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Simple Network Management Protocol (SNMP) is the most widely-used network management 
protocol on TCP/IP-based networks. The functionality of SNMP was enhanced with the publi­

cation of SNMPv2. However, both these versions of SNMP lack security features, notably 
authentication and privacy, that are required to fully exploit SNMP. A recent set of RFCs, 

known collectively as SNMPv3, correct this deficiency. This article outlines the overall network 
management framework defined in SNMPv3, and then looks at the principal security facilities 

defined in SNMPv3: authentication, privacy, and access control. 

S
ince its first publication in 1988, the Simple Network 
Management Protocol (SNMP) has become the most 
widely-used network-management tool for TCP/IP­
b ased networks . SNMP defines a protocol for the 

exchange of management information, but does much more 
than that. It also defines a format for representing manage-
ment information and a framework for organizing distributing 
systems into managing systems and managed agents. In addi­
tion, a number of specific data base structures, called manage­
ment information bases (MIBs), have been defined as part of 
the SNMP suite; these MIBs specify managed objects for the 
most common network management subj ects, including 
bridges, routers, and LANs. 

The rapid growth in the popularity of SNMP in the late 
1980s and early 1990s led to an awareness of its deficiencies; 
these fall into the broad categories of functional deficiencies, 
such as the inability to easily specify the transfer of bulk 
data, and security deficiencies, such as the lack of authenti­
cation and privacy mechanisms. Many of the functional defi­
ciencies were addressed in a new version of SNMP, known 
as SNMPv2, first published as a set of RFCs in 1993. The 
1993 edition of SNMPv2 also included a security facility, but 
this was not widely accepted because of a lack of consensus 
and because of perceived deficiencies in the definition. 
Accordingly, a revised edition of SNMPv2 was issued in 
1996, with the functional enhancements intact but without a 
security facility. This version used the simple and unsecure 
password-based authentication feature, known as the com­
munity feature, provided in SNMPv1,  and is referred to as 
SNMPv2c. To remedy the lack of security, a number of inde­
pendent groups began work on a security enhancement to 
SNMPv2. Two competing approaches emerged as front-run­
ners :  SNMPv2u and SNMPv2*. Ultimately, these two 
approaches served as input to a new IETF SNMPv3 working 
group, which was chartered in March of 1997. By January of 
1998, this group had produced a set of Proposed Internet 
standards published as RFCs 2271-2275 (Table 1). This doc­
ument set defines a framework for incorporating security 

features into an overall capability that includes either 
SNMPv1 or SNMPv2 functionality. In addition, the docu­
ments defines a specific set of capabilities for network secu­
rity and access control. 

It is important to realize that SNMPv3 is not a stand-alone 
replacement for SNMPv1 and/or SNMPv2. SNMPv3 defines a 
security capability to be used in conjunction with SNMPv2 
(preferred) or SNMPvl. In addition, RFC 2271, which is one 
of the documents issued by the SNMPv3 working group, 
describes an architecture within which all current and future 
versions of SNMP fit. RFC 2275 describes an access control 
facility, which is intended to operate independently of the 
core SNMPv3 capability. Thus, only three of the five docu­
ments issued by the SNMPv3 working group deal with 
SNMPv3 security. In this article, we take a broader view and 
provide a survey of the capabilities defined in RFCs 2271 
through 2275. 

Figure 1 describes the relationship among the different 
versions of SNMP by means of the formats involved. Informa­
tion is exchanged between a management station and an agent 
in the form of an SNMP message. Security-related processing 
occurs at the message level; for example, SNMPv3 specifies a 
User Security Model (USM) that makes use of fields in the 
message header. The payload of an SNMP message is either 
an SNMPv1 or an SNMPv2 protocol data unit (PDU). A 
PDU indicates a type of management action (e.g., get or set a 
managed object) and a list of variable names related to that 
action. 

A brief clarification of the term SNMPv3 is perhaps in 
order. RFCs 2271 through 2275, produced by the SNMPv3 
working group describe an overall architecture plus specific 
message structures and security features, but do not define a 
new SNMP PDU format. Thus, the existing SNMPv1 or 
SNMPv2 PDU format must be used within the new architec­
ture. An implementation referred to as SNMPv3 consists of 
the security and architectural features defined in RFCs 2271 
through 2275 plus the PDU format and functionality defined 
in the SNMPv2 documents. This is expressed in the SNMPv3 
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introduction document, Table 15 .1 ,  as fol­
lows: "SNMPv3 is SNMPv2 plus security and 
administration." 

RFC 2271 

RFC 2272 

RFC 2273 

RFC 2274 

RFC 2275 

Internet Draft 

An Architecture for Describing SNMP Management January 1998 
Frameworks 

Message Processing and Dispatching for SNMP January 1998 

SNMPv3 Applications January 1998 

User-Based Security Model for SNMPv3 January 1998 

View-Based Access Control Model (VACM) for SNMP January 1998 

Introduction to Version 3 of the Internet Network August 1998 
Management Framework 

The remainder of this article is organized 
as follows. The next section provides a brief 
introduction to the basic SNMP concepts. 
This is followed by a discussion of the SNMP 
architecture defined in RFC 2271. Next, the 
privacy and authentication facilities provided 
by the SNMPv3 User Security Model (USM) 
are described. The next section discusses 
access control and the view-based access 
control model (V ACM). An appendix pro­
vides a brief tutorial on cryptographic algo-

• Table 1. SNMPv3 documents. 

rithms, including encryption and message authentication. 

BASIC SNMP CONCEPTS 
The basic idea of any network management system is that 

there are two types of systems in any networked configura­
tion: agents and managers. Any node in the network that is to 
be managed, including PCs, workstations, servers, bridges, 
routers, and so on, includes an agent module. The agent is 
responsible for 
• Collecting and maintaining information about its local 

environment 
• Providing that information to a manager, either in 

response to a request or in an unsolicited fashion when 
something noteworthy happens 

• Responding to manager commands to alter the local con­
figuration or operating parameters. 
A configuration will also include one or more management 

stations, or managers. The manager station generally provides 
a user interface so that a human network manager can control 
and observe the network management process. This interface 
allows the user to issue commands (e.g., deactivate a link, col­
lect statistics on performance, etc.) and provides logic for sum­
marizing and formatting information collected by the system. 

The heart of the network management system is a set of 
applications that meet the needs for network management. At 
a minimum, a system will include basic applications for perfor­
mance monitoring, configuration control, and accounting. More 
sophisticated systems will include more elaborate applications 
in those categories, plus facilities for fault isolation and correc­
tion, and for managing the security features of the network. 

PDU Processing 
(SNMPv1 or SNMPv2) 

Message Processing 
(SNMPv3 USM) V3-MH 

UDP UDP-H V3-MH I 

IP IP-H UDP-H I V3-MH I 

All of the network management applications generally 
share a common network management protocol. This protocol 
provides the fundamental functions for retrieving manage­
ment information from agents and for issuing commands to 
agents. This protocol, in turn, makes use of a communications 
facility, such as TCP/IP or OS!. 

Finally, each agent maintains a management information 
base (MIB) that contains current and historical information 
about its local configuration and traffic. The management sta­
tion will maintain a global MIB with summary information 
from all the agents. 

The SNMPvl and SNMPv2 specifications consists of a set of 
documents that define a network management protocol, a gen­
eral structure for management information bases (MIBs), and a 
number of specific MIB data structures for specific manage­
ment purposes. The specification includes minimal network 
management applications and no user presentation facility. 
Thus, SNMP is not a full-blown network management standard. 
Accordingly, vendors have provided their own proprietary net­
work management applications to run on top of SNMP. 

The operative word in SNMP is " simple ."  SNMP is 
designed to be easy to implement and to consume minimal 
processor and network resources. It is therefore a tool for 
building a b are-bones network management facility. In 
essence the protocol provides four functions: 
• Get: Used by a manager to retrieve an item from an 

agent's MIB. 
• Set: Used by a manager to set a value in an agent's MIB. 
• Trap: Used by an agent to send an alert to a manager. 
• Inform: Used by a manager to send an alert to another 

manager. 
This is about as simple as you can get. What gives SNMP its 

power is the extensive set 
of standardized MIB 
structures that has been 

SNMP PDU 

SNMP PDU 

SNMP PDU 

SNMP PDU 

defined. The MIB at an 
agent dictates what infor­
mation that agent will col­
lect and store. For 
example, there are a 
number of variables in the 
basic MIB that relate to 
the operation of the 
underlying TCP and IP 
protocols, including num-
ber of packets sent and 

IP-H 
UDP-H 
V3-MH 

IP header 
UDP header 

received, packets in error, 
and so on. Since all agent 
maintain the same set of 
data variables, applica­
tions can be written at the 
management station to 

SNMPv3 message header 

• Figure 1. SNMP protocol architecture. exploit this information. 
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For a more detailed discussion of SNMPv1 and SNMPv2, 
see reference [1]. 

SNMP ARCHITECTURE 
The SNMP architecture, as envisioned by RFC 2271, con­

sists of a distributed, interacting collection of SNMP entities. 
Each entity implements a portion of the SNMP capability and 
may act as an agent node, a manager node, or a combination 
of the two. Each SNMP entity consists of a collection of mod­
ules that interact with each other to provide services. These 
interactions can be modeled as a set of abstract primitives and 
parameters. 

The RFC 2271 architecture reflects a key design require­
ment for SNMPv3: Design a modular architecture that will 

• Allow implementation over a wide range of operational 
environments, some of which need minimal, inexpensive func­
tionality and some of which may support additional features 
for managing large networks 

• Make it possible to move portions of the architecture for­
ward in the standards track even if consensus has not been 
reached on all pieces 

• Accommodate alternative security models 

SNMPENTITY 

Each SNMP entity includes a single SNMP engine. An 
SNMP engine implements functions for sending and receiving 
messages, authenticating and encrypting/decrypting messages, 
and controlling access to managed objects. These functions 

SNMP Entity 

Command Notification Notification 
Generator Originator Receiver 

Applications Applications Applications 

are provided as services to one or more applications that are 
configured with the SNMP engine to form an SNMP entity. 

Both the SNMP engine and the applications it supports are 
defined as a collection of discrete modules. This architecture 
provides several advantages. First, as we shall see, the role of 
an SNMP entity is determined by which modules are imple­
mented in that entity. For example, a certain set of modules is 
required for an SNMP agent, while a different (though over­
lapping) set of modules is required for an SNMP manager. 
Second, the modular structure of the specification lends itself 
to defining different versions of each module. This in turn 
makes it possible to 

• Define alternative or enhanced capabilities for certain 
aspects of SNMP without needing to go to a new version 
of the entire standard (e.g., SNMPv4) 

• Clearly specify coexistence and transition strategies. 
To get a better understanding of the role of each module 

and its relationship to other modules, it is best to look at their 
use in traditional SNMP managers and agents. The term tra­
ditional, equivalent to pure, is used to emphasize the fact that 
a given implementation need not be a pure manager or agent 
but may have modules that allow the entity to perform both 
management and agent tasks. 

TRADITIONAL SNMP MANAGER - Figure 2, based on a 
figure in RFC 2271, is a block diagram of a traditional SNMP 
manager. A traditional SNMP manager interacts with SNMP 
agents by issuing commands (get, set) and by receiving trap 
message; the manager may also interact with other managers 
by issuing Inform Request PDUs, which provide alerts, and 
by receiving Inform Response PDUs, which acknowledge 

Inform Requests. In SNMPv3 terminology, a tradi­
tional SNMP manager includes three categories of 

t t t SNMP 
Applications 

applications. The Command Generator Applica­
tions monitor and manipulate management data at 
remote agents; they make use of SNMPv1 and/or 
SNMPv2 PDUs, including Get, GetNext, GetBulk, 
and Set. A Notification Originator Application ini­
tiates asynchronous messages; in the case of a tra­
ditional manager, the InformRequest PDU is used 
for this application. A Notification Receiver Appli­
cation processes incoming asynchronous messages; 
these include InformRequest, SNMPv2-Trap, and 
SNMPv1 Trap PDUs. In the case of an incoming 
InformRequest PDU, the Notification Receiver 
Application will respond with a Response PDU. I PDU I Dispatcher 

Dis· 
patcher 

I Message I 
Dispatcher I 

... � 
,,. 

I Transport Mapping I (e.g., RFC1906) 

.-

Message Processing Security 
Subsystem Subsystem 

� v1 MP � .. User·based 
Security 

� � .. 
Model 

v2cMP 

� v3MP � .. Other 
Security 

� otherMP � .. 
Model 

SNMP Engine 

All of the applications just described make use 
of the services provided by the SNMP engine for 
this entity. The SNMP engine performs two overall 
functions: 
• It accepts outgoing PDUs from SNMP applica­

tions, performs the necessary processing, 
including inserting authentication codes and 
encrypting, and then encapsulates the PDUs 
into messages for transmission. 

• It accepts incoming SNMP messages from the 
transport layer, performs the necessary pro­
cessing, including authentication and decryp­
tion, and then extracts the PDUs from the 
messages and passes these on to the appropri­
ate SNMP application. 

• Figure 2. Traditional SNMP manager. 

In a traditional manager, the SNMP engine con­
tains a Dispatcher, a Message Processing Subsys­
tem, and a Security Subsystem. The Dispatcher is 
a simple traffic manager. For outgoing PDUs, the 
Dispatcher accepts PDUs from applications and 
performs the following functions. For each PDU, 
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j � 
�, 

Message Processing 
Transport Mapping Subsystem 

(e.g., RFC1906) 

Dis- � � ·1 v1MP 
patcher 

� , 
.1 Message iIIII v2cMP 

Dispatcher l1li 
� � 

.1 v3MP 

� , 
PDU ·1 otherMP Dispatcher 

A 

� , � , � , 
Proxy Command 

Forwarder Responder 
Applications Applications 

j � 
� , 

MIB Instrumentation 

• Figure 3. Traditional SNMP agent. 

the Dispatcher determines the type of message processing 
required (i.e., for SNMPv1, SNMPv2c, or SNMPv3) and pass­
es the PDU on to the appropriate message processing mod­
ule in the Message Processing Subsystem. Subsequently, the 
Message Processing Subsystem returns a message containing 
that PDU and including the appropriate message headers. 
The Dispatcher then maps this message onto a transport 
layer for transmission. 

For incoming messages, the Dispatcher accepts messages 
from the transport layer and performs the following functions. 
The Dispatcher routes each message to the appropriate mes­
sage processing module. Subsequently, the Message Process­
ing Subsystem returns the PDU contained in the message. 
The Dispatcher then passes this PDU to the appropriate 
application. 

The Message Processing Subsystem accepts outgoing 
PDUs from the Dispatcher and prepares these for transmis­
sion by wrapping them in the appropriate message header and 
returning them to the Dispatcher. The Message Processing 
Subsystem also accepts incoming messages from the Dispatch­
er, processes each message header, and returns the enclosed 
PDU to the Dispatcher. An implementation of the Message 
Processing Subsystem may support a single message format 
corresponding to a single version of SNMP (SNMPv1 ,  
SNMPv2c, SNMPv3), or it may contain a number o f  modules, 
each supporting a different version of SNMP. 

SNMP Entity 

Security Access Control 
Subsystem Subsystem 

I ....... ..... 
I ..... l1li"" User-based View-based 

Security Access Control 
Model Model 

I ....... ..... 
I ....... ,... 

I ....... ..... 
I ....... ,... Other Other 

Security Access Control 
Model Model 

I ....... ..... 
I ....... ,... 

... SNMP 
Engine 

� , � , 
Notification 
Originator 

Applications 

� � 
� , SNMP Applications 

1 

The Security Subsystem performs authentication and 
encryption functions. Each outgoing message is passed to the 
Security Subsystem from the Message Processing Subsystem. 
Depending on the services required, the Security Subsystem 
may encrypt the enclosed PDU and possibly some fields in the 
message header, and it may generate an authentication code 
and insert it into the message header. The processed message 
is then returned to the Message Processing Subsystem. Simi­
larly, each incoming message is passed to the Security Subsys­
tem from the Message Processing Subsystem. If required, the 
Security Subsystem checks the authentication code and per­
forms decryption. It then returns the processed message to 
the Message Processing Subsystem. An implementation of the 
Security Subsystem may support one or more distinct security 
models. So far, the only defined security model is the User­
Based Security Model (USM) for SNMPv3, specified in RFC 
2274. 

TRADITIONAL SNMP AGENT - Figure 3, based on a fig­
ure in RFC 2271 ,  is a block diagram of a traditional SNMP 
agent. The traditional agent may contain three types of appli­
cations. Command Responder Applications provide access to 
management data. These applications respond to incoming 
requests by retrieving and/or setting managed objects and 
then issuing a Response PDU. A Notification Originator 
Application initiates asynchronous messages; in the case of a 
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traditional agent, the SNMPv2-Trap or SNMPvl Trap PDU 
is used for this application. A Proxy Forwarder Application 
forwards messages between entities. 

The SNMP engine for a traditional agent has all of the 
components found in the SNMP engine for a traditional man­
ager, plus an Access Control Subsystem. This subsystem pro­
vides authorization services to control access to MIBs for the 
reading and setting of management objects. These services are 
performed on the basis of the contents of PDUs. An imple­
mentation of the Security Subsystem may support one or 
more distinct access control models. So far, the only defined 
security model is the View-Based Access Control Model 
(VACM) for SNMPv3, specified in RFC 2275. 

Note that security-related functions are organized into two 
separate subsystems: security and access control. This is an 
excellent example of good modular design, because the two sub­
systems perform quite distinct functions and therefore it makes 
sense to allow standardization of these two areas to proceed 
independently. The Security Subsystem is concerned with priva­
cy and authentication, and operates on SNMP messages. The 
Access Control Subsystem is concerned with authorized access 
to management information, and operates on SNMP PDUs. 

TERMINOLOGY 

Table 2 briefly defines some terms that are introduced in 
RFC 2271 .  Associated with each SNMP entity is a unique 
snmpEngineID. For purposes of access control, each SNMP 

entity is considered to manage a number of contexts of man­
aged information, each of which has a contextName that is 
unique within that entity. To emphasize that there is a single 
manager of contexts within an entity, each entity has a unique 
contextEngineID associated with it; because there is a one-to­
one correspondence between the context engine and the 
SNMP engine at this entity, the contextEngineID is identical 
in value to the snmpEngineID. Access control is governed by 
the specific context for which access is attempted and the 
identity of the user requesting access; this latter identity is 
expressed as a principal, which may be an individual or an 
application or a group of individuals or applications. 

Other terms of importance relate to the processing of mes­
sages. The snmpMessageProcessingModel determines the 
message format and the SNMP version for message process­
ing. The snmpSecurityModel determines which security model 
is to be used. The snmpSecurityLevel determines which secu­
rity services are requested for this specific operation. The user 
may request just authentication, or authentication plus privacy 
(encryption), or neither. 

SNMPv3 ApPLICATIONS 

The services between modules in an SNMP entity are 
defined in the RFCs in terms of primitives and parameters. A 
primitive specifies the function to be performed, and the 
parameters are used to pass data and control information. We 
can think of these primitives and parameters as a formalized 

snmpEnginelD Unique and unambiguous identifier of an SNMP engine, 

way of defining SNMP services. The 
actual form of a primitive is implemen­
tation dependent; an example is a pro­
cedure call .  In the discussion that 
follows, it may be useful to refer to 
Fig. 4, based on a figure in RFC 2271, 
to see how all of these primitives fit 
together. Figure 4a shows the sequence 
of events in which a Command Gener­
ator or Notification Originator applica­
tion requests that a PDU be sent, and 
subsequently how the matching 
response is returned to that applica­
tion; these events occur at a manager. 
Figure 4b shows the corresponding 
events at an agent. The figure shows 
how an incoming message results in 
the dispatch of the enclosed PDU to 
an application, and how that applica­
tion's response results in an outgoing 
message. Note that some of the arrows 
in the diagram are labeled with a prim­
itive name, representing a call. Unla­
beled arrows represents the return 
from a call, and the shading indicates 
the matching between call and return. 

contextEnginelD 

context Name 

scopedPDU 

snmpMessageProcessingModel 

snmpSecurityModel 

snmpSecurityLevel 

principal 

securityName 

as well as the SNMP entity that corresponds to that 
engine. 

Uniquely identifies an SNMP entity that may realize an 
instance of a context with a particular contextName. 

Identifies a particular context within an SNMP engine. 
It is passed as a parameter to the Dispatcher and Access 
Control Subsystem. 

A block of data consisting of a contextEnginelD, a 
contextName, and an SNMP PDU. It is passed as a 
parameter to/from the Security Subsystem. 

Unique identifier of a message processing model of the 
Message Processing Subsystem. Possible values include 
SNMPv1, SNMPv2c, and SNMPv3. 

Unique identifier of a security model of the Security 
Subsystem. Possible values include SNMPv1, SNMPv2c, 
and USM. 

A level of security at which SNMP messages can be sent 
or with which operations are being processed, expressed 
in terms of whether or not authentication and/or privacy 
are provided. The alternative values are noAuthnoPriv, 
authNoPriv, and authPriv. 

The entity on whose behalf services are provided or 
processing takes place. A principal can be an individual 
acting in a particular role; a set of individuals, with each 
acting in a particular role; an application or set of 
applications; and combinations thereof. 

A human·readable string representing a principal. It is 
passed as a parameter in all of the SNMP primitives 
(Dispatcher, Message Processing, Security, Access 
Control) 

RFC 2273 defines, in general terms, 
the procedures followed by each type 
of application when generating PDUs 
for transmission or processing incom­
ing PDUs. In all cases, the procedures 
are defined in terms of interaction with 
the Dispatcher by means of the Dis­
patcher primitives. 

COMMAND GENERATOR ApPLICA­
TIONS - A command generator 
application makes use of the sendPdu 

• Table 2. SNMPv3 tenninology. and processResponsePdu Dispatcher 
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Command 
Generator 

Message 
Processing 

Model 

Security Command 
Message 

Processing 
Model 

Security 
Model 

Dispatcher 
Model Responder 

Dispatcher 

sendPdu 
'" 
,. prepareOutgoingM� 

, generateRequestM� 
, 

i 
..... 

I 

i 
..... 

..... 

Send SNMP 
Request Msg 
to Network 'if 

Receive SNMP I Response Msg 
from Network 

i 
.... 

p repareDataElemen! 
, processlncomingM� 

,. 

i 
..... 

I 
p rocessResponsePdu ..... 

.i 
..... 

(a) Command Generator or Notification Originator 

• Figure 4. SNMPv3 flow. 

primitives. The sendPdu provides the Dispatcher with infor­
mation about the intended destination, security parameters, 
and the actual PDU to be sent. The Dispatcher then invokes 
the Message Processing Model, which in turn invokes the 
Security Model, to prepare the message. The Dispatcher 
hands the prepared message over to the transport layer 
(e.g., UDP) for transmission. If message preparation fails, 
the return primitive value of the sendPdu, set by the Dis­
patcher, is an error indication. If message preparation suc­
ceeds, the Dispatcher assigns a sendPduHandle identifier to 
this PDU and returns that value to the command generator. 
The command generator stores the sendPduHandle so that 
it can match the subsequent response PDU to the original 
request. 

The Dispatcher delivers each incoming response PDU to 
the correct command generator application, using the process­
ResponsePdu primitive. 

COMMAND RESPONDER ApPLICATIONS - A command 
responder application makes use of four Dispatcher primi­
tives (registerContextEngineID, unregisterContextEngineID, 
processPdu, returnResponsePdu), and one Access Control 
Subsystem primitive (isAccessAllowed). 

The registerContextEngineID primitive enables a com­
mand responder application to associate itself with an SNMP 
engine for the purpose of processing certain PDU types for a 
context engine. Once a command responder has registered, all 
asynchronously received messages containing the registered 
combination of contextEngineID and pduType supported are 
sent to the command responder that registered to support 
that combination. A command responder can disassociate 
from an SNMP engine using the unregisterContextEngineID 
primitive. 

The Dispatcher delivers each incoming request PDU to the 

registerContextEngi n�D 

,. 

I 
.... Receive SNMP I Request Msg 

from Network 

.i 
..... 

p repareDataElements 
"" 
,. processlncomingMsg

", 
,. 

I 
.... 

.i 

processPdu 
.... 

.i 
.... 

returnResponsePdu 
.. 
, prepareResponseMs� 

,. generateResponseMsg 
'" 
,. 

I 
.... 

.i 
-

Send SNMP 
Response Msg 
to Network 

,� 
(b) Command Responder 

correct command responder application, using the processPdu 
primitive. The command responder then performs the follow­
ing steps: 
1. The command responder examines the contents of the 

request PDU. The operation type must match one of the 
types previously registered by this application. 

2. The command responder determines if access is allowed 
for performing the management operation requested in 
this PDU. For this purpose, the isAccessAllowed primi­
tive is called. The securityModel parameter indicates 
which security model the Access Control Subsystem is to 
use in responding to this call. The Access Control Sub­
system determines if the requesting principal (security­
Name) at this security level (securityLevel) has 
permission to request the management operation (view­
Type) on the management object (variableName) in this 
context (contextName). 

3. If access is permitted, the command responder performs 
the management operation and prepares a response 
PDU. if access fails, the command responder prepares 
the appropriate response PDU to signal that failure. 

4. The command responder calls the Dispatcher with a 
returnResponsePdu primitive to send the response PDU. 

NOTIFICATION GENERATOR ApPLICATIONS - A notifica­
tion generator application follows the same general proce­
dures used for a command generator application. If an 
Inform Request PDU is to be sent, both the sendPdu and 
processResponsePdu primitives are used, in the same fashion 
as for command generator applications. If a trap PDU is to 
be sent, only the sendPdu primitive is used. 

NOTIFICATION RECEIVER ApPLICATIONS - A notification 
receiver application follows a subset of the general proce-
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dures as for a command responder application. The notifica­
tion receiver must first register to receive Inform and/or trap 
PDUs. Both types of PDUs are received by means of a pro­
cessPdu primitive. For an Inform PDU, a returnResponsePdu 
primitive is used to respond. 

PROXY FORWARDER ApPLICATIONS - A proxy forwarder 
application makes use of Dispatcher primitives to forward 
SNMP messages. The proxy forwarder handles four basic 
types of messages: 
• Messages containing PDU types from a command gener­

ator application. The proxy forwarder determines either 
the target SNMP engine or an SNMP engine that is clos­
er, or downstream, to the target, and sends the appropri­
ate request PDU. 

• Messages containing PDU types from a notification origi­
nator application. The proxy forwarder determines which 
SNMP engines should receive the notification and sends 
the appropriate notification PDU or PDUs. 

• Messages containing a Response PDU type. The proxy 
forwarder determines which previously forwarded request 
or notification, if any, is matched by this response, and 
sends the appropriate response PDU. 

• Messages containing a report indication. Report PDUs 
are SNMPv3 engine-to-engine communications. The 
proxy forwarder determines which previously forwarded 
request or notification, if any, is matched by this report 
indication, and forwards the report indication back to the 
initiator of the request or notification. 

msgVersion 

msglD 

MESSAGE PROCESSING AND THE 
USER SECURITY MODEL 

Message processing involves a general-purpose message 
processing model and a specific security model; this relation­
ship is shown in Fig. 4. 

MESSAGE PROCESSING MODEL 

RFC 2272 defines a general-purpose message processing 
model. This model is responsible for accepting PDUs from 
the Dispatcher, encapsulating them in messages, and invoking 
the USM to insert security-related parameters in the message 
header. The message processing model also accepts incoming 
messages, invokes the USM to process the security-related 
parameters in the message header, and delivers the encapsu­
lated PDU to the Dispatcher. 

Figure 5 illustrates the message structure. The first five 
fields are generated by the message processing model on out­
going messages and processed by the message processing 
model on incoming messages. The next six fields show security 
parameters used by USM. Finally, the PDU, together with the 
contextEngineID and contextName constitute a scoped PDU, 
used for PDU processing. 

The first five fields are: 
msgVersion: Set to snmpv3(3). 
msgID: A unique identifier used between two SNMP enti­

ties to coordinate request and response messages, and by the 
message processor to coordinate the processing of the mes­

sage by different subsystem models within the 
architecture. The range of this ID is 0 through 
23Ll. 

msgMaxSize: Conveys the maximum size of a 

msgMaxSize 
Generated/processed 
by Message Processing 
Model 

message in octets supported by the sender of the 
message, with a range of 484 through 23Ll. This 
is the maximum segment size that the sender can 
accept from another SNMP engine (whether a 
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• Figure 5. SNMPv3 message [annat with USM 

Generated/Processed 
by User Security 
Model (USM) 

Scoped PDU 
(plaintext or encrypted) 

response or some other message type). 
msgFlags: An octet string containing three 

flags in the least significant three bits: reportable­
Flag, privFlag, authFlag. If reportable Flag = 1, 
then a Report PDU must be returned to the 
sender under those conditions that can cause the 
generation of a Report PDU; when the flag is 
zero, a Report PDU may not be sent. The 
reportableFlag is set to 1 by the sender in all 
messages containing a request (Get, Set) or an 
Inform, and set to 0 for messages containing a 
Response, a Trap , or a Report PDU. The 
reportableFlag is a secondary aid in determining 
when to send a Report. It is only used in cases in 
which the PDU portion of the message cannot be 
decoded (e.g., when decryption fails due to incor­
rect key) . The privFlag and authFlag are set by 
the sender to indicate the security level that was 
applied to the message. For privFlag = 1, encryp­
tion was applied and for privFlag = 0, authenti-
cation was applied. All combinations are allowed 
except (privFlag = 1 AND authFiag = 0); that is, 
encryption without authentication is not allowed. 

msgSecurityModel: An identifier in the range 
of 0 through 23L 1 that indicates which security 
model was used by the sender to prepare this 
message and therefore which security model 
must be used by the receiver to process this mes­
sage. Reserved values include 1 for SNMPv1, 2 
for SNMPv2c, and 3 for SNMPv3. 
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USER-BASED SECURITY MODEL 

RFC 2274 defines the User Security Model (USM). USM 
provides authentication and privacy services for SNMP . 
Specifically, USM is designed to secure against the following 
principal threats: 

• Modification of Information: An entity could alter an in­
transit message generated by an authorized entity in such 
a way as to effect unauthorized management operations, 
including the setting of object values. The essence of this 
threat is that an unauthorized entity could change any 
management parameter, including those related to con­
figuration, operations, and accounting. 

• Masquerade: Management operations that are not autho­
rized for some entity may be attempted by that entity by 
assuming the identity of an authorized entity. 

• Message Stream Modification: SNMP is designed to 
operate over a connectionless transport protocol. There 
is a threat that SNMP messages could be reordered, 
delayed, or replayed (duplicated) to effect unauthorized 
management operations. For example, a message to 
reboot a device could be copied and replayed later. 

• Disclosure: An entity could observe exchanges between a 
manager and an agent and thereby learn the values of 
managed obj ects and learn of notifiable events. For 
example, the observation of a set command that changes 
passwords would enable an attacker to learn the new 
passwords. 
USM is not intended to secure against the following two 

threats. 
• Denial of Service: An attacker may prevent exchanges 

between a manager and an agent. 
• Traffic Analysis: An attacker may observe the general 

pattern of traffic between managers and agents. 
The lack of a counter to the denial-of-service threat may be 
justified on two grounds: First, denial-of-service attacks are in 
many cases indistinguishable from the type of network fail­
ures with which any viable network management application 
must cope as a matter of course; and second, a denial-of-ser­
vice attack is likely to disrupt all types of exchanges and is a 
matter for an overall security facility, not one embedded in a 
network management protocol. As to traffic analysis, many 
network management traffic patterns are predictable (e.g., 
entities may be managed via SNMP commands issued on a 
regular b asis by one or a few management stations) and 
therefore there is no significant advantage to protecting 
against observing these traffic patterns. 

CRYPTOGRAPHIC FUNCTIONS - Two cryptographic func­
tions are defined for USM: authentication and encryption. To 
support these functions, an SNMP engine requires two val­
ues :  a privacy key (privKey) and an authentication key 
(authKey). Separate values of these two keys are maintained 
for the following users: 

• Local users: Any principal at this SNMP engine for which 
management operations are authorized. 

• Remote users: Any principal at a remote SNMP engine 
for which communication is desired. 
These values are user attributes stored for each relevant 

user. The values of privKey and authKey are not accessible via 
SNMP. 

USM allows the use of one of two alternative authentica­
tion protocols: HMAC-MD5-96 and HMAC-SHA-96. HMAC 
uses a secure hash function and a secret key to produce a 
message authentication code; HMAC is widely used for Inter­
net-based applications and is defined in RFC 2104. For 
HMAC-MD5-96, HMAC is used with MD5 as the underlying 
hash function. A 16-octet (128-bit) authKey is used as input to 

the HMAC algorithm. The algorithm produces a 128-bit out­
put, which is truncated to 12 octets (96 bits).  For HMAC­
SHA-96, the underling hash function is SHA-1. The authKey 
is 20 octets in length. The algorithm produces a 20-octet out­
put, which is again truncated to 12 octets. 

USM uses the cipher block chaining (CBC) mode of the 
Data Encryption Standard (DES) for encryption. A 16-octet 
privKey is provided as input to the encryption protocol. The 
first eight octets (64 bits) of this privKey are used as a DES 
key. Because DES only requires a 56-bit key, the least signifi­
cant bit of each octet is ignored. For CBC mode, a 64-bit ini­
tialization vector (IV) is required. The last eight octets of the 
privKey contain a value that is used to generate this IV. 

AUTHORITATIVE AND NON-AuTHORITATIVE ENGINES -

In any message transmission, one of the two entities, trans­
mitter or receiver, is designated as the authoritative SNMP 
engine, according to the following rules:  
• When an SNMP message contains a p ayload which 

expects a response (for example, a Get, GetNext, Get­
Bulk, Set, or Inform PDU), then the receiver of such 
messages is authoritative. 

• When an SNMP message contains a payload which does 
not expect a response (for example, an SNMPv2-Trap, 
Response, or Report PDU), then the sender of such a 
message is authoritative. 
Thus, for messages sent on behalf of a Command Genera­

tor and for Inform messages from a Notification Originator, 
the receiver is authoritative. For messages sent on behalf of a 
Command Responder or for Trap messages from a Notifica­
tion Originator, the sender is authoritative. This designation 
serves two purposes: 
1. The timeliness of a message is determined with respect 

to a clock maintained by the authoritative engine. When 
an authoritative engine sends a message (Trap, Response, 
Report), it contains the current value of its clock, so that 
the non-authoritative recipient can synchronize on that 
clock. When a non-authoritative engine sends a message 
(Get, GetNext, GetBulk, Set, Inform), it includes its cur­
rent estimate of the time value at the destination, allow­
ing the destination to assess the message's timeliness. 

2. A key localization process, described later, enables a sin­
gle principal to own keys stored in multiple engines; 
these keys are localized to the authoritative engine in 
such a way that the principal is responsible for a single 
key but avoids the security risk of storing multiple copies 
of the same key in a distributed network. 
It makes sense to designate the receiver of Command Gen­

erator and Inform PDUs as the authoritative engine , and 
therefore responsible for checking message timeliness. If a 
response or trap is delayed or replayed, little harm should 
occur. However, Command Generator and, to some extent, 
Inform PDUs result in management operations, such as read­
ing or setting MIB objects. Thus, it is important to guarantee 
that such PDUs are not delayed or replayed, which could 
cause undesired effects. 

USM MESSAGE PARAMETERS - When an outgoing mes­
sage is passed to the USM by the Message Processor, the 
USM fills in the security-related parameters in the message 
header. When an incoming message is passed to the USM by 
the Message Processor, the USM processes the values con­
tained in those fields. The security-related parameters are the 
following: 
• msgAuthoritativeEngineID: The snmpEngineID of the 

authoritative SNMP engine involved in the exchange of 
this message. Thus, this value refers to the source for a 
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Trap, Response, or Report, and to the destination for a 
Get, GetNext, GetBulk, Set, or Inform. 

o msgAuthoritativeEngineBoots: The snmpEngineBoots 
value of the authoritative SNMP engine involved in the 
exchange of this message . The obj ect snmpEngine­
Boots is an integer in the range 0 through 231 - 1 that 
represents the number of times that this SNMP engine 
has initialized or reinitialized itself since its initial con­
figuration. 

o msgAuthoritativeEngineTime: The snmpEngineTime 
value of the authoritative SNMP engine involved in the 
exchange of this message. The object snmpEngineTime is 
an integer in the range 0 through 231 - 1 that represents 
the number of seconds since this authoritative SNMP 
engine last incremented the snmpEngineBoots object. 
Each authoritative SNMP engine is responsible for incre­
menting its own snmpEngineTime value once per sec­
ond. A non -authoritative engine is responsible for 
incrementing its notion of snmpEngineTime for each 
remote authoritative engine with which it communicates. 

o msgUserName: The user (principal) on whose behalf the 
message is being exchanged. 

o msgAuthenticationParameters: Null if authentication is 
not being used for this exchange. Otherwise, this is an 
authentication parameter. For the current definition of 
USM, the authentication parameter is an HMAC mes­
sage authentication code. 

o msgPrivacyParameters: Null if privacy is not being used 
for this exchange. Otherwise, this is a privacy parameter. 
For the current definition of USM, the privacy parame­
ter is a value used to form the initial value (IV) in the 
DES CBC algorithm. 
Figure 6 summarizes the operation of USM. For message 

transmission, encryption is performed first, if needed. The 
scoped PDU is encrypted and placed in the message pay­
load, and the msgPrivacyParameters value is set to the value 

Encrypt scopedPdu 
set msgPrivacyParameters 

compute MAC 
set msgAuthenticationParameters 

(a) Message Transmission 

• Figure 6. USM message processing. 

needed to generate the IV. Then, authentication is per­
formed, if needed. The entire message, including the scoped 
PDU is input to HMAC, and the resulting authentication 
code is placed in msgAuthenticationParameters. For incom­
ing messages, authentication is performed first if needed. 
USM first checks the incoming MAC against a MAC that it 
calculated; if the two values match, then the message is 
assumed to be authentic (comes from the alleged source and 
has not been altered in transmission). Then, USM checks 
whether the message is within a valid time window, as 
explained below. If the message is not timely, it is discarded 
as not authentic. Finally, if the scoped PDU has been 
encrypted, USM performs a decryption and returns the 
plaintext. 

USM TiMELINESS MECHANISMS - USM includes a set of 
timeliness mechanisms to guard against message delay and 
message replay. Each SNMP engine that can ever act in the 
capacity of an authoritative engine must maintain two objects, 
snmpEngineBoots and snmpEngineTime, that refer to its 
local time. When an SNMP engine is first installed, these two 
object values are set to O. Thereafter, snmpEngineTime is 
incremented once per second. If snmpEngineTime ever 
reaches its maximum value (231 - 1) ,  snmpEngineBoots is 
incremented, as if the system had rebooted, and snmpEngine­
Time is set to 0 and begins incrementing again. Using a syn­
chronization mechanism,  a non-authoritative engine 
maintains an estimate of the time values for each authorita­
tive engine with which it communicates. These estimated val­
ues are placed in each outgoing message, and enable the 
receiving authoritative engine to determine whether or not 
the incoming message is timely. 

The synchronization mechanism works in the following 
fashion. A non-authoritative engine keeps a local copy of 
three variables for each authoritative SNMP engine that is 
known to this engine: 

NO 

compute MAC; compare to 
msgAuthenticationParameters 

(b) Message Reception 
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• snmpEngineBoots: the most recent value of snmpEngine­
Boots for the remote authoritative engine. 

• snmpEngineTime: this engine's notion of snmpEngine­
Time for the remote authoritative engine. This value is 
synchronized to the remote authoritative engine by the 
synchronization process described below. Between syn­
chronization events, this value is logically incremented 
once per second to maintain a loose synchronization with 
the remote authoritative engine. 

• latestReceivedEngineTime: the highest value of msgAu­
thoritativeEngineTime that has been received by the this 
engine from the remote authoritative engine; this value is 
updated whenever a larger value of msgAuthorita­
tiveEngineTime is received. The purpose of this variable 
is to protect against a replay message attack that would 
prevent the non-authoritative SNMP engine's notion of 
snmpEngineTime from advancing. 
One set of these three variables is maintained for each 

remote authoritative engine known to this engine. Logically, 
the values are maintained in some sort of cache, indexed by 
the unique snmpEngineID of each remote authoritative 
engine. 

To enable non-authoritative engines to maintain time syn­
chronization, each authoritative engine inserts its current boot 
and time values, as well as its value of snmpEngineID, in each 
outgoing Response, Report, or Trap message in the fields 
msgAuthoritativeEngineBoots, msgAuthoritativeEngineTime, 
and msgAuthoritativeEngineID. If the message is authentic, 
and if the message is within the time window, then the receiv­
ing non-authoritative engine updates is local variables (snm­
pEngineBoots,  snmpEngine Time, and latestReceived 
EngineTime) for that remote engine according to the follow­
ing rules: 

1. An update occurs if at least one of the two following 
conditions is true: 
• (msgAuthoritativeEngineBoots > snmpEngineBoots) or 
• [( msgAuthoritativeEngineBoots = snmpEngineBoots) and 
(msgAuthoritativeEngineTime > latestReceivedEngine-

Time)] 

The first condition says that an update should occur if the 
boot value from the authoritative engine has increased since 
the last update. The second condition says that if the boot 
value has not increased, then an update should occur if the 
incoming engine time is greater than the latest received 
engine time. The incoming engine time will be less than the 
latest received engine time if two incoming messages arrive 
out of order, which can happen, or if a replay attack is under­
way; in either case, the receiving engine will not perform an 
update. 

2. If an update is called for, then the following changes are 
made: 
• set snmpEngineBoots to the value of msgAuthorita­

tiveEngineBoots 
• set snmpEngineTime to the value of msgAuthorita­

tiveEngine Time 
· set latestReceivedEngineTime to the value of msgAuthor­

itativeEngine Time 

If we turn the logic around, we see that if msgAuthorita­
tiveEngineBoots < snmpEngineBoots, then no update occurs. 
Such a message is considered not authentic and must be 
ignored. If msgAuthoritativeEngineBoots = snmpEngine­
Boots but msgAuthoritativeEngineTime < latestReceive­
dEngineTime, then again no update occurs. In this case, the 

message may be authentic, but it may be misordered, in which 
case an update of snmpEngineTime is not warranted. 

Note that synchronization is only employed if the authenti­
cation service is in use for this message and the message has 
been determined to be authentic via HMAC. This restriction 
is essential because the scope of authentication includes 
msgAuthoritativeEngineID, msgAuthoritativeEngineBoots, 
and msgAuthoritativeEngineTime, thus assuring that these 
values are valid. 

SNMPv3 dictates that a message must be received within a 
reasonable time window, to avoid delay and replay attacks. 
The time window should be chosen to be as small as possible 
given the accuracy of the clocks involved, round-trip commu­
nication delays, and the frequency with which clocks are syn­
chronized. If the time window is set too small, authentic 
messages will be rejected as unauthentic. On the other hand, 
a large time window increases the vulnerability to malicious 
delays of messages. 

We consider the more important case of an authoritative 
receiver; timeliness testing by a non-authoritative receiver dif­
fers slightly. With each incoming message that has been 
authenticated and whose msgAuthoritativeEngineID is the 
same as the value of snmpEngineID for this engine,  the 
engine compares the values of msgAuthoritativeEngineBoots 
and msgAuthoritativeEngineTime from the incoming message 
with the values of snmpEngineBoots and snmpEngineTime 
that this engine maintains for itself. The incoming message is 
considered outside the time window if any one of the follow­
ing conditions is true: 

· snmpEngineBoots = 231 - 1 or 
• msgAuthoritativeEngineBoots *- snmpEngineBoots or 
• the value of msgAuthoritativeEngineTime differs from 

that of snmpEngineTime by more than ± 150 s 

The first condition says that if snmpEngineBoots is latched 
at its maximum value, no incoming message can be considered 
authentic. The second condition says that a message must 
have a boot time equal to the local engine's boot time; for 
example, if the local engine has rebooted and the remote 
engine has not synchronized with the local engine since the 
reboot, the messages from that remote engine are considered 
not authentic. The final condition says that the time on the 
incoming message must be greater than the local time minus 
150 s and less than the local time plus 150 s. 

If a message is considered to be outside the time window, 
then the message is considered not authentic, and an error 
indication (notInTimeWindow) is returned to the calling mod­
ule. 

Again, as with synchronization, timeliness checking is only 
done if the authentication service is in use and the message is 
authentic, assuring the validity of the message header fields. 

KEY L OCALIZATION - A requirement for the use of the 
authentication and privacy services of SNMPv3 is that, for 
any communication between a principal on a non-authorita­
tive engine and a remote authoritative engine, a secret 
authentication key and a secret privacy key must be shared. 
These keys enable a user at a non-authoritative engine (typi­
cally a management system) to employ authentication and 
privacy with remote authoritative systems that the user man­
ages (typically, agent systems). RFC 2274 provides guidelines 
for the creation, update, and management of these keys. 

To simplify the key management burden on principals, 
each principal is only required to maintain a single authentica­
tion key and a single encryption key. These keys are not 
stored in a MIB and are not accessible via SNMP. In this sec-
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of user key and 
take hash " 

remote EnginelD ---. word, one alternative is to 
maintain a centralized reposi­
tory of secret keys. But this 
adversely affects overall relia­
bility and can make trou­
bleshooting impossible if the 
repository itself is not accessi­
b�e when needed. 

Localized 
Key 
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take hash 
of expanded 
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• On the other hand, if duplicate 
repositories are maintained, 
this endangers overall security 
by providing potential break­
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take hash � 

remote EnginelD ---. 
ers with more targets to 
attack. 

• If either centralized or multiple 
duplicate repositories are 
used, they must be maintained 
in secure locations. This may 
reduce the opportunity for 

• Figure 7. Key localization. 

tion we look first at the technique for generating these keys 
from a password. Then we look at the concept of key localiza­
tion, which enables a principal to share a unique authentica­
tion and encryption key with each remote engine while only 
maintaining a single authentication and encryption key locally. 
These two techniques were first proposed in [2]. 

A user requires a 16-octet privacy key and an authentica­
tion key of length either 16 or 20 octets. For keys owned by 
human users, it is desirable that the user be able to employ a 
human-readable password rather than a bit-string key. Accord­
ingly, RFC 2274 defines an algorithm for mapping from the 
user password to a 16- or 20-octet key. USM places no restric­
tion on the password itself, but local management policies 
should dictate that users employ passwords that are not easily 
guessed. 

Password to key generation is performed as follows: 
1. Take the user's password as input and produce a string 

of length 220 octets (1 ,048,576 octets) by repeating the 
password value as many times as necessary, truncating 
the last value if necessary, to form the string digestO. For 
example, an eight-character password (23 octets) would 
be concatenated with itself 217 times to form digestO. 

2. If a 16-octet key is desired, take the MD5 hash of digestO 
to form digest1.  If a 20-octet key is desired, take the 
SHA-1 hash of digestO to form digest1. The output is the 
user's key. 
One advantage of this technique is that it greatly slows 

down a brute-force dictionary attack, in which an adversary 
tries many different potential passwords, generating the key 
from each one, and then tests whether the resulting key works 
with the authentication or encryption data available to him or 
her. For example, if an attacker intercepts an authenticated 
message, the attacker could try generating the HMAC value 
with different possible user keys. If a match occurs, the attack­
er can assume that the password has been discovered. The 
two-step process outlined above significantly increases the 
amount of time such an attack will take. 

Another advantage of this technique is that it decouples 
the user's keys from any particular network management sys­
tem (NMS). No NMS need store values of user keys. Instead, 
when needed, a user key is generated from that user's pass­
word. Reference [2] lists the following considerations that 
motivate the use of a password approach that is independent 
of NMS: 
• If a key is to be stored rather than generated from a pass-

Localized 
Key 

"forward camp" establishment 
during fire fighting (i.e., trou­
bleshooting when unpre-

dictable segments of the network are inoperative and/or 
inaccessible for an unpredictable length of time). 
A single password could be used to generate a single key 

for both authentication and encryption. A more secure 
scheme is to use two passwords, one to generate an authenti­
cation key and one to generate a distinct encryption key. 

A localized key is defined in RFC 2274 as a secret key 
shared between a user and one authoritative SNMP engine. 
The objective is that the user need only maintain a single key 
(or two keys of both authentication and privacy are required) 
and therefore need only remember one password (or two) .  
The actual secrets shared between a particular user and each 
authoritative SNMP engine are different. The process by 
which a single user key is converted into multiple unique keys, 
one for each remote SNMP engine, is referred to as key local ­
ization. Reference [2] gives a motivation for this strategy, 
which we summarize here. 

We can define the following goals for key management: 
• Every SNMP agent system in a distributed network has 

its own unique key for every user authorized to manage 
it. If multiple users are authorized as managers, the 
agent has a unique authentication key and a unique 
encryption key for each user. Thus, if the key for one 
user is compromised, the keys for other users are not 
compromised. 

• The keys for a user on different agents are different. 
Thus, if an agent is compromised, only the user keys for 
that agent are compromised and not the user keys in use 
for other agents. 

• Network management can be performed from any point 
on the network, regardless of the availability of a precon­
figured network management system (NMS). This allows 
a user to perform management functions from any man­
agement station. This capability is provided by the pass­
word-to-key algorithm described previously. 
We can also define the following as things to avoid: 

• A user has to remember (or otherwise manage) a large 
number of keys, a number that grows with the addition 
of new managed agents. 

• An adversary who learns a key for one agent is now able 
to impersonate any other agent to any user, or any user 
to any other agent. 
To address the preceding goals and considerations, a single 

user key is mapped by means of a nonreversible one-way func­
tion (i.e., a secure hash function) into different localized keys 
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for different authenticated engines (different agents). The 
procedure is as follows: 
1 .  Form the string digest2 by concatenating digestl 

(described above) ,  the authoritative engine ' s  snm­
pEngineID value, and digestl. 

2. If a 16-octet key is desired, take the MD5 hash of digest2. 
If a 20-octet key is desired, take the SHA- l hash of 
digest2. The output is the user's localized key. 
The resulting localized key can then be configured on the 

agent's system in some secure fashion. Because of the one­
way nature of MD5 and SHA-l ,  it is infeasible for an adver­
sary to learn a user key even if the adversary manages to 
discover a localized key. 

Figure 7 summarizes the key localization process. 

VIEW-BASED ACCESS CONTROL 
Access control is a security function performed at the PDU 

level. An access control document defines mechanisms for 
determining whether access to a managed object in a local 
MIB by a remote principal should be allowed. Conceivably, 
multiple access control mechanisms could be defined. The 
SNMPv3 documents define the view-based access control 
(V ACM) model. 

V ACM has two important characteristics: 
• V ACM determines whether access to a managed object 

in a local MIB by a remote principal should be allowed. 
• V ACM makes use of a MIB that: 

Defines the access control policy for this agent 
Makes it possible for remote configuration to be used. 

ELEMENTS OF THE V ACM MODEL 

RFC 2275 defines five elements that make up the VACM: 
groups, security level, contexts, MIB views, and access policy. 

GROUPS - A group is defined as a set of zero or more 
< securityModel, securityName > tuples on whose behalf 
SNMP management objects can be accessed. A securityName 
refers to a principal, and access rights for all principals in a 
given group are identical. A unique group Name is associated 
with each group. The group concept is a useful tool for cate­
gorizing managers with respect to access rights. For example, 
all top-level managers may have one set of access rights, 
while intermediate-level managers may have a different set of 
access rights. 

Any given combination of securityModel and securityName 
can belong to at most one group. That is, for this agent, a 
given principal whose communications are protected by a 
given securityModel can only be included in one group. 

SECURITY LEVEL - The access rights for a group may dif­
fer depending on the security level of the message that con­
tains the request. For example, an agent may allow read-only 
access for a request communicated in an unauthenticated 
message but may require authentication for write access. Fur­
ther, for certain sensitive objects, the agent may require that 
the request and its response be communicated using the pri­
vacy service. 

CONTEXTS - A MIB context is a named subset of the 
object instances in the local MIB. Contexts provide a useful 
way of aggregating objects into collections with different 
access policies. 

The context is a concept that relates to access control. 
When a management station interacts with an agent to access 

management information at the agent, then the interaction is 
between a management principal and the agent's SNMP 
engine, and the access control privileges are expressed in a 
MIB view that applies to this principal and this context. Con­
texts have the following key characteristics: 

• An SNMP entity, uniquely identified by a contex­
tEngineID, may maintain more than one context. 

• An object or an object instance may appear in more than 
one context. 

• When multiple contexts exist, to identify an individual 
object instance, its contextName and contextEngineID 
must be identified in addition to its object type and its 
instance. 

MIB V IEWS - It is often the case that we would like to 
restrict the access of a particular group to a subset of the 
managed objects at an agent. To achieve this objective, access 
to a context is by means of a MIB view, which defines a spe­
cific set of managed objects (and optionally specific object 
instances). VACM makes use of a powerful and flexible tech­
nique for defining MIB views, based on the concepts of view 
subtrees and view families. The MIB view is defined in terms 
of a collection, or family, of subtrees, with each subtree being 
included in or excluded from the view. 

The managed objects in a local database are organized into 
a hierarchy, or tree, based on the object identifiers of the 
objects. This local database comprises a subset of all object 
types defined according to the Internet-standard Structure of 
Management Information (SMI) and includes object instances 
whose identifiers conform to the SMI conventions. 

SNMPv3 includes the concept of a subtree. A subtree is 
simply a node in the MIB's naming hierarchy plus all of its 
subordinate elements. More formally, a subtree may be 
defined as the set of all objects and object instances that have 
a common ASN.l  OBJECT IDENTIFIER prefix to their 
names. The longest common prefix of all of the instances in 
the subtree is the object identifier of the parent node of that 
subtree. 

Associated with e ach entry in vacmAccessTable are 
three MIB views ,  one e ach for read,  write, and notify 
access. Each MIB view consists of a set of view subtrees. 
Each view subtree in the MIB view is specified as being 
included or excluded. That is, the MIB view either includes 
or excludes all object instances contained in that subtree. 
In addition, a view mask is defined in order to reduce the 
amount of configuration information required when fine­
grained access control is required (e.g. ,  access control at 
the object instance level). 

ACCESS POLICY - V ACM enables an SNMP engine to be 
configured to enforce a particular set of access rights. Access 
determination depends on the following factors: 

• The principal making the access request. The V ACM 
makes it possible for an agent to allow different access 
privileges for different users. For example, a manager 
system responsible for network-wide configuration may 
have broad authority to alter items in the local MIB, 
while an intermediate level manager with monitoring 
responsibility may have read-only access and may fur­
ther be limited to accessing only a subset of the local 
MIB.  As was discussed,  princip als are assigned to 
groups and access policy is specified with respect to 
groups. 

• The security level by which the request was communicat­
ed in an SNMP message. Typically, an agent will require 
the use of authentication for messages containing a set 
request (write operation). 
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• The security model used for processing the request message. 
If multiple security models are implemented at an agent, 
the agent may be configured to provide different levels of 
access to requests communicated by messages processed by 
different security models. For example, certain items may 
be accessible if the request message comes through USM, 
but not accessible if the Security Model is SNMPvl. 

• The MIB context for the request. 
• The specific object instance for which access is requested. 

Some objects hold more critical or sensitive information 
than others, and therefore the access policy must depend 
on the specific object instance requested. 

• The type of access requested (read, write, notify). Read, 
write, and notify are distinct management operations, 
and different access control policies may apply for each 
of these operations. 

ACCESS CONTROL PROCESSING 

An SNMP application invokes V ACM via the isAccessAl­
lowed primitive, with the input parameters securityModel, 
securityName, securityLevel, viewType, contextName, and 
variableName. All of these parameters are needed to make 
the access control decision. Put another way, the Access Con­
trol Subsystem is defined in such a way as to provide a very 
flexible tool for configuring access control at the agent, by 
breaking down the components of the access control decision 
into six separate variables. 

Figure 8, adapted from a figure in RFC 2275, provides a 
useful way of looking at the input variables and shows how 
the various tables in the VACM MIB come into play in mak­
ing the access control decision. 
• who: The combination of securityModel and security­

Name define the who of this operation; it identifies a 

who where how 

I contextName I 

given principal whose communications are protected by a 
given securityModel. This combination belongs to at 
most one group at this SNMP engine. The vacmSecurity­
ToGroupTable provides the groupName, given the secu­
rityModel and securityName. 

• where: The contextName specifies where the desired 
management object is to be found. The vacmContext­
Table contains a list of the recognized contextNames. 

• how: The combination of securityModel and securityLev­
el defines how the incoming request or Inform PDU was 
protected. The combination of who, where, and how 
identifies zero or one entries in vacmAccessTable. 

• why: The viewType specifies why access is requested: for 
a read, write, or notify operation. The selected entry in 
vacmAccessTable contains one MIB viewName for each 
of these three types of operation, and viewType is used 
to select a specific viewName. This viewName selects 
the appropriate MIB view from vacmViewTreeFami­
lyTable. 

• what: The variableName is an object identifier whose 
prefix identifies a specific object type and whose suffix 
identifies a specific object instance. The object type 
indicates what type of management information is 
requested. 

• which: The object instance indicates which specific item 
of information is requested. 
Finally, the variableName is compared to the retrieved 

MIB view. If the variableName matches an element included 
in the MIB view, then access is granted. 

MOTIVATION - The concepts that make up VACM 
appear to result in a rather complex definition of access con­
trol The motivations for introducing these concepts are to 
clarify the relationships involved in accessing management 

why what which 

securityModel securityName securityModel securityLevel object·type object· instance 

1 
group Name 

• Figure 8. VACM logic. 

1 4  

vacmContext Table 

vacmAccess Table 

viewName 
I 

view Type (read/write/notify) 

variableName (010) 

vacmView TreeFamily Table 
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information and to minimize the storage and processing 
requirements at the agent. To understand these motivations, 
consider the following. In SNMPvl and SNMPv2c, the com­
munity concept is used to represent the following security­
related information: 

• The identity of the requesting entity (management sta­
tion) 

• The identity of the performing entity (agent acting for 
itself or for a proxied entity) 

• The identity of the location of the management informa­
tion to be accessed (agent or proxied entity) 

• Authentication information 
• Access control information (authorization to perform 

required operation) 
• MIB view information 

By lumping all of these concepts into a single variable, flex­
ibility and functionality are lost. V ACM provides the same set 
of security-related information using distinct variables for 
each item. This is a substantial improvement over SNMPv1. It 
uncouples various concepts so that values can be assigned to 
each one separately. 

SUMMARY 
SNMPv2 was a substantial improvement over SNMPvl,  

while retaining its essential character of ease of understanding 
and ease of implementation. Version 2 provides better sup­
port for a decentralized network management architecture, 
enhances performance, and provides a few other bells and 
whistles of interest to application developers. 

SNMPv3 fixes the most obvious failing of versions 1 and 
2: lack of security. The security enhancements to SNMP are 
reasonably simple and straightforward. They provide the 
key security features missing from SNMP: privacy, authen­
tication, and access control. There is now, at last, a worthy 
successor to SNMPvl ,  and the new standard should suc­
ceed in the marketplace. Vendors are likely to adopt the 
new version to provide more features and more efficient 
operation to their users. And, we can expect additional 
MIBs to be defined within the SNMPv3 framework to 
extend its scope of support for various network manage­
ment applications. 

FURTHER READING 
Two books provide more in-depth coverage of SNMPv3 [3, 

4]. These Web sites also provide useful information: 
• http://ietf.orglhtml.charters/snmpv3-charter.html - Home 

page of the SNMPv3 working group. This site maintains the 
most recent copies of SNMPv3-related RFCs and internet 
draft documents, plus a schedule of past and future work. 

• http://www.ibr.cs.tu-bs.de/projects/snmpv3 - An SNMPv3 
Web site maintained by the Technical University of Braun­
schweig. It provides links to the RFCs and internet drafts, 
copies of clarifications and proposed changes posted by the 
working group, and links to vendors with SNMPv3 implemen­
tations. 

• http://www.simple-times.org - The Simple Times is an 
online free quarterly publication of SNMP technology, com­
ment, and events. The Web site is maintained jointly by the 
Technical University of Braunschweig and the University of 
Twente. Each issue features technical articles, columns, a list 
of Internet documents, and brief announcements of events 
and products. 

• http://wwwsnmp.cs.utwente.nl - This is known as The 
Simple Web site, maintained by the University of Twente. It is 
a good source of information on SNMP, including pointers to 
many public-domain implementations and lists of books and 
articles. 
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ApPENDIX: OVERVIEW OF CRYPTOGRAPHIC FUNCTIONS 
The principal cryptographic algorithms used in SNMPv3, 

are a conventional encryption algorithm, a secure hash func­
tion, and a message authentication code. These three types of 
algorithms are briefly reviewed in this appendix. 

CONVENTIONAL ENCRYPTION 

Conventional encryption, also referred to as symmetric 
encryption or single-key encryption, was the only type of 
encryption in use prior to the introduction of public-key 
encryption in the late 1970s. Conventional encryption has been 
used for secret communication by countless individuals and 
groups, from Julius Caesar to the German U-boat force to pre­
sent-day diplomatic, military, and commercial users. It remains 
by far the more widely used of the two types of encryption. 

A conventional encryption scheme has five ingredients 
(Fig. 9) : 
• Plaintext: This is the readable message or data that is fed 
into the algorithm as input. 

• Encryption algorithm: The encryption algorithm per­
forms various substitutions and transformations on the 
plaintext. 

• Secret key: The secret key is also input to the algorithm. 
The exact substitutions and transformations performed 
by the algorithm depend on the key. 

• Ciphertext: This is the scrambled message produced as 
output. It depends on the plaintext and the secret key. 
For a given message, two different keys will produce two 
different ciphertexts. 

• Decryption algorithm: This is essentially the encryption 
algorithm run in reverse. It takes the ciphertext and the 
same secret key and produces the original plaintext. 
There are two requirements for secure use of conventional 

encryption: 
1. We need a strong encryption algorithm. At a minimum, 

we would like the algorithm to be such that an opponent 
who knows the algorithm and has access to one or more 
ciphertexts would be unable to decipher the ciphertext or 
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Secret key shared by 
sender and recipient 

Secret key shared by 
sender and recipient 

Plaintext 

T ransm itted 
ciphertext 

Plaintext 

4. For any given code m, it is com­
putationally infeasible to find x 
such that H(x) = m. 

5. For any given block x, it is compu­
tationally infeasible to find y not 
equal to x such that H(y) = H(x). 

6. It is computationally infeasible to 
find any pair (x, y) such that H(x) 
= H(y). 

input Encryption algorithm 
(e.g., DES) 

Decryption algorithm 
(reverse of encryption 

algorithm) 

output 

The first three properties are require­
ments for the practical application of a 
hash function to message authentica­
tion. The fourth property is a "one-

• Figure 9.  Conventional encryption. 

figure out the key. This requirement is usually stated in a 
stronger form: The opponent should be unable to decrypt 
ciphertext or discover the key even if he or she is in pos­
session of a number of ciphertexts together with the 
plaintext that produced each ciphertext. 

2. Sender and receiver must have obtained copies of the 
secret key in a secure fashion and must keep the key 
secure. If someone can discover the key and knows 
the algorithm, all communication using this key is 
readable. 
There are two general approaches to attacking a conven­

tional encryption scheme. The first attack is known as crypt­
analysis.  Cryptanalytic attacks rely on the nature of the 
algorithm plus (perhaps) some knowledge of the general char­
acteristics of the plaintext or even some sample plaintext­
ciphertext pairs. This type of attack exploits the characteristics 
of the algorithm to attempt to deduce a specific plaintext or 
to deduce the key being used. Of course, if the attack suc­
ceeds in deducing the key, the effect is catastrophic: all future 
and past messages encrypted with that key are compromised. 

The second method, known as the brute-force attack, is to 
try every possible key on a piece of ciphertext until an intelli­
gible translation into plaintext is obtained. On average, half of 
all possible keys must be tried to achieve success. 

SECURE HASH FUNCTION 

An essential element of most authentication and digital 
signature schemes is a secure hash function. A hash func­
tion accepts a variable-length message M as input and pro­
duces a fixed size hash code H(M), sometimes called a 
message digest ,  as output. A hash 
value is generated by a function H of 
the form YO 

h = H(M) 

where M is a variable-length message, 
and H(M) is the fixed-length hash 
value. 

b 

IV = n 
CVO -+-� 

way" property: it is easy to generate a 
code given a message but virtually 
impossible to generate a message given 
a code. The fifth property guarantees 

that an alternative message hashing to the same value as a 
given message cannot be found. The sixth property protects 
against a sophisticated class of attack known as the birthday 
attack. 

The overall structure of a typical secure hash function is 
illustrated in Fig. 10. This structure, referred to as an iter­
ated hash function, is the structure of most hash functions 
in use today. The hash function takes an input message 
and partitions it into L fixed-sized blocks of b bits each. If 
necessary, the final block is padded to b bits. The final 
block also includes the value of the total length of the 
input to the hash function. The inclusion of the length 
makes the job of the opponent more difficult. Either the 
opponent must find two messages of equal length that 
hash to the same value or two messages of differing lengths 
that, together with their length values, hash to the same 
value. 

The hash algorithm involves repeated use of a compression 
function, f, that takes two inputs (an n-bit input from the pre­
vious step, called the chaining variable, and a b-bit block) and 
produces an n-bit output. At the start of hashing, the chaining 
variable has an initial value that is specified as part of the 
algorithm. The final value of the chaining variable is the hash 
value. Usually, b >  n; hence the term compression. The hash 
function can be summarized as follows: 

CVo = IV = initial n-bit value 
CVj = f(CVj _ 1 , Yj _ 1) 1 :::; i :::; L 
H(M) = CVL 

where input to the hash function is a message M consisting of 
the blocks Yo, Y1, .. · ,  YL - 1. 

b b 

n 
n n 

CV1 CVL-1 
To be useful for message authenti­

cation and digital signature, a hash 
function H must have the following 
properties: 
1 .  H can be applied to a block of 

data of any size. 

IV Initial value 

2. H produces a fixed-length output. 
3. H(x) is relatively easy to compute 

for any given x, making both hard­
ware and software implementa­
tions practical. 

CV chaining variable 
Yi ith input block 
f compression algorithm 
L number of input blocks 
n length of hash code 
b length of input block 

• Figure 10. General structure of secure Hash code. 
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MESSAGE AUTHENTICATION CODE 

Message authentication is a procedure that allows commu­
nicating parties to verify that received messages are authentic. 
The two important aspects are to verify that the contents of 
the message have not been altered and that the source is 
authentic. The message authentication code (MAC) is a wide­
ly-used technique for performing message authentication, and 
one MAC algorithm has emerged as the Internet standard for 
a wide variety of applications: HMAC. 

A MAC algorithm involves the use of a secret key to 
generate a small block of data, known as a message authen­
tication code, that is appended to the message. This tech­
nique assumes that two communicating parties, say A and 
B, share a common secret key K. When A has a message 
to send to B, it calculates the message authentication code 
as a function of the message and the key. The message 
plus code are transmitted to the intended recipient. The 
recipient performs the same calculation on the received 
message, using the s ame secret key, to generate a new 
message authentication code. The received code is com­
pared to the calculated code. If we assume that only the 
receiver and the sender know the identity of the secret 
key, and if the received code matches the calculated code, 
then: 
• The receiver is assured that the message has not been 

altered. If an attacker alters the message but does not 
alter the code, then the receiver's calculation of the code 
will differ from the received code. Because the attacker 
is assumed not to know the secret key, the attacker can 
not alter the code to correspond to the alterations in the 
message. 

• The receiver is assured that the message is from the 
alleged sender. Because no one else knows the secret 
key, no one else could prepare a message with a proper 
code. 

• If the message includes a sequence number (such as is 
used with X.25, HDLC, and TCP), then the receiver can 
be assured of the proper sequence, because an attacker 
can not successfully alter the sequence number. 
Figure 1 1  illustrates the overall operation of HMAC. 

Define the following terms: 

H = embedded hash function (e .g . ,  MD5, SHA- 1 ,  
RIPEMD-160) 

M = message input to HMAC (including the padding spec-
ified in the embedded hash function) 

Yj = ith block of M, 0 :::: i :::: (L - 1) 
L = number of blocks in M 
b = number of bits in a block 
n = length of hash code produced by embedded hash func­

tion 
K = secret key; if key length is greater than b, the key is 

input to the hash function to produce an n-bit key; rec­
ommended length is :2: n 

ipad 

IV 
n bits 

opad n bits 

b bits 
4 � I YL·1 I 

H (Si I I  M) 

IV 
n bits 

• Figure 1 1. HMAC structure. 

pad to b bits 

K + = K padded with zeros on the left so that the result is b 
bits in length 

ipad = 00110110 (36 in hexadecimal) repeated blS times 
opad = 01011100 (5C in hexadecimal) repeated blS times 

Then HMAC can be expressed as follows: 

HMACK = H[(K+ � opad)IIH[(K+ � iPad)IIMJ] 
In words: 

1. Append zeros to the left end of K to create a b-bit string 
K+ (e.g., if K is of length 160 bits and b = 512, then K 
will be appended with 44 zero bytes 0 x 00). 

2. XOR (bitwise exclusive-OR) K+ with ipad to produce the 
b-bit block Si. 

3. Append M to Si' 
4. Apply H to the stream generated in step 3. 
5. XOR K+ with opad to produce the b-bit block So. 
6. Append the hash result from step 4 to So. 
7. Apply H to the stream generated in step 6 and output the 

result. 
Note that the XOR with ipad results in flipping one-half of 

the bits of K. Similarly, the XOR with opad results in flipping 
one-half of the bits of K, but a different set of bits. In effect, 
by passing Si and So through the hash algorithm, we have 
pseudorandomly generated two keys from K. 
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