade away quickly for a
long distance. Single control also has single-point failure issue.
To solve the above issue, we can use distributed controllers
in different locations. Each controller only manages the local
switches. However, all controllers keep highly reliable commu-
nications for consistent view of the global status. As an exam-
ple, HyperFlow [132] uses a logically centralized but physically
distributed control panel to achieve a synchronized view of the
entire SDN.

D. Beyond OpenFlow: Other SDN Standards

Besides OpenFlow (the most popular SDN protocol/
standard), there exist other SDN implementations. For instance,
IEEE P1520 standards have defined Programmable Network
Interfaces [143]. It can be seen as an initial model of SDN, since
it also has network programming abstractions.

ForCES (Forwarding and Control Element Separation) [144]
is another standard defined by IETF. It consists of a series of
RFCs for the coverage of different aspects on how to manage
control and data forwarding elements. It proposes the models
to separate IP control and data forwarding, Transport Mapping

layer for the forwarding and control elements, logical function
block library for such a separation, etc. However, ForCES does
not have widespread adoption due to its lack of clear language
abstraction definition and controller-switcher communication
rules.

Note that ForCES has a key difference from OpenFlow:
ForCES defines networking and data forwarding elements
and their communication specifications. However, it does not
change the essential network architecture. OpenFlow changes
the architecture since it requires the routers/switches have
very simply data forwarding function and the routing control
functions should be removed to the upper level controllers.
Therefore, OpenFlow cannot run in traditional routers that do
not support OpenFlow standards, while ForCES can run in
traditional devices since it just adds networking/forwarding
elements.

SoftRouter [145] defines clearly the dynamic binding pro-
cedure between the network elements located in control plane
(software-based) and data plane. In this standard, the network
can be described in two different views, i.e., physical view and
routing view. In the physical view, the network is made up of
nodes Internetworked by media links. The nodes could be a
forwarding element (FE) or a control element (CE). The FE is
a common router without local sophisticated control logic. The
CE is used to control FE. A CE is a general server. The routing
view of a network reflects the network topology based on the
concept of network element (NE). An NE is a logical grouping
of network interfaces/ports and the corresponding CEs that con-
trol those ports. SoftRouter includes a few protocols: Discovery
protocol (to establish a binding between FE and CE), FE/CE
control protocol, and CE/CE protocol.

E. 1.5 SDN Applications

In this section we will provide some application examples on
using SDN and OpenFlow.

1) Internet Research: Updating the Internet brings many
challenges as it is constantly being used; it is difficult to test new
ideas and strategies to solve the problems found in an existing
network. SDN technologies provide a means for testing ideas
for a future Internet without changing the current network [30].
Since SDN allows the control and data traffic to be separated
with an OpenFlow switch, it is easier to separate hardware from
software. This separation allows for experimenting with new
addressing schemes so that new Internet architecture schemes
can be tested.

Usually, it is difficult to experiment with new types of
networks. Since new types of networks often utilize different
addressing schemes and include other non-standard protocols,
these changes are difficult to incorporate into existing networks.
OpenFlow allows for routers, switches, and access points from
many different companies to utilize the separation of the control
and data planes. The devices simply forward data packets based
on defined rules from the controller. If a data packet arrives and
the device does not have a rule for it, the device forwards the
packet to the controller that determines what to do with the
packet, and if necessary, it sends a new rule to the device so
that it can handle future data packets in the same manner [21].

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2185

2) Rural Connections: SDN simplifies complex data center
and enterprise networks; it can further be utilized to simplify
rural Wi-Fi networks. The main issues with rural environments
include sparse populations, small profit margins and resource
constraints, and others. SDN is beneficial because it separates
the construction of the network and the configuration of the
network by placing the control/management functionality into
the central controller. This separation enables the rural infras-
tructure deployment business (which must be done locally in
rural areas) and the Internet Service Provider (ISP) business
(which is typically done remotely in cities) to be completely
separated, i.e., those two businesses are operated by different
entities [31], [32]. Therefore, SDN makes the management of
rural networks much more convenient than traditional network
architecture where the local network devices need customized
control (which means the control of rural devices must be done
in rural areas).

3) Date Centers Upgrading: Data centers are an integral
part of many companies [33]. For example, Google has a
large number of data centers so they can quickly provide
data when requested. Similarly, many other companies utilize
data centers to provide data to clients in a quick and efficient
manner, but data centers are expensive to maintain. OpenFlow
allows companies to save money in setting up and configuring
networks since it allows switches to be managed from a central
location [34].

Oftentimes, data center networks utilize proprietary archi-
tectures and topologies, which creates issues when merging
different networks together; however there is often a need to
merge two divergent networks. SDN brings a solution to this
issue. In [33] the authors propose that a network infrastructure
service based on OpenFlow be utilized to connect data center
networks. They further state that these interconnected data
center networks could solve problems with small latency by
moving workload to underutilized networks. If a network is
busy at a certain time of day, the workload might be able to
be completed sooner in a network of a different time zone or in
a network that is more energy efficient.

In [34] a data center model is created with a large number
of nodes to test performance, throughput and bandwidth. The
model included 192 nodes with 4 regular switches and 2 core
switches with an OpenFlow controller. There was a firewall
between the core switches, OpenFlow controller and the router.
The authors also utilized an application called Mininet to pro-
totype their network and test the performance. Mininet allows
researchers to customize a SDN using OpenFlow protocols.
Further, they utilized several tools to analyze their network
setup including Iperf, Ping, PingAll, PingPair, and CBench.
These tools allow people to check the possible bandwidth, con-
nectivity, and the speed in which flows can be changed, respec-
tively. Wireshark was also used to view traffic in the network.

4) Mobile Device Offloading: Privacy is important for busi-
ness applications because people often work on data that needs
to be kept secure. Some data can be sent among only a few
people while other data does not require the same level of secu-
rity. As an example, in [35] the authors utilized an Enterprise-
Centric Offloading System (ECOS) to address these concerns.
ECOS was designed to offload data to idle computers while

ensuring that applications with additional security requirements
are only offloaded on approved machines. Performance was
also taken into consideration for different users and applica-
tions [35]. SDN is utilized to control the network and select
resources. The resources selected must be able to meet the secu-
rity requirements. The controller will determine if such a device
is available for offloading that meets the security requirements
while maintaining energy savings. If no such device exists,
data is not allowed to be offloaded from the mobile device. If
energy savings is not necessary, then any resource with enough
capacity is utilized if available. OpenFlow switches are utilized
so that the controller can regulate the flows. ECOS was able to
offload while taking into account security requirements without
an overly complex scheme.

5) Wireless Virtual Machines: Applications running on
wireless virtual machines in businesses are becoming increas-
ingly common. These virtual machines allow the companies to
be more flexible and have lower operational costs. In order to
extract the full potential from a virtual machine, there are needs
for making them more portable. The main issue is how to main-
tain the virtual machine’s IP address in the process. The current
methods of handling virtual machines were not efficient. The
solutions proposed in [36] include using a mobile IP or dynamic
DNS. The main issue with both solutions is that someone has
to manually reconfigure the network settings after removing
the virtual machine. This limits businesses and data centers
from easily porting their virtual machines to new locations.

An application named CrossRoads was developed by [36] in
order to solve the mobility issue for virtual machines. Cross-
Roads is designed to allow mobility of both live and offline
virtual machines. CrossRoads has three main purposes. The first
purpose is to be able to take care of traffic from data centers as
well as external users. The second purpose is to make use of
OpenFlow with the assumption that each data center utilizes
an OpenFlow controller. The third purpose is to make use of
pseudo addresses for IP and MAC addresses in order to have
the addresses remain constant when porting while allowing the
real IP to change accordingly.

The basic implementation of their software was to create
rules for finding the virtual machines in different networks. The
CrossRoads controller would keep track of the real IP and MAC
addresses for the controllers in each data center as well as the
virtual machines in its own network. When a request is sent for
an application running on a particular virtual machine, a request
is broadcasted to the controllers. If the controller receives a
request for a virtual machine that is not in its table, then it
broadcasts the request to the other controllers; the controller
who has the virtual machine’s real IP address then sends out the
pseudo MAC address to the original controller, and the original
controller can update its table in case it gets another request in
the near future.

Comparisons: SDN has been shown to be a valuable re-
source in many different types of applications. SDN allows
users to quickly adapt networks to new situations as well as
test new protocols. Table I shows the differences among some
typical SDN applications. As one can see, OpenFlow was uti-
lized in most of the applications for its versatility. Data centers
continue to become an important part of the Internet and many

2186 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

TABLE I
A COMPARISON OF DIFFERENT SDN APPLICATIONS

Fig. 3. Organization of this survey.

large companies. The column mobile applications refers to
cell phones, tablets, and other non-traditional media formats
rather than laptops and other typical computing platforms. A
few of the applications utilize the cloud. Hardware changes are
difficult to implement in conventional networks. This is mainly
because they require a system to be shut down during upgrade.
But SDN provides conveniences for such upgrades due to its
separation of data and control planes.

F. Road Map

Fig. 3 shows the organization of this paper. After the concept
is explained (Section I), Sections II–VIII will survey the most
important aspects in SDN/OpenFlow design. Since SDN aims
to enable easy re-policing, the network programming is a must
(Section II). SDN simplifies all switches as data forwarders
only and leave complex control in controllers (Section III).
Due to the dynamic network resources deployment, it is critical
to provide the users an accurate network resource manage-
ment via the virtualization tools (Section IV). Then we move
to the important SDN performance issue—QoS (Section V).
We will explain different schemes that can support the QoS
requirements. Any network has threats and attacks. SDN is
not an exception. Section VI will explain the security and
fault tolerance aspects in SDN designs. Then we introduce the
ideas of implementing SDN/OpenFlow in two most important
network types—wireless and optical networks (Section VII).
Section VIII introduces a SDN design example. To help the
readers understand unsolved challenging research issues, we
will point out the next-step research directions in this exciting
field (Section IX). Finally, Section X concludes the entire paper.

The reason of covering the three aspects (QoS, security, and
wireless/optical) besides the basic SDN issues (Sections II–IV)

Fig. 4. Programming of the SDN and language abstraction.

is due to the following factors: First, for any new network
architecture, the first concern is its performance, which mainly
includes the end-to-end delay, throughput, jitter, etc. Therefore,
it is critical to evaluate its QoS support capabilities. This is the
reason that we use an individual section (Section V) to cover
SDN’s QoS support issues; Second, security is always a top
concern for a user before he or she uses a new network model.
There are many new attacks raised for any new network ar-
chitecture. Therefore, we will use another section (Section VI)
to cover SDN security considerations; Finally, today two most
typical network media are wireless transmissions and optical
fiber. SDN eventually needs to face the design challenges when
used for those cases. Therefore, in Section VII we discuss SDN
extensions in wireless and optical links.

II. LANGUAGE ABSTRACTIONS FOR SDN

A. Language Abstractions

In SDN the control function consists of two parts, i.e., the
controller with the program and the set of rules implemented
on the routing/switching devices (Fig. 4). This has an impli-
cation of making the programmer not worry about the low-
level details in the switch hardware. The SDN programmers
can just write the specification that captures the intended for-
warding behavior of the network instead of writing programs
dealing with the low-level details such as the events and the

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2187

forwarding rules of the network. This enables the interactions
between the controllers and switches. A compiler transforms
these specifications into code segments for both controllers
and switches. As an example, a SDN programming tool called
NetCore [69] allows descriptions of the network rules and
policies which cannot be implemented directly on the switches.
Another important fact about NetCore is that it has a clear
formal set of rules that provide a basis for reasoning about
program execution status.

Here, we introduce two important language abstractions in
SDN programming.

1) Network Query Abstractions: In SDNs each switch
stores counters for different forwarding rules. They are for
the counts of the total number of packets and data segments
processed using those rules. For traffic monitoring the con-
troller has the ability to check different counters associated with
different forwarding rules. This enables the programmers to
monitor the fine details of implementation on the switches. This
is a tedious job and makes the program complicated. Therefore,
an added level of abstraction will help the programmers. To sup-
port applications whose correct operation involves a monitoring
component, Frenetic [70] includes an embedded query lan-
guage that provides effective abstractions for reading network
state. This language is similar to SQL and includes segments
for selecting, filtering, splitting, merging and aggregating the
streams of packets. Another special feature of this language
is that it enables the queries to be composed with forwarding
policies. A compiler produces the control messages needed to
query and tabulate the counters on switches.

2) Consistent Update Abstractions: Since SDNs are event-
driven networks, the programs in SDNs need to update the data
forwarding policy from time to time because of the changes
in the network topology, failures in the communication links,
etc. An ideal solution is the automatic update of all the SDN
switches in one time; but in reality it is not easy to implement.
One good solution is to allow certain level of abstraction, and
then send these changes from one node to another. An example
is the per-packet consistency which ensures that each packet
just uses the same, latest policy (instead of a combination of
both the old and new policy). This preserves all features that
can be represented by individual packets and the paths they
take through the SDN. Those properties subsume important
structural invariants such as basic connectivity and free-of-loop,
and link access control policies. Per-flow consistency ensures
that a group of related packets are processed with the same flow
policy. Frenetic provides an ideal platform for exploring such
abstractions, as the compiler can be used to perform the tedious
bookkeeping for implementing network policy updates [70].

B. Language Abstraction Tools: Frenetic Project

SDN requires efficient language abstraction tools to achieve
network re-programming. As an example, the Frenetic project
aims to provide simple and higher level of abstraction with
three purposes, i.e., (i) Monitoring of data traffic, (ii) Managing
(creating and composition) packet forwarding policies, (iii) En-
suring the consistency when updating those policies [71]. By
providing these abstractions the network programming be-

comes easy and efficient without a need of worrying about the
low-level programming details.

Frenetic project utilizes a language that supports an
application-level query scheme for subscribing to a data stream.
It collects information about the state of the SDN, including
traffic statistics and topology changes. The run-time system is
responsible for managing the polling switch counters, gathering
statistics, and reacting to the events. In the Frenetic project the
specification of the packet forwarding rules in the network is
defined by the use of a high-level policy language which can
easily define the rules and is convenient to programmers. Differ-
ent modules can be responsible for different operations such as
the routing, discovery of the topology of the network, workload
balancing, and access control, etc. This modular design is used
to register each module’s task with the run time system which
is responsible for composing, automatic compilation and opti-
mization of the programmer’s requested tasks. To update the
global configuration of the network, Frenetic project provides
a higher level of abstraction. This feature enables the program-
mers to configure the network without going physically to each
routing device for installing or changing packet forwarding
rules. Usually, such a process is very tedious and is prone to
errors. The run-time system makes sure that during the updating
process only one set of rules is applied to them, i.e., either the
old policy or the new one but not both of the rules. This makes
sure that there is no violations for the important invariants such
as connectivity, control parameters of the loops and the access
control when the Open-Flow switches from one policy to
another [71].

To illustrate Frenetic language syntax, here we use an exam-
ple. In MAC learning applications, an Ethernet switch performs
interface query to find a suitable output port to deliver the
frames. Frenetic SQL (Structure Query Language) is as follows:

Select (packets) ∗
GroupBy ([srcmac]) ∗
SplitWhen ([inport]) ∗
Limit (1)

Here Select(packets) is used to receive actual packets (instead
of traffic statistics). The GroupBy([srcmac]) divides the packets
into groups based on a header field called sercmac. Such a field
makes sure that we receive all packets with the same MAC
address. SplitWhen([inport]) means that we only receive the
packets that appear in a new ingress port on the switch. Limit(1)
means that the program just wants to receive the first packet in
order to update the flow table in data plane.

In a nut shell, Frenetic language project is an aggregation
of simple yet powerful modules that provide an added level of
abstraction to the programmer for controlling the routing de-
vices. This added layer of abstraction runs on the compiler and
the run time system, and is vital for the efficient code execution.

C. Language Abstraction Tool: FlowVisor

The virtualization layer helps in the development and op-
eration of the SDN slice on the top of shared network
infrastructures. A potential solution is the concept of Auto-
Slice [73]. It provides the manufacturer with the ability to
redesign the SDN for different applications while the operator

2188 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

intervention is minimized. Simultaneously the programmers
have the ability to build the programmable network pieces
which enable the development of different services based on
the SDN working principles.

Flow Visor is considered to be a fundamental building block
for SDN virtualization and is used to partition the data flow
tables in switches using the OpenFlow protocol by dividing it
into the so-called flow spaces. Thus switches can be manip-
ulated concurrently by several software controllers. Neverthe-
less, the instantiation of an entire SDN topology is non-trivial,
as it involves numerous operations, such as mapping virtual
SDN (vSDN) topologies, installing auxiliary flow entries for
tunneling and enforcing flow table isolation. Such operations
need a lot of management recourses.

The goal is to develop a virtualization layer which is called
SDN hypervisor. It enables the automation of the deployment
process and the operation of the vSDN topologies with the min-
imum interaction of the administrator. vSDNs focuses on the
scalability aspects of the hypervisor design of the network. In
[74] an example is presented in which a network infrastructure
is assumed to provide vSDN topologies to several tenants. The
vSDN of each tenant takes care of a number of things such
as the bandwidth of the link, its location and the switching
speed (capacity), etc. The assumption is that every tenant uses
switches that follow OpenFlow protocol standards with a flow
table partitioned into a number of segments. The proposed dis-
tributed hypervisor architecture has the capability of handling a
large amount of data flow tables for several clients. There are
two very important modules in the hypervisor: Management
Module (MM) and Multiple Controller Proxies (CPX). These
modules are designed in such a manner that it distributes the
load control over all the tenants.

The goal of the MM portion is to optimize global parameters.
The transport control message translation is used to enable
the tenants to have the access to the packet processing set of
rules within a specific SDN layer without having to disturb
the simultaneous users. Upon the reception of a request, MM
inquires the vSDN about the resources available in the network
with every SDN domain and then accordingly assigns a set of
logical resources to each CPX.

As a next step each CPX initializes the allocated segment
of the topology by installing flow entries in its domain, which
unambiguously bind traffic to a specific logical context using
tagging. As the clients are required to be isolated from each
other, every CPX is responsible to do a policy control on the
data flow table access and make sure that all the entries in
these tables are mapped into segments that are not overlapping.
CPX is responsible for controlling the routing switches. Also
the CPX takes care of all the data communication between the
client controller and the forwarding plane.

A new entry into the switch has to follow certain steps (Idid-
notseemanysteps). First, the proxy creates a control message
for addition of new entry into the switch flow table in such a
manner that all references (addresses) to memories are replaced
by the corresponding physical entries, and corresponding traffic
controlling actions are added into the packet. The Proxy is
responsible for maintaining the status of each virtual node in a
given SDN. As a result the CPX has the ability to independently

transfer virtual resources within its domain to optimize inter-
domain resource allocation.

If there are a number of clients in the network, a large number
of flow tables are needed in the memory of a routing switch. The
task of CPX is to make sure that all the flow tables are virtually
isolated, all packet processing takes place in a correct order,
and all the actions are carried out in case a connected group of
virtual nodes is being mapped to the same routing device.

In the OpenFlow routing devices, there is a problem on the
scalability of the platform due to the large flow table size. There
could be a large number of entries in the flow table. To deal with
such situation, an auxiliary software data paths (ASD) is used in
the substrate network [74]. For every SDN domain, an ASD is
assigned. The server has enough memory to store all the logical
flow tables which are needed by the corresponding ASD com-
pared to the limited space on the OpenFlow routing devices.
Although the software-based data path has some advantages,
there is still a huge gap between the OpenFlow protocol and the
actual hardware components. To overcome these limitations,
the Zipf property of the aggregate traffic [75], i.e., the small
fraction of flows, is responsible for the traffic forwarding. In
this technique ASDs are used for handling heavy data traffic
while only a very small amount of high volume traffic is cached
in the dedicated routing devices.

Language example of FlowVisor: Here, we provide an exam-
ple on how FlowVisor creates a slice.

Topology
Example_topo = nxtopo.NXTopo ()
Example_topo.add_switch (name = “A”, ports [1,2,3,4])
Example_topo.add_switch (name = “B”, ports [1,2,3,4])
Example_topo.add_link ((“A”, 4), (“B”, 4))
Mappings
P_map = “A”: “S2”, “B”: “S3”
Q_map = identity_port_map (Example_topo, P_map)
Maps = (P_map, Q_map)
predicates
Preds = \
([(p, header (“srcport”, 80))
For p in Example_topo.edge_ports (“A”) +
[(p, header (“dstport”, 80))
For p in Exam_topo.edge_ports (“B”)])
slice constructor
Slice = Slice (Example_topo, phys_topo, maps, preds)

In the above example, we first define a network topology
called Example_topo, which has two switches: A and B. The
switches have 3 edge ports each. Then we define the switch→
port mappings. Switch A maps to S2, and B maps to S3. Then
we associate a predicate with each edge port. The predicates
can map traffic (web only) to the slice. The last line officially
creates a slice [138].

III. CONTROLLER

The control plane can be managed by a central controller
or multiple ones. It gives a global view of the SDN status
to upper application layer. In this section, we look into the

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2189

architecture and performance of controller in software defined
networks.

A. Types of Controllers

While SDN is suitable for some deployment environments
(such as homes [76], [77], data centers [78], and the enterprise
[79]), delegating control to a remote system has raised a number
of questions on control-plane scaling implications of such an
approach. Two of the most often voiced concerns are: (a) how
fast the controller can respond to data path requests; and (b)
how many data path requests it can handle per second. For
software controller, there are four publicly-available OpenFlow
controllers: NOX, NOX-MT, Beacon, and Maestro [80].

A typical OpenFlow controller is NOX-MT [80]. NOX [48]
whose measured performance motivated several recent propos-
als on improving control plane efficiency has a very low flow
setup throughput and large flow setup latency. Fortunately, this
is not an intrinsic limitation of the SDN control plane: NOX is
not optimized for performance and is single-threaded.

NOX-MT is a slightly modified multi-threaded successor
of NOX. With simple tweaks we are able to significantly
improve NOX’s throughput and response time. The techniques
used to optimize NOX are quite well-known: I/O batching to
minimize the overhead of I/O, porting the I/O handling harness
to Boost Asynchronous I/O (ASIO) library (which simplifies
multi-threaded operation), and using a fast multiprocessor-
aware malloc implementation that scales well in a multi-core
machine.

Despite these modifications, NOX-MT is far from perfect.
It does not address many of NOX’s performance deficiencies,
including but not limited to: heavy use of dynamic memory
allocation and redundant memory copies on a per-request basis,
and using locking while robust wait-free alternatives exist.
Addressing these issues would significantly improve NOX’s
performance. However, they require fundamental changes to
the NOX code base. NOX-MT was the first effort in enhancing
controller performance. The SDN controllers can be optimized
to be very fast.

B. Methods to Enhance Controller’s Performance

We can make OpenFlow network more scalable by designing
a multi-level controller architecture. With carefully deployed
controllers, we can avoid throughput bottleneck in real net-
works. For example, in [81] authors have measured the flow
rate in a HP ProCurve (model # 5406zl) switch, which is
over 250 flows per second. In the meantime, in [82] authors
reported that for a data center with over 1000 servers, it could
face a flow arrival rate of 100 k flows/second, and in [83]
they reported a peak rate of 10 M flows per second for an
100-switch network. The above example shows that current
switches cannot handle the application flow rate demands.
Therefore, we need to invent an efficient protocol which can
minimize the switch-to-controller communications.

The data plane should be made simple. Currently OpenFlow
assigns routing tasks to the central controller for flow setup.
And the low-level switches have to communicate with the

controller very frequently in order to obtain the instructions on
how to handle incoming packets. This strategy can consume
the controller’s processing power and also congest switch-
controller links. Eventually they cause a serious bottleneck in
terms of the scalability of OpenFlow.

However, recent measurements of some deployment environ-
ments suggest that these numbers are far from sufficient. This
causes relatively poor controller performance and high network
demands to address perceived architectural inefficiencies. But
there has been no in-depth study on the performance of a
traditional SDN controller. Most results were gathered from
systems that were not optimized for throughput performance.
To underscore this point, researchers were able to improve the
performance of NOX, an open source controller for OpenFlow
networks, by more than 30 times in throughput [84].

In most SDN designs the central controller(s) can perform
all the programming tasks. This model certainly brings the
scalability issue to the control plane. A better control plane
should be able to make the packet handling rate scalable with
the number of CPUs. It is better to always have the network
status in packet level available to the controllers. Study from
Tootoonchian et al. [84] implements a Glasgow Haskell Com-
piler (GHC) based runtime system. It can allocate/deallocate
memory units, schedule different event handlers, and reduce
the interrupts or system calls in order to decrease the runtime
system load. They have showed the possibility of using a single
controller to communicate with 5000 switches, and achieving
the flow rate of up to 14 M per second! The switch-controller
communication delay is less than 10 ms in the worst case.
In [79] a partition/aggregate scheme is used to handle TCP
congestion issue.

C. Advanced Controller Design

Here, we introduce an advanced method for high-speed
control functions in control plane. In [140], a mechanism called
Control-Message Quenching (CMQ) is proposed to reduce the
flow setup delay and improve the SDN throughput among
switches/routers. There are huge number of flows that need to
be handled by the controllers. The inability of OpenFlow to pro-
cess so many flows’ policy management is due to the inefficient
design of control-data plane interfaces. Especially, there exist
frequent switch-controller communications: the switches have
to consult the controller frequently for instructions on how to
handle new incoming packets.

The basic idea of CMQ is to ask any switch to send only
one packet-in message during each RTT (round-trip-time), for
each source-destination pair, upon multiple flow table misses.
Thus we do not need to bother the controllers each time we
receive the packets with the same source/destination. Each
switch should maintain a dynamically updated table with all
learned, unique source-destination pairs. For each incoming
packet that cannot find its source-destination pair, i.e., table-
miss occurs, the switch will insert such a new pair into the table,
and query the controller. Such a pair table will be maintained
periodically in case the network topology changes, which can
detected by the control plane.

2190 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

A problem with existing SDN controller is that the SDN
flow tables typically cannot scale well when there are more
than 1000 entries [141]. This is mainly because the tables often
include wildcards, and thus need ternary content-addressable
memory (TCAM), as well as complex, slow data structures. In
[141] a scheme called Palette, can decompose a large SDN table
into small ones and distribute them to the whole SDN without
damaging the policy semantics. It can also reduce the table size
by sharing resources among different flows. The graph-theory
based on model is used to distribute the small tables to proper
switches.

There could exist multiple controllers in the SDN. In [142]
a load balancing strategy called BalanceFlow, is proposed to
achieve controller load balancing. Through cross-controller
communications, a controller is selected as super-controller,
which can tune the flow requests received by each controller
without introducing much delay. Note that each controller
should publish its load information periodically to allow super-
controller to partition the loads properly.

IV. NETWORK VIRTUALIZATION

A. Virtualization Strategies

As technology develops, the modern network becomes larger
and more capable of providing all kinds of new services. The
cloud computing, and some frameworks such as GENI, FIRE,
G-Lab, F-Lab and AKARI, utilize the large-scale experimental
facilities from networks. However, resources are always limited
and users’ demands keep increasing as well. The sharing of
network hardware resources among users becomes necessary
because it could utilize the existing infrastructure more effi-
ciently and satisfy users’ demands. Network virtualization in
SDN is a good way to provide different users with infrastructure
sharing capabilities [85]. The term OpenFlow often comes with
network virtualization these years. The FlowVisor, the con-
troller software, is a middleware between OpenFlow controllers
and switches. FlowVisor decomposes the given network into
virtual slices, and delegates the control of each slice to a specific
controller [86].

Both OpenFlow and FlowVisor have their limitations in
terms of network management, flexibility, isolation and QoS.
OpenFlow offers common instructions, but lacks standard man-
agement tools. FlowVisor only has access to the data plane, so
the control plane and network controllers have to be managed
by the users of the infrastructure. On the other hand, it can
ensure a logical traffic isolation but with a constant level, which
means that it lacks flexibility. Facing these challenges, re-
searchers try to establish their own architecture based on Open-
Flow or FlowVisor for an improved network virtualization.

FlowVisor can be pre-installed on the commercial hardware,
and can provide the network administrator with comprehensive
rules to manage the network, rather than adjusting the physi-
cal routers and switches. FlowVisor creates slices of network
resources and acts as the controlling proxy of each slice to
different controllers as shown in Fig. 5. The slices may be
switch ports, Ethernet addresses, IP addresses, etc, and they
are isolated and cannot control other traffic. It can dynamically

Fig. 5. The FlowVisor acts as proxy and provides slices.

Fig. 6. Various translating functions (C1,C2,C3: different Controllers;
OFI—OpenFlow Instance).

manage these slices and distribute them to different OpenFlow
controllers, and enables different virtual networks to share the
same physical network resources.

B. Virtualization Models

In the context of OpenFlow there are different virtualiza-
tion models in the view of translation model [87] (Fig. 6).
Translation aims to find 1 : 1 mapping relationship between
the physical SDN facilities and the virtual resources. The
translation unit is located between the application layer and
the physical hardware. According to their placements we could
classify them into five models.

1) FlowVisor: FlowVisor is the translation unit that dele-
gates a protocol and controls various physical switches or
controllers. It has full control of the virtualization tasks.

2) Translation unit: it is in the OpenFlow instance of the
switch, and it performs translation among different con-
trollers at the protocol level.

3) Multiple OpenFlow instances running on one switch are
connected to one controller. Translation is executed be-
tween the data forwarding unit (such as a switch) and an
OpenFlow instance.

4) Multiple OpenFlow instances still running on a single
switch, but the switch’s datapath is partitioned into a few
parallel ones, one per instance. It translates by adjusting
the ports connected to the different parallel data paths.

5) Multiple translation units are used, and at least one is
for virtualization on the switch level, and another one for
interconnecting some virtual switches.

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2191

Fig. 7. System design of FlowN.

C. Virtualization Architectures

Some systems have been proposed to address the OpenFlow-
based network virtualization limitations. These methods can be
classified as three types: (1) Improve the OpenFlow controller.
OpenFlow controller is a software, and it can be modified
by users to satisfy their special demands. (2) Improve the
FlowVisor. The FlowVisor itself already has basic management
function, and it can be improved to overcome some limita-
tions. (3) To add new abstraction layer upon OpenFlow switch.
Researchers add new layers or new components to manage
the virtual network. In the following we will focus on some
performance requirements for a SDN virtualizer.

1) Flexibility: The flexibility in the network virtualization
denotes the scalability and the control level to the network. It
usually conflicts with the isolation demand.

In [85] it present a system called FlowN that extends the
NOX version 1.0 OpenFlow controller, and embeds a MySQL
version 14.14 based database with the virtual-to-physical map-
pings as shown in Fig. 7. This FlowN is a scalable virtual net-
work and provides tenants a full control of the virtual network
tenants can write their own controller application and define ar-
bitrary network topology. With the container based architecture,
the controller software that interacts with the physical switches
is shared among tenant applications, and so that the resources
could be saved when the controller becomes more and more
complex these days.

This system is evaluated in two experiments by increasing the
number of the nodes: one measures the latency of the packets
arriving at the controller, and the other measures the fault time
of the link used by multiple tenants. When the number of nodes
is large, the system has the similar latency as FlowVisor does
but is more flexible; and its fault time could be small even the
number of network nodes is large.

In [88] an efficient network virtualization framework is pro-
posed. Its major features include: (1) monitor multiple instances
of OpenFlow switches, (2) set up controllers and SDN applica-
tions, and (3) achieve QoS performance. It can easily configure
the parameters of different switches, and monitor the network
topology to see any node changes. It uses OpenNMS as the
management tool since it is open source. It has virtual controller
management as shown in Fig. 8. The prototype is successfully

Fig. 8. Integrated OpenFlow management framework.

Fig. 9. OpenFlow network virtualization for Cloud computing.

tested on the testbed consisting of six PCs, one switch and one
OpenFlow switch.

A MAC layer network virtualization scheme with new MAC
addressing mode is proposed in [89]. Since it uses a central-
ized MAC addressing, it could overcome the SDN scalability
problems. This system efficiently supports Cloud computing
and sharing of the infrastructures as shown in Fig. 9.

The virtualization of the LANs could be used to virtualize
the network, but it has more complexity and overhead, and is
not good at scalability. Thus the virtualization of MAC layer
functions could be used, and is realized in [89] by reserving
part of the remaining MAC address for the virtual nodes. This
system reduces IP and control overhead, but the security issues
need to be solved. Details of the system are provided, but the
prototype is not tested in experiment.

2) Isolation: In order to ensure all the tenants of the vir-
tual network can share the infrastructure without collision, the
isolation problem must be addressed. The isolation may be in
different levels or places, just like address space. A research
network named EHU-OEF is proposed in [86] (Fig. 10). This
network uses L2PNV, which means Layer-2 Prefix-based Net-
work Virtualization, to separate various resource slices and
allows users to have multiple virtual networks based on the
MAC address settings. L2PNV has made some specific flow
rules as well as some customized controller modules. It can also
change FlowVisor.

EHU-OEF can well isolate different slices in the flow table,
and the flow traffic can be distinguished based on the MAC
addresses. Moreover, the NOX controllers use their module
ecosystem to easily manage different slices. This solution has
the benefit since it can deal with longer MAC header such as
in virtual LAN (VLAN) cases. It can also be used to test other
non-IP protocols by simply changing the addressing schemes.
The EHU-OEF prototype is tested on the platform composed of
seven NEC switches (IP8800/S3640), four Linksys WRT54GL,

2192 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

Fig. 10. EHU-OEF: an integrated OpenFlow management framework.

Fig. 11. A Full virtualization system. (MC: master controller; C1, C2, C3:
regular controllers; OS: operating system; OFI: OpenFlow instance) [87].

and two NetFPGAs. It is the first OpenFlow-based SDN in-
frastructure in Europe and allows experimental and application-
oriented data traffic in the same network without conflict.

In [87] a SDN virtualization system is proposed with fair re-
source allocation in the data/control planes as shown in Fig. 11.
All SDN tenants obtain the network resource by enforcing the
resource allocations in the central controller, the datapath of
the forwarding elements, and the control channel between the
switch and the controller. The QoS tools are applied to make
fair resource allocation. It provides strict isolation between
different sub-domains in a large SDN. It also allows future
protocol extensions. However, there is no prototype tested in
the system.

In [90] the isolation issue is solved among slices in different
virtual switches. It makes all slices share the network resources
in a fair way while allowing the isolation adaptation according
to the expected QoS performance. It also allows multi-level
isolation (see Fig. 12). A Slice Isolator is located above the
switches and OpenFlow abstraction layer, and is designed as
a model focusing on (a) Interface isolation; (b) Processing
isolation; and (c) Memory isolation.

Evaluations of the system show that the isolation levels have
significant impact on the performance and flexibility. The time
for reconfiguring the hardware traffic manager increases fast
when the isolation level goes up. High isolation level also leads
to latency. So the best isolation level can be determined based
on the update time and latency to achieve required performance.

Fig. 12. Network virtualization using Slice Isolator [90].

Fig. 13. LibNetVirt architecture.

3) Efficient Management: Network virtualization manage-
ment is involved with the mapping, layer abstraction or system
design to make sure the virtualized network can satisfy different
demands. It is the integration of the flexibility, isolation, and
convenience. A network virtualization architecture allowing
management tools to be independent of the underlying tech-
nologies is presented in [91]. The paper proposes an abstrac-
tion deployed as a library, with a unified interface toward the
underlying network specific drivers. The prototype is built on
top of an OpenFlow-enabled network as shown in Fig. 13. It
uses the single router abstraction to describe a network, and has
feasibility for creating isolated virtual networks in a program-
matic and on-demand fashion. In this system the management
tools can be independent of the working cloud platform so
that different technologies can be integrated, and the system
focuses on reduce the time of creating the virtual network.
The prototype named LibNetVirt is separated in two different
parts: generic interface and drivers. The generic interface is a
set of functions that allow interacting with the virtual network
and executing the operations in the specific driver. A driver
is an element that communicates to manipulate the VN in the
physical equipment.

A scheme [92] as shown in Fig. 14, enables the creation
of different isolated, virtual experimental sub-systems based
on the same physical infrastructure. This system implements
a novel optical FlowVisor, and has cross-layer for management
and high isolation for multiple users.

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2193

Fig. 14. Cross-layer experimental infrastructure virtualization.

TABLE II
THE COMPARISON OF THE REPORTED NETWORK VIRTUALIZATION SYSTEMS

This architecture provides several abstraction layers for the
management: (a) The Flexible Infrastructure Virtualization
Layer (FVL) is composed of virtualized slicing and partitioning
of the infrastructure. (b) The Slice Control and Management
Layer (SCML) can monitor the status of slices. (c) The Slice
Federation Layer (SFL) can aggregates multiple slices into one
integrated experimental system. (d) The Experiment Control
and Management Layer (ECML) aims to set up experiment-
specific slice parameters. It uses extended OpenFlow controller
to achieve various actions.

The architecture is tested on the platform composed of eight
NEC IP8800 OpenFlow-based switches and four Calient Dia-
mondWave optical switch. The result shows that the setup time
of establishing the flow path increases even for a large number
of hops.

There are other aspects of the network virtualization designs.
We compare the above discussed systems with respect to their
focus points in Table II.

FlowVisor becomes the standard scheme of the network
virtualization, so we compare these presented systems with
FlowVisor (the last column). Most of the presented systems, no
matter whether it is based on FlowVisor or it is built totally in a
new scheme, not only have equivalent abilities to FlowVisor,
but have one or more advantages over FlowVisor such as
flexibility, adjustable isolation levels, etc.

D. Discussions

Network virtualization not only enables infrastructure shar-
ing, but also provides better ways to utilize the infrastructure or

Fig. 15. Abstraction layers of the virtual network [94].

to reduce the cost. Virtualization can greatly reduce the network
upgrading cost for large-scale wireless or wired infrastructures.
For example, a mobile network virtualization scheme is de-
signed in [93]. It has lower cost than classical network and SDN
network. A case study with a German network is given there.
The considered capital expenditures can be reduced by 58.04%
when using the SDN-based network instead of the classical one.
A qualitative cost evaluation shows that the continuous cost of
infrastructure, maintenance cost, costs for repair, cost of service
provisioning are lower.

It is reported in [94] that the OpenFlow-based micro-sensor
networks (its network components are shown in Fig. 15) can be
seamlessly interfaced to the Internet of Things or cloud comput-
ing applications. In traditional sensor networks, some sensors
away from the access point may not be reached. However, by
using the virtualization we form a new concept called flow-
sensors, which enables smooth data transfer between all sen-
sors. A flow-sensor is a sensor with local flow table and wireless
communications to controllers. Fig. 16 shows an example of the
advantages of a flow sensor network over a conventional sensor

2194 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

Fig. 16. Typical sensor network and flow sensor network [94].

network. In a conventional sensor network, the sensors 1 and 2
cannot communicate with each other without the access point,
so node 4 is too far and is lost; within the flow sensor network,
node 4 can talk to node 8, so that node 4 can be accessed. In [94]
it shows that the flow sensor can have 39% higher reachability
than a common sensor. This is extremely useful in large-scale
sensor network (>100 sensors).

V. QUALITY OF SERVICE (QoS)

In past decades, the Internet Engineering Task Force (IETF)
has defined two types of Quality of Service (QoS) architectures,
IntServ (integrated services) and Diffserv (differentiated ser-
vices). The IntServ is difficult to implement in today’s large net-
works due to too much operation overhead in different routers.
OpenFlow can provide fine-granularity QoS support (delay,
jitter, throughput, etc.) [101]. This is because OpenFlow can
well control packet-level or flow-level data delivery via its con-
trollers. Such a fine-granularity means that OpenFlow allows
the users to specify how to handle individual flows, which cor-
responds to IntServ in IETF definitions. Of course the user can
also aggregate individual flows into classes (i.e., Diffserc). As
a matter of fact, OpenFlow provides a series of programming
tools to create/recycle slices (a slice is a virtual flow). The user
can define how to allocate network resources (queues, routers,
switches, etc.) to different slices with different priorities.

There are very few works targeting SDN QoS supporting
issues. Among the few QoS models in SDN/OpenFlow, Open-
QoS [95], [96] is one of the most typical solutions. It has a
comprehensive controller architecture to support scalable video
streaming in SDNs. We therefore summarize its principle first.
Later on we will survey other QoS supporting schemes such
as special operating system support for SDN QoS, QoSFlow,
and so on.

A. OpenFlow QoS Model

Streaming multimedia applications such as Internet confer-
encing, IPTV, etc., all require a strict QoS (delay/jitter) con-
trol. As an example, the Scalable Video Coding (SVC) [100]
encodes a video segment into two parts: a base layer and one
or more enhancement layers. It is important to guarantee the
QoS of the base layer since it has the detailed pixel information.
However, current Internet structure cannot achieve high QoS for
base layers due to hard-to-control TCP connections. Moreover,
Internet tends to search the shortest path. Once that shortest

Fig. 17. Controller subsystems to support QoS [95].

path is congested, a large percentage of packets are dropped.
However, OpenFlow does not stick to the shortest path. By
programming the controllers, we can easily adjust the flow
delivery rules. In [95] they proposed an OpenFlow-based video
delivery scheme which uses dynamic QoS model to guarantee
the best QoS for SVC base layer data.

QoS Optimization Model: In [95] an interesting OpenFlow
QoS model is proposed. The basic principle is as follows: it
formulates the dynamic QoS routing as a Constrained Shortest
path (CSP) problem. For video applications, it employs delay
variation as the constraint in the optimization function. It first
represent the entire SDN as a simple graph. It then defines a cost
function based on the delay variation constraint. The CSP prob-
lem aims to find the best path to minimize the cost function. To
meet the packet loss constraint, it also defines a combined con-
straint with the weighted sum of packet loss measure and delay
variation. The solution supports both level-1 and level-2 QoS
routes. Its results show that the average quality of video streams
is improved by 14% if only the base layer is rerouted. By
rerouting the video data in the enhancement layer together with
the base layer, the quality is further improved by another 6.5%.

B. Controller Architecture for QoS Optimization

The controller proposed in [96] has the functions of route
calculation and route management. Fig. 17 illustrates the con-
troller architecture with various sub-functions. The controller
has powerful capabilities to specify QoS requirements. It can
also directly control the flow table in order to differentiate
between different priorities of traffic. The communications be-
tween the controller and the switches may be secured by some
standards such as SSL.

Note that the forward layer has to implement the policing
functions in order to ensure that the clients obey the Service
Level Agreements (SLAs) specified in their QoS contracts.
The following three extra features should exist in the above

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2195

Fig. 18. QoSFlow modules [134].

architecture: (1) Resource monitoring: The forwarders should
comprehensively monitor their available network resources and
report periodically to the controller. The controller may poll the
forwarder for such profile. (2) Resource signaling: Each for-
warder should use signaling messages to communicate with the
controller on the current resource consumption so that certain
actions can be taken by the controller, such as updating the flow
table, changing QoS parameters, etc. (3) Resource reservation:
From time to time the controller may command a forwarder
to reserve certain resources for future QoS needs [99]. This
includes the reservation of buffer size, memory space, CPU
calculation time, and other resource requirements.

C. QoSFlow Architecture

In its current version, OpenFlow is not able to configure QoS
parameters in a dynamic and on-demand manner (i.e., it does
this manually). In order to deal with QoS problems in dynamic
approach, a framework called QoSFlow (Fig. 18) that enables
QoS management in OpenFlow environment is proposed in
[134]. QoSFlow allows the management of traffic class and
queues through rules or policy. It manages QoS resources (e.g.,
bandwidth, queue size) without changing the SDN architecture.
All actions are invoked by an OpenFlow controller and in a
dynamic and on-demand manner (not manually).

QoSFlow is an extension of the standard OpenFlow con-
troller which provides multimedia delivery with QoS. The
QoSFlow controller is based on NOX, which is responsible for
managing/monitoring actions and controlling signaling mes-
sages. The new controller, besides NOX API, contains the
following new components: QoSFlow agent, QoSFlow man-
ager, QoSFlow monitor, and DB-QoSFlow client. These four
modules have been designed to extend the NOX API with QoS
features called QoSFlow API. QoS Agent is responsible for
creating a communication module between an administrator
management tool and the other two QoSFlow components: the
manager and monitor QoSFlow. By using JSON interface, the
agent is able to receive policies, manage or monitor commands
from a third-part administrator application. The QoSFlow
monitor and manager components, respectively, monitor and

Fig. 19. QoSFlow controller architecture [134].

manage the QoS of OpenFlow domains. Fig. 19 shows its
controller architecture.

The QoSFlow data-path component is responsible for creat-
ing all low-level actions on the switch ports. This component
allows OpenFlow to get all the required information to run
management commands created by either the administrator’s
tool or through header packet information. In QoS management
tool, the actions are processed in the QoSFlow Agent. When
receiving those actions, it checks the type of the received
requests in order to select the next procedure. This new message
is automatically sent to controllers through NOX. The QoS
actions can be applied automatically through the packet header
information. In order to support fine-granularity QoS, the in-
coming traffic is grouped as data flows and multimedia flows,
where the multimedia flows are dynamically placed on QoS
guaranteed routes and the data flows remain on their traditional
shortest-path routing approach.

D. Operating System for QoS Optimization

NOX, the standard network operating system, can be used
for packet-level or flow-level control. However, it does not
have the necessary APIs for QoS support. For instance, it does
not support QoS-oriented virtual network management, or end-
to-end QoS performance monitoring. In [98] an QoS-aware
Network Operating System (QNOX) is proposed to support
general OpenFlow QoS functions.

The QNOX system includes the following modules: WDM/
ASON, IP, MPLS-TP. Here, WDM/ASON can monitor large
network traffic status. QoS-aware Open Virtual Network Pro-
gramming interface (QOVNPI) allows a client to request any
type of QoS performance. The service element (SE) can be used
for QoS demand definitions, such as the required network band-
width, memory overhead, preferred server locations, packet loss
rates, delay bounds, and security levels. The SLA (service level
agreement) and SLS (service level specification) modules can
be used to assess the OpenFlow resource availability, that is, to
check whether the network can meet the client’s QoS demands.
Obviously QNOX can define fine-granularity of QoS, such
as packet-level delay or loss rate. Based on the experimental
results in [98], QNOX can quickly calculate the routing path in
less than 100 ms even with over 100 nodes in the SDN. The
SLA/SLS can find all network resources in less than 1 s.

2196 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

TABLE III
A COMPARISON OF DIFFERENT SDN SECURITY SCHEMES

E. Other QoS Supporting Strategies in SDN/OpenFlow

In [135] a SDN QoS scheme called PolicyCop is proposed to
implement an open, vendor agnostic QoS policy management
architecture. It has a special software interface for specifying
QoS-based Service Level Agreements (SLAs). PolicyCop uses
the control plane of SDNs to monitor the compliances of the
QoS policies and can automatically adjusts the control plane
rules as well as flow table in the data plane based on the
dynamic network traffic statistics.

In [136] an OpenFlow QoS enhancement scheme is proposed
to allow the creation or change of the behavior of the existing
routing queues. It suggests that an OpenFlow capable switch re-
port the queue status to the control plane. It has a module called
Queue Manager plug-in which allows the uniform configuration
of QoS capabilities in each OpenFlow switch. Such an idea is
implemented in Ofelia testbed. Its implementation is based on
OpenNMS, an open-source network management system.

In [137], an Iterative Parallel Grouping Algorithm (IPGA)
is proposed to manage the prioritized flow scheduling issue, It
has an inherent nature of parallelism for efficient execution in
OpenFlow systems. Its algorithm is based on a M-ary multi-
rooted tree, a Fat-tree used in most data center networks. It
assumes that the SDN switches have two layers: lower pod
switches (edge switches) and upper pod switches (aggregation
switches). It formulates the flow scheduling issue as a linear
binary optimization problem.

VI. SDN SECURITY

A. Intrusion Detection

SDN creates some new targets for potential security attacks,
such as the SDN controller and the virtual infrastructure [103].
Besides all the traditional networks’ attacking places (such as
routers, servers, etc.), SDN has some new target points such as:
(1) SDN controller: Here, traditional attacks listed above also
exist; (2) Virtual infrastructure: it could have traditional attacks
on the hypervisor, virtual switch and VM (virtual machine);
(3) OpenFlow Network: attacks could occur in OpenFlow pro-
tocol for OpenFlow enabled devices.

In the following paragraphs, we will describe some typical
OpenFlow/SDN safety (such as failure recovery) issues and
security schemes (see Table III). Here, safety refers to the
schemes that overcome natural faults, and security means to
overcome intentional attacks.

A network intrusion detection and countermeasure selection
(NICE) scheme is investigated in [106]. It aims to achieve
the security in a virtual networks such as SDN and cloud
computing. Cloud Security Alliance (CSA) survey shows cloud

computing security is the top concern among different types
of networks. The conventional patch-based security schemes
do not work well in cloud data centers since the users could
have full access to those centers. In [106] the attack graph
based analytical models are used for intrusion detection. NICE
includes two important phases:

1) It uses an intrusion detection agent called NICE-A to
capture the traffic in each cloud server. A Scenario Attack
Graph (SAG) can be established and updated each time
the NICE-A scans the network. Based on the pattern anal-
ysis of the SAG, the NICE-A knows whether it should act.

2) Deep Packet Inspection (DPI) is activated if the virtual
machine (VM) enters inspection state. It can use SAG to
find security threats and VM vulnerabilities.

NICE runs low-overhead security software in each cloud
server. It includes 3 software modules an attack analyzer, a net-
work controller, and a VM profiling server. The VM profiling
server can monitor the network state in real-time, and construct
the operation profile for all services and ports. It also takes care
of the connectivity issues between VMs. The attack analyzer
can deduce the event correlations among different SAG nodes.
It then finds potential security holes and detect an occurring
threat. The network controller can control all configurations in
each hardware device and software unit based on OpenFlow
protocols. As we can see, NICE fits SDN very well.

B. Modular Security

Although OpenFlow (OF) decouples the data plane and con-
trol plane and thus greatly simplifies the hardware operations,
it also brings single-point security issues: once the controller is
attacked, all low-level switches are misled and cannot correctly
deliver the packets.

FRESCO-DB [107], a database module, can simplify the
SDN security key management. It defines unified session key
format and IP reputation model. Inspired by Click router de-
sign, it uses a modular and composable security protocols. It
consists of two important parts: (1) Application layer: it uses
APIs and interpreter to support modular applications; (2) SEK
(security enforcement kernel), can be used to perform all
policy-related actions. Diverse security policies, such as DROP,
REDIRECT, QUARANTINE, can be enforced by Security
applications developed in FRESCO scripts, to react to network
threats by simply setting an action variable. The above two parts
are built into NOX. A network user can use FRESCO script
language to define various security modules. Regarding the
implementation of FRESCO, Python is used to implement the
Application Layer prototype (total around 3000 lines of codes),
and runs as an OpenFlow application on NOX.

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2197

C. SDN Traffic Anomaly Detection

In [108] it proposes 4 different OpenFlow traffic anomaly
detection algorithms. Each of them is evaluated in real networks
including both home and business networks. In the following
we summarize the ideas of those 4 traffic anomaly detection
algorithms:

1) Threshold Random Walk with Credit Based Rate Limiting
(TRW-CB) algorithm: As we know, a TCP connection can
be established in a much higher success rate if the server
is not attacked. By using sequential hypothesis testing
(i.e., likelihood ratio test), it analyzes each connection
status and attempt to detect the worm infections.

2) Rate-Limiting: A virus infection can cause many connec-
tion request within very short time, while a benign traffic
flow will never have such a high request rate. This is the
principle of rate-limiting, that is, we check the request
rate and detect a malicious event.

3) Maximum Entropy Detector: Maximum entropy calcula-
tions can be used to find traffic statistical features. By
using a baseline distribution, maximum entropy model
can be used to classify the packets into different cate-
gories, and each category could be detected as benign or
abnormal.

4) NETAD: It acts like a firewall or filter. It simply scans the
packet header and blocks any suspicious packet based on
the packet attributions.

D. Language-Based Security

Analyzing how to program SDN in a secure and reliable
manner is discussed in [109]. The solution involves develop-
ment of a new programming model that supports the concept
of a network slice. The isolation of the traffic of one program
from another is achieved with help of slices. They also isolate
one type of traffic from other. They have developed a semantics
for slices, and illustrate new kinds of formal modular reason-
ing principles that network programmers can now exploit. It
provides definitions of end-to-end security properties that slices
entail and verify the correctness of a compiler for an idealized
core calculus in a slice-based network programming. They have
also described their implementation which is equipped with
a translation validation framework that automatically verifies
compiled programs using the Z3 theorem prover.

It is challenging today to implement isolation in networks.
Most systems still use manual setup to block suspicious traffic.
Such a setup is often labor-intensive and vendor-specific. In
[109], it suggests that using a high-level programming language
to set up the data delivery policies and isolate different domains.
It leaves the error-prone low-level device configurations to the
SDN compilers. Such a scheme overcomes the shortcoming of
NOX, which cannot easily isolate different subnetworks when
security holes are detected.

The language-based security [109] relieves the programmers
from complicated security programming due to the use of slice
isolation concept. A slice is defined as a virtual connection
consisting of routers, switches, communication ports or links.
The slices have been defined with both attributes and actions in

[109]. A slice can be isolated from another if running them side
by side in the same network does not result in slice leaking
packets into the other slice. They defined several intuitive
security properties like isolation and developed an operational
condition called separation that implies the isolation property.
Finally, they formalized a compilation algorithm and proved
that it establishes separation and isolation.

E. Loop Detection Problem

The routing loops make packets never reach the final desti-
nation. In [110] it presents a dynamic algorithm which is built
on header space analysis, and allows the detection of loops
in SDNs. There the network model has been illustrated as a
directed graph. Hence, concepts of header space analysis has
been translated into the language of graph theory. Rule graphs
and the dynamic loop detection problem are studied in [110].
They have shown how to model a network as a directed graph.
By analyzing the reachability and connectivity of the topology
graph, a node-to-node, no-loop path can always be found. A
dynamic strongly connected component algorithm is proposed
in [110] to allow us to keep track of edge insertions and dele-
tions. It can also be used to detect loops in a routing path.

A comparison of all the above SDN security schemes is
presented in the tabular form below:

F. SDN Safety Issue: Failure Recovery

In order to build a trustworthy SDN, we need to make a SDN
resistant to both external failures (security issues) and internal
failures (safety issues) [146]. Here, external failures refer to ex-
ternal, intentional attacks by adversaries. The above discussed
security solutions aim to detect and overcome external attacks.
The internal failures refer to natural faults due to some system-
related shortcomings or unintentional human factors. We regard
those internal failures as safety issues. For example, a SDN
could fail if the communication link between the controller and
the switches has outages due to bandwidth unavailability. Thus
all controllers’ commands cannot be delivered to the switches’
flow tables. If the switch-to-switch path has link failure, many
packets can get lost. Therefore, some type of link quality
monitoring and path recovery schemes are needed to overcome
the link failure.

There could be many of other safety issues in a SDN. For
example, the controller may not be able to synchronously
update all switches’ flow tables due to schedule management
failure. The switch may not be able to timely report traffic
delivery status to the controller (thus the controller may not
update the flow table for quite a while). When using multiple
controllers in a SDN, the controllers may not be able to keep the
consistent control due to communication delay. In the following
discussion, we will illustrate some existing schemes that aim to
address the SDN safety issues.

In [104] a fast failure recovery scheme is proposed for
OpenFlow networks. It investigated the switch-over frequency
and packet loss rate in its evaluation. It uses NOX software to
recover services.

2198 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

In OpenFlow network we can immediately or proactively
add a flow entry to the table after a failure occurred. The total
recovery time is determined by the lifetime of the flow entries.
In [104] two values of timeouts are defined, one is called idle
timeout, which means the time interval that a flow entry should
be removed if not used for certain time (that is, no packet for
that type of flow entry is passing through a switch); the other
one is hard timeout, which is the maximum time interval that
a flow entry can stay. No matter which timeout occurs, it will
trigger the failure recovery.

Note that the system cannot be recovered if the controller has
no idea on what type of failure occurred. The controller may
just randomly add a flow entry in the table if the failure type
is not recognized. In [104] NOX has been used to implement
L2-learning scheme for failure detection. It is written in C++
(called L2-lerarning switch) or in Python (it is called L2-
learning Pyswitch).

If a failure occurs, the incorrect flow entries should be erased
from all switches, and new entries should be immediately added
to each switch. The controller should have robust schemes to
detect the failure, and find new routing path to deliver the flows.
The controller will check the old routing path associated with
the failed links. If the old path is still usable, it will not establish
a new path. Otherwise, new path needs to be added to the flow
entries and old entries should be removed immediately.

In [104] Ubuntu 9.04 is used to install Open vSwitch 1.1.0
and NOX 0.9.0. Over 10 K ping packets were sent out at
the pace of one packet every 10 ms. The packet loss rate is
calculated by counting the number of received ping packets.
Hard timeout is set to 20 seconds, and idle timeout is 10 s. The
routing loops are avoided by using spanning tree algorithms.
The path reestablishment scheme in [104] is faster than con-
ventional MAC re-convergence or ARP. It only uses 12 ms to
recover from a link failure.

In [105] a scheme is called Operations, Administration, and
maintenance (OAM) tool is used to re-establish a new path. To
minimize the path switching time, it uses a proactive approach,
that is, a backup path is pre-stored in the flow table in case
a path fails. This scheme makes path recovery time less than
50 ms. In addition, some probing packets are periodically sent
in the network. If it is not received by a node, the system knows
that a path failure occurs. If it takes a long time to receive the
probing packet, a failure is also detected. Thus [105] provides
an efficient way to recover from path failure.

VII. OPENFLOW FOR WIRELESS AND OPTICAL NETWORKS

A. Overview

Why OpenFlow for wireless networks? Wireless infras-
tructure is more hybrid and complicated than wired ones. Many
wireless standards, such as Wi-Fi, Wi-Max, cellular networks,
etc., are all co-operating in the same backbone for providing
anywhere Internet access. Managing such a heterogeneous
wireless infrastructure is a big challenge. To make things
worse, different wireless products have their own lower layer
(physical/MAC layers) specifications, and are very difficult to
re-configure for dynamic mobile applications. For example,

Wi-Max forwards data in a point-to-point style in microwave
frequency; while Wi-Fi uses one-to-many star topology in
free frequency (2.45 GHz). OpenFlow can offload the wireless
MAC layer operations to virtual machines, and uses software-
defined network programming to achieve high flexibility and
reconfigurability. OpenFlow decouples lower layer wireless
transmission from higher layer control; thus it makes wireless
data forwarding reach higher rate (Gbits/sec). This can fully
explore 802.11 potential data rate.

The network virtualization in OpenFlow can significantly
improve the scalability of the wireless virtual LAN tagging and
firewall filtering operations. When the networks are moving
to cloud computing, it becomes harder and harder to man-
age the dynamic and distributed cloud servers. OpenFlow can
easily update the cloud policies over a dynamic deployment
environment. However, it needs some innovative designs if
applying SDN/OpenFlow to wireless world since the original
SDN motivation was to use wired, high-speed switches to
perform dump data forwarding, and to use reliable wires (not
wireless) to achieve stable communications among SDN con-
trol plane units. If we shift everything to wireless media, how
do we allocate different wireless channels for switch-to-switch
or controller-to-controller communications? What if those radio
channels are not available from time to time due to signal fading
and shadowing? Some studies are solving those issues [19],
[35], [111]–[114]. Later on we will use two examples (wireless
sensor networks and wireless mesh networks) to explain how
we can integrate OpenFlow with wireless technologies.

Why OpenFlow for optical networks? There is a great deal
of benefits when adopting SDN/OpenFlow for optical network
control: (1) Current optical networks have difficulties to react
independently to requests from client systems distributed at the
network edge. SDN provides programmable, abstracted inter-
face for flexible application re-configurations in optical control
units. (2) Existing optical networks cannot easily upgrade the
software in each optical switch due to the embedded software
nature. OpenFlow could easily upgrade services due to its sep-
aration of control and data planes. (3) SDN/OpenFlow allows
multi-level abstraction via its networked re-programming and
virtualization technologies. This makes optical network stack
suit easily adapt to different network topologies. (4) The cost
of optical hardware is typically high, especially the photonics
and associated electronic components. SDN/OpenFlow could
reduce those costs due to its ‘dump’ hardware operations—just
simply following the flow table.

B. OpenFlow for Wireless Sensor Networks

Wireless sensor networks (WSN) have become important
platforms for environmental monitoring. There are many sensor
hardware designs such as CrossBow, Imotes, etc. However,
all those sensor products cannot be easily programmed due to
vendor-specific SDK (software development kit) and the tight
integration of hardware and software in one sensor node.

Moreover, those sensors are difficult to re-task [115], [116]
if a new environmental monitoring mission is required. For
example, how can we re-program 100 sensors in a lake WSN
to detect a new type of pollution? Obviously today we need

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2199

Fig. 20. SDN-based sensor networks.

to take each sensor out of the water and change the programs
embedded into the sensor hardware. This is not realistic in
large-scale WSN with so many nodes.

Although some over-the-air programming techniques are
used for some vendors’ sensor boards, their data sensing and
forwarding schemes are still vendor-specific. For example, they
may use different operating systems, or different programming
languages. The programmer needs to check different manuals
to get familiar with the API functions. It will be better if
the user just simply configure a network controller based on
universal networked operating system. The sensor hardware
and embedded stack protocols could be decoupled such that the
users do not need to worry about the data forwarding details
in each sensor, and just simply configure the controller’s flow
table. The data forwarding rules do not necessarily follow the
specific MAC layer protocols (such as ZigBee, 802.11, or other
protocols).

SDN/OpenFlow can well solve the above issues. It makes
each sensor just simply forward the sensor data based on the
specified flow table and rules. All those rules can be easily
changed through controllers’ programming. Since all nodes fol-
low universal operating system (such as NOX), the re-tasking
can be easily achieved by following standard scripts program-
ming. A Software-Defined WSN architecture, called sensor
openflow [116], can be used to address key technical challenges
mentioned above. We illustrate its main ideas in Fig. 20.

It has three layers: the application layer has all sensor data
query related applications such as local data processing; the
control plane and data plane are totally separate: the former can
remotely re-configure the sensor parameters, and the latter can
check the flow table and perform the corresponding actions. Its
main idea is to make the large-scale sensor network easy-to-
manage via programmable control plane and user-customizable
flow table. Sensors are no longer application-dependent and the
sensor data query policies can be easily reset. Sensor OpenFlow
allows policy changes in an easy style since a programmer can
simply change the controller’s software instead of dealing with
the wireless sensors.

C. OpenFlow for Wireless Mesh Networks

OpenFlow could be very useful for wireless mesh network
(WMN) management. Today WMN is often used in community
networks or military applications for re-tasking from time to
time. For example, an Internet provider may re-program a
community mesh network to set up different IPTV services. A
military center may want to re-configure a wireless network to

Fig. 21. OpenFlow for WMN management.

adapt to different surveillance scenarios. Existing mesh network
nodes are full fledged with all physical to application layer
functionalities. The network manager needs to setup each mesh
node individually since each node may have vendor-specific
programming features or proprietary device management pro-
files. Overall, today it is very difficult to perform rapid re-
tasking or policy changes in the heterogeneous mesh clients
(such as laptops, PDAs, phones, etc.) in a mesh network.
OpenFlow decouples network control and hardware commu-
nications completely, and leave only basic data forwarding
functions in each node, while the entire network can be eas-
ily re-programmed through a standard network OS (such as
NOX) running in a control panel. As long as different vendors’
products support OpenFlow’s flow table managements, a mesh
network can be easily re-tasked through a standard network
control script programming.

To make OpenFlow applicable to WMN, we need to over-
come a few challenges [20], [117]:

• Challenge 1: Fading channel: Unlike Stanford OpenFlow
testbed where fixed wired network is the backbone, WMN
has wireless channels everywhere (issues: radio fading,
hidden terminal problem, wireless broadcast nature, etc.).

• Challenge 2: Dynamic Topology: Due to WMN link
variations and nodes membership dynamics, the network
topology changes at a much higher pace than in wired
network. The OpenFlow needs to build a control plane to
perform autonomous topology discovery and swiftly react
on changes of the WMN topology.

• Challenge 3: In-band or out-band control: OpenFlow often
adopts out-of-band signaling, that is, the channel to NOX
is separate from the actually data forwarding network.
However, in WMN we may not have different RF channels
for separate control. On the other hand, using in-band
control would decrease data network throughout.

Fig. 21 shows the basic principle of using OpenFlow for
WMN control. The WMN has both mesh routers and mesh
clients. A radio channel control strategy is achieved by the
control panel for router-to-router, router-to-client, and client-to-
client communications. The control server in control plane can
perform mobility management, routing strategy, and channel
assignment.

In [20] an OpenFlow-enabled mesh routing scheme is pro-
posed. It has OpenFlow-enabled routers, clients and gateways.
Each node has multiple radio cards for multi-radio commu-
nications. The data path uses local sockets to talk with the

2200 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

control plane units. The control path communicates with NOX
via secure channel. Connection to Internet is achieved through
mesh gateways.

In [20] the in-band wireless communications are used be-
tween the controller and the switches. The high-quality chan-
nels are used for controller-to-server communications since
the controller’s commands cannot be lost even there is signal
fading.

D. OpenFlow for Optical Networks

Today optical networks have become the fastest Internet data
transmission approaches due to the high-speed light propa-
gation in optical fibers. Typically an optical network consist
of nodes such as Wavelength Cross-Connects (WXC), Re-
configurable Optical Add-Drop Multiplexers (ROADM), and
Photonic Cross-Connects (PXC) [118]. Current optical nodes
can be controlled by Element Management System (EMS) and
the Network Management System (NMS), which uses either
manual or semi-static style for lightpath provisioning [119].
Although this approach is reliable, it is difficult to design a
control plane technique to achieve a control of dynamic wave-
length paths in metro/backbone optical networks. Such a con-
trol plane should be able to reduce operational expense, shorten
the data transmission latency, and should be highly scalable
to the network traffic. An important optical control scheme is
called Generalized Multi-Protocol Label Switching (GMPLS)
[120]. It is a distributed packet forwarding control scheme.
However, It has not been popularly used in optical network
products [121]. One important reason is its complex control
scheme that is not suitable to dynamic control of both IP and
optical layers via a unified control plane (UCP).

SDN architecture, in particular, the OpenFlow protocol,
could become a solution to the above issue. Although the initial
purpose of using OpenFlow is to create a re-programmable
network, it can also serve as a promising candidate for a UCP
solution in hybrid networks [122]. It has been studied in optical
network enhancements [123]–[125]. But it is still in the early
stage for real networking.

In [119] an Openflow based PXC architecture is proposed.
It uses a concept called virtual Ethernet interfaces (veths) to
connect to each OpenFlow switch. Those veths look “virtual”
from the viewpoint of the PXC physical interfaces. Thus the
control plane can easily manage all PXC interfaces. The virtual
OpenFlow switch is also called OpenFlow agent. The integrated
OpenFlow agent and the PXC is called OpenFlow-enabled PXC
(OF-PXC). It can be managed by a NOX controller. When the
packets are received by the NOX, it can either insert a new
record to the flow table (if this is the first packet) or decides
which veth to forward the data.

VIII. EXAMPLE OF COMPLETE SDN SYSTEM

To illustrate a complete SDN system, here we use a good
reference solution called MobileFlow [139] which uses a SDN
architecture to implement a mobile network. A software-
defined mobile network (SDMN) provides maximum flexibil-
ity, openness, and programmability to future carrier. It designs

Fig. 22. Software defined mobile network.

a special SDN data plane called MobileFlow forwarding en-
gine (MFFE). All MFFEs are interconnected by an underly-
ing IP/Ethernet transport network. Its SDN control plane has
MobileFlow controller (MFC). The MFC has mobility manage-
ment entity (MME).

As shown in Fig. 22, it has MobileFlow and OpenFlow levels
for the management convenience. In both of them the control
plane is decoupled from the data plane. The data forwarding
function in MFFE is fully defined in software, while the control
software can steer the user flows to different service enables
(such as video caching and optimization). Those services can
be distributed throughout the mobile network. Note that the
user’s traffic can go through both MobileFlow level and Open-
Flow level, or, it just goes through the OpenFlow level and
reaches the Internet. Fig. 24 also shows the OpenFlow-based
decoupling of the IP/Ethernet transport network in the lower
level. This is because in some cases the user traffic may not go
through the mobile network infrastructure (and just stays in the
wired network, no wireless).

MobileFlow Controller: Such a controller can perform
network-level management including topology auto-discovery,
device monitoring, topological resource view, topology virtu-
alization, etc. More importantly, it can handle all mobility-
related activities, such as mobility anchoring, service migration,
channel handoff, etc. A network operator can freely use MFFEs
from different vendors. The operator can also use MFFEs to
adopt novel mobile network architectures. The system supports
m:1 mapping between MobileFlow applications and NFFEs
since each mobile application belongs to a different control
plane, and therefore enabling multitenancy.

Mobile Management: Supporting mobility based on 3GPP
or other systems can be easily realized by introducing the mo-
bile applications above the northbound interface of the MFC.
The MFC cab send out flow control rules to each MFFEs
involved in handling the particular flow. The channel handoff
(i.e., communication frequency switching) can be easily imple-
mented in each MFC when the QoS requirements are not met
in the multimedia applications.

Testbed Implementation: It uses COTS x86 based general-
purpose servers and OpenFlow-supported routers/switches
from different vendors. It enables the software-based definition
of different mobile networks (3G, 4G, etc.) with different
characteristics (radio coverage, bandwidth, radio frequency,
etc.). It supports virtualization for both control- and data-plane
resources. The same MFFE can be reused by different types
of virtual networks. Each virtual mobile network can evolve

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2201

and be upgraded solely by replacing the corresponding virtual
machine software units in the control plane servers. The MFFEs
remain intact. The entire testbed is interconnected via COTS
LAN switches.

Note that the above system adds MobileFlow level above
regular OpenFlow level. Thus it can directly use OpenFlow
language syntax for network definition. For example, it can use
the following language abstraction to monitor a port 80 traffic:

Defswitch_join(switch)) :

P = inport : 2, tp_src : 80

Install(switch, p,DEFAULT, [])

Query_stats(switch, p)

Such a high-level language can run in NOX and interpreted
by all OpenFlow-compatible routers. Overall, the MobileFlow
system is a complete SDN/OpenFlow implementation in mo-
bile applications. It allows flexible re-configuration of mobile
channel allocation, QoS parameters, mobile access, and service
roaming between wireless networks.

IX. RESEARCH TRENDS

There are still many questions on how to make the SDN more
efficient, how to optimize it across all the network sets, and how
to achieve tradeoffs between different implementations. There
is a need to have quantitative metrics/approach for evaluating
the performance and efficiency of the SDN such as its scalabil-
ity, availability and latency. In the following we point out some
important future research topics.

A. Intelligent Flow Table/Rules Management

It is true that the motivation of designing SDN/OpenFlow
is to simplify the network switches’ operations: instead of
using vendor-dependent, embedded software in each switch,
SDN only assumes ‘dump’ data forwarding functionalities in
each switch. The switch just simply checks the flow table to
determine how to forward each received data packet.

The tricky part is: although the switches do not analyze
the traffic, they can always report forwarding results to the
higher layer—OpenFlow controller. The results could be simple
success or failure for a data forwarding operation, or some error
messages (such as switch failure), or other forwarding status
data. In the current OpenFlow specifications, they do not spec-
ify how to handle those feedback data. They just point out that
the flow table should be set up based on a set of rules defined
by the controller. But the issue is: since the switches could have
high traffic burden, it will slow down their data forwarding
operations if (1) network traffic is heavy, and/or (2) the flow
table is large and has complex rules. It is important to perform
self-learning in the controllers based on the pattern analysis of
the traffic flowing through each switch.

We believe that the future trend of SDN/OpenFlow will in-
clude high intelligence in flow table/rules control. We illustrate
our idea in Fig. 23. The network controller can learn what’s
going on based on the feedback from the switches. For example,
if the switches report a long delay for a source-destination IP

Fig. 23. Intelligent flow table/rules management.

pair, it indicates a possible routing loop or switch congestion
somewhere. When the controller analyzes the statistical pat-
terns from the switches’ feedback data, it can use any of the
recent learning tools (such as Bayesian learning, reinforced
learning, etc.) to deduce the optimal ‘actions’ in the future in
order to obtain a higher accumulative reward. The reward could
be defined based on the QoS performance metrics. The ‘actions’
could be any packet handling operations or any policy changes.

Statistical analysis could be based on any traffic pattern data
mining schemes. Through dimension reduction, we could ex-
tract the intrinsic features from complex, multi-attribute traffic
data. Since some dimensions are not useful in pattern recog-
nition, they could be removed by using Principle Component
Analysis (PCA), Non-negative Matrix Factorization (NMF), or
other dimension reduction schemes.

B. Scalable Controller Management

With the application of SDN/OpenFlow in larger networks,
the network controllers could become a performance bottle-
neck due to large amount of incoming signaling messages
and forwarding requests. Those controllers do not necessarily
be deployed in the same sub-net since a company network
may cross multiple places (even in different countries, such
as IBM, Intel, etc.). The controllers located in a distributed
network may compete for common computing resources (such
as communication channels).

To manage the coordination issue of large-scale controller-
to-controller communication system, a carefully designed
scheduling strategy with collision avoidance should be used. On
one hand, SDN administrators want to see a virtually consistent
controller system. On the other hand, they need to design a
virtual-to-physical mapping model to manage the physically
distributed controllers. Perhaps a tree-based hierarchical man-
agement scheme could be used to coordinate those controllers.
The higher level controllers should be able to handle more
heavy requests. The root controller then communicates with
NOX on the global requests. Fault tolerance techniques could
be used for controllers system. Even one controller is down,
others should be able to compensate for the missing operations.
By using fault tolerance model, we could figure out the optimal
controller deployment strategy, such as which controller should
be deployed in which sub-net.

2202 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

Resource sharing strategies should also be made among
controllers. By using a queuing model with shared resource
pool, we could calculate the controller serving time and wait-
ing time.

Note that the flow table could handle the packets in differ-
ent granularity levels. It could define the packet forwarding
in individual packet level; or, it could define the flow-level
forwarding actions. The controllers must be able to manage
different granularity levels in order to accurately adjust the flow
table status (such as adding or deleting the forwarding rules).

C. Highly Flexible Language Abstractions

The SDN programming language should be able to adapt
to frequent flow rules changes. It should also be suitable
to policy changes due to network topology change, regular
SDN maintenance, emergent failures, etc. An SDN programmer
would like to use a good language to perform policy changes
atomically to each switch. However, atomic change is difficult
to implement since it needs the disruption of the entire network
during policy change [29]. The future SDN language should
at least achieve two levels of abstractions if the atomic level
cannot be achieved.

1) In packet level, the language should be able to specify
the policy changes for all packets that meet similar at-
tributes. It needs to make sure that all packets belonging
to the same context are delivered with the same structural
invariants such as loop-freedom.

2) In flow-level, the language should allow the definitions of
flow-oriented rules/policies, such as queuing models, de-
livery order, load balancing, etc. The compliers and run-
time system should be able to respond to the aggregated
flow-level rule changes.

Another language abstraction trend is to support modular
programming, that is, it should allow the handling of isolation
issues between multiple programs that control different portions
of the traffic. Each piece of program has different tasks, some
target host monitoring, some for failure recovery, some for vir-
tualization, and so on. How do we make all pieces of program
interface to each other in a transparent way? This needs a high
level of abstraction for SDN programming.

D. Low-Cost Fine-Granularity QoS Implementation

As we know, QoS strategies include class-based differen-
tiated service (DS) and fine-grained integrated service (IS).
SDN/OpenFlow could define packet-level or flow-level pri-
orities and performance metric. Therefore, it can be used to
support IS. Although some IS-oriented OpenFlow QoS models
are defined [96], [97], not many practical implementations are
conducted. The main challenges include.

1) The integration of multimedia coding with OpenFlow
QoS management: There are many video encoding stan-
dards. Especially some standards such as H.264+/SVC
can support priority-based coding, that is, different video
data layers could be assigned different priorities, and
the enhancement layer has the most important video
data. OpenFlow could support such video streaming by

Fig. 24. Load Balancing: Integrate server balancer selection with path
selection [96].

controlling different flows in different policies. However,
the detailed flow rules need to be integrated with different
video encoding standards, which needs further research;

2) Load balancing: Content Distribution Networks (CDNs)
need load balancing capability in order to distribute the
heavy workload across the network elements. While most
of conventional load balancing strategies for multimedia
streaming (live or on-demand) over CDNs rely on server-
based load balancing, OpenFlow allows the load balanc-
ing actions in each possible flow path (Fig. 24). The future
research needs to define the detailed procedure in Open-
Flow controller in order to achieve such an integrated
server balancer selection and path selection.

3) Use Cross-layer design style to optimize QoS: Many QoS
optimization schemes are based on cross-layer designs
[126]–[128]. However, OpenFlow removes the bound-
aries of traditional Internet, and uses open, programmable
model. Then the issue is: how do we implement cross-
layer design style in OpenFlow in order to share all
available network parameters in different places for QoS
optimization?

E. Resilient Security in SDN

SDN/OpenFlow uses network virtualization technology to
simplify the resource management of the large network. It
enables the definition of virtual slices/slivers for different phys-
ical utilities (such as hard disk, memory, etc.). A slice could
include several slivers. Each slice/sliver pair could be assigned
a unique ID. Due to resource limitations, some malicious
OpenFlow terminals may use attacks to try to overuse the
resource slice/slivers. Therefore, we need to create a scale
security scheme that can overcome the resource access attacks
in slice/sliver establishment.

Some SDN security challenges include: (1) Scalability is-
sues: If many slivers are needed in a slice, it has high overhead
to generate/distribute different session keys for different slivers.
(2) Sliver deactivation: When a sliver deactivates a sliver, we
need to make sure none of the stored data can be decoded
independently by that user (this is called forward secrecy).

Here, we suggest a possible security solution based on
ID-based cryptography [130]. While conventional public key
schemes use random string to generate public key, ID-based

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2203

crypto generates public keys from user IDs. Thus, it makes
key management in SDN much easier since we do not
need to distribute public keys to SDN users. Moreover, the
encryption/decryption can be done offline (thus a key genera-
tion center is not needed). To implement the above ID-based
security, some issues need to be addressed such as mutual
authentication between experimenters and slices, key escrow
issue, etc.

F. Robust Wireless Integration

Although OpenFlow has been well developed in wired, local
network, there are very few studies on its performance in
wireless networks. All the existing wireless network OpenFlow
designs [19], [35], [111]–[114] have not overcome the follow-
ing two challenging issues.

1) Integrated Management of Channel Access and Data For-
warding: Many wireless networks support multi-channel com-
munications among routers and clients, especially in cognitive
radios. Therefore, each wireless node needs to detect available
channels, and select the high-quality ones. Moreover, the nodes
can change physical characteristics for optimal link radio com-
munications. Thus in a wireless networks the OpenFlow data
panel must perform efficient channel sensing/access. However,
the existing OpenFlow standards only define data forwarding
functions in the hardware. We will need to significantly improve
the existing OpenFlow model (including its control/data panels’
task division, FlowVisor control, network visualization, etc.) by
designing a brand-new flow-table management scheme. Such
a scheme may use reinforcement learning to simultaneously
manage two flow tables one for real-time data forwarding and
another for multi-channel sensing/selection.

2) Conflict-Free Scheduling of Control Traffic and Data
Traffic: Unlike wired OpenFlow model that can use cables
to easily achieve control/data packet communications among
nodes, wireless network uses unreliable wireless links for both
control panel communications and data panel packet forward-
ing. The control panel demands a high-quality channel for loss-
free delivery, while the data panel should use other available
channels for routing. Therefore, a carefully designed chan-
nel allocation and packet scheduling scheme is required for
conflict-free control/data traffic delivery in routers and nodes.

X. CONCLUSION

In this paper, we have comprehensively surveyed the design
issues for SDN/OpenFlow. Especially we have covered all
important issues in concrete network implementation including
language abstraction, controller design, virtualization scheme,
QoS support, security issues, and wireless/optical network
integration.

Below we briefly summarize some important aspects for
highlight: SDNs have many applications including developing
new protocols prior to implementing them in real networks,
increasing connectivity in rural environments, making both
cloud based and regular data centers better, and supporting
mobile device offloading. As the Internet continues to grow
and becomes available to increasing more people, networks will

need to be able to adapt to ever changing circumstances. SDNs
allow the data and control planes to be separated, and hence to
be easier for improvements.

Network virtualization based on OpenFlow is a successful
implementation of Software Defined Networking, and its de-
velopment offers users a great deal of convenient services. We
have reviewed different virtualization architectures that focus
on the improvement of the network flexibility, isolation and
management. It can be seen that embedding additional module
or abstraction layer on the top of OpenFlow or FlowVisor
provides solutions to these challenges. Utilizing the database
can also help to simplify the creation of the abstraction layer.

QoS is an import issue in many applications especially in
streaming media, VoIP, Videoconferencing, and so on. Many
experiments have been conducted to make OpenFlow support
QoS control. However, these designs are still under testing
phase, and need to be further examined. Many designs are
related to optimization problems, such as dynamic rerouting
for SVC, dynamic QoS re-negotiation for multimedia flows,
etc. And the solution needs heavy calculations in reality as the
dimension increases. It also needs a comprehensive test before
being applied to real world applications. Many experiments are
actually under a small scale of tests to verify the proposed de-
sign, and no large-scale experiments have been performed yet.

Security and privacy are always important in any network.
OpenFlow brings many new security challenges due to the
virtual network management. It is important to design new
low-overhead security/privacy schemes to protect the virtual-
to-physical mapping protocols in SDN/OpenFlow.

We have also pointed out some important unsolved research
issues in this exciting field. Those issues may serve as the
thesis/dissertation topics for graduate students. SDN/OpenFlow
is a relatively new field, and many practical design issues
are waiting for in-depth investigations. We believe that this
comprehensive survey could help R&D people to understand
the state-of-the-art in SDN/OpenFlow.

ACKNOWLEDGMENT

We sincerely thank the following people for their help
with this survey: A. Gerrity, M. Farooq, T. Zhang, R. Ma,
C. Dickerson, X. Fu, N. Hegde, (they are all with ECE de-
partment at the University of Alabama), and A. V. Vasilakos
(University of Western Macedonia in Greece). They have pro-
vided valuable comments and inputs on some of the above
discussed topics. We also appreciate the editor and reviewers’
time and effort for reviewing this paper.

REFERENCES

[1] S. Ortiz, “Software-defined networking: On the verge of a break-
through?” Computer, vol. 46, no. 7, pp. 10–12, Jul. 2013.

[2] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 114–119, Feb. 2013.

[3] K. Bakshi, “Considerations for software defined networking (SDN):
Approaches and use cases,” in Proc. IEEE Aerosp. Conf., Mar. 2013,
pp. 1–9.

[4] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2211–2219.

2204 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

[5] S. Fang, Y. Yu, C. H. Foh, and K. M. M. Aung, “A loss-free multipathing
solution for data center network using software-defined networking ap-
proach,” IEEE Trans. Magn., vol. 49, no. 6, pp. 2723–2730, Jun. 2013.

[6] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[7] S. Das et al., “Packet and circuit network convergence with OpenFlow,”
in Proc. Opt. Fiber Commun. Conf. Expo., Mar. 2010, pp. 1–3.

[8] R. Sherwood, M. Chan, and A. Covington, “Carving research slices
out of your production networks with OpenFlow,” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, no. 1, pp. 129–130, Jan. 2010.

[9] OpenFlow. [Online]. Available: http://www.openflow.org/
[10] Open Networking Foundation. [Online]. Available: https://www.

opennetworking.org/
[11] C. S. Li and W. Liao, “Software defined networks,” IEEE Comm. Mag.,

vol. 51, no. 2, p. 113, Feb. 2013.
[12] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A

retrospective on evolving SDN,” in Proc. Workshop Hot Topics Softw.
Defined Netw., Aug. 2012, pp. 85–90.

[13] Y. Kanaumi, S. Saito, and E. Kawai, “Toward large-scale programmable
networks: Lessons learned through the operation and management of
a wide-area OpenFlow-based network,” in Proc. Int. Conf. Netw. Serv.
Manage., Oct. 2010, pp. 330–333.

[14] H. Fei, Network Innovation Through OpenFlow and SDN: Principles
and Design. New York, NY, USA: Taylor & Francis, 2014.

[15] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proc. ACM SIGCOMM
Workshop Hot Topics Netw., New York, NY, USA, 2010, pp. 19:1–19:6.

[16] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Review, vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[17] T. D. Nadeau and P. Pan, “Software driven networks problem statement,”
IETF Internet-Draft (Work-in-Progress), Oct. 2011, draft-nadeau-sdn-
problem-statement-01.

[18] M. Yu, J. Rexford, M. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” Proc. ACM SIGCOMM Comput. Commun.
Review, vol. 40, no. 4, pp. 351–362, Oct. 2010.

[19] K. Yap et al., “OpenRoads: Empowering research in mobile networks,”
ACM SIGCOMM Comput. Commun. Review, vol. 40, no. 1, pp. 125–126,
Jan. 2010.

[20] P. Dely, A. Kassler, and N. Bayer, “OpenFlow for wireless mesh net-
works,” in Proc. Int. Conf. Comput. Commun. Netw., Jul./Aug. 2011,
pp. 1–6.

[21] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Reliability-aware
controller placement for software-defined networks,” in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manage., May 2013, pp. 672–675.

[22] P. T. Congdon, P. Mohapatra, M. Farrens, and V. Akella, “Simultane-
ously reducing latency and power consumption in OpenFlow switches,”
IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 1007–1020, Jun. 2014.

[23] A. Khan and N. Dave, “Enabling hardware exploration in software-
defined networking: A flexible, portable OpenFlow switch,” in Proc.
Annu. Int. Symp. Field-Programmable Custom Comput. Machines,
Apr. 2013, pp. 145–148.

[24] The OpenFlow Switch Consortium. [Online]. Available: http://www.
openflow.org/

[25] Y. Kanaumi et al., “Deployment and operation of wide-area hy-
brid OpenFlow networks,” in Proc. IEEE NOMS, Apr. 16–20, 2012,
pp. 1135–1142.

[26] OpenFlow Switch Specification, Version 1.0.0. [Online]. Available:
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

[27] OpenFlow in Europe—Linking Infrastructure and Applications. [On-
line]. Available: http://www.fp7-ofelia.eu/

[28] Y. Kanaumi, “Large-scale OpenFlow testbed in Japan,” in The 31st
APAN Meet., Feb. 2011, pp. 1–22.

[29] N. Foster, M. J. Freedman, A. Guha, and R. Horrison, “Languages for
software-defined networks,” IEEE Commun. Mag. Feature Topic Softw.
Defined Netw., vol. 51, no. 2, pp. 128–134, Feb. 2013.

[30] F. de O. Silva, J. H. de S. Pereira, P. F. Rosa, and S. T. Kofuji, “Enabling
future Internet architecture research and experimentation by using soft-
ware defined networking,” in Proc. Eur. Workshop Softw. Defined Netw.,
Oct. 2012, pp. 73–78.

[31] S. Hasan, Y. Ben-David, C. Scott, E. Brewer, and S. Shenker, “Enhancing
rural connectivity with software defined networks,” in Proc. ACM Symp.
Comp. Develop., 2013, no. 49, pp. 1–2.

[32] R. Narayanan et al., “Macroflows and microflows: Enabling rapid net-
work innovation through a split SDN data plane,” in Proc. Eur. Workshop
Softw. Defined Netw., Oct. 2012, pp. 79–84.

[33] B. Boughzala, R. Ben Ali, M. Lemay, Y. Lemieux, and O. Cherkaoui,
“OpenFlow supporting inter-domain virtual machine migration,” in
Proc. Int. Conf. Wireless Opt. Commun. Netw. (WOCN), May 2011,
pp. 1–7.

[34] C. Baker, A. Anjum, R. Hill, N. Bessis, and S. L. Kiani, “Improving
cloud datacenter scalability, agility and performance using OpenFlow,”
in Proc. Int. Conf. Int. Netw. Collaborative Syst., Sep. 2012, pp. 20–27.

[35] A. Gember, C. Dragga, and A. Akella, “ECOS: Leveraging software-
defined networks to support mobile application offloading,” in Proc.
Eighth ACM/IEEE Symp. Architectures Netw. Commun. Syst., 2012,
pp. 199–210.

[36] V. Mann, A. Vishnoi, K. Kannan, and S. Kalyanaraman, “CrossRoads:
Seamless VM mobility across data centers through software defined
networking,” in Proc. IEEE Netw. Operations Manage. Symp., 2012,
pp. 88–96.

[37] P. A. A. Gutiérrez and D. R. Lopez, “An OpenFlow network design
cycle,” in Netw. Innovation through OpenFlow SDN: Principles Design.
New York, NY, USA: Taylor & Francis LLC, CRC Press, 2014.

[38] R. Stallman, R. Pesch, and S. Shebs, Debugging With GDB: The Source
Level Debugger. Boston, USA: GNU Press, 2002.

[39] The Eclipse Foundation. [Online]. Available: http://www.eclipse.org
[40] G. T. Heineman and W. T. Councill, Eds., Component-Based Soft-

ware Engineering: Putting the Pieces Together. Reading, MA, USA:
Addison-Wesley, 2001.

[41] L. M. Correia, Ed., Architecture and Design for the Future Internet.
New York, NY, USA: Springer-Verlag, 2011.

[42] A. de C. Alves, OSGi Application Frameworks. Shelter Island, NY,
USA: Manning Publications, 2009.

[43] J. Highsmith and A. Cockburn, “Agile software development: The Busi-
ness of Innovation,” Computer, vol. 34, no. 9, pp. 120–122, Sep. 2001.

[44] K. Petersen, C. Wohlin, and D. Baca, “The waterfall model in large-
scale development,” in Proc. Int. Conf. Prod.-Focused Softw. Process
Improvement, 2009, pp. 386–400.

[45] OpenVSwitch. [Online]. Available: http://openvswitch.org/
development/openflow-1-x-plan

[46] Pica8 Open Network Fabric. [Online]. Available: http://www.pica8.org/
solutions/openflow.php

[47] Indigo—Open Source OpenFlow Switches. [Online]. Available: http://
www.openflowhub.org/display/Indigo/

[48] NOX. [Online]. Available: http://www.noxrepo.org/nox/about-nox/
[49] POX. [Online]. Available: http://www.noxrepo.org/pox/about-pox/
[50] Trema: Full-Stack OpenFlow Framework in Ruby and C. [Online].

Available: https://github.com/trema/
[51] Floodlight: A Java-Based OpenFlow Controller. [Online]. Available:

http://floodlight.openflowhub.org/
[52] D. Erickson. [Online]. Available: https://openflow.stanford.edu/display/

Beacon/Home
[53] Floodlight is an Open SDN Controller. [Online]. Available: http://

floodlight.openflowhub.org/
[54] OpenStack: Open Source Software for Building Private and Public

Clouds, 2012. [Online]. Available: http://www.openstack.org/
[55] A. Orebaugh, G. Ramirez, J. Burke, and L. Pesce, Wireshark & Ethereal

Network Protocol Analyzer Toolkit (Jay Beale’s Open Source Security).
Sebastopol, CA, USA: Syngress Publishing, 2006.

[56] ns3. [Online]. Available: http://www.nsnam.org
[57] J. Pelkey, OpenFlow Software Implementation Distribution. [Online].

Available: http://code.nsnam.org/jpelkey3/openflow
[58] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,

“Practical declarative network management,” in Proc. ACM Workshop
Res. Enterprise Netw., 2009, pp. 1–10.

[59] N. Foster et al., “Frenetic: A network programming language,” in Proc.
ACM SIGPLAN Int. Conf. Functional Program., 2011, pp. 279–291.

[60] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proc.
Workshop Hot Topics Softw. Defined Netw., 2012, pp. 55–60.

[61] Y. Chiba and Y. Nakazawa, Tremashark: A Bridge for Printing Vari-
ous Events on Wireshark. [Online]. Available: http://github.com/trema/
trema.gitmaster/tremashark

[62] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind:
Enabling record and replay troubleshooting for networks,” in Proc.
USENIX Conf. USENIX Annu. Tech. Conf., 2011, p. 29.

[63] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated OpenFlow infrastructures,” in Proc. ACM Work-
shop Assurable Usable Security Configuration, 2010, pp. 37–44.

[64] M. Canini, D. Venzano, P. Pereni, D. Kostic, and J. Rexford, “A NICE
way to test OpenFlow applications,” in Proc. USENIX Conf. Netw. Syst.
Design Implementation, 2012, pp. 10–10.

http://www.openflow.org/
https://www.opennetworking.org/
https://www.opennetworking.org/
http://www.openflow.org/
http://www.openflow.org/
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.fp7-ofelia.eu/
http://www.eclipse.org
http://openvswitch.org/development/openflow-1-x-plan
http://openvswitch.org/development/openflow-1-x-plan
http://www.pica8.org/solutions/openflow.php
http://www.pica8.org/solutions/openflow.php
http://www.openflowhub.org/display/Indigo/
http://www.openflowhub.org/display/Indigo/
http://www.noxrepo.org/nox/about-nox/
http://www.noxrepo.org/pox/about-pox/
https://github.com/trema/
http://floodlight.openflowhub.org/
https://openflow.stanford.edu/display/Beacon/Home
https://openflow.stanford.edu/display/Beacon/Home
http://floodlight.openflowhub.org/
http://floodlight.openflowhub.org/
http://www.openstack.org/
http://www.nsnam.org
http://code.nsnam.org/jpelkey3/openflow
http://github.com/trema/trema.gitmaster/tremashark
http://github.com/trema/trema.gitmaster/tremashark

HU et al.: SURVEY ON SDN AND OPENFLOW: FROM CONCEPT TO IMPLEMENTATION 2205

[65] M. Canini, D. Venzano, P. Pereni, D. Kostic, and J. Rexford, A NICE
Way to Test OpenFlow Controller Applications. [Online]. Available:
http://code.google.com/p/nice-of/

[66] GENI: Exploring Networks of the Future. [Online]. Available: http://
www.geni.net

[67] Ofelia: OpenFlow Test Facility in Europe. [Online]. Available: http://
www.fp7-ofelia.eu

[68] JGN-x Utilization Procedure. [Online]. Available: http://www.jgn.nict.
go.jp/english/info/technologies/openflow.html

[69] M. Christopher and A. Story, “Language abstractions for software-
defined networks,” IEEE Comm. Mag., vol. 51, no. 2, pp. 128–134,
Feb. 2013.

[70] K. Daisuke, K. Suzuki, and H. Shimonishi, “A design and imple-
mentation of OpenFlow controller handling IP multicast with fast tree
switching,” in Proc. IEEE/IPSJ Int. Symp. Appl. Internet, Jul. 2012,
pp. 60–67.

[71] N. Foster et al., “Languages for software-defined networks,” IEEE Com-
munications Mag., vol. 51, no. 2, pp. 128–134, Feb. 2013.

[72] H. Kudou, M. Shimamura, T. Ikenaga, and M. Tsuru, “Effects of routing
granularity on communication performance in OpenFlow networks,”
in Proc. IEEE Pacific Rim Conf. Commun., Comput. Signal Process.
(PacRim), Aug. 2011, pp. 590–595.

[73] Z. Bozakov and P. Papadimitriou, “AutoSlice: Automated and scalable
slicing for software-defined networks,” in Proc. ACM CoNEXT Student
Proc., 2012, pp. 3–4.

[74] G. Schaffrath et al., “Network virtualization architecture: Proposal and
initial prototype,” in Proc. ACM SIGCOMM VISA, 2009, pp. 63–72.

[75] N. Sarrar et al., “Leveraging Zipf’s law for traffic offloading,” in Proc.
ACM SIGCOMM Comput. Commun. Review, 2012, pp. 16–22.

[76] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. Mckeown,
“Slicing home networks,” in Proc. ACM SIGCOMM Workshop Home
Netw., 2011, pp. 1–6.

[77] S. Sundaresan et al., “Broadband Internet performance: A view from the
gateway,” in Proc. ACM SIGCOMM, Aug. 2011, pp. 134–145.

[78] M. Al-fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM SIGCOMM Conf. Data
Commun., 2008, pp. 63–74.

[79] M. Casdo et al., “Ethane: Taking control of the enterprise,” in Proc. ACM
SIGCOMM Comput. Commun. Review, 2007, pp. 1–12.

[80] Z. Cai, A. L. Cox, and T. S. E. NG, “Maestro: A System for Scalable
OpenFlow Control,” Rice University-Department of Computer Science,
Houston, TX, USA, Tech. Rep. TR10-11, Dec. 2010.

[81] A. R. Curtis et al., “DevoFlow: Scaling flow management for
high-performance networks,” in Proc. ACM SIGCOMM Conf., 2011,
pp. 254–265.

[82] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements and analysis,” in Proc. ACM
Internet Meas. Conf., 2009, pp. 202–208.

[83] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM Int. Meas. Conf., 2010,
pp. 267–280.

[84] A. Tootoonchian, S. Gorbunov, Y. Ganjali, and M. Casado, “On con-
troller performance in software-defined networks,” in Proc. USENIX
Workshop Hot Topics Manag. Internet, Cloud, Enterprise Netw. Serv.,
2012, p. 10.

[85] D. Drutskoy, “Software-Defined Network Virtualization,” M.S. thesis,
Princeton University, Princeton, NJ, USA, 2012.

[86] J. Matias, B. Tornero, A. Mendiola, E. Jacob, and N. Toledo, “Imple-
menting layer 2 network virtualization using OpenFlow: Challenges and
solutions,” in Proc. Eur. Workshop Softw. Defined Netw., Oct. 2012,
pp. 30–35.

[87] P. Skoldstrom and K. Yedavalli, “Network virtualization and resource
allocation in OpenFlow-based wide area networks,” in Proc. IEEE Int.
Conf. Commun., Jun. 2012, pp. 6622–6626.

[88] B. Sonkoly et al., “OpenFlow virtualization framework with advanced
capabilities,” in Proc. Eur. Workshop Softw. Defined Netw., Oct. 2012,
pp. 18–23.

[89] J. Matias, E. Jacob, D. Sanchez, and Y. Demchenko, “An Open-
Flow based network virtualization framework for the cloud,” in Proc.
IEEE 3rd Int. Conf. Cloud Comput. Technol. Sci., Nov./Dec. 2011,
pp. 672–678.

[90] M. El-azzab, I. L. Bedhiaf, Y. Lemieux, and O. Cherkaoui, “Slices iso-
lator for a virtualized OpenFlow node,” in Proc. Int. Symp. Netw. Cloud
Comput. Appl., Nov. 21–23, 2011, pp. 121–126.

[91] D. Turull, M. Hidell, and P. Sjodin, “libNetVirt: The network
virtualization library,” in Proc. IEEE Int. Conf. Commun., Jun. 2012,
pp. 5543–5547.

[92] R. Nejbati, S. Azodolmolky, and D. Simeonidou, “Role of network
virtualization in future Internet innovation,” in Proc. Eur. Conf. Netw.
Opt. Commun., Jun. 2012, pp. 1–4.

[93] B. Naudts et al., “Techno-economic analysis of software defined net-
working as architecture for the virtualization of a mobile network,” in
Proc. Eur. Workshop Softw. Defined Netw., Oct. 2012, pp. 67–72.

[94] A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of flow-sensors
in Internet of things’ virtualization via OpenFlow,” in Proc. FTRA Int.
Conf. Mobile, Ubiquitous, Intell. Comput., Jun. 2012, pp. 195–200.

[95] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable
video streaming over OpenFlow networks: An optimization framework
for QoS routing,” in Proc. IEEE Int. Conf. Image Process., Sep. 2011,
pp. 2241–2244.

[96] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-to-end
quality of service over software-defined networks,” in Proc. Asia-Pac.
Signal & Inf. Process. Assoc. Annu. Summit Conf., Dec. 2012, pp. 1–8.

[97] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “An optimization
framework for QoS-enabled adaptive video streaming over OpenFlow
networks,” IEEE Trans. Multimedia, vol. 15, no. 3, pp. 710–715,
Apr. 2013.

[98] K. Jeong, J. Kim, and Y.-T. Kim, “QoS-aware network operating
system for software defined networking with generalized Open-
Flows,” in IEEE/IFIP Workshop Manag. Future Internet, Apr. 2012,
pp. 1167–1174.

[99] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic, and
P. Dely, “Towards QoE-driven multimedia service negotiation and path
optimization with software defined networking,” in Proc. Int. Conf.
Softw., Telecommun. Comput. Netw., Sep. 2012, pp. 1–5.

[100] H. Sun, A. Vetro, and J. Xin, “An overview of scalable video stream-
ing,” Wireless Commun. Mobile Comput., vol. 7, no. 2, pp. 159–172,
Feb. 2007.

[101] S. Jivorasetkul and M. Shimamura, “End-to-end header compres-
sion over software-defined networks: A low latency network architec-
ture,” in Proc. Int. Conf. Intell. Netw. Collaborative Syst., Sep. 2012,
pp. 493–494.

[102] E.-S. M. El-Alfy, “A review of network security,” IEEE Distrib. Syst.
Online, vol. 8, no. 7, Jul. 2007.

[103] ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-
working, Aug. 2013.

[104] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Enabling fast failure recovery in OpenFlow networks,” in Proc. Int.
Workshop Des. Reliable Commun. Netw., Oct. 2011, pp. 164–171.

[105] J. Kempf, E. Bellagamba, A. Kern, and D. Jocha, “Scalable fault man-
agement for OpenFlow,” in Proc. IEEE Int. Conf. Commun., Jun. 2012,
pp. 6606–6610.

[106] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “NICE: Net-
work intrusion detection and countermeasure selection in virtual network
systems,” IEEE Trans. Dependable Secure Comput., vol. 10, no. 4,
Jun. 2013.

[107] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular composable security services for software-defined
networks,” in Proc. Netw. Distrib. Syst. Security Symp., Apr. 2013.

[108] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Proc. Int. Conf. Recent
Advances Intrusion Detection, 2011, pp. 161–180.

[109] C. Schlesinger, Language-Based Security for Software-Defined
Networks. [Online]. Available: http://www.cs.princeton.edu/cschlesi/
isolation.pdf

[110] D. Kordalewski and R. Robere, A Dynamic Algorithm for Loop De-
tection in Software Defined Networks 2012. [Online]. Available: http://
www.cs.toronto.edu/robere/paper/networkgraph-1214.pdf

[111] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software
defined wireless networks: Unbridling SDNs,” in Proc. Eur. Workshop
Softw. Defined Netw., Oct. 2012, pp. 1–6.

[112] M. Mendonca, K. Obraczka, and T. Turletti, “The case for software-
defined networking in heterogeneous networked environments,” in Proc.
ACM Conf. CoNEXT Student Workshop, 2012, pp. 59–60.

[113] K. Yap et al., “Blueprint for introducing innovation into wireless mobile
networks,” in Proc. ACM SIGCOMM workshop Virtualized Infrastruc-
ture Syst. Architectures, 2010, pp. 25–32.

[114] L. E. Li, Z. M. Mao, and J. Rexford, “Toward software-defined cellular
networks,” in Proc. Eur. Workshop Softw. Defined Netw., Oct. 2012,
pp. 7–12.

[115] A. Mahmud and R. Rahmani, “Exploitation of OpenFlow in wireless
sensor networks,” in Proc. Int. Conf. Comput. Sci. Netw. Technol.,
Dec. 2011, pp. 594–600.

http://code.google.com/p/nice-of/
http://www.geni.net
http://www.geni.net
http://www.fp7-ofelia.eu
http://www.fp7-ofelia.eu
http://www.jgn.nict.go.jp/english/info/technologies/openflow.html
http://www.jgn.nict.go.jp/english/info/technologies/openflow.html
http://www.cs.princeton.edu/cschlesi/isolation.pdf
http://www.cs.princeton.edu/cschlesi/isolation.pdf
http://www.cs.toronto.edu/robere/paper/networkgraph-1214.pdf
http://www.cs.toronto.edu/robere/paper/networkgraph-1214.pdf

2206 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

[116] T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor OpenFlow: En-
abling software-defined wireless sensor networks,” IEEE Commun. Lett.,
vol. 16, no. 11, pp. 1896–1899, Nov. 2012.

[117] J. Chung et al., “Experiences and challenges in deploying OpenFlow
over real wireless mesh networks,” IEEE Latin Am. Trans. (Revista IEEE
Am. Latina), vol. 11, no. 3, pp. 955–961, May 2013.

[118] L. Y. Ong, “OpenFlow/SDN and optical networks,” in Network Innova-
tion Through OpenFlow and SDN: Principles and Design. New York,
NY, USA: Taylor & Francis, 2014.

[119] L. Liu, H. Guo, and T. Tsuritani, “OpenFlow/SDN for metro/backbone
optical networks,” in Network Innovation Through OpenFlow SDN:
Principles Design. New York, NY, USA: Taylor & Francis, 2014.

[120] E. Mannie, “Generalized multi-protocol label switching (GMPLS) archi-
tecture,” IETF RFC, 2004.

[121] S. Das, G. Parulka, and N. Mckeown, “Why OpenFlow/SDN can succeed
where GMPLS failed,” presented at the Eur. Conf. Exhib. Opt. Com-
mun., Sep., 2012, Tu.1.D.1.

[122] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental vali-
dation and performance evaluation of OpenFlow-based wavelength path
control in transparent optical networks,” Opt. Express, vol. 19, no. 27,
pp. 26578–26593, Dec. 2011.

[123] L. Liu et al., “Field trial of an OpenFlow-based unified control plane for
multi-layer multi-granularity optical switching networks,” IEEE/OSA J.
Lightw. Technol., vol. 31, no. 4, pp. 506–514, Feb. 2013.

[124] S. Azodolmolky et al., “Integrated OpenFlow-GMPLS control plane: An
overlay model for software defined packet over optical networks,” Opt.
Express, vol. 19, no. 26, pp. B421–B428, Dec. 2011.

[125] M. Channegowda et al., “Experimental demonstration of an OpenFlow
based software-defined optical network employing packet, fixed and
flexible DWDM grid technologies on an international multi-domain
testbed,” Opt. Express, vol. 21, no. 5, pp. 5487–5498, Mar. 2013.

[126] C. H. Liu, A. Gkelias, Y. Hou, and K. K. Leung, “Cross-layer design for
QoS in wireless mesh networks,” Wireless Pers. Commun., vol. 51, no. 3,
pp. 593–613, Nov. 2009.

[127] L. Qiu and M. Song, “QoS oriented cross-layer design for supporting
multimedia services in cooperative networks,” in Proc. Int. Conf. Service
Sci., May 2010, pp. 314–318.

[128] J. Chen, T. Lv, and H. Zheng, “Cross-layer design for QoS wireless
communications,” in Proc. Int. Symp. Circuits Syst., May 2004, vol. 2,
pp. 217–220.

[129] D. Li, X. Hong, and D. Witt, “ProtoGENI, a prototype GENI under
security vulnerabilities: An experiment-based security study,” IEEE Syst.
J., vol. 7, no. 3, pp. 478–488, Sep. 2013.

[130] M. Smith, C. Schridde, B. Agel, and B. Freisleben, “Identity-based
cryptography for securing mobile phone calls,” in Proc. Int. Conf. Adv.
Inf. Netw. Appl. Workshops, 2009, pp. 365–370.

[131] L. Sarakis, T. Zahariadis, H.-C. Leligou, and M. Dohler, “A framework
for service provisioning in virtual sensor networks,” in EURASIP J.
Wireless Commun. Netw., Special Issue Recent Advances Mobile Lightw.
Wireless Syst., Apr. 2012, 135.

[132] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proc. 2010 Internet Netw. Manage. Conf. Res.
Enterprise Netw. (INM/WREN’10) USENIX Assoc., Berkeley, CA, USA,
2010, pp. 3–3.

[133] Z. Liu, Y. Li, L. Su, D. Jin, and L. Zeng, “M2cloud: Software de-
fined multi-site data center network control framework for multi-tenant,”
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 517–518,
Oct. 2013.

[134] A. Ishimori, F. Farias, I. Furtado, E. Cerqueira, and A. Abelém,
Automatic QoS Management on OpenFlow Software-Defined Net-
works, 2012. [Online]. Available: http://siti.ulusofona.pt/aigaion/index.
php/attachments/single/362

[135] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “Policy-
Cop: An autonomic QoS policy enforcement framework for software
defined networks,” in Proc. IEEE SDN Future Netw. Serv. (SDN4FNS),
Nov. 2013, pp. 1–7.

[136] B. Sonkoly et al., “On QoS support to Ofelia and OpenFlow,” in
2012 Eur. Workshop Softw. Defined Netw. (EWSDN), Publ., 2012,
pp. 109–133.

[137] B.-Y. Ke, P.-L. Tien, and Y.-L. Hsiao, “Identity-based cryptography for
securing mobile phone calls,” in Proc. Int. Conf. Adv. Inf. Netw. Appl.
Workshops, 2013, pp. 217–218.

[138] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: A
slice abstraction for software-defined networks,” in Proc. 1st Workshop
Hot Topics Softw. Defined Netw. (HotSDN’12). ACM, New York, NY,
USA, 2012, pp. 79–84.

[139] K. Pentikousis, Y. Wang, and W. Hu, “MobileFlow: Toward software-
defined mobile networks,” Commun. Mag., IEEE, vol. 51, no. 7, pp. 44–
53, Jul. 2013.

[140] T. Luo, H.-P. Tan, P. C. Quan, Y. W. Law, and J. Jin, “Enhancing respon-
siveness and scalability for OpenFlow networks via control-message
quenching,” in Proc. Int. Conf. CT Convergence (ICTC), Oct. 15–17,
2012, pp. 348–353.

[141] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in Proc. IEEE INFOCOM, Apr. 14–19,
2013, pp. 545–549.

[142] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “BalanceFlow:
Controller load balancing for OpenFlow networks,” in Proc. IEEE 2nd
Int. Conf. Cloud Comput. Intell. Syst. (CCIS), Oct./Nov. 2012, vol. 2,
pp. 780–785.

[143] J. Biswas et al., “The IEEE P1520 standards initiative for programmable
network interfaces,” IEEE Commun. Mag., vol. 36, no. 10, pp. 64–70,
Oct. 1998.

[144] A. Doria et al., Forwarding and Control Element Separation (ForCES)
Protocol Specification. [Online]. Available: http://tools.ietf.org/html/
rfc5810

[145] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo,
“The SoftRouter Architecture,” in Proc. ACM SIGCOMM Workshop Hot
Topics Netw., 2004, pp. 1–6.

[146] On the Difference Between Security and Safety: A Reference Answer
is Provided in WiKi. [Online]. Available: http://wiki.answers.com/Q/
1_Explain_the_difference_between_safety_and_security?#slide=1

Fei Hu received the Ph.D. degree in signal pro-
cessing from Tongji University, Shanghai, China, in
1999 and the Ph.D. degree in electrical and computer
engineering from Clarkson University, New York,
NY, USA, in 2002. He is currently an Associate
Professor with the Department of Electrical and
Computer Engineering, The University of Alabama,
Tuscaloosa, AL, USA. He has published over 150
journal/conference papers and book (chapters). His
research has been supported by the U.S. NSF, Cisco,
Sprint, and other sources. His research interests in-

clude cyber-physical system security and medical security issues; intelligent
signal processing, such as using machine learning algorithms to process sensing
signals; and issues on wireless sensor network design.

Qi Hao received the B.E. and M.E. degrees from
Shanghai Jiao Tong University, Shanghai, China, in
1994 and 1997, respectively, and the Ph.D. degree
from Duke University, Durham, NC, USA, in 2006,
all in electrical engineering. His postdoctoral training
in the Center for Visualization and Virtual Environ-
ment, The University of Kentucky, Lexington, KY,
USA was focused on 3-D computer vision for human
tracking and identification. From 2007 to 2014, he
was an Assistant Professor with the Department of
Electrical and Computer Engineering, The Univer-

sity of Alabama, Tuscaloosa, AL, USA. He is currently an Associate Professor
with South University of Science and Technology of China, Shenzhen, China.
His research has been supported by the U.S. NSF and other sources. His current
research interests include smart sensors, intelligent wireless sensor networks,
and distributed information processing.

Ke Bao is currently working toward the Ph.D. degree
in the Department of Electrical and Computer En-
gineering, The University of Alabama, Tuscaloosa,
AL, USA. His research interests include wireless
networks, multimedia QoS, and wireless test beds.

http://siti.ulusofona.pt/aigaion/index.php/attachments/single/362
http://siti.ulusofona.pt/aigaion/index.php/attachments/single/362
http://tools.ietf.org/html/rfc5810
http://tools.ietf.org/html/rfc5810
http://wiki.answers.com/Q/1_Explain_the_difference_between_safety_and_security?#slide=1
http://wiki.answers.com/Q/1_Explain_the_difference_between_safety_and_security?#slide=1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

