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Abstract—Software-defined networking (SDN) has recently
gained unprecedented attention from industry and research com-
munities, and it seems unlikely that this will be attenuated in
the near future. The ideas brought by SDN, although often de-
scribed as a “revolutionary paradigm shift” in networking, are
not completely new since they have their foundations in pro-
grammable networks and control–data plane separation projects.
SDN promises simplified network management by enabling net-
work automation, fostering innovation through programmability,
and decreasing CAPEX and OPEX by reducing costs and power
consumption. In this paper, we aim at analyzing and categoriz-
ing a number of relevant research works toward realizing SDN
promises. We first provide an overview on SDN roots and then
describe the architecture underlying SDN and its main compo-
nents. Thereafter, we present existing SDN-related taxonomies and
propose a taxonomy that classifies the reviewed research works
and brings relevant research directions into focus. We dedicate the
second part of this paper to studying and comparing the current
SDN-related research initiatives and describe the main issues that
may arise due to the adoption of SDN. Furthermore, we review
several domains where the use of SDN shows promising results.
We also summarize some foreseeable future research challenges.

Index Terms—Software-defined networking, OpenFlow, pro-
grammable networks, controller, management, virtualization,
flow.

I. INTRODUCTION

FOR a long time, networking technologies have evolved at
a lower pace compared to other communication technolo-

gies. Network equipments such as switches and routers have
been traditionally developed by manufacturers. Each vendor
designs his own firmware and other software to operate their
own hardware in a proprietary and closed way. This slowed the
progress of innovations in networking technologies and caused
an increase in management and operation costs whenever new
services, technologies or hardware were to be deployed within
existing networks. The architecture of today’s networks con-
sists of three core logical planes: Control plane, data plane,
and management plane. So far, networks hardware have been
developed with tightly coupled control and data planes. Thus,
traditional networks are known to be “inside the box” paradigm.
This significantly increases the complexity and cost of net-
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work administration and management. Being aware of these
limitations, networking research communities and industrial
market leaders have collaborated in order to rethink the design
of traditional networks. Thus, proposals for a new networking
paradigm, namely programmable networks [1], have emerged
(e.g., active networks [2] and Open Signalling (OpenSig) [3]).

Recently, Software-Defined Networking (SDN) has gained
popularity in both academia and industry. SDN is not a rev-
olutionary proposal but it is a reshaping of earlier proposals
investigated several years ago, mainly programmable networks
and control–data plane separation projects [4]. It is the outcome
of a long-term process triggered by the desire to bring network
“out of the box”. The principal endeavors of SDN are to
separate the control plane from the data plane and to centralize
network’s intelligence and state. Some of the SDN predecessors
that advocate control–data plane separation are Routing Control
Platform (RCP) [5], 4D [6], [7], Secure Architecture for the
Networked Enterprise (SANE) [8], and lately Ethane [9], [10].
SDN philosophy is based on dissociating the control from the
network forwarding elements (switches and routers), logically
centralizing network intelligence and state (at the controller),
and abstracting the underlying network infrastructure from the
applications [11]. SDN is very often linked to the OpenFlow
protocol. The latter is a building block for SDN as it enables
creating a global view of the network and offers a consistent,
system-wide programming interface to centrally program net-
work devices. OpenFlow is an open protocol that was born in
academia at Stanford University after the Clean Slate Project.1

In [12], OpenFlow was proposed for the first time to enable
researchers to run experimental protocols [13] in the campus
networks they use every day. Currently, the Open Networking
Foundation (ONF), a non-profit industry consortium, is in
charge of actively supporting the advancements of SDN and
the standardization of OpenFlow, which is currently published
under version 1.4.0 [14].

The main objective of this paper is to survey the litera-
ture on SDN over the period 2008–2013 to provide a deep
and comprehensive understanding of this paradigm, its related
technologies, its domains of application, as well as the main
issues that need to be solved towards sustaining its success.
Despite SDN’s juvenility, we have identified a large number
of scientific publications not counting miscellaneous blogs,
magazine articles, and online forums, etc. To the best of our
knowledge, this paper is the first comprehensive survey on
the SDN paradigm. While reviewing the literature, we found
few papers surveying specifc aspects of SDN [15]–[17]. For

1http://cleanslate.stanford.edu/
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instance, Bozakov and Sander [15] focus on the OpenFlow pro-
tocol and provide implementation scenarios using OpenFlow
and NOX controller. Sezer et al. [17] briefly present a survey on
SDN concepts and issues while considering a limited number of
surveyed works. Lara et al. [16] present an OpenFlow-oriented
survey and concentrate on a two-layer architecture of SDN:
control and data layers. They review and compare OpenFlow
specifications, from the earliest versions till version 1.3.0. and
then present works on OpenFlow capabilities, applications, and
deployments all around the word. Although important research
issues have been identified, there is no mentioning about other
relevant aspects such as distributed controllers, northbound
APIs, and SDN programming languages.

In the present paper, we aim at providing a more compre-
hensive and up-to-date overview of SDN by targeting more
than one aspect while analyzing most relevant research works
and identifying foreseeable future research directions. The main
contributions of this paper are as follows:

• Provide a comprehensive tutorial on SDN and OpenFlow
by studying their roots, their architecture and their princi-
pal components.

• Propose a taxonomy that allows classifying the reviewed
research works, bringing relevant research directions into
focus, and easing the understandability of the related
domains.

• Elaborate a survey on the most relevant research proposals
supporting the adoption and the advancement of SDN.

• Identify new issues raised from the adoption of SDN that
still need to be addressed by future research efforts.

The paper is structured as follows; Section II is a preliminary
section where the roots of SDN are briefly presented. Section III
is dedicated to unveiling SDN concepts, components, and ar-
chitecture. Section IV discusses existing SDN taxonomies and
elaborates on a novel taxonomy for SDN. Section V is the
survey of the research works on SDN organized according to
the proposed taxonomy. The latter identifies issues brought by
SDN paradigm and the currently proposed solutions. Section VI
describes open issues that still need to be addressed in this
domain. The paper ends with a conclusion in Section VII.

II. SOFTWARE-DEFINED NETWORKING ROOTS

SDN finds its roots in programmable networks and control–
data plane separation paradigms. In the following, we give
a brief overview of these two research directions and then
highlight how SDN differs from them.

The key principle of programmable networks is to allow
more flexible and dynamically customizable network. To ma-
terialize this concept, two separate schools of thoughts have
emerged: OpenSig [3] from the community of telecommuni-
cations and active networks [2] from the community of IP
networks. Active networking emerged from DARPA [2] in mid
1990s. Its fundamental idea was to allow customized programs
to be carried by packets and then executed by the network
equipments. After executing these programs, the behavior of
switches/routers would be subject to change with different
levels of granularity. Various suggestions on the levels of
programmability exist in the literature [1]. Active networks

introduced a high-level dynamism for the deployment of new
services at run-time. At the same time, OpenSig community
has proposed to control networks through a set of well-defined
network programming interfaces and distributed programming
environments (middleware toolkits such as CORBA) [3]. In that
case, physical network devices are manipulated like distributed
computing objects. This would allow service providers to con-
struct and manage new network services (e.g., routing, mobility
management, etc.) with QoS support.

Both active networking and OpenSig introduced many per-
formance, isolation, complexity, and security concerns. First,
they require that each packet (or subset of packets) is processed
separately by network nodes, which raises performance issues.
They require executing code at the infrastructure level, which
needs most, if not all, routers to be fundamentally upgraded,
and raises security and complexity problems. This was not
accepted by major network devices vendors, and consequently
hampered research and industrial developments in these direc-
tions. A brief survey on approaches to programmable networks
can be found in [18], where SDN is considered as a separate
proposal towards programmable networks besides three other
paradigms, namely approaches based on: 1) Improved hardware
routers such as active networks, OpenSig, Juniper Network
Operating System SDK (Junos SDK), 2) Software routers such
as Click and XORP, 3) Virtualization such as network virtual-
ization, overlay network, and virtual routers. The survey on pro-
grammable networks presented in [1] is a more comprehensive
but less recent. SDN resembles past research on programmable
networks, particularly active networking. However, while SDN
has an emphasis on programmable control plane, active net-
working focuses on programmable data planes [19].

After programmable networks, projects towards control–data
plane separation have emerged supported by efforts towards
standard open interface between control and data planes such
as the Forwarding and Control Element Separation (ForCES)
framework [20] and by efforts to enable a logically centralized
control of the network such as the Path Computation Element
Protocol (PCEP) [21] and RCP [5]. Although focusing on
control–data plane separation, these efforts rely on existing
routing protocols. Thus, these proposals do neither support a
wide range of functionalities (e.g., dropping, flooding, or mod-
ifying packets) nor do they allow for a wider range of header
fields matching [19]. These restrictions impose significant limi-
tations on the range of applications supported by programmable
controllers [19]. Furthermore, most of the aforementioned pro-
posals failed to face backwards compatibility challenges and
constraints, which inhibited immediate deployment.

To broaden the vision of control and data plane separa-
tion, researchers explored clean-slate architectures for logically
centralized control such as 4D [6], SANE [8], Ethane [9].
Clean Slate 4D project [6] was one of the first advocating the
redesign of control and management functions from the ground
up based on sound principles. SANE [8] is a single protection
layer consisting of a logically centralized server that enforces
several security policies (access control, firewall, network ad-
dress translation, etc.) within the enterprise network. And more
recently, Ethane [9] is an extension of SANE that is based on the
principle of incremental deployment in enterprise networks. In
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Ethane, two components can be distinguished; The first compo-
nent is a controller that knows the global network topology and
contains the global network policy used to determine the fate of
all packets. It also performs route computation for the permitted
flows. The second component is a set of simple and dump
Ethane switches. These switches consist of a simple flow table
and use a secure channel to communicate with the controller for
exchanging information and receiving forwarding rules. This
principle of packet processing constitutes the basis of SDN’s
proposal.

The success and fast progress of SDN are widely due to the
success of OpenFlow and the new vision of a network operating
system. Unlike previous proposals, OpenFlow specification
relies on backwards compatibility with hardware capabilities
of commodity switches. Thus, enabling OpenFlow’s initial set
of capabilities on switches did not need a major upgrade of the
hardware, which encouraged immediate deployment. In later
versions of the OpenFlow switch specification (i.e., starting
from 1.1.0), an OpenFlow-enabled switch supports a number
of tables containing multiple packet-handling rules, where each
rule matches a subset of the traffic and performs a set of
actions on it. This potentially prepares the floor for a large
set of controller’s applications with sophisticated functional-
ities. Furthermore, the deployment of OpenFlow testbeds by
researchers not only on a single campus network but also over
a wide-area backbone network demonstrated the capabilities
of this technology. Finally, a network operating system, as
envisioned by SDN, abstracts the state from the logic that
controls the behavior of the network [19], which enables a
flexible programmable control plane.

In the following sections, we present a tutorial and a compre-
hensive survey on SDN where we highlight the challenges that
have to be faced to provide better chances for SDN paradigm.

III. SDN: GLOBAL ARCHITECTURE AND MERONOMY

In this section, we present the architecture of SDN and
describe its principal components. According to the ONF, SDN
is an emerging architecture that decouples the network control
and forwarding functions. This enables the “network control to
become directly programmable and the underlying infrastruc-
ture to be abstracted for applications and network services”.2 In
such an architecture, the infrastructure devices become simply
forwarding engines that process incoming packets based on a
set of rules generated on the fly by a (or a set of) controller at the
control layer according to some predefined program logic. The
controller generally runs on a remote commodity server and
communicates over a secure connection with the forwarding
elements using a set of standardized commands. ONF presents
in [11] a high-level architecture for SDN that is vertically split
into three main functional layers:

• Infrastructure Layer: Also known as the data plane [11],
it consists mainly of Forwarding Elements (FEs) includ-
ing physical and virtual switches accessible via an open
interface and allows packet switching and forwarding.

2ONF, https://www.opennetworking.org/sdn-resources/sdn-definition

Fig. 1. SDN architecture [11], [23].

• Control Layer: Also known as the control plane [11], it
consists of a set of software-based SDN controllers provid-
ing a consolidated control functionality through open APIs
to supervise the network forwarding behavior through
an open interface. Three communication interfaces allow
the controllers to interact: southbound, northbound and
east/westbound interfaces. These interfaces will be briefly
presented next.

• Application Layer: It mainly consists of the end-user busi-
ness applications that consume the SDN communications
and network services [22]. Examples of such business
applications include network visualization and security
business applications [23].

Fig. 1 illustrates this architecture while detailing some key
parts of it, such as the control layer, the application layer, as
well as the communication interfaces among the three layers.

A SDN controller interacts with these three layers through
three open interfaces:

• Southbound: This communication interface allows the
controller to interact with the forwarding elements in the
infrastructure layer. OpenFlow, a protocol maintained by
ONF [14], is according to ONF a foundational element for
building SDN solutions and can be viewed as a promising
implementation of such an interaction. At the time of writ-
ing this paper, the latest OpenFlow version is 1.4 [14]. The
evolution of OpenFlow switch specification will be sum-
marized in later sections. Most non-OpenFlow-based SDN
solutions from various vendors employ proprietary pro-
tocols such as Cisco’s Open Network Environment Plat-
form Kit (onePK) [24] and Juniper’s contrail [25]. Other
alternatives to OpenFlow exist, for instance, the Forward-
ing and Control Element Separation (ForCES) framework
[20]. The latter defines an architectural framework with
associated protocols to standardize information exchange
between the control and forwarding layers. It has existed
for several years as an IETF proposal but it has never
achieved the level of adoption of OpenFlow. A comparison
between OpenFlow and ForCES can be found in [26].

• Northbound: This communication interface enables the
programmability of the controllers by exposing universal

https://www.opennetworking.org/sdn-resources/sdn-definition
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Fig. 2. SDN abstraction layers [29], [30].

network abstraction data models and other functionalities
within the controllers for use by applications at the ap-
plication layer. It is more considered as a software API
than a protocol that allows programming and managing
the network. At the time of writing this paper, there is no
standardization effort yet from the ONF side who is en-
couraging innovative proposals from various controllers’
developers. According to the ONF, different levels of ab-
stractions as latitudes and different use cases as longitudes
have to be characterized, which may lead to more than a
single northbound interface to serve all use cases and envi-
ronments. Among the various proposals, various vendors
are offering a REpresentational State Transfer (REST)-
based APIs [27] to provide a programmable interface to
their controller to be used by the business applications.

• East/Westbound: This interface is an envisioned commu-
nication interface, which is not currently supported by an
accepted standard. It is mainly meant for enabling com-
munication between groups or federations of controllers
to synchronize state for high availability [28].

From another perspective, several logical layers defined by
abstraction were presented for control [29] and data [30] layers.
These layers of abstractions simplify understanding of the
SDN vision, decrease network programming complexity and
facilitate reasoning about such networks. Fig. 2 compiles these
logical layers and can be described in a bottom-up approach as
follows:

• Physical Forwarding Plane: This refers to the set of phys-
ical network forwarding elements [30].

• Network Virtualization (or slicing): This refers to an ab-
straction layer that aims at providing great flexibility to
achieve operational goals, while being independent from
the underlying physical infrastructure. It is responsible for
configuring the physical forwarding elements so that the
network implements the desired behavior as specified by
the logical forwarding plane [30]. At this layer, there exist
proposals to slice network flows such as FlowVisor [13],
[30], [31].

• Logical Forwarding Plane: It is a logical abstraction of
the physical forwarding plane that provides an end-to-end
forwarding model. It allows abstracting from the physical
infrastructure. This abstraction is realized by the network
virtualization layer [30].

• Network Operating System: A Network Operating System
(NOS) may be though of as a software that abstracts the
installation of state in network switches from the logic and
applications that control the behavior of the network [4].
It provides the ability to observe and control a network
by offering a programmatic interface (NOS API) as well
as an an execution environment for programmatic control
of the network [32]. NOS needs to communicate with the
forwarding elements in two-ways: receives information
in order to build the global state view and pushes the
needed configurations in order to control the forwarding
mechanisms of these elements [29]. The concept of a
single network operating system has been extended to
distributed network operating system to accommodate
large-scale networks, such as ONOS,3 where open source
software are used to maintain consistency across dis-
tributed state and to provide a network topology database
to the applications [4].

• Global Network View: It consists of an annotated network
graph provided through an API [29].

• Network Hypervisor: Its main function is to map the
abstract network view into the global network view and
vice-versa [33].

• Abstract Network View: It provides to the applications a
minimal amount of information required to specify man-
agement policies. It exposes an “abstract” view of the
network to the applications rather than a topologically
faithful view [29].

In the following, we provide the details on the role and imple-
mentations of each layer in the architecture.

A. Forwarding Elements

In order to be useful in an SDN architecture, forwarding
elements, mainly switches, have to support a southbound API,
particularly OpenFlow. OpenFlow switches come in two fla-
vors: Software-based (e.g., Open vSwitch (OVS) [34]–[36])
and OpenFlow-enabled hardware-based implementations (e.g.,
NetFPGA [37]). Software switches are typically well-designed
and comprise complete features. However, even mature im-
plementations suffer from being often quite slow. Table I
provides a list of software switches supporting OpenFlow.
Hardware-based OpenFlow switches are typically implemented
as Application-Specific Integrated Circuits (ASICs); either us-
ing merchant silicon from vendors or using a custom ASIC.
They provide line rate forwarding for large number of ports
but lack the flexibility and feature completeness of software
implementations [38]. There are various commercial vendors
that support OpenFlow in their hardware switches including but
not limited to HP, NEC, Pronto, Juniper, Cisco, Dell, Intel, etc.

An OpenFlow-enabled switch can be subdivided into three
main elements [12], namely, a hardware layer (or datapath), a
software layer (or control path), and the OpenFlow protocol:

• The datapath consists of one or more flow tables and a
group table, which perform packet lookups and forwarding.

3Open Network Operating System (ONOS) http://www.sdncentral.com/
projects/onos-open-network-operating-system/
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TABLE I
OPENFLOW STACKS AND SWITCH IMPLEMENTATIONS

A flow table consists of flow entries each associated with
an (or a set of) action that tells the switch how to process
the flow. Flow tables are typically populated by the con-
troller. A group table consists of a set of group entries. It
allows to express additional methods of flow forwarding.

• The control path is a channel that connects the switch to
the controller for signaling and for programming purposes.
Commands and packets are exchanged through this chan-
nel using the OpenFlow protocol.

• The OpenFlow protocol [14] provides the means of com-
munication between the controller and the switches. Ex-
changed messages may include information on received
packets, sent packets, statistics collection, actions to be
performed on specific flows, etc.

The first release of OpenFlow was published by Stanford
University in 2008. Since 2011, the OpenFlow switch specifi-
cation has been maintained and improved by ONF starting from
version 1.0 [43] onward. The latter version is currently widely
adopted by OpenFlow vendors. In that version, forwarding is
based on a single flow table and matching focuses only on layer
2 information and IPv4 addresses. The support of multiple flow
tables and MPLS tags has been introduced in version 1.1, while
IPv6 support has been included in version 1.2.

In version 1.3 [44], the support for multiple parallel channels
between switches and controllers has been added. The latest
available OpenFlow switch specification published in 2013 is
version 1.4 [14]. The main included improvements are the
retrofitting of various parts of the protocol with the TLV
structures introduced in version 1.2 for extensible matching
fields and a flow monitoring framework allowing a controller
to monitor in real-time the changes to any subset of the flow
tables done by other controllers. In the rest of this paper, we
describe the OpenFlow switch specification version 1.4 [14], if
the version is not explicitly mentioned.

A flow table entry in an OpenFlow-enabled switch is consti-
tuted of several fields that can be classified as follows:

• Match fields to match packets based on a 15-tuple packet’s
header, the ingress port, and optionally packet’s meta-
data. Fig. 3 illustrates the packet header fields grouped
according to the OSI layers L1-4.

• Priority of the flow entry, which prioritizes the matching
precedence of the flow entry.

• An action set that specifies actions to be performed on
packets matching the header field. The three basic actions
are: forward the packet to a port or a set of ports, forward

Fig. 3. Flow identification in OpenFlow.

the flow’s packets to the controller and drop the flow’s
packets.

• Counters to keep track of flow statistics (the number of
packets and bytes for each flow, and the time since the last
packet has matched the flow).

• Timeouts specifying the maximum amount of time or idle
time before the flow is expired by the switch.

OpenFlow messages can be categorized into three main types
[14]: controller-to-switch, asynchronous, and symmetric. Mes-
sages initiated by the controller and used to manage or inspect
the state of the switches are the controller-to-switch messages.
A switch may initiate asynchronous messages in order to update
the controller on network events and changes to the switch’s
state. Finally, symmetric messages are initiated, without solici-
tation, by either the switch or the controller and they are used,
for instance, to test the liveliness of a controller-switch connec-
tion. Once an ingress packet arrives to the OpenFlow switch,
the latter performs lookup in the flow tables based on pipeline
processing [14]. A flow table entry is uniquely identified by its
matching fields and its priority. A packet matches a given flow
table entry if the values in the packet match those specified in
the entry’s fields. A flow table entry field with a value of ANY
(field omitted or wildcard field) matches all possible values in
the header. Only the highest priority flow entry that matches the
packet must be selected. In the case the packet matches multiple
flow entries with the same highest priority, the selected flow
entry is explicitly undefined [14]. In order to remediate to such
a scenario, OpenFlow specification [14] provides a mechanism
that enables the switch to optionally verify whether the added
new flow entry overlaps with an existing entry. Thus, a packet
can be matched exactly to a flow (microflow), matched to a flow
with wildcard fields (macroflow) or does not match any flow. In
the case of a match found, the set of actions will be performed
as defined in the matching flow table entry. In the case of no
mach, the switch forwards the packet (or just its header) to the
controller to request a decision. After consulting the associated
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TABLE II
SDN CONTROLLERS

policy located at the management plane, the controller responds
by a new flow entry to be added to the switch’s flow table. The
latter entry is used by the switch to handle the queued packet as
well as the subsequent packets in the same flow.

In order to dynamically and remotely configure OpenFlow
switches, a protocol, namely the OpenFlow Configuration and
Management Protocol (OF-CONFIG) [45], is also being main-
tained by ONF. The latter enables the configuration of essential
artifacts so that an OpenFlow controller can communicate
with the network switches via OpenFlow. It operates on a
slower time-scale than OpenFlow as it is used for instance to
enable/disableaport on a switch, to set the IP address of the
controller, etc.

B. Controllers

The controller is the core of SDN networks as it is the main
part of the NOS. It lies between network devices at the one end
and the applications at the other end. An SDN controller takes
the responsibility of establishing every flow in the network by
installing flow entries on switch devices. One can distinguish
two flow setup modes: Proactive vs. Reactive. In proactive
settings, flow rules are pre-installed in the flow tables. Thus,
the flow setup occurs before the first packet of a flow arrives
at the OpenFlow switch. The main advantages of a proactive
flow setup is a negligible setup delay and a reduction in the
frequency of contacting the controller. However, it may over-
flow flow tables of the switches. With respect to a reactive flow
setup, a flow rule is set by the controller only if no entry exists in
the flow tables and this is performed as soon as the first packet
of a flow reaches the OpenFlow switch. Thus, only the first
packet triggers a communication between the switch and the
controller. These flow entries expire after a pre-defined timeout
of inactivity and should be wiped out. Although a reactive flow
setup suffers from a large round trip time, it provides a certain
degree of flexibility to make flow-by-flow decisions while tak-
ing into account QoS requirements and traffic load conditions.
To respond to a flow setup request, the controller first checks
this flow against policies on the application layer and decides
on the actions that need to be taken. Then, it computes a path for
this flow and installs new flow entries in each switch belonging
to this path, including the initiator of the request.

With respect to the flow entries installed by the controller,
there is a design choice over the controlled flow granularity,
which raises a trade-off between flexibility and scalability based
on the requirements of network management. Although a fine

grained traffic control, called micro-flows, offers flexibility,
it can be infeasible to implement especially in the case of
large networks. As opposed to micro-flows, macro-flows can be
built by aggregating several micro-flows simply by replacing
exact bit pattern with wildcard. Applying a coarse grained
traffic control, called macro-flow, allows gaining in terms of
scalability at the cost of flexibility.

In order to get an overview on the traffic in the switches,
statistics are communicated between the controller and the
switches. There are two ways for moving the statistics from
the switch to the controller: Push-based vs. pull-based flow
monitoring. In a push-based approach, statistics are sent by
each switch to the controller to inform about specific events
such as setting up a new flow or removing a flow table entry due
to idling or hard timeouts. This mechanism does not inform the
controller about the behavior of a flow before the entry times
out, which is not useful for flow scheduling. In a pull-based
approach, the controller collects the counters for a set of flows
matching a given flow specification. It can optionally request a
report aggregated over all flows matching a wildcard specifica-
tion. While this can save switch-to-controller bandwidth, it dis-
ables the controller from learning much about the behavior of
specific flows. A pull-based approach requires tuning the delay
between controller’s requests as this may impact the scalability
and reliability of operations based on statistics gathering.

In what follows, we present a list of the most prominent ex-
isting OpenFlow controllers. Note that most of these reviewed
SDN controllers (except RYU) currently support OpenFlow
version 1.0. The controllers are summarized in Table II and
compared based on the availability of the source code, the im-
plementation language, whether multi-threading is supported,
the availability of a graphical user interface, and finally their
originators.

• NOX [32] is the first, publicly available, OpenFlow single
threaded controller. Several derivatives of NOX exist; A
multi-threaded successor of NOX, namely NOX-MT has
been proposed in [46]. QNOX [57] is a QoS-aware version
of NOX based on Generalized OpenFlow, which is an ex-
tension of OpenFlow supporting multiple layer networking
in the spirit of GMPLS. FortNox [58] is another extension
of NOX, which implements a conflict analyzer to detect
and re-conciliate conflicting flow rules caused by dynamic
OpenFlow applications insertions. Finally, POX [47] con-
troller is a pure Python controller, redesigned to improve
the performance of the original NOX controller.
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TABLE III
SDN PROGRAMMING LANGUAGES

• Maestro [48], [59], [60] takes advantage of multicore
technology to perform parallelism at low-level while keep-
ing a simple programming model for the application’s pro-
grammers. It achieves performance through distributing
tasks evenly over available working threads. Moreover,
Maestro processes a batch of flow requests at once, which
would increase its efficiency. It has been shown that on an
eight-core server, Maestro throughput may achieve a near
linear scalability for processing flow setup requests.

• Beacon [49] is built at Stanford University. It is a multi-
threaded, cross-platform, modular controller that option-
ally embeds the Jetty enterprise web server and a custom
extensible user interface framework. Code bundles in Bea-
con can be started, stopped, refreshed, and installed at run-
time, without interrupting other non-dependent bundles.

• SNAC [50] uses a web-based policy manager to monitor
the network. A flexible policy definition language and
a user friendly interface are incorporated to configure
devices and monitor events.

• Floodlight [52] is a simple and performent Java-based
OpenFlow Controller that was forked from Beacon. It has
been tested using both physical and virtual OpenFlow-
compatible switches. It is now supported and enhanced by
a large community including Intel, Cisco, HP, and IBM.

• McNettle [53] is an SDN controller programmed
with Nettle [61], a Domain-Specific Language (DSL)
embedded in Haskell, that allows programming OpenFlow
networks in a declarative style. Nettle is based on the
principles of Functional Reactive Programming (FRP)
that allows programming dynamic controllers. McNettle
operates on shared-memory multicore servers to achieve
global visibility, high throughput, and low latency.

• RISE [51], for Research Infrastructure for large-Scale
network Experiments, is an OpenFlow controller based
on Trema.4 The latter is an OpenFlow stack framework
based on Ruby and C. Trema provides an integrated testing
and debugging environment and includes a development
environment with an integrated tool chain.

• MUL [54] is a C-based multi-threaded OpenFlow SDN
controller that supports a multi-level northbound interface
for hooking up applications.

• RYU [55] is a component-based SDN framework. It is
open sourced and fully developed in python. It allows layer
2 segregation of tenants without using VLAN. It supports
OpenFlow v1.0, v1.2, v1.3, and the Nicira Extensions.

• OpenDaylight [56] is an open source project and a soft-
ware SDN controller implementation contained within its

4http://trema.github.com/trema/

own Java virtual machine. As such, it can be deployed on
any hardware and operating system platform that supports
Java. It supports the OSGi framework [62] for local con-
troller programmability and bidirectional REST [27] for
remote programmability as northbound APIs. Companies
such as ConteXtream, IBM, NEC, Cisco, Plexxi, and
Ericsson are actively contributing to OpenDaylight.

C. Programming SDN Applications

SDN applications interact with the controllers through the
northbound interface to request the network state and/or to
request and manipulate the services provided by the network.
While the southbound interface between the controller software
and the forwarding elements is reasonably well-defined through
standardization efforts of the underlying protocols such as
OpenFlow and ForCES, there is no standard yet for the inter-
actions between controllers and SDN applications. This may
stem from the fact that the northbound interface is more a set of
software-defined APIs than a protocol exposing the universal
network abstraction data models and the functionality within
the controller [23]. Programming using these APIs allows SDN
applications to easily interface and reconfigure the network and
its components or pull specific data based on their particular
needs [63]. From the one hand, northbound APIs can enable
basic network functions including path computation, routing,
traffic steering, and security. From the other hand, they also
allow orchestration systems such as the OpenStack Quantum
[64] to manage network services in a cloud.

SDN programming frameworks consist generally of a pro-
gramming language and eventually the appropriate tools for
compiling and validating the OpenFlow rules generated by the
application program as well as for querying the network state
(see Table III). SDN programming languages can be compared
according to three main design criteria: the level of abstraction
of the programming language, the class of language it belongs
to, and the type of programmed policies:

• Level of Abstraction: Low-Level vs. High-Level. Low-
level programming languages allow developers to deal
with details related to OpenFlow, whereas high-level pro-
gramming languages translate information provided by the
OpenFlow protocol into a high-level semantics. Translat-
ing the information provided by the OpenFlow protocol
into a high-level semantics allows programmers to focus
on network management goals instead of details of low-
level rules.

• Programming: Logic vs. Functional Reactive. Most of the
existing network management languages adopt the declar-
ative programming paradigm, which means that only the

http://trema.github.com/trema/
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logic of the computation is described (what the program
should accomplish), while the control flow (how to accom-
plish it) is delegated to the implementation. Nevertheless,
there exist two different programming fashions to express
network policies: Logic Programming (LP) and Functional
Reactive Programming (FRP). In logic programming, a
program is constituted of a set of logical sentences. It
applies particularly to areas of artificial intelligence. Func-
tional reactive programming [65] is a paradigm that pro-
vides an expressive and a mathematically sound approach
for programming reactive systems in a declarative manner.
The most important feature of FRP is that it allows to
capture both continuous time-varying behaviors and event-
based reactivity. It is consequently used in areas such as
robotics and multimedia.

• Policy Logic: Passive vs. Active. A programming language
can be devised to develop either passive or active policies.
A passive policy can only observe the network state,
while an active policy is programmed to reactively affect
the network-wide state as a response to certain network
events. An example of a reactive policy is to limit the
network access to a device/a user based on a maximum
bandwidth usage.

In the following we examine the most relevant programming
frameworks proposed for developing SDN applications.

1) Frenetic [66], [67]: It is a high-level network program-
ming language constituted of two levels of abstraction. The
first is a low-level abstraction that consists of a runtime system
that translates high-level policies and queries into low-level
flow rules and then issues the needed OpenFlow commands
to install these rules on the switches. The second is a high-
level abstraction that is used to define a declarative network
query language that resembles the Structured Query Language
(SQL) and a FRP-based network policy management library.
The query language provides means for reading the state of the
network, merging different queries, and expressing high-level
predicates for classifying, filtering, transforming, and aggre-
gating the packets’ streams traversing the network. To govern
packet forwarding, the FRP-based policy management library
offers high-level packet-processing operators that manipulate
packets as discrete streams only. This library allows reasoning
about a unified architecture based on “see every packet” ab-
straction and describing network programs without the burden
of low-level details. Frenetic language offers operators that
allows combining policies in a modular way, which facilitates
building new tools out of simpler reusable parts. Frenetic has
been used to implement many services such as load balancing,
network topology discovery, fault tolerance routing and it is
designed to cooperate with the controller NOX.

Frenetic defines only parallel composition, which gives each
application the illusion of operating on its own copy of each
packet. Monsanto et al. [71] defines an extension to Frenetic
language with a sequential composition operator so that one
module acts on the packets produced by another module. Fur-
thermore, an abstract packet model was introduced to allow
programmers extending packets with virtual fields used to
associate packets with high-level meta-data and topology ab-

straction. This abstraction allows to limit the scopes of network
view and module’ actions, which achieves information hiding
and protection, respectively.

2) NetCore [68]: It is a successor of Frenetic that en-
riches the policy management library of Frenetic and proposes
algorithms for compiling monitoring policies and managing
controller-switch interactions. NetCore has a formal semantics
and its algorithms have been proved correct. NetCore defines
a core calculus for high-level network programming that ma-
nipulates two components: Predicates, which match sets of
packets, and policies, which specify locations where to forward
these packets. Set-theoretic operations are defined to build more
complex predicates and policies from simple ones. Contrarily
to Frenetic, NetCore compiler uses wildcard rules to generate
switch classifiers (sets of packet-forwarding rules), which in-
creases the efficiency of packets processing on the switches.

3) Nettle [61]: It is another FRP-based approach for pro-
gramming OpenFlow networks that is embedded in Haskell
[72], a strongly typed language. It defines signal functions that
transform messages issued from switches into commands gen-
erated by the controller. Nettle allows to manipulate continuous
quantities (values) that reflect abstract properties of a network,
such as the volume of messages on a network link. It provides a
declarative mechanism for describing time-sensitive and time-
varying behaviors such as dynamic load balancing. Compared
to Frenetic, Nettle is considered as a low-level programming
language, which makes it more appropriate for programming
controllers. However, it can be used as a basis for developing
higher level DSL for different tasks such as traffic engineering
and access control. Moreover, Nettle has a sequential operator
for creating compound commands but lacks a support for
composing modules affecting overlapping portions of the flow
space, as it is proposed by Frenetic.

4) Procera [70]: It is an FRP-based high-level language
embedded in Haskell. It offers a declarative, expressive, exten-
sible, and compositional framework for network operators to
express realistic network policies that react to dynamic changes
in network conditions. These changes can be originated from
OpenFlow switches or even from external events such as user
authentication, time of the day, measurements of bandwidth,
server load, etc. For example, access to a network can be denied
when a temporal bandwidth usage condition occurs.

5) Flow-Based Management Language (FML) [69]: It is a
declarative language based on non-recursive Datalog, a declar-
ative logic programming language. A FML policy file consists
of a set of declarative statements and may include additionally
external references to, for instance, SQL queries. While the
combination of policies statements written by different authors
is made easy, conflicts are susceptible to be created. Therefore,
a conflict resolution mechanism is defined as a layer on top
of the core semantics of FML. For each new application of
FML, developers can define a set of keywords that they need
to implement. FML is written in C++ and Python and operates
within NOX. Although FML provides a high-level abstraction,
contrarily to Procera, it lacks expressiveness for describing
dynamic policies, where forwarding decisions change over
time. Moreover, FML policies are passive, which means they
can only observe the network state without modifying it.
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IV. SDN TAXONOMY

The first step in understanding SDN is to elaborate a classi-
fication using a taxonomy that simplifies and eases the under-
standing of the related domains. In the following, we elaborate
a taxonomy of the main issues raised by the SDN networking
paradigm and the solutions designed to address them. Our
proposed taxonomy provides a hierarchical view and classifies
the identified issues and solutions per layer: infrastructure,
control, and application. We also consider inter-layers, mainly
application/control, control/infrastructure, and application/
control/infrastructure.

While reviewing the literature, we found only two tax-
onomies where each focuses on a single aspect of SDN: The
first is a taxonomy based on switch-level SDN deployment
provided by Gartner in a non public report [73], that we will not
detail here, and the second focuses abstractions for the control
plane [18]. The latter abstractions are meant for ensuring com-
patibility with low-level hardware/software and enabling mak-
ing decisions based on the entire network. The three proposed
control plane abstractions in [18], [74] are as follows:

• Forwarding Abstraction: A flexible forwarding model
that should support any needed forwarding behavior and
should hide details of the underlying hardware. This cor-
responds to the aforementioned logical forwarding plane.

• Distributed State Abstraction: This abstraction aims at
abstracting away complex distributed mechanisms (used
today in many networks) and separating state manage-
ment from protocol design and implementation. It allows
providing a single coherent global view of the network
through an annotated network graph accessible for control
via an API. An implementation of such an abstraction is a
Network Operating System (NOS).

• Specification (or Configuration) Abstraction: This layer
allows specifying the behavior of desired control require-
ments (such as access control, isolation, QoS, etc.) on the
abstract network model and corresponds to the abstract
network view as presented earlier.

Each one of these existing taxonomies focuses on a single
specific aspect and we believe that none of them serves our
purpose. Thus, we present in the following a hierarchical
taxonomy that comprises three-levels: the SDN layer (or
layers) of concern, the identified issues according to the SDN
layer (or layers), and the proposed solutions in the literature
to address these issues. In the following, we elaborate on our
proposed taxonomy.

A. Infrastructure Layer

At this layer, the main issues identified in the literature are
the performance and scalability of the forwarding devices as
well as the correctness of the flow entries.

1) Performance and Scalability of the Forwarding Devices:
To tackle performance and scalability issues at this layer, three
main solution classes can be identified and they are described
as follows:

• Switches Resources Utilization: Resources on switches
such as CPU power, packet buffer size, flow tables size,

and bandwidth of the control datapath are scarce and may
create performance and scalability issues at the infrastruc-
ture layer. Works tackling this class of problems propose
either optimizing the utilization of these resources, or
modifying the switches hardware and architecture.

• Lookup Procedure: The implementation of the switch
lookup procedure may have an important impact on the
performance at the switch-level. A trade-off exists be-
tween using hardware and/or software tables since the first
type of tables are expensive resources and the implementa-
tion of the second type of table may add lookup latencies.
Works tackling this class of problems propose to deal with
this trade-off.

2) Correctness of Flow Entries: Several factors may lead
to problems of inconsistencies and conflicts within OpenFlow
configurations at the infrastructure level. Among these factors,
the distributed state of the OpenFlow rules across various flow
tables and the involvement of multiple independent Open-
Flow rules writers (administrators, protocols, etc.). Several
approaches have been proposed to tackle this issue and the
solutions can be classified as follows:

• Run-Time Formal Verification: In this thread, the verifica-
tion is performed at run-time, which allows to capture the
bugs before damages occur. This class of solutions is based
on formal methods such as model checking.

• Offline Formal Verification: In this case, the formal ver-
ification is performed offline and the check is only run
periodically.

B. Control Layer

As far as network control is concerned, the identified critical
issues are performance, scalability, and reliability of the con-
troller and the security of the control layer.

1) Performance, Scalability, and Reliability: The control
layer can be a bottleneck of the SDN networks if relying on a
single controller to manage medium to large networks. Among
envisioned solutions, we can find the following categories:

• Control Partitioning: Horizontal or Vertical. In large SDN
networks, partitioning the network into multiple controlled
domains should be envisaged. We can distinguish two
main types of control plane distribution [75]:

– Horizontally distributed controllers: Multiple con-
trollers are organized in a flat control plane where each
one governs a subset of the network switches. This de-
ployment comes in two flavors: with state replication
or without state replication.

– Vertically distributed controllers: It is a hierarchical
control plane where the controllers’ functionalities are
organized vertically. In this deployment model, control
tasks are distributed to different controllers depending
on criteria such as network view and locality require-
ments. Thus, local events are handled to the controller
that are lower in the hierarchy and more global events
are handled at higher level.

• Distributed Controllers Placement: Distributed controllers
may solve the performance and scalability issue, however,
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they raise a new issue, which is determining the number
of the needed controllers and their placement within the
controlled domain. Research works in this direction aim at
finding an optimized solution for this problem.

2) Security of the Controller: The scalability issue of the
controller enables targeted flooding attacks, which leads to
control plane saturation. Possible solutions to this problem
is Adding Intelligence to the Infrastructure. The latter relies
on adding programmability to the infrastructure layer, which
prevents the congestion of the control plane.

C. Application Layer

At this layer, we can distinguish two main research direc-
tions studied in the literature: developing SDN applications to
manage specific network functionalities and developing SDN
applications for managing specific environments (called use
cases).

1) SDN Applications: At this layer, SDN applications inter-
act with the controllers to achieve a specific network function in
order to fulfill the network operators needs. We can categorize
these applications according to the related network functional-
ity or domain they achieve including security, quality of service
(QoS), traffic engineering (TE), universal access control lists
(U-ACL) management, and load balancing (LB).

2) SDN Use Cases: From the other side, several SDN ap-
plications are developed in order to serve a specific use case
in a given environment. Among possible SDN uses cases, we
focus on the application of SDN in cloud computing, Infor-
mation Content Networking (ICN), mobile networks, network
virtualization, and Network Function Virtualization (NFV).

D. Control/Infrastructure Layers

In this part of the taxonomy, we focus on issues that may span
control and infrastructure layers and the connection between
them.

1) Performance and Scalability: In the SDN design vision
of keeping data plane simple and delegating the control task
to a logically centralized controller, the switches-to-controller
connection tends to be highly solicited. This adds latency to the
processing of the first packets of a flow in the switches’ buffers
but can lead to irreversible damage to the network such as loss
of packets and palatalization of the whole network. In order to
tackle this issue, we mainly found a proposal on Control Load
Devolving. The latter is based on the delegation of some of the
control load to the infrastructure layer to alleviate the frequency
by which the switches contact the controller.

2) Network Correctness: The controller is in charge of in-
structing the switches in the data plane on how to process the
incoming flows. As this dynamic insertion of forwarding rules
may cause potential violation of network properties, verifying
network correctness at run-time is essential in keeping the
network operational. Among the proposed solutions we cite
the use of Algorithm for Run-time Verification to deal with
checking correctness of the network while inserting new for-
warding rules. The verification involves checking network-wide

policies and invariants such as absence of loops and reachability
properties.

E. Application/Control Layers

Various SDN applications are developed by different net-
work administrators to manage network functionalities by pro-
gramming the controller’s capabilities. Two main issues were
examined in this context: Policy correctness and the north-
bound interface security threats represented by adversarial SDN
applications.

1) Policy Correctness: Conflicts between OpenFlow rules
may occur due to multiple requests made by several SDN
applications. Different solutions are proposed for conflicts de-
tection and resolution that can be classified as either approaches
for Run-time Formal Verification using well-established formal
methods or Custom Algorithm for Run-time Verification.

2) Northbound Interface Security: Multiple SDN applica-
tions may request a set of OpenFlow rule insertions, which may
lead to the possible creation of security breaches in the ongoing
OpenFlow network configuration. Among the envisaged solu-
tions is the use of a Role-based Authorization model to assign a
level of authorization to each SDN application.

F. Application/Control/Infrastructure Layers

The decision taken by the SDN application deployed at the
application layer influence the OpenFlow rules configured at
the infrastructure layer. This influence is directed via the control
layer. In this part of the taxonomy, we focus on issues that
concern all of the three SDN layers.

1) Policy Updates Correctness: Modification in policies
programmed by the SDN applications may result in inconsistent
modification of the OpenFlow network configurations. These
changes in configurations are common source of network in-
stability. To prevent such a critical problem, works propose
solutions to verify and/or ensure consistent updates. Thus we
enumerate two classes of solutions

• Formal Verification of Updates: Formal verification ap-
proaches, such as model-checking, are mainly used to
verify that updates are consistent (i.e., updates preserve
well-defined behaviors when transitioning between con-
figurations).

• Update Mechanism/Protocol: This class of solutions pro-
poses a mechanism or protocol that ensures that updates
are performed without introducing inconsistent transient
configurations.

2) Network Correctness: While the network correctness at
the Control/Infrastructure layers is more about the newly
inserted OpenFlow rules and the existing ones at the in-
frastructure layer, network correctness at Application/Control/
Infrastructure concerns the policy specified by the applications
and the existing OpenFlow rules. Among the proposed solu-
tions is Offline Testing, which uses testing techniques to check
generic correctness properties such as no forwarding loops or
no black holes and application-specific properties over SDN
networks taking into account the three layers.
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Fig. 4. Overview of the surveyed research works classified according to the proposed taxonomy.

V. SDN ISSUES AND RESEARCH DIRECTIONS

In this section, we present a survey on the most relevant
research initiatives studying problematic issues raised by SDN
and providing proposals towards supporting the adoption of
SDN concepts in today’s networks. The reviewed works are
organized using our taxonomy: either belonging to a specific

functional layer or concerning a cross-layer issue. We identified
a set of most critical concerns that may either catalyze the
successful growth and adoption of SDN or refrain its advance.
These concerns are scalability, performance, reliability, correct-
ness, and security. Fig. 4 provides an overview of the reviewed
research work classified using our taxonomy.
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TABLE IV
SURVEY ON INITIATIVES ADDRESSING PERFORMANCE AND SCALABILITY AT THE INFRASTRUCTURE LAYER

A. Infrastructure Layer

1) Performance and Scalability: Despite the undeniable ad-
vantages brought by SDN since its inception, it has introduced
several concerns including scalability and performance. These
concerns stem from various aspects including the implementa-
tion of the OpenFlow switches. The most relevant switch-level
problems that limit the support of the SDN/OpenFlow paradigm
are as follows:

• Flow Tables Size. The CAM is a special type of memory
that is content addressable. CAM is much faster than
RAM as it allows parallel lookup search. A TCAM, for
ternary CAM, can match 3-valued inputs: ‘0’, ‘1’ and
‘X’ where ‘X’ denotes the “don’t care” condition (usually
referred to as wildcard condition). Thus, a TCAM entry
typically requires a greater number of entries if stored in
CAM. With the emergence of SDN, the volume of flow
entries is expected to grow several orders higher than in
traditional networks. This is due to the fact that OpenFlow
switches rely on a fine grained management of flows
(microflows) to maintain complete visibility in a large
OpenFlow network. However, TCAM entries are a rela-
tively expensive resource in terms of ASIC area and power
consumption.

• Lookup Procedure. Two types of flow tables exist: hash
table and linear table. Hash table is used to store mi-
croflows where the hash of the flow is used as an index for
fast lookups. The hashes of the exact flows are typically
stored in Static RAM (SRAM) on the switch. One draw-
back of this type of memory is that it is usually off-chip,
which causes lookup latencies. Linear tables are typically

used for storing macroflows and are usually implemented
in TCAM, which is most efficient to store flow entries
with wildcards. TCAM is often located on the switching
chip, which decreases lookup delays. In ordinary switches,
lookup mechanism is the main operation that is performed,
whereas in OpenFlow-enabled switches, other operations
are considered, especially the “insert” operation. This can
lead to a higher power dissipation and a longer access
latency [76] than in regular switches.

• CPU Power. For a purely software-based OpenFlow
switch, every flow is handled by the system CPU and thus,
performance will be determined by the switches’ CPU
power. Furthermore, CPU is needed in order to encapsu-
late the packet to be transmitted to the controller for a
reactive flow setup through the secure channel. However,
in traditional networks, the CPU on a switch was not
intended to handle per-flow operations, thus, limiting the
supported rate of OpenFlow operations. Furthermore, the
limited power of a switch CPU can restrict the bandwidth
between the switch and the controller, which will be
discussed in the cross-layer issues.

• Bandwidth Between CPU and ASIC. The control datapath
between the ASIC and the CPU is typically a slow path as
it is not frequently used in traditional switch operation.

• Packet Buffer Size The switch packet buffer is character-
ized by a limited size, which may lead to packet drops and
cause throughput degradation.

Various research works [37], [76]–[81] addressed one or
more of these issues to improve performance and scalability of
SDN data plane, and specifically of OpenFlow Switches. These
works are summarized in Table IV.
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TABLE V
SURVEY ON INITIATIVES ADDRESSING CORRECTNESS ISSUES

2) Correctness of Flow Entries: More than half of network
errors are due to misconfiguration bugs [140]. Misconfiguration
has a direct impact on the security and the efficiency of the
network because of forwarding loops, content delivery fail-
ure, isolation guarantee failure, access control violation, etc.
Skowyra et al. [84] propose an approach based on formal meth-
ods to model and verify OpenFlow learning switches network
with respect to properties such as network correctness, net-
work convergence, and mobility-related properties. The verified
properties are expressed in LTL and PCTL∗ and both SPIN
and PRISM model-checkers are used. McGeer [83] discusses
the complexity of verifying OpenFlow networks. Therein, a
network of OpenFlow switches is considered as an acyclic net-
work of high-dimensional Boolean functions. Such verification
is shown to be NP-complete by a reduction from SAT. Further-
more, restricting the OpenFlow rule set to prefix rules makes
the verification complexity polynomial. FlowChecker [82] is
another tool to analyze, validate, and enforce end-to-end Open-

Flow configuration in federated OpenFlow infrastructures. Var-
ious types of misconfiguration are investigated: intra-switch
misconfiguration within a single FlowTable as well as inter-
switch or inter-federated inconsistencies in a path of OpenFlow
switches across the same or different OpenFlow infrastruc-
tures. For federated OpenFlow infrastructures, FlowChecker is
run as a master controller communicating with various con-
trollers to identify and resolve inconsistencies using symbolic
model-checking over Binary Decision Diagrams (BDD) to
encode OpenFlow configurations. These works are compared
in Table V.

B. Control Layer

1) Performance, Scalability, and Reliability: Concerns
about performance and scalability have been considered as
major in SDN since its inception. The most determinant factors
that impact the performance and scalability of the control
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plane are the number of new flows installs per second that the
controller can handle and the delay of a flow setup. Benchmarks
on NOX [32] showed that it could handle at least 30.000 new
flow installs per second while maintaining a sub 10-ms flow
setup delay [142]. Nevertheless, recent experimental studies
suggest that these numbers are insufficient to overcome
scalability issues. For example, it has been shown in [143]
that the median flow arrival rate in a cluster of 1500 servers
is about 100.000 flows per second. This level of performance,
despite its suitability to some deployment environments such
as enterprises, leads to raise legitimate questions on scaling
implications. In large networks, increasing the number of
switches results in augmenting the number of OpenFlow
messages. Furthermore, networks with large diameters may
result in an additional flow setup delay. At the control layer, the
partitioning of the control, the number and the placement of
controllers in the network, and the design and implementation
choices of the controlling software are various proposals to
address these issues.

The deployment of SDN controller may have a high impact
on the reliability of the control plane. In contrast to traditional
networks where one has to deal with network links and nodes
failures only, SDN controller and the switches-to-controllers
links may also fail. In a network managed by a single con-
troller, the failure of the latter may collapse the entire network.
Moreover, in case of failure in OpenFlow SDN systems, the
number of forwarding rules that need to be modified to recover
can be very large as the number of hosts grows. Thus, ensuring
the reliability of the controlling entity is vital for SDN-based
networks.

As for the design and implementation choices, some works
suggest to take benefit from the multi-core technology and pro-
pose multi-threaded controllers to improve their performance.
Nox-MT [46], Maestro [48] and Beacon [49] are examples
of such controllers. Tootoonchian et al. [46] show through
experiments that multi-threaded controllers exhibit better per-
formance than single-threaded ones and may boost the perfor-
mance by an order of magnitude.

In the following, we focus first on various frameworks
proposing specific architectures for partitioning the control
plane and then discuss works proposing solutions to determine
the number of needed controllers and their placement in order
to tackle performance issues.

Control Partitioning: Several proposals [85]–[89] suggest
an architectural-based solution that employs multiple con-
trollers deployed according to a specific configuration. Hy-
perflow [85] is a distributed event-based control plane for
OpenFlow. It keeps network control logically centralized but
uses multiple physically distributed NOX controllers. These
controllers share the same consistent network-wide view and
run as if they are controlling the whole network. For the
sake of performance, HyperFlow instructs each controller to
locally serve a subset of the data plane requests by redirecting
OpenFlow messages to the intended target. HyperFlow is im-
plemented as an application over NOX [32] and it is in charge
of proactively and transparently pushing the network state to
other controllers using a publish/subscribe messaging system.
Based on the latter system, HyperFlow is resilient to network

partitions and components failures and allows interconnecting
independently managed OpenFlow networks while minimizing
the cross-region control traffic.

Onix [86] is another distributed control platform, where
one or multiple instances may run on one or more clustered
servers in the network. Onix controllers operate on a global
view of the network state where the state of each controller
is stored in a Network Information Base (NIB) data structure.
To replicate the NIB over instances, two choices of data stores
are offered with different degrees of durability and consistency:
a replicated transactional database for state applications that
favor durability and strong consistency and a memory-based
one-hop Distributed Hash table (DHT) for volatile state that
is more tolerant to inconsistencies. Onix supports at least two
control scenarios. The first is horizontally distributed Onix in-
stances where each one is managing a partition of the workload.
The second is a federated and hierarchical structuring of Onix
clusters where the network managed by a cluster of Onix nodes
is aggregated so that it appears as a single node in a separate
cluster’s NIB. In this setting, a global Onix instance performs a
domain-wide traffic engineering. Control applications on Onix
handle four types of network failures: forwarding element
failures, link failures, Onix instance failures, and failures in
connectivity between network elements and Onix instances as
well as between Onix instances themselves.

The work in [87] proposes a deployment of horizontally
distributed multiple controllers in a cluster of servers, each
installed on a distinct server. At any point in time, a single
master controller that has the smallest system’s load is elected
and is periodically monitored by all of the other controllers
for possible failure. In case of failure, master reelection is
performed. The master controller dynamically maps switches
to controllers using IP aliasing. This allows dynamic addition
and removal of controllers to the cluster and switch migration
between controllers and thus deals with the failure of a con-
troller and a switch-to-controller link.

These aforementioned frameworks allow reducing the limi-
tations of a centralized controller deployment but they overlook
an important aspect, which is the fact that not all applications
require a network-wide state. In SDN, it belongs to the con-
troller to maintain a consistent global state of the network.
Observation granularity refers to the set of information en-
closed in the network view. Controllers generally provide some
visibility of the network under control including the switch-
level topology such as links, switches, hosts, and middelboxes.
This view is referred to as a partial network-wide view, whereas
a view that accounts for the network traffic is considered as a
full network-wide view. Note that a partial network-wide view
changes at a low pace and consequently it can be scalably
maintained. Based on this observation, Kandoo [88] proposes a
two-layered hierarchy; A bottom controllers layer, closer to the
data plane, that have neither interconnection nor knowledge of
the network-wide state. They run only local control applications
(i.e., functions using the state of a single switch), handle most
of the frequent events, and effectively shield the top layer. The
top layer runs a logically centralized controller (root controller)
that maintains the network-wide state and thus runs applica-
tions requiring access to this global view. It is also used for
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TABLE VI
SDN CONTROL FRAMEWORKS

coordinating between local controllers, if needed. The root
top layer controller can be a single controller or horizontally
distributed controller such as Onix [86] or HyperFlow [85].
The work in [141] proposes a solution based on the primary-
backup technique to increase control plane resiliency to failure
in the case of a centralized architecture. A component, namely
CPRecovery, is designed to provide a seamless transition be-
tween a failure state and a backup, consistent with the latest
network’s failure-free state. In this solution, one or more backup
secondary controllers are maintained consistent with respect
to the last consistent state of the primary controller. In case
of failure of the primary controller, one of these secondary
controllers is elected to shoulder smoothly the control tasks
from the last valid state. This solution adds to the OpenFlow
protocol, which provides the means to configure one or more
backup controllers, a coordination mechanism between the pri-
mary controller and the backup ones. Replicating the controller
allows to overcome the controller failure issue but does not
solve the scalability concern.

FlowVisor [13], [30], [31] slices the network in order to
allow multiple network’s tenants to share the same physical
infrastructure. It acts as a transparent proxy between OpenFlow
switches and various guest network operating systems. Table VI
summarizes and compares these aforementioned works on
control partitionning.

The work in [144] addresses the problem of overloaded con-
trollers due to statically configured mapping between switches
and controllers in a distributed SDN controllers environment.
This is the case for instance for HyperFlow [85] and Onix
[86]. A controller may become overloaded if the switches
statically attached to it suddenly observe a large number of
flows, while other controllers remain underutilized. To solve
this problem Dixit et al. [144] propose an elastic distributed
controller architecture, namely ElastiCon, where new controller
instances may be added or removed from a pool and a proposed
protocol dynamically assigns switches to controllers according
to traffic conditions change over time. The proposed protocol
is designed to minimally affect the normal operation of the
network while guaranteeing consistency and reliability.

Controllers Placement: As explained above, distributed con-
troller deployments allow to alleviate performance, scalability,
and reliability problems. However, they introduce other new
concerns that need to be investigated and addressed. The most
relevant ones are the number and placement of the controllers
and the global state inconsistency.

In [90], the problems of deciding on the number of con-
trollers to use and their placement within the topology are dis-
cussed. The efficiency of various proposed placement solutions
is compared based on the switch-to-controller latency, which
is one of the most important performance metrics, especially
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in wide area networks. They concluded that there is no general
placement rules that apply to every network. Rather, the number
of controllers to be used and their placement depend on the
network topology on the one side, and the trade-off between the
availability and the performance metrics fixed by the network
operator on the other side. Hu et al. [91] propose algorithms
to automate the placement decisions given a physical network,
the number of controllers, and a pre-defined objective func-
tion to optimize. The main objective of these algorithms is
to maximize resiliency of SDN to failures. In [92], a study
has been conducted on how the physically distributed control
plane state impacts the performance of the logically centralized
control applications. Two trade-offs have been studied through
experiments on load balancing applications: the trade-off be-
tween the application performance and the state distribution
overhead, and the trade-off between the robustness to inconsis-
tency and the complexity of the control applications. The study
concluded that inconsistency has a significant impact on control
applications, which means that the application logic should
be aware of the state distribution, like in Onix, for a better
performance.

Even though performance and scalability issues have been
always coined to SDN, [145] arguments that these concerns are
neither caused by nor fundamentally unique to SDN and they
can be addressed without losing the benefits of SDN.

2) Security: Shin et al. [93] propose AVANT-GUARD, a
new framework that tackles SDN security issues by adding
intelligence to the OpenFlow data plane. AVANT-GUARD
enables the control plane and the SDN network to be more
resilient and scalable against control plane saturation attacks
such as TCP-SYN flood. It articulates around two modules. The
first is a connection migration module that allows increasing
the Open-Flow network resilience and scalability by preventing
from saturation attacks (spoofed and non-spoofed flooding
attacks). This is achieved by inspecting the TCP sessions at
the data plane before notifying the controller. The second
module, called the actuating trigger, enables the controller to
push into the data plane rules for detecting and responding to
the observed threats. This is realized through a more efficient
collection of network statistics and by automatically setting
specific flow rules under some predefined conditions. To imple-
ment AVANT-GUARD, OpenFlow switch specification needs
to be extended with new adequate commands to handle modules
operations.

C. Application Layer

1) SDN Applications: The SDN paradigm allows multi-
ple network administrators to govern various network flows
through their own services and applications. In the following,
we focus on some specific services, namely security, QoS,
traffic engineering, universal ACL management, and load bal-
ancing. For each service, we show how SDN overcomes issues
existing in traditional networks.

Security: Thanks to its capacity to provide a global network
state observation, a logically centralized control intelligence,
and a standardized programmability of network devices, SDN
constitutes a great opportunity to design and deploy novel

effective solutions or to improve on existing ones in order to
address network security issues. For instance, in traditional
networks, Anomaly Detection Systems (ADS) are generally
deployed in the network core of the service provider in order
to protect home and office networks from security threats.
Mehdi et al. [94] propose to bring ADS from network core
to home networks using SDN. They devise a framework com-
posed of four anomaly detection algorithms implemented as
application for the controller NOX. They showed that these
algorithms allow applying a higher accurate security policing
when deployed in SDN home networks compared to a network
core deployment.

Braga et al. [95] propose a security application to detect
Distributed Denial of Service (DDoS) attacks for NOX con-
trollers. In their approach, the controller retrieves the informa-
tion needed about the traffic flow features that are specific to
DDoS attacks including average packets per flow, average bytes
per flow, and growth of single flows. Then, this information
is processed by the Self-Organizing Map (SOM) mechanism,
an artificial neural network, to identify abnormal traffic by
classifying it either as normal traffic or an attack-related traffic.
It has been proved that the technique achieves a high rate
of detection and a low rate of false alarms. Jafarian et al.
[96] define a countermeasure against network scanning based
on SDN. They propose a technique for IP address mutation
based on a central management authority. This would prevent
attackers from making the right hypotheses about IP addresses
assignment in the network. The strength of the technique lies
in the fact that monitoring in an SDN network is centralized,
which allows efficiently coordinating IP mutation across Open-
Flow switches with minimal overhead.

FleXam [98] is an OpenFlow extension that implements
probabilistic and deterministic per-flow sampling techniques.
This extension allows the controller accessing useful packet-
level information while keeping a minimum overhead. The
pulled information can be used to implement efficient network
security OpenFlow controller applications, that need packet-
level information to perform properly, such as port scan de-
tection, worm detection and botnet detection. Giotis et al. [97]
propose a real-time, modular and scalable OpenFlow-based
anomaly detection architecture. The solution is constituted of
three main modules. The collector module gathers data based
on sFLow [146], a flow monitoring mechanism utilizing packet
sampling. The output of the collector module is periodically fed
to the anomaly detection module in order to identify potential
attacks. As soon as an anomaly is detected, specific network
metrics are inspected, correlated and exposed to the mitigation
module. The latter issues and installs appropriate flow entries
to neutralize the identified attacks by blocking the malicious
traffic. It has been shown that the proposed solution success-
fully detects DDoS attacks, worm propagation, and port scan
attacks.

Quality of Service: Quality of service provisioning has been
for a long time a chronic issue in traditional networks and a
source of operating expenses and risk that is based on delivering
differentiated types of quality to network end-users. This is
partly due to the closed interface of networking equipments,
the completely distributed hop-by-hop routing architecture of
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the Internet and to the lack of a synthetic picture of the overall
network and resources. SDN can solve several network QoS
challenges by offering a complete network visibility and open-
ing networking devices to programmability. Only few papers
focus on such an issue. Egilmez et al. [99] propose dynamic
QoS routing mechanism called OpenQoS that is specifically
designed for delivering multimedia traffic with QoS. OpenQoS
was implemented for the Floodlight controller. In addition to
preliminary research initiatives [30], [100], the ONF is actively
enhancing the QoS support in OpenFlow. Historically, only
experimental QoS support has been introduced in OpenFlow
version 0.8. In OpenFlow 1.0 [43], packets can be forwarded
to queues of output ports by the optional enqueue action that is
renamed to set_queue in version 1.3 [44]. Therein, the behavior
of the queue is determined outside the scope of OpenFlow.
Complex QoS support was introduced in OpenFlow 1.3 with
meter tables that consist of entries defining per-flow meters.
These meters enable OpenFlow to implement various simple
QoS operations, such as rate-limiting. These meters can be
combined with the optional set_queue action, which associates
a packet to a per-port queue in order to implement complex QoS
frameworks, such as DiffServ [44].

Traffic Engineering: Traffic engineering or traffic manage-
ment is a method for dynamically analyzing, regulating, and
predicting the behavior of data flowing in networks with the
aim of performance optimization to meet Service-Level Agree-
ments (SLAs). Traffic engineering in traditional networks is
still a challenging task since it is based on the deployment
of excessively expensive infrastructures. SDN offers both the
complete visibility of the network-wide view and the ability
to externally program network devices by dynamically pro-
visioning forwarding tables. This allows choosing the most
efficient paths based on application requirements and on real-
time information. Centralized traffic engineering in WAN using
SDN is already adopted by Google [101]. As a first step towards
achieving traffic engineering through SDN, authors in [102]
explored an SDN-based integrated network control architecture
for configuring and optimizing the network to fit better to big
data applications requirements, using dynamically configurable
optical circuits. However, flow-level traffic engineering for
big data applications has been postponed for future work. In
[103], capabilities of SDN/OpenFlow for WAN traffic engineer-
ing have been outlined and demonstrated through a network
application.

Universal ACL Management: Network policy updates re-
quire device-level configuration across heterogeneous elements
(switches, routers, firewalls) by human operators. This is time-
consuming, error-prone, and costly. SDN allows network ad-
ministrators to perceive network devices as a unique abstract
switch and to create universal access policies that will be
further spread over a complex network topology with a single
command. In this direction, authors in [104] motivate the ob-
jective of building machinery for global policy transformation
by moving, merging, and/or splitting rules across multiple
switches, while preserving the overall forwarding behavior of a
network.

Load Balancing: To cope with the increasing traffic load of
online services such as social networks, services are replicated

over multiple servers. Then, a load balancer is typically used to
split clients’ requests among these servers. However, load bal-
ancers are expensive hardware with a rigid policy set, and they
constitute a single point of failure. Wang et al. [105] propose a
costless and more flexible OpenFlow-based alternative. In this
solution, traffic is allocated to servers by switches based on the
flow tables installed by the controller. They devise an algorithm
that figures out the concise placement of wildcards in flow table
entries to achieve the adequate forwarding granularity for a
scalable solution.

2) SDN Use Cases: Many works proposed to adopt SDN
to different application domains such as cloud computing,
mobile networks, and information content networking. In the
following, we review the most prominent ones.

Cloud Computing: Cloud data centers are required to be
large in scale, cost-effective, easy to operate and offer a reac-
tive on-demand network configuration management. However,
cloud data center based on traditional networks are still facing
problems to meet these requirements. Indeed, they are very ex-
pensive to setup and their resources are underused [143], which
increases their operating costs. Moreover, current network APIs
have very limited expressiveness and network switches are de-
signed to operate autonomously with static configurations and
minimum administrative intervention. This prohibits transfer-
ring the information between the required network functionality
and the capabilities of commodity network devices.

Various research works have revisited these concerns using
SDN and OpenFlow. For instance, Matias et al. [106] explore
the virtualization of the physical network using OpenFlow
in order to enable the presence of multiple cloud operators
sharing a common infrastructure. This provides a virtualization
framework that manages resources in a similar way to Flow-
Visor [13], [30], [31]. Lei et al. [107] propose an OpenFlow
virtualized network architecture for large-scale multi-tenant
data centers and use the REST API to support the on-demand
network management and configuration. Rotsos et al. [108]
present an event-driven OpenFlow controller library built on
top of Mirage platform [147] that allows cloud applications to
exercise flow-level control over the forwarding process. Direct
exposure of network capabilities to the applications effectively
distributes control among all entities sharing the network in-
frastructure, which contradicts the current data center model
where the service provider is firmly in charge of the control
hierarchy.

The emergence of SDN provides an opportunity to leverage
the cloud networking feature through the programmable inter-
faces and the flow-based access control. A joint orchestration
of computing and storage with networking resources is seen as
one of the most important applications for a software-defined
network. Cloud orchestration requires the interworking of an
SDN controller and a cloud computing controller, such as
OpenStack [109]. The latter is an open source infrastructure-
as-a-service cloud platform that provides Network-as-a-Service
cloud functionality through the recently added component,
Quantum. This service endows tenants with the capability of
creating and controlling their own virtual networks. Quantum
has an extendable, API-driven and pluggable architecture with
networks, subnets, IP addresses and ports manipulation and
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access control features. OpenStack supports the SDN controller
Ryu and communicates with it using the Quantum Rest API
[55]. Meridian [110], is another SDN-based controller frame-
work that has been proposed for cloud networking. It has been
implemented on top of the Floodlight controller [52] and it
articulates around three logical layers: The network abstraction
and APIs layer exposes to the network control applications the
information needed to interact with the network. The network
orchestration layer performs logical-to-physical translation of
commands issued through the abstraction layer and provides the
global network view and state. Finally, the third layer consists
of interfaces that allow to interact with the various underlying
network devices.

As per security in the cloud, Stabler et al. [111] propose
an implementation of an elastic IP and security group service,
similar to the Amazon EC2 services, using the OpenFlow pro-
tocol and the OpenNebula system. The implementation relies
on the integration of the OpenFlow controller NOX with the
EC2 server. Flow rules are inserted in the controller using the
EC2 API and then used by Open vSwitches on the underlying
hypervisor to manage network traffic. This implementation en-
ables customizable network services operated by the end users
through API calls. Koorevaar [112] proposes an approach for
leveraging SDN architecture to automatically enforce security
policy using a mechanism called Elastic Enforcement Layer
tags (EEL-tags) by adding meta-data to the packet in order
to route it to the next middlebox instance. This is done by
enabling the hypervisor to add an application Id Tag into the
flow of packets emitted by the VM, which allows identifying the
security policies that actually refer to a chain of middleboxes to
be traversed by the secured traffic.

NICE [117] is a defense intrusion detection framework
for virtual network systems. It is based on two components:
NICE-A, a network intrusion detection engine installed in
each cloud server, and a centralized control center which is
mainly constituted of an attack analyzer and an OpenFlow net-
work controller. After detecting suspicious or abnormal traffic,
NICE-A sends alerts to the central control center through a
secure channel. Afterward, the attack analyzer evaluates the
received alerts based on an attack graph, and decides of the
countermeasure to apply. Then, the network controller recon-
figures the OpenFlow switches in a way to establish the newly
defined countermeasure. In [116], authors propose SnortFlow
a comprehensive intrusion prevention system for cloud vir-
tual network environments. SnortFlow combines the benefit
of Snort, the multi-mode packet analysis tool, with the power
of the OpenFlow programmable infrastructure. This solution
is mainly based on the SnortFlow server component, which
actively collects alert data from Snort agents running on cloud
servers, evaluates the network security status and issues actions
to be pushed to the OpenFlow controller in order to reconfigure
the network tasks accordingly.

As far as VM mobility is concerned, both live and offline VM
migration provide an important level of flexibility, workload
balancing, availability, fault tolerance and bring down enter-
prises OPEX costs. However, VM migration techniques are still
facing several challenges. For example, they are limited to local
networks mainly because of the hierarchical addressing used by

layer 3 routing protocols. Recent works have made use of SDN
and OpenFlow controllers to overcome these limitations. Cross-
Roads [113] and VICTOR [114], for instance, are OpenFlow-
based systems proposed for seamless VM migration across data
centers. VICTOR supposes that data centers are managed by
a unique controller while CrossRoad suggests that each data
center is governed by its own controller. In [115], authors
take another direction by defining a Infrastructure-as-a-Service
(IaaS) software middleware solution based on OpenFlow to
achieve interoperability between data centers with different
network topologies.

Information Content Networking: Information Content Net-
working (ICN) or Named Data Networking (NDN) is a recently
emerging network paradigm that proposes an alternative for the
current IP-based networks. It focuses on the content itself rather
than on hosts or connection channels that are carrying this
content. ICN is considered as one of the major characteristics
of the future Internet [148] as it introduces features such as
content-based services and efficient network caching. Among
current ICN research projects we can cite CONVERGENCE
[149], SAIL [150] and PURSUIT [151].

Deploying ICN on traditional networks, however, turns out
to be a challenging issue since running equipments need to
be updated or replaced with ICN-enabled devices. Moreover,
ICN aims at shifting the delivery fashion form host-to-user
to content-to-user. Consequently, there is a need for a clean
separation between the task of content controlling (information
demand and supply) and the task of forwarding. In this context,
SDN seems to be a key enabling technology for deploying ICN
since it offers the programmability feature and the separation
between the control and the forwarding plane. Combining SDN
and ICN has already gained considerable attention among the
research community, and many papers have been proposed to
discuss issues related to supporting ICN using SDN concept
[123]–[125]. Melazzi et al. [123] propose CONET, a frame-
work for deploying ICN functionalities over SDN that leverage
OpenFlow to better fit to ICN requirements. Syrivelis et al.
[124] tackle technical issues related to combining ICN and
SDN. Therein, a mapping of the notion of “flow” from SDN to
ICN is proposed. According to [124], combining SDN to ICN
would raise interesting business strategic questions in addition
to the technical ones, since it will attract not only Internet and
networking players but also a wide variety of industries. Chanda
et al. [125] describes a content centric network architecture and
propose a mechanism to observe and extract content metadata
at the network layer used to optimize the network behavior.
However, some modifications to the OpenFlow protocol are
necessary to support the proposed mechanisms.

Mobile Networks: In recent years, mobile environments
have become commonplace and mobile traffic has exponen-
tially increased and it is even more expected to increase.
Consequently, mobile environments are becoming a prevalent
part of the Internet. Moreover, mobile users are permanently
requiring new services with high-quality and efficient content-
delivery independently of their location. A lot of mobility
management solutions exist in the literature, but in order to
get sound validations over these propositions, researchers need
a long time to simulate wireless channels and to emulate
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traffic and movement of users in a realistic way. Moreover,
realizing back-hauling between heterogeneous technologies is
hard to achieve. As the first goal of SDN is to enhance and to
speed up the development of new solutions, many works have
already studied its applicability to wireless and heterogeneous
networks. For example, in [118], authors explore the use of
SDN in heterogeneous (infrastructure and infrastructureless-
based) networks. They discuss some application scenarios
and research challenges in the context of “Heterogeneous
SDN” (H-SDN), the case of SDN in heterogeneous networks.
Yap et al. [119] propose OpenRoad or OpenFlow wireless to
support a flexible wireless infrastructure. OpenRoad is an adap-
tation of OpenFlow to the framework of wireless networks. An
OpenFlow-based architecture for mesh networks is proposed
in [120].

In [121], authors discuss how SDN could enable better solu-
tions for major challenges in cellular networks (i.e., Long Term
Evolution (LTE)) and how it could be of a great usefulness for
operators by giving them a greater control over their equipment,
by simplifying network management and by introducing value-
added services. Therein, extensions to controller platforms,
network switches, and base stations are presented to enable
software-defined cellular networks. Bansal et al. [122] propose
OpenRadio, a platform that is quite close to OpenFlow in the
sense that it aims at achieving a programmable data plane in
cellular networks. OpenRadio focuses on decoupling wireless
protocols’ definitions from the hardware, then, it proposes a
software abstraction layer that exposes a modular and declara-
tive interface to program these protocols remotely in the base
stations. Designing a control plane for cellular SDN infras-
tructure still needs to be addressed. In summary, SDN and
OpenFlow are becoming a key enabling technology for mobile
networks and research in this field is still in its infancy. Many
challenges need to be addressed including security and inter-
operability between different SDN domains, more precisely
between mobile and fixed domains.

Network Virtualization: A Virtual Network (VN) or a net-
work virtualization environment is a subset of the underlying
physical network. It consists of a set of virtual nodes connected
through virtual links. The main goal of network virtualiza-
tion is to realize the coexistence of heterogeneous network
architectures, with eventually conflicting purposes, in isolation
from each other within the same substrate. Sharing the same
infrastructure and supporting logical network topologies that
differ from the physical network are two common concepts to
programmable networks and network virtualization [1], [152].
Network virtualization enables a flexible and independent
implementation and management for each VN. Furthermore,
it facilitates introducing customized network protocols and
management policies. It also provides means to implement
performance, QoS, and isolation, which allows minimizing
the impact of network security threats [152]. Various surveys
[152]–[154] have been recently published in the context of
network virtualization.

SDN is not a new network virtualization technique but is
more an enabling tool or technique that can be used in order
to create virtualized networks [154]. Among relevant works on
enabling network virtualization using SDN technology, FlowN

[127] is a virtualization solution that provides programmable
control over a network of switches where each tenant has the il-
lusion of having its own address space, topology, and controller.
The approach leverages database technology to efficiently store
and manipulate mappings between virtual networks and physi-
cal switches.

Network Function Virtualization: Network Function Virtu-
alization (NFV) [126] is an industry specification group that
was formed by several network service providers (AT&T, BT,
Deutsche Telekom, Orange, Telecom Italia, Telefonica and
Verizon) under the European Telecommunications Standards
Institute (ETSI). NFV aims at leveraging the standard IT virtu-
alization technology in a way that decouples network functions
from proprietary hardware appliances. It involves the imple-
mentation of mobile and fixed network functions such as fire-
walling, signaling, intrusion detection, and DNS, in software.
The implemented virtual appliances are hence designated to be
executed on different, yet standardized, environments provided
by different network vendors for different network operators.
Applying NFV is susceptible to bring several benefits to the
telecommunication industry:

• It allows reducing development time and costs for deploy-
ing new services in order to meet the emerging business
requirements, which in turn, lowers the associated risks.

• It allows services to be scaled up and down based on the
actual requirements by a simple remote software provi-
sioning.

• It opens the market to many different players to create
new virtual appliances without significant risks, which
encourages innovation.

Though being complementary and sharing two main objectives,
namely, openness and innovation, NFV and SDN are two inde-
pendent paradigms. That is to say, NFV can be implemented
without separating the control plane from the data plane as
suggested by SDN. However, an NFV infrastructure with SDN
support is perfectly conceivable. Even better, it is expected that
such an alignment would engender a greater value to NFV, since
SDN enhances compatibility, eases maintenance procedures,
and provides support for standardization.

D. Control/Infrastructure Layers

Examining the interconnection between the data and the con-
trol Layers, two important dimensions have been investigated
in the literature: Performance and scalability of the southbound
interface and its correctness.

1) Performance and Scalability: One of the most important
design goals of OpenFlow was to keep the data plane simple
and to delegate the control task to a logically centralized
controller. As a result, switches have to consult the controller
frequently for instructions on how to handle incoming packets
of new flows. This tends to congest switch-controller connec-
tions, which in turn adds latency to the processing of the first
packets of a flow in the switch buffer. Solutions to devolve
a part of the control load to be processed by the data plane
have been proposed. For instance, Devoflow [128] design goal
is to keep flows in the data plane as much as possible by
redistributing as many decisions as possible to the switches



1974 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER 2014

and maintaining a useful amount of visibility on the flows for
a central control. This can be done by minimizing the need
for frequent invocation of the OpenFlow controller for flow
setup and statistics gathering. Mainly, only detected significant
(elephant or long-lived) flows are managed by the controller
while short-lived ones are handled in the datapath. Despite
the benefit of reducing switch-controller network bandwidth
consumption, this approach requires a modification of the
OpenFlow model. DIFANE [129] proposal is to split pre-
installed OpenFlow wildcard rules among multiple switches,
called authority switches, in a way that ensures all decisions can
be made in the data plane. Thus, the controller has only to gen-
erate the flow entries and then partition them over the switches.
Mahout [130] is a new traffic management system proposed to
eliminate the need of per-flow monitoring in the switches using
a combination of elephant flows detection at end-hosts and in-
band signaling to the controller. The approach incurs low over-
head and requires few switch resources, however implies the
modification of end-hosts. In the aim of evaluating OpenFlow
systems’ performance, the work in [155] describes a queuing
theory-based performance model of a preliminary OpenFlow
architecture (constituted of one OpenFlow switch connected to
a controller). In this model, the OpenFlow switch and controller
are abstracted as a forwarding queue system and a feedback
queue system, respectively. The work concluded that the packet
sojourn time depends mainly on the processing speed of the
controller and the probability of new flow arrivals.

Although addressing a critical issue in SDN architecture,
these solutions have the drawback of requiring a modification
(either to the OpenFlow protocol, the switches, or the end-
hosts) and comes at the cost of flow visibility in the control
plane.

2) Network Correctness: VeriFlow [131] is a layer between
the controller and the data plane that is proposed for runtime
verification of the forwarding rules to check network invariants
violations. It acts as a proxy application by intercepting and
monitoring rules insertion and deletion messages between the
two entities and checking their effect on the network. In case of
invariant violation, VeriFlow executes the associated action that
is pre-configured by the network operator. The major drawback
of VeriFlow is the added latency to the connection as it runs
in real-time. This work is summarized in Table V. NetPlumber
[132] is a real-time policy checking tool based on Header Space
Analysis (HSA) [156]. It creates a dependency graph of all
forwarding rules in the network, then uses it to verify the
overall network policy. NetPlumber allows preventing errors
and reporting violations as soon as they occur. It can be used
both in SDN and conventional networks.

E. Application/Control Layers

1) Policy Correctness: Wang et al. [133] focus on SDN-
firewall applications and proposes an HSA-based approach for
detecting and resolving conflicts between firewall rules and
the flow table rulesets in order to avoid bypass threats. In
[134], a model checking-based approach is proposed to verify
that the dynamically inserted flow entries do not violate the
overall security properties. Porras et al. [58] focus on the

problem of detecting and re-conciliating potentially conflicting
flow rules caused by dynamic OpenFlow applications inser-
tions. To address this issues, an extension to NOX controller,
called FortNox, has been proposed with an integrated conflict
analyzer component that detects flow rules conflicts over the
flow rule insertion requests made by several security OpenFlow
applications. To do so, FORTNOX translates all the current
flow rules into a representation called Alias Reduced Roles
(ARR) and stores them in an aggregate flow table. To detect
a conflict between a candidate flow ruleset (cRules) and the
existing ruleset (fRules), cRules are converted to the ARR form
and then compared to the fRules. Conflicts are resolved based
on the priority attached to each ruleset.

These works are compared with other approaches in Table V.
2) Northbound Interface Security: FortNox [58] imple-

ments a role-based authorization model for SDN applications
based on three roles among applications that produce flow rule
insertion requests: Human administrator, security applications,
and non-security related applications. To these roles differ-
ent priorities are assigned to the flow rule insertion requests:
Human administrator with the highest priority, security appli-
cations with medium priority, and non-security related applica-
tions with the lowest priority. Roles are implemented through a
digital signature scheme, in which FortNOX is preconfigured
with the public keys of various rule insertion sources. The
role-based source authentication component validate the digital
signatures and assigns the appropriate priority to each candidate
flow rule.

F. Application/Control/Infrastructure Layers

1) Policy Updates Correctness: SDN allows frequent mod-
ifications to the network configuration. However, these changes
may introduce inconsistencies leading to network failures. To
avoid such scenarios, mechanisms to prevent transient anoma-
lies during changes are of paramount importance. A number
of research works [135]–[137] propose safe update protocols
and abstractions for OpenFlow networks. Reitblatt et al. [135]
propose abstractions for network updates with strong semantic
guarantees. These are implementable as abstract update oper-
ations that ensure per-packet and per-flow consistencies. Each
operation identifies a set of packets that, when updating from an
old policy to a new one across multiple switches, every packet
(per-packet consistency) uses either the old or the new policy,
not some combination of the two. Per-flow consistency is a
generalization of per-packet consistency where it guarantees
all packets in the same flow to be processed by the same
policy. A formal model and proofs of the per-packet abstraction
updates are investigated in [136]. Therein, Kinetic, a run-time
system implementing these update abstractions on top of the
NOX OpenFlow controller, is presented and its performance is
evaluated. Kinetic is realized under the Frenetic [66] project and
provides consistent writes, which are the dual abstractions of
consistent reads presented in Frenetic. McGeer [137] propose
OpenFlow Safe Update Protocol to ensure per-packet rule-set
consistency and demonstrate formally its correctness.

2) Network Correctness: As any software, controllers and
its applications may contain not only implementation errors, but
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also critical design and logical flaws. The impact of these flaws
could be extremely damaging if not detected and corrected be-
fore system deployment. Nice [138] is a proactive approach for
testing the behavior of SDN application and controllers where
a simplified OpenFlow Switch model is used. NICE mainly
combines symbolic execution, explicit state model-checking,
and search strategies. It exhaustively explores systems state
using a model-checker in order to find out invalid states. It is
designed for offline-verification. OFTEN [139] is an OpenFlow
integration testing framework for SDN networks, based on
black-box testing. Instead of the NICE simplified OpenFlow
switch model, OFTEN builds upon NICE [138] by enabling
testing an SDN system consisting of one or more controllers
and potentially heterogeneous collection of real switches to
check that it operates without violating correctness properties.
These works are summarized in Table V.

VI. SDN OPEN ISSUES

A part from the discussed issues to which some researcher
have proposed potential solutions, other open research prob-
lems are still not well investigated and need to be addressed by
future research efforts to provide more chances to the adoption
of SDN. In this section, we review some of the most important
open research issues.

A. SDN Security Applications

Managing and orchestrating security in an SDN-based net-
work requires the development and creation of security ap-
plications that interact with the controller northbound API
to accomplish the desired security functions. For instance,
network security applications, such as intrusion and anomaly
detection and prevention require packets related information at
different levels of details and at different paces. Particularly,
access to payload information is crucial for many network
security applications. Additionally, this information need to be
obtained at a considerably reduced latencies in order to respond
appropriately to abnormal traffic or degenerate conditions.

In its current version, OpenFlow [14] handles mostly layer
2/3 network traffic information and the entire packet may be
sent to the controller but only in some special cases (because
of no available buffers in the switch or the first packet of
a given unknown flow). Thus, applications that need to have
access and to manipulate data packet payload cannot benefit
from the current OpenFlow implementation as both deep packet
inspection and aggressive polling of the data plane can rapidly
cause degradation of the latter’s performance. There are some
research efforts that have been proposing initial solutions for
such a problem [93], [97], [98], however, major efforts need to
be spent in this area in order to propose solutions with good
trade-offs between performance, usability and security.

B. Security of SDN

After reviewing the literature, we can safely affirm that secu-
rity and dependability of the SDN itself is still an open issue.
While SDN brings significant promises to networking, it in-

troduces many legitimate questions about the potential security
risks that SDN itself might present to a network. Various works
(e.g., [157]–[159]) have investigated vulnerabilities and threat
vectors related to the deployment of SDN with OpenFlow. By
decoupling the control plane from the data plane, the attack
surface for SDNs is augmented, when compared to traditional
networks. According to Kreutz et al. [157], new attack surface
areas are introduced by SDN deployment. Three identified
vectors out of seven are specific to SDN, which are controllers
software, control-to-data layers communications, and control-
to-application layers communications. The remaining identified
four threats, already present in traditional networks, may have
a potentially augmented impact.

Among the well-known vulnerabilities of the SDN platform,
controllers are susceptible to DoS attacks, which can have a
devastating impact on the whole network. By setting up a large
number of new and unknown flows, an attacker can overwhelm
the controller by a large number of OpenFlow requests from
the switch to decide on how to handle these flows. A saturated
controller would no more be able to make decisions about the
rest of the traffic. To address such issue, Kreutz et al. [157]
propose the replication of the controller with the applications,
the use of diverse controller products, and a mechanism to
dynamically associate switches with more than one controller.
However, in a scenario where the switch has to store packets
in its input queue awaiting for the flow table entry to be
returned, the DoS can be also observed on the level of the switch
node. Several mechanisms and good practices from several
communities are proposed in [157] to address various threats.
While these recommendations are valuable for improving the
security of SDN, no concrete solutions were provided. These
recommendations need to be followed by specific solutions that
should be carefully studied and experimented so that they do
not add other problems such as performance and scalability
problems, do not decrease the expectations from SDN (e.g.,
flexibility), and do not introduce new security threats. Among
the few works proposing concrete solutions to secure control
platform in SDN, Shin et al. [93] designed and implemented
AVANT-GUARD to defeat TCP-SYN flooding attacks and
network scanning. The proposed framework is shown to suc-
cessfully prevent control plane saturation attacks (DOS) and
flow-rule-flooding problem in the data plane. However, the
proposed approach is not designed to prevent application layer
DoS attacks or attacks based on other protocols such as UDP
or ICMP. Also, more works need to be done to address more
sophisticated attacks.

Another important identified threat to SDN is the communi-
cation between the applications and the controller API. SDN
networks are programmed using policies that might be fre-
quently and easily modified using business applications. These
applications systematically acquire the privilege of manipulat-
ing the entire network behavior through the controller. As the
controller does not apply any verification on the semantics of
the implemented policies, buggy and malicious applications
may be at the origin of various sever threats such as circum-
venting flow rules imposed by security applications or may
cause harm to the whole network due to the abuse of privilege.
Porras et al. [58] are pioneers in practically addressing this
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issue by proposing a security enforcement kernel (FortNOX)
that implements a role-based authentication technique and sets
priorities between applications in order to restrict their priv-
ileges. In this context, Flowvisor [13], [30], [31] attempts to
enhance the SDN security by achieving the network inter-slices
isolation, which may decrease the impact of rogue applications
on only a single slice of the network.

Other identified security threats are related to the OpenFlow
switch specification. For instance, Benton et al. [158] ana-
lyze OpenFlow vulnerabilities of version 1.0.0. However, the
OpenFlow specification has been extended and new features
have been improved along the released versions. Koli [159]
studied OpenFlow vulnerabilities using STRIDE methodology
and showed that even though various improvements have been
performed on the OpenFlow switch specification from version
1.0.0 to 1.3.1, they address only a subset of the potential
security flaws. In the IETF Internet draft [160], some security
properties of OpenFlow specification version 1.3.0 [44] are
discussed. It has been noticed that security of OpenFlow is
underspecified, which may lead to differences between multiple
implementations and consequently to operational complexity,
interoperability issues or unexpected security vulnerabilities.
While analyzing the latest OpenFlow version 1.4.0 [14], we
found that the vulnerabilities identified in [160] were not elim-
inated.

To summarize, the security research community needs to
attach a considerable attention to security issues in SDN in
order to reduce risks while preserving the undeniable benefits
of deploying SDN. Still major efforts need to be spent in this
area in order to propose solutions with good trade-offs between
performance, usability and security.

C. Compatibility and Interoperability

OpenFlow switches run embedded software that are mainly
needed to process control messages sent by the controller and
configure the flow tables accordingly. This piece of software
needs to be compliant with the OpenFlow specification. How-
ever, specifications may be ambiguous and may have several
interpretations, which may give implementation freedom to
vendors. This could lead to implementations that exhibit
compatibility and interoperability concerns. In real-life SDN
deployment scenarios, it is likely that the infrastructure is
constituted of OpenFlow switches from multiple vendors. Thus,
this type of problems can easily occur at the forwarding infras-
tructure level. SOFT (Systematic OpenFlow Testing) [161] is
an exhaustive approach and tool for automated switch inter-
operability testing using symbolic execution and the constraint
solver STP (having as input formulas over the theory of bit-
vectors and arrays that captures most expressions from lan-
guages like C,C++,Java, Verilog etc.). The approach allows to
leverage multiple OpenFlow implementations at the develop-
ment stage.

As SDN enables the development of independent network
components, it becomes an urgent necessity to ensure that SDN
networks and components, when integrated together, perform
correctly at each layer of the SDN stack (control and data
plane). Attempting to investigate these concerns, Kuzniar et al.

[139] proposed OFTEN for testing integrated OpenFlow SDN
systems consisting of one or more controllers and potentially
heterogeneous set of real switches. OFTEN checks that the
system does not violate preexisting list of correctness prop-
erties. For instance, some packets were lost by the tested
load balancing application during reconfiguration phase due
to incompatibility of OpenFlow switch specification earlier to
version 0.8.9 with the later ones, which was not taken into
account in the tested application.

Finally, as multiple controllers may be used to control the
same or various domains, it is important to ensure compatibility
among controllers to enable cooperation. This communication
is needed for enabling various fundamental services such as
inter-domain routing to enable communication between hosts
in different domains. This compatibility can be improved by
standardizing inter-controller communication through the east-
westbound interface. To summarize, research in this direction
has not received enough attention. A lot of work is needed to
provide appropriate tools and techniques to resolve incompati-
bility and interoperability problems.

D. SDN Applications Creation and Orchestration

SDN brings two potential benefits for improving computer
networks: facilitating innovation in network technologies on the
one hand, and making the creation, deployment, and composi-
tion of a variety of network services an easy task on the other
hand. While the first opportunity has been well-grasped by
many efforts, the second one has received less attention. Indeed,
few works [70], [162], [163] have proposed frameworks for
orchestrating policies expressed in different contexts (QoS, traf-
fic engineering, access control, etc.) in order to harmoniously
manage networks and avoid possible conflicts.

Although these are some promising research contributions
to network services creation and orchestration, there is a clear
need for more research and implementation efforts in this
direction. Indeed, it is vital to SDN to provide a framework for
the creation, the deployment, and the coordination of not only
security-related applications but also all types of applications
that achieve and improve on today’s networks services. Addi-
tionally, these frameworks should enable the development of
applications independently from the used controller.

VII. CONCLUSION

SDN has recently gained an unprecedented attention from
academia and industry. SDN was born in academia [9], [10],
[12]. Several important organizations such as Google [101] and
VMware are running SDN networks and several experimental
testbeds are running and testing OpenFlow networks world-
wide, including NDDI [164], OFELIA [165], FIBRE [166],
JGN-X [167] and GENI [168]. Thus, a survey on SDN that
studies various aspects of this novel networking paradigm was
needed.

In this paper, we elaborated a thorough survey and tutorial
on SDN to investigate the potential of SDN in revolutionizing
networks as we know them today. First, we went back to the
roots from where SDN and OpenFlow have emerged. Then,
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we presented SDN concepts and described its architecture.
Therein, we detailed the main SDN’s components, namely
the forwarding devices and the logically centralized controller,
along with their functionalities and interactions. We also com-
pared various available products conceived to support SDN
deployment, such as controllers software, OpenFlow-enabled
switches, and frameworks for SDN programming. Afterward,
we studied existing SDN-related taxonomies and proposed a
layered taxonomy that allows classifying the reviewed research
works. The proposed taxonomy presents a hierarchical view
and classifies the identified issues and solutions per layer (or
layers) they belong to.

In the second part of this paper, we surveyed the research
initiatives aiming at solving the already identified issues and
described some relevant application domains where SDN is
expected to make the difference, particularly for emerging tech-
nologies such as cloud computing. Finally, we have investigated
some of the open issues that have been poorly addressed by
the literature and thus need to be addressed by future research
efforts.

A recent IDC study [169] projected that the SDN market will
increase from $360 million in 2013 to $3.7 billion in 2016.
However, in order to reach wide acceptance, we believe that the
maturity of SDN is a critical factor. This maturity depends on
the advancement in the design and implementation of various
SDN components, namely the controllers, the switches, and
the application services as well as the interfaces across them.
Furthermore, several other issues including security, interop-
erability, reliability, and scalability need further investigation.
Once the maturity of SDN reaches an acceptable level, training
and education of networks stakeholders is an important step for
a smooth transition to the SDN paradigm.
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