
IEEE Communications Magazine • March 2007130 0163-6804/07/$20.00 © 2007 IEEE

INTRODUCTION

The Session Initiation Protocol (SIP) [1] is a
text-based rendezvous protocol that provides
user mobility and session establishment. SIP user
mobility is based on registrations. Users register
their current locations with the network, which
uses this registration information to route incom-
ing session requests to those users.

SIP session establishment is based on the
offer/answer model [2], which is a two-way ses-
sion description exchange between two SIP user
agents. User agents involved in an offer/answer
exchange obtain all the information required to
establish a session between them.

The IP multimedia subsystem (IMS) is system
architecture whose main signaling protocol is
SIP. The goal of IMS is to provide service pro-
viders with a platform that facilitates the provi-
sion and management of a wide range of
services. The success of service providers using
IMS and consequently, the success of IMS as a
whole, depends on how appealing those IMS
services are to users.

To make IMS services more appealing than
services developed for other platforms, IMS
enables service developers to integrate their ser-
vices horizontally. Horizontal service integration

is believed to produce faster service develop-
ment times than the traditional vertical service
integration, where a stand-alone module pro-
vides all of the functionality required by a partic-
ular service. A horizontally integrated service
consists of a set of functions that work together
to provide the functionality expected from that
particular service. Given that many of these
functions (e.g., user authentication) are common
across different services, the same function can
be reused by several services.

IMS provides these common functions and
makes them available to any service built on top
of it. This way, service developers are not
required to re-implement these functions for
each new service. Instead, they can simply focus
on implementing the service logic specific to
each particular service and rely on the common
functionality provided by IMS. Common func-
tions provided by IMS that are available to ser-
vices built on top of it include capability
negotiation, authentication, service invocation,
addressing, routing, group management, pres-
ence, provisioning, session establishment, and
charging.

However, to be successful, IMS must go
beyond simply providing a fast service develop-
ment environment. IMS also must foster the cre-
ation of innovative services. This article describes
an alternative approach to IMS policy control
that aims to foster innovation. Innovation is,
arguably, the key to creating successful services
that appeal to users. The approach removes the
requirement to inspect the SDP (Session
Description Protocol [3]) in the network nodes,
which can be costly. In this way, new SDP exten-
sions can be used to provide extended function-
ality and innovative services without incurring
high network upgrade costs and delays.

The remainder of this article is organized as
follows. We describe IMS session establishment,
policy control implementation in IMS, and issues
related to the IMS approach to policy control.
We propose an alternative approach to policy
control, referred to as session policies, which
resolves those issues. We describe our experi-
ences implementing session policies in an IMS
environment. We outline our future work in this
area.

ABSTRACT

This article proposes an approach to IMS
policy control based on session policies that
achieve transparent end-to-end session establish-
ments between IMS terminals. The article iden-
tifies drawbacks in the current IMS policy
control methodology, discusses how these draw-
backs may negatively influence the potential of
IMS to provide innovative services, and describes
how the new approach overcomes these draw-
backs. Our proposal offers modularity and scala-
bility properties that enable operators to
establish policies and modify existing ones with-
out major changes in the IMS core. Thus, poli-
cies can be applied transparently to SIP dialogs
between terminals and modified on the fly with-
out tearing down ongoing dialogs. The article
also discusses a test bed implementation that
worked as a proof-of-concept.

IP MULTIMEDIA SYSTEMS (IMS) INFRASTRUCTURE
AND SERVICES

Gonzalo Camarillo, Tero Kauppinen, Martti Kuparinen, and Ignacio Más Ivars, Ericsson Research.

Towards an Innovation Oriented
IP Multimedia Subsystem

IVARS LAYOUT 2/20/07 3:29 PM Page 130

IEEE Communications Magazine • March 2007 131

IMS SESSION ESTABLISHMENT

As stated previously, IMS session establishment
is based on SIP. SIP provides session establish-
ment through a two-way session description
exchange called the offer/answer model [2]. A
user agent generates a session description (the
offer) that contains the information required to
establish the session (e.g., IP addresses to trans-
fer the media) and sends it to the remote user
agent.

On receiving the offer, the remote user agent
generates its own session description, which is
referred to as the answer. Both the offer and the
answer are written in a session description for-
mat that must be understood by both user
agents. The default session description format is
SDP. After the offer/answer exchange com-
pletes, the user agents can start exchanging
media between them. At that point, the session
is considered to be established.

Offer/answer exchanges can be mapped to a
SIP three-way handshake (INVITE — 200 OK
— ACK) in two ways. The INVITE carries the
offer, and the 200 (OK) carries the answer, or
the 200 (OK) carries the offer, and the ACK
carries the answer. IMS supports both mappings
to establish sessions.

Figure 1 shows a basic session establishment
in IMS. Note that this session establishment
does not use the optional preconditions exten-
sion [4] that is typically applied to basic session
establishments. Its use is not relevant for this
discussion and would add extra complexity to the
message flow.

The flow in Fig. 1 shows two roaming ter-
minals establishing a session between them.
Both P-CSCFs (proxy-call/state control func-
tions) are located in the visited domains. S-
CSCFs are always located in the home domain
of the users they serve. The network elements
in Fig. 1 that relate to the offer/answer model
are the P-CSCF (proxy-CSCF) and the S-
CSCF (serving-CSCF). Both have access to all
the offers and answers exchanged by the ter-
minals.

POLICY CONTROL IN IMS

IMS provides policy control. IMS domains can
specify the types of media streams that are
accepted (e.g., voice streams) and the types that
are not (e.g., video streams). It also is possible to
specify the sessions that are accepted based on
characteristics of their media streams, such as
the codecs used or the bandwidth requested for
them.

IMS policy control and IMS charging control
were implemented using separate architectures
in 3GPP R5 (Release 5) and 3GPP R6. Howev-
er, 3GPP R7 merged those architectures togeth-
er. The policy and charging control (PCC)
architecture defined in 3GGP R7 is the result of
merging SBLP (service based local policy) and
FBC (flow-based charging).

Figure 2 shows the 3GPP R7 policy and

n Figure 1. IMS session establishment.

IMS
terminal P-CSCF

Originating
visited

network

(1) INVITE

(15) ACK

(14) 200
OK

S-CSCF

(2) INVITE

(16) ACK

(13) 200
OK

I-CSCF

(3) INVITE

(12) 200
OK

HSS

(4)
Diameter

(5)
Diameter

S-CSCF P-CSCF

(7) INVITE

(18) ACK

(10) 200
OK

IMS
terminal

(8) INVITE

(19) ACK

(9) 200
OK

(17) ACK

Originating
home

network

Terminating
visited

network
Terminating home network

(6) INVITE

(11) 200 OK

n Figure 2. IMS policy and charging control architecture.

Rx
G

x

AF

PCRF Sp

Gy

Gz
Subscription

profile
repository

Access
gateway

Online
charging
system

Offline
charging
system

IVARS LAYOUT 2/20/07 3:29 PM Page 131

IEEE Communications Magazine • March 2007132

charging control architecture. Only the AF
(application function), the PCRF (policy and
charging rules function), and the access gateway
are relevant to this discussion. The role of the
AF can be performed by the P-CSCF or by an
application server.

The PCRF receives information about the
offer/answer exchanges between the terminals
from the AF over the Rx interface. If the char-
acteristics of the session being established are
acceptable to the PCRF (based on the domain
policy), the PCRF authorizes the session on the
access gateway using the Gx interface. If the
characteristics of the session are not acceptable
to the PCRF, it instructs the AF to terminate
the session using the Rx interface. Of course, in
this case the PCRF does not authorize the ses-
sion on the access gateway.

SIP AND POLICY CONTROL
When the PCRF informs the AF that the session
being established is not acceptable, the AF must
inform the terminal trying to establish the ses-
sion. The AF uses its SIP interface to do that.
The way an AF informs a terminal that its ses-
sion request is not acceptable depends on the
mapping used between the offer/answer model
and the SIP three-way handshake. For example,
assume that the originating P-CSCF in Fig. 1
must inform the originating IMS terminal that
its session request is not acceptable (the termi-
nating P-CSCF would use identical mechanisms).

If the INVITE request (1) carried an offer,
the P-CSCF would respond with a 488 (not
acceptable here) response. This response would
contain a session description of a session that
would be acceptable. Such a session description
could be used by the terminal to generate a new
offer in a new INVITE request that would be
acceptable for the network.

If the offer in the INVITE request (1) was
acceptable, but the answer in the 200 (OK)
response (13) was not, the P-CSCF would wait
for the three-way handshake to finish. Immedi-
ately after that, it would generate two BYE
requests, one to the originating terminal and one
to the terminating terminal. In this case, the
BYE request would not carry an indication of
the type of session that would be acceptable to
the network. Therefore, it would be difficult for
the terminal to generate a new acceptable offer.

Additionally, the user behavior would be far
from ideal. The session would be established and
terminated immediately.

If the INVITE request (1) did not carry an
offer, the 200 (OK) response would. If the offer
in the 200 (OK) response or the answer in the
ACK request (15) were not acceptable, the P-
CSCF would behave as in the previous example.
It would generate two BYE requests to termi-
nate the session, with the same associated issues
as before.

In addition to the behaviors just described,
many actual deployments (generally using fixed
access), have their P-CSCFs perform SDP rewrit-
ing. If a session description is not acceptable, the
P-CSCF rewrites it before routing the message
forward so that the resulting session description
is acceptable. The P-CSCF can remove media
streams, codecs, and so on.

SDP rewriting is also performed by P-CSCFs
handling cellular terminals. The P-CSCF uses
the single reservation flow (SRF) SDP extension
to instruct the terminal about the PDP (packet
data protocol) context to use for the media
stream.

The characteristics of a session also can be
unacceptable to one or both (originating and
terminating) home domains. In this case, the S-
CSCF performs the same actions as the P-CSCFs
in the previous examples. The S-CSCF would
use 488 (not acceptable here) responses or BYE
requests to enforce its policy.

ISSUES WITH THE CURRENT APPROACH TO
POLICY CONTROL

There are issues with informing terminals about
policy decisions in the ways described previously.
As stated earlier, a terminal is not always
informed why its session was rejected. The user
of the terminal may not understand what to do
to establish a new session that will be accepted.
A user may also receive a successful-session-
establishment indication and a session-terminat-
ed indication, one immediately after the other.

A user cannot protect the integrity of or
encrypt the session descriptions because the net-
work may be required to modify them. Encrypt-
ed sessions are rejected by the network and
integrity protection is broken by network nodes
that are not actual attackers. Additionally, a net-
work cannot change the policies that apply to an
ongoing session. For example, if a network
decides that using video is no longer acceptable,
it cannot inform the terminals about this fact. Its
only option is to terminate a whole session by
sending BYE requests to both terminals, and
users will not know why the session terminated.

Although the previous issues that relate to
user experience are important, this article focus-
es on issues affecting application and service
developers. These issues affect whether IMS ser-
vices can be innovative. Service developers cur-
rently are forced to use SDP as the only session
description format. This is because network ele-
ments such as P-CSCFs and S-CSCFs require
access to offers and answers.

New services cannot use SDP extensions that
are not understood by the network because ses-
sions using unknown extensions most likely will
be rejected. Even if a user’s home domain
accepts sessions with unknown SDP extensions,
other domains may not. This limits the users a
user can communicate with to those in his or her
domain.

Additionally, SDP rewriting can have unex-
pected interactions with extensions that are
unknown to the entity performing the rewriting.
SDP rewriting also makes it difficult for develop-
ers to debug their implementations because the
network may modify their protocol messages
without their knowledge.

This implies that service developers are limit-
ed to establishing sessions that can be described
with SDP and the SDP extensions that are sup-
ported by the network. If the implementation of
an innovative service requires the use of a new
SDP extension or the use of a different session
description format, the whole network would

A user cannot

protect the integrity

of or encrypt the

session descriptions

because the network

may be required to

modify them.

Encrypted sessions

are rejected by the

network and

integrity protection is

broken by network

nodes that are not

actual attackers.

IVARS LAYOUT 2/20/07 3:29 PM Page 132

IEEE Communications Magazine • March 2007 133

require upgrading before this service could be
provided. This would dramatically slow the intro-
duction of such service and increase considerably
the price to introduce it.

SESSION POLICIES
One of the design principles of SIP was to enable
the creation of end-to-end services without
requiring the upgrading of the network elements
between endpoints. As discussed earlier, the cur-
rent approach to IMS policy control breaks this
principle.

Session policies provide a means for domains
to communicate their policy to terminals and for
terminals to provide domains with information
about the sessions that they establish. There are
two types of session policies: session-indepen-
dent policies and session-specific policies. Ses-
sion-independent policies are general policies
that apply to all the sessions a terminal may
attempt to establish. For example, a terminal
may not be allowed to use video streams in its
sessions. Session-specific policies only apply to a
particular session. For example, a terminal may
be required to group two of the session media
streams (e.g., audio and video) into a single PDP
context and transfer a third media stream over a
different PDP context (e.g., instant messaging).

A domain typically requires information
about the session being established by a terminal
to provide it with session-specific policies for
that session. The terminal informs the domain
about the session and obtains the domain poli-
cies for that session. For example, a domain can
use the information received from a terminal
about the IP addresses it will use to open the
gates of the access gateway or a pinhole in a
firewall.

Some policies can be implemented as session-
independent or as session-specific policies. For
example, a domain may choose to provide termi-
nals with a list of all the audio codecs the termi-
nals are allowed to use as a session-independent
policy. On the other hand, a domain could
choose to be informed about the codecs a termi-
nal intends to use in a session and inform the
terminal which of the codecs are acceptable.

Some domains prefer to implement this type
of policy as session-specific policies to avoid dis-
closing the entire domain policy to the terminal.
These domains want to prevent competitor oper-
ators from copying their policies, which some
providers believe to be a source of competitive
advantage.

THE POLICY SERVER
Session policies define a logical entity referred
to as a policy server. Terminals subscribe to the
policy server using a SUBSCRIBE request and
obtain information about the domain session-
independent policies in NOTIFY requests.

Session-independent policies are a form of
configuration information. Therefore, the event
package used to transfer session-independent
policies is the event package for the user agent
profile delivery specified in [5].

Terminals also use SUBSCRIBE requests to
obtain sessions-specific policies. When a termi-
nal intends to establish a session, it sends a

SUBSCRIBE request to its policy server. This
request uses the event package for session-spe-
cific policies defined in [6]. The terminal includes
an XML document describing the session it is
about to establish in the body of its SUBSCRIBE
request.

The policy server receives the SUBSCRIBE
request and based on the XML document
received and the user’s profile, returns its poli-
cies in a NOTIFY request. If the terminal must
change the characteristics of the session at some
point, it sends a new SUBSCRIBE within the
same SUBSCRIBE-initiated dialog to the policy
server. If the policy server must send additional
policies to the terminal at some point, it issues a
new NOTIFY request.

Figure 3 shows an example of a message flow
including session-specific policies. The user
agent sends the policy server a SUBSCRIBE
request (1). The request contains an XML body
describing the session the user agent intends to
establish. The policy server returns a NOTIFY
request (3) that contains an XML body describ-
ing the policies applicable to the session.

The user agent generates an INVITE request
(5) with an offer that complies with the policies
received from the policy server. After the user
agent receives an 200 (OK) response (8) with an
answer, it sends a new SUBSCRIBE request
(11) with a new XML body to the policy server.
The new XML body informs the policy server
about the session parameters contained in the
answer (e.g., agreed codecs, IP addresses, media
streams accepted and rejected, and so on.).

n Figure 3. Session-specific policies message flow.

User
agent

(1) SUBSCRIBE

Policy
server

Proxy
server

(4) 200 OK

(11) SUBSCRIBE

(14) 200 OK

(13) NOTIFY

(12) 200 OK

(3) NOTIFY

(2) 200 OK

(8) 200 OK

(5) INVITE

(9) ACK
(10) ACK

(6) INVITE

(7) 200 OK

IVARS LAYOUT 2/20/07 3:29 PM Page 133

IEEE Communications Magazine • March 2007134

SESSION ESTABLISHMENT DELAY

As discussed earlier, session-independent poli-
cies are a form of configuration data. Therefore,
they are obtained at configuration time before
any session can be established. Consequently,
they do not add any session establishment delay.

If session-specific policies are implemented as
described in Fig. 3, they increase slightly the ses-
sion establishment delay in some cases. As shown
in Fig. 3, a round-trip time between the user
agent and the policy server is required before
the initial INVITE request can be sent.

Note that sessions that are not initially accept-
able to the network do not suffer any additional
delay because of session policies. This is because,
even when session policies are not implemented,
there is an INVITE/488 (not acceptable)
exchange prior to the actual session establish-
ment. This exchange takes the same time as the
initial SUBSCRIBE/NOTIFY exchange used by
session policies.

Fortunately, it is possible to optimize the flow
in Fig. 3 to eliminate the extra delay introduced
to sessions that are directly acceptable to the
network. Such optimization requires coordina-
tion between the policy server and the proxy
server in the figure. The user agent sends the
SUBSCRIBE request (1) and the INVITE
request (5) in parallel. If the session is accept-
able to the policy server, it informs the proxy
server, which routes the INVITE request for-
ward. If, on the other hand, the session is not
acceptable, the policy server instructs the proxy
server to return a 488 (not acceptable here)
response. The user agent receives session-specif-
ic policies in a NOTIFY request from the policy
server as usual.

Things are different on the terminating side.
Session-specific policies introduce a round-trip
time to the establishment of sessions that are
directly acceptable to the network. This round-
trip time between the user agent and the policy
server is required between the reception of the
INVITE request and the generation of the 200
(OK) response by the user agent. The user agent
sends a SUBSCRIBE request and receives a
NOTIFY request with policies during this round-
trip time.

The same one round-trip delay is introduced
to sessions that are not directly acceptable to the
network. However, when session policies are not
used, those sessions are terminated by the net-
work. Session policies allow those sessions to be
established.

The delay introduced to some sessions is the

price to pay for having both policy control and
end-to-end negotiations. However, when it
comes to the future of IMS as a successful ser-
vice enabling platform, it seems much more
important to introduce new services quickly and
inexpensively than to provide very low establish-
ment delays in every situation.

Note that a domain that implemented all its
policies based on session-independent policies
still must use session-specific policies to be
informed of the characteristics of a given ses-
sion. For example, information such as the IP
addresses used in a session might be required to
open the gates of the access gateway.

SESSION POLICIES IN IMS
The addition of session policies to IMS requires
a logical function in the IMS architecture: the
policy server. The policy server has a SIP-based
interface to the terminals and a Diameter-based
interface to the PCRF.

The functionality of the interface between the
policy server and the PCRF is similar to the cur-
rent Rx interface between an AF and the PCRF
(Fig. 2). The PCRF makes policy decisions based
on the information provided by the policy server,
and the policy server informs the terminals
about those decisions.

IMS sessions between roaming users involve
four different domains, as shown in Fig. 1. The
originating domains (home and visited) provide
session policies to the originating terminal. The
terminating domains provide session policies to
the terminating terminal. Therefore, a terminal
must consult its visited and home policy servers
before attempting to establish a new session.
However, even though the terminal consults two
policy servers, both consultations can be per-
formed in parallel to avoid additional delays.
Interestingly, if both the visited network and the
home network find a particular session unac-
ceptable, the session-policies-based approach
achieves a lower session establishment time than
the currently specified approach to IMS policy
control.

When the current approach is used, the P-
CSCF rejects the initial INVITE request from
the terminal. The terminal modifies its session
description according to the 488 (not acceptable)
response received, and issues a new INVITE
request. This INVITE request is then rejected by
the S-CSCF with a new 488 (not acceptable)
response.

If session policies were used instead, the ter-
minal obtains (in parallel) the policies from both
domains before generating its initial INVITE
request. This way, it saves one round-trip time.

Alternatively, session policies from both
domains can be consolidated into a single policy.
The terminal consults only the visited policy
server, which applies its policies and consults the
home policy server. The home policy server
applies further policies, if required, and informs
the visited policy server, which sends the termi-
nal the consolidated policies for the session.

IMPLEMENTATION EXPERIENCE
This section describes our proof-of-concept
implementation of session policies in an IMS

n Figure 4. Implementation architecture.

MIP home
agent

ABC profile
server

P-CSCF
policy server

WLAN

LAN

IVARS LAYOUT 2/20/07 3:29 PM Page 134

IEEE Communications Magazine • March 2007 135

network. One of the goals of this implementa-
tion is to enable the network to modify its poli-
cies in the middle of an ongoing session. When
the policies change, the network informs the ter-
minal, and the terminal adapts to the new poli-
cies, typically by sending a re-INVITE request.

Note that, currently, the IMS architecture
does not provide a means for the network to
inform terminals about policy changes that apply
to ongoing sessions, as discussed earlier.

A network can change the policies applicable
to a given ongoing session based on a set of
events. We chose to implement a multi-access
environment where our terminals could move
between different accesses. The accesses had dif-
ferent characteristics and thus, different policies
associated to them. For example, video streams
were not allowed on certain accesses. Therefore,
when a terminal moved to a new access with dif-
ferent policies, it was informed by the network
about those new policies.

Figure 4 shows the architecture of our imple-
mentation. It represents the network of an oper-
ator that provides IP connectivity over two
different access technologies and IMS connectiv-
ity. The two access technologies chosen for our
implementation were an 802.11-based WLAN
and an Ethernet-based LAN. The mobility
between both accesses was handled using Mobile
IP (MIP).

We based our implementation on the 3GPP
R5 IMS architecture, where the P-CSCF and the
PDF (policy decision function) were co-located
(the 3GPP R7 PCRF is an evolution of the
PDF). Consequently, we co-located the P-CSCF
and the policy server in a single node.

Access management was based on the ABC
(always best connected) architecture proposed in
[7]. Our terminals could detect when one of
their link layers came up (e.g., the terminal
gained WLAN coverage). At that point, they
informed the ABC profile server about all of
their available accesses and the accesses used at
that point.

When a terminal chose to use a new access, it
informed the ABC profile server, which in turn,
informed the policy server. As a result, the poli-
cy server sent new policies to the terminal.

In our test bed, the terminals consisted of
Linux-based laptops with software-based IMS
clients on them. We were required to modify the
software-based IMS clients to implement session
policies and the ABC framework.

The policies used in our experiments consist-
ed of allowing audio and video streams over one
access but only audio streams over the other.
When a terminal changed access, it received new
policies. Based on the new policies received, the
terminal sent a re-INVITE, adding or removing
the video stream.

As expected (we did not implement the opti-
mization described earlier), we observed higher
session establishment delays for session requests
that were acceptable to the network. The extra
delay was caused by the initial
SUBSCRIBE/NOTIFY exchange between the
terminal and the policy server. In this case, the
NOTIFY request simply informed the terminal
to establish the session because it was accept-
able.

Session requests that were not acceptable to
the network did not suffer any additional delay
because of session policies, as discussed earlier.

Our implementation shows that currently
defined IMS policy control functions can be
implemented based on session policies. Addi-
tionally, functions that are not supported by the
current IMS policy control architecture, such as
policy modifications for ongoing sessions, also
can be implemented based on session policies.

FUTURE WORK
Our future work includes standardizing the ele-
ments of session policies in the IETF (Internet
Engineering Task Force). A proposal for a
framework for session policies can be found at
[8]. A proposal for the event package to deliver
session-specific policies discussed previously can
be found at [6]. A proposal for an XML format
to carry policy information can be found at [9].
A set of policy-related functions that are cur-
rently based on SDP rewriting and could benefit
from session policies can be found at [10]. Our
future work also includes proposing the addition
of policy control based on session policies into
IMS specifications.

CONCLUSIONS
This article describes how session policies could
be used to implement policy control in IMS.
Using session policies instead of the currently
specified techniques for policy control would
make IMS a better platform for service innova-
tions.

Session policies remove the requirement to
inspect and understand session descriptions in
the network. Therefore, the use of session poli-
cies would enable service providers to offer
innovative services based on new SDP extensions
or other session description formats without
requiring them to upgrade their networks. This
way, IMS services would reach their users faster
and at a lower price.

The price to pay to implement session poli-
cies is a slightly higher session establishment
delay for sessions that would have been accept-
able to the network in the first place. Although
providing innovative services is a key to the suc-
cess of IMS, optimizing session establishment
times to a minimum in every possible scenario is
not seen as essential by many users.

REFERENCES
[1] J. Rosenberg et al., “SIP: Session Initiation Protocol,”

IETF RFC 3261, June 2002, at http://www.rfc-editor.org/
rfc/rfc3261.txt

[2] J. Rosenberg and H. Schulzrinne, “An Offer/Answer Model
with Session Description Protocol (SDP),” IETF RFC 3264,
June 2002, http://www.rfc-editor.org/rfc/rfc3264.txt

[3] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session
Description Protocol,” IETF RFC 4566, July 2006,
http://www.rfc-editor.org/rfc/rfc4566.txt

[4] G. Camarillo, W. Marshall, and J. Rosenberg, “Integra-
tion of Resource Management and Session Initiation
Protocol (SIP),” IETF RFC 3312, Oct. 2002, http://www.
rfc-editor.org/rfc/rfc3312.txt

[5] D. Petrie, “A Framework for Session Initiation Protocol
User Agent Profile Delivery,” IETF Internet draft, draft-
ietf-sipping-config-framework-08, Mar. 2006, work in
progress, http://www.ietf.org/internet-drafts/draft-ietf-
sipping-config-framework-08.txt

The use of session

policies would

enable service

providers to offer

innovative services

based on new SDP

extensions or other

session description

formats without

requiring them to

upgrade their

networks. Thus, IMS

services would reach

their users faster and

at a lower price.

IVARS LAYOUT 2/20/07 3:29 PM Page 135

IEEE Communications Magazine • March 2007136

[6] V. Hilt and G. Camarillo, “A Session Initiation Protocol
(SIP) Event Package for Session-Specific Session Poli-
cies,” IETF Internet draft, draft-ietf-sipping-policy-pack-
age-02, Oct. 2006, work in progress, http://www.ietf.
org/internet-drafts/draft-ietf-sipping-policy-package-
02.txt

[7] E. Gustafsson and A. Jonsson, “Always Best Connect-
ed,” IEEE Wireless Commun., vol. 10, no. 1, 2003.

[8] V. Hilt, G. Camarillo, and J. Rosenberg, “A Framework
for Session Initiation Protocol (SIP) Session Policies,”
IETF Internet draft draft-ietf-sip-session-policy-frame-
work-00, Oct. 2006, work in progress, http://www.ietf.
org/internet-drafts/draft-ietf-sipping-session-policy-
framework-00.txt

[9] V. Hilt, G. Camarillo, and J. Rosenberg, “A User Agent
Profile Data Set for Media Policy,” IETF Internet draft,
draft-ietf-sipping-media-policy-dataset-02, Oct. 2006,
work in progress, http://www.ietf.org/internet-drafts/
draft-ietf-sipping-media-policy-dataset-02.txt

[10] J. Hautakorpi et al., “Requirements from SIP (Session
Initiation Protocol) Session Border Control Deploy-
ments,” IETF Internet draft, draft-ietf-sipping-sbc-funcs-
00, Nov. 2006, work in progress, http://www.ietf.org/
internet-drafts/draft-ietf-sipping-sbc-funcs-00.txt

BIOGRAPHIES
GONZALO CAMARILLO (Gonzalo.Camarillo@ericsson.com)
received his M.Sc. degrees in electrical engineering from
the Royal Institute of Technology, Stockholm, Sweden, and
from Universidad Politecnica de Madrid (Spain). He heads
the Advanced Signaling Research Laboratory at Ericsson in
Finland. He has co-authored, among other standards, the

SIP specification (RFC 3261). He is the IETF liaison manager
to 3GPP and currently co-chairs the SIPPING and HIP work-
ing groups in the IETF. He is the author of the books SIP
Demystified and The 3G IP Multimedia Subsystem (IMS).
His research interests include signaling, multimedia applica-
tions, transport protocols, and network security

TERO KAUPPINEN (tero.kauppinen@ericsson.com) received his
M.Sc. degree in computer science from the University of
Helsinki, Finland. He has a strong background in Linux,
Internet protocols, and programming on both the kernel
and user levels. He is currently working as a research scien-
tist at Ericsson Research in Finland. His current focus is on
IPv6 related research and prototyping.

MARTTI KUPARINEN (martti.kuparinen@ericsson.com) is cur-
rently working as a research scientist at Ericsson Research
in Finland. He has a strong background in UNIX, Internet
protocols, and programming. He has been working with
various IPv6 related issues since the late 1990s. His main
focus is building various prototype systems.

IGNACIO MAS IVARS (ignacio.mas.ivars@ericsson.com)
received his M.Sc. degrees in electrical engineering from
the Royal Institute of Technology, Stockholm, Sweden, and
Universidad Politecnica de Madrid, Spain. He obtained his
Technology Licentiate degree from the Royal Institute of
Technology. He works in the Service Layer Technology
Department of Ericsson Research, Stockholm. He has
authored and co-authored several papers on admission
control and quality of service on the Internet. His research
interests include admission control, quality of service, mul-
timedia transport, signaling, and network security.

IVARS LAYOUT 2/20/07 3:29 PM Page 136

