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here were dramatic shifts in the 
structure and role of networked sys­
tems within enterprises in the past 
decade. From isolated data-process­
ing islands, networked computing sys­
tems have grown into complex 

mission-critical enterprise-wide systems. The net­
work, the computer, and the very enterprise 
rapidly are becoming indistinguishable. These 
changes lead to significant risks and cost expo­
sure associated with operations. For example, 
failures of a bank network can paralyze its opera­
tions, delays of security trades through brokerage 
system bottlenecks can costin dollars and customers, 
and loss of hospital lab reports can prevent timely 
diagnosis and care. The goal of network manage­
ment technologies is to reduce the risks and costs 
exposure associated with operations of enterprise 
systems. 

Management systems are responsible to moni­
tor, interpret, and control the network opera­
tions. A typical management system is depicted in 
Fig. 1. Vendors equip their devices with agent 
software to monitor and collect operational data 
(e.g., error statistics) into local databases, and/or 
detect exceptional events (e.g., error rates exceed 
threshold). Management platform workstations 
query device data, or obtain event notifications 
through management protocols. The manage­
ment platform supports tools to display the data 
graphically, interpret it, and control operations. 

This management paradigm is platfonn centered. 
Management applications are centralized in plat­
forms, separated from the managed data and 
control functions in the devices. Platform-cen­
tered management reflects older network envi­
ronments where devices lacked resources to run 
management software, management data and 
functions were relatively simple, and network 
organizations could devote the personnel needed to 
handle operations. The implications ofthese assump­
tions and their validity for current networks will 
be considered later. 
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The main challenge of management standard­
ization is to develop conventions to support inte­
grated management of heterogeneous networks. 
Platform -centered management requires a few stan­
dards. First, access by platforms to multivendor 
devices must be unified through a standard man­
agement protocol. Second, the structure ofthe agent's 
management databases, manipulated by the pro­
tocol, must be standardized. Together, these 
standards permit a platform to access and manip­
ulate managed information at multivendor device 
agents. The OSI and Internet management mod­
els seek to standardize both areas. 

Merely moving management information from 
devices to platforms, however, is insufficient to elim­
inate the curse of heterogeneity. Two additional bar­
riers to integrated management arise: platform 
and semantic heterogeneity. 

Platform heterogeneity means that management 
applications must be replicated for each major 
platform. For example, a device vendor wishing 
to offer six applications over five platforms may need 
to develop and maintain 30productversions. There­
fore, a number of recent consortia (e.g., OSF, 
XOPEN, POSIX) are pursuing management 
platform standards. 

Semantic heterogeneity arises when different 
devices use different information to represent 
similar network behaviors. A management appli­
cation program requires a uniform semantic 
model of the managed information it processes. 
It is necessary to standardize the very meaning of 
managed information. Various IEEE and CCITT 
protocol committees pursue this challenge, building 
managed information standards for protocol enti­
ties. 

Why Is Management Difficult? 

C onsider an example of a network "storm" to illus­
trate management complexities. Storms 

involving rapid escalation of cascading failures 
are not uncommon in networks. Figure 2 depicts 
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• Fig u re 1. Architecture of a network management system. 

a T11inkmultiplexing a large number of connections 
(e.g., X.25 virtual circuits, or TCP) to a serverlhost. 
Suppose a long burst of noise disrupts the link 
causing packet loss (Fig. 2a). Logical link level 
protocols (above the physical layer) invoke auto­
matic retransmission. They result in a burst of retrans­
mission tasks at the interface processor queue 
(Fig. 2b) loading its queue and leading to its 
thrashing. Higher layer transport entities time­
out and respond with a burst of corrective activi­
ties (e.g., reset connections). This burst processing 
of communications at host CPUs (Fig. 2c) leads 
to their thrashing, too. 

Generally, protocol stack mechanisms handle 
lower-layer problems through corrective actions 
at higher layers. These mechanisms can escalate 
the very problems they intend to solve. 

How can such complex network fault behav­
iors be monitored, detected, and handled? Sup­
pose that relevant operational variables (e.g., T1 
bit-error rates and the size of the interface pro­
cessor queue) can be observed as depicted in 
Fig. 3. The storm formation could be detected 
from the correlation of the sudden growth in 
error rates and the resulting growth in queue size. 

What management information should be 
used to capture these behaviors? The Simple 
Network Management Protocol (SNMP) uses asim­
pie model for the structure of managed informa­
tion (SMI) [2] involving six application-defined data 
types and three generic ones. 

Temporal behaviors are described in terms of 
counters and gauges. An error counter represents 
the cumulative errors (integral) since device 
booting (the area under the error rate curve in 
Fig. 3). A gauge can model the queue length. The 
values of these managed variables can be record­
ed in an agent's management information base (MIB) 
[3], where they can be polled by a platform. An 
error counter, however, is not useful for detecting 
rapid changes in error rates to identify a storm. A 
platform must sample the counter frequently to esti­
mate its second derivative, leading to unrealistic 
polling rates. 

OSI management uses an object -oriented model 
of managed information [9, 10]. The behaviors of 
interest: noise, errors, and queue length are dif­
ferent forms of a time series. A generic managed 
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• Fig u re 2. Formation of a network storm. 

• Fig u re 3. Temporal behaviors correlation. 

object (MO) class may be defined to describe a 
general time series. This MO may include data 
attributes of the time series and operations 
(methods, actions) to compute functions of the time 
series (e.g., derivatives). This MO also may pro­
vide generic events notifications (e.g., whenever some 
function oftime series exceeds threshold). The gener­
ic time series MO class may be specialized to 
define MO subclasses to model the bit-error rate 
of the Tllink and the queue length of the inter­
face processor. A management platform can cre­
ate instances of these MOs, within device agents' 
databases. The device agent can monitor the respec­
tive network behaviors and record the respective 
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Management information tree 
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• Fig u re 4. Overall architecture of an OS! management system. 

values in these M 0 instances. Furthermore, the plat­
form can enroll with the agent to receive notifica­
tions of events describing rapid changes of error rates 
and excessive processor queue. 

To identify a storm it is necessary to detect 
not only error rate and interface queue threshold 
events, but to identify correlation among them. Unfor­
tunate�y, the observation processes used for event 
detection may result in decorrelation of behav­
iors. Threshold excesses must be sustained over 
sufficient window to result in event notification 
and avoid spurious alerts. Implementation may 
use different sampling rates and detection win­
dows for the error rate and queue length. Thus, either 
of the events may be detected singly, or the events 
may be detected in inverted temporal order. This 
decorrelating effect of observations can lead to erro­
neous interpretation. Often, hundreds or thousands 
of alerts may be generated by a fault. These 
events must be correlated to detect the problem's 
source. The results of such analysis may be very 
sensitive to the choices of managed information pro­
vided by devices and the implementation details 
of monitoring processes. 

To make things worse, the devices involved in the 
storm formation are typically manufactured by 
different vendors. The managed data and its 
meaning mayvary greatly among devices, rendering 
interpretation difficult. Moreover, networks often 
are operated by multiple organizations, each respon­
sible for a different domain. Faults escalating across 
such domain boundaries may be particularly diffi­
cultto detect and handle. In the example, the Tllinks 
may be managed by a telephone company while 
the layers above are operated by a user organization. 
The user may not be able to observe the behavior 
of the Tllayer and the telephone company may 

not be able to observe the behaviors of higher 
layers. 

051 Management Model 
Overview 

T he OSI management model [5] is depicted in 
Fig. 4. The managing platform on the left uses 

the common management information protocol 
(CMIP) to access managed information, provided 
by an agent residing in a LAN hub on the right. 
The agent maintains a management information tree 
(MIT) database. The MIT models a hub using 
MOs to represent LANs, interfaces, and ports. A 
platform can use CMIP to create, delete, retrieve, 
or change MOs in the MIT; invoke actions; or receive 
event notifications. 

The MIT contains instances of MOs organized 
on a hierarchical database tree, similar to the 
X.500 directory tree [12]. An MO instance includes 
attributes that serve as its relative distinguishing 
name (RDN). The RDN attributes uniquely 
identify the instance among the siblings of its 
MIT parent. In the hub example of Fig. 4, a port iden­
tification number may be used as the RDN to 
identify ports of a given interface MO. By con­
catenating RDNs along the MIT path from the 
root to a given node, a unique distinguishing 
name (DN) is obtained. This DN is used by CMIP 
to identify a node and access its managed information. 

In contrast to SNMP MIB, the MIT is a dynam­
ic database. SNMP also uses a tree [3] to store 
managed information. However, the structure of the 
MIB is static and is determined at its design time. 
CMIP provides CREATE/DELETE primitives to 
change the MIT dynamically. A dynamic database 
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• Fig u re 5. Managed infonnation communication architecture. 

can provide flexibility and efficiency in managed 
information access. Managing entities can control 
the contents and structure of the database. The 
database also may be flexibly organized to reflect 
specific device configurations. Astatic database struc­
ture may lead to difficulties in handling compos­
ite device structures. Different components may 
require their own database models. However, 
they cannot be unified into a single MIB due to 
its static structure. Therefore, complex hubs often 
include multiple SNMP agents (each handling a 
different component). A dynamic MIT permits these 
different database models to be easily unified. 

A dynamic management database, however, 
presents significant implementation complexities. 
The resources required to store and process man­
aged information cannot be predicted at design time. 
Managers may extend the MIT beyond available 
agent's resources. Changes in the MIT may result 
in corruption of the database. For example, an 
MO may be deleted while other MOs contain 
relationship pointers to it. Application software 
designers cannot share a single model of the MIT 
contents, as each application needs to build and main­
tain its own MIT subset. 

Management Communication 
Model 

O SI management communications require 
connection-oriented transport and rely on 

the OSI application layer environment. (Consult 
Reference [12] for OSI application layer details.) 
Agents (managed entities) and managers (man­
aging entities) are viewed as peer applications 
that use the services of a common management infor­
mation service element (CMISE) to exchange 
managed information [6]. CMISE provides ser­
vice access points (SAPs) to support controlled asso­
ciations between managers and agents. Associations 
are used to exchange managed information 
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Management communication services 

M-INITIALlZE: Establish management association 
M-TERMINATE: Terminate management association 
M-ABORT: Unconfirmed termination 

M-GET: Retrieve information 
M-CANCEL-GET: Cancel retrievals 
M-SET: Change an attribute value 
M-ACTION: Invoke an MO operation 
M-EVENT-REPORT: Generate an MO event report to a manager 

• Tab Ie 1. SAPs provided by a CMISE entity. 

queries and responses, handle event notifications, 
and provide remote invocations of MO opera­
tions. CMISE utilizes the services of OSI's associ­
ation control service element (ACSE) and the remote 
operations service element (ROSE) to support these 
services [12]. A typical structure of an agent com­
munication environment is shown in Fig. 5. A 
symmetric organization governs the structure of peer 
managing entities. 

The top section of Fig. 5 describes the struc­
ture of the MIT. MO instances and their attributes, 
operations, and event notifications are depicted 
as shaded rectangles at the top. The OSI agent 
provides selection functions to locate the MO records 
accessed by Get/Set/Action SAPs of CMISE. The 
agent also provides event detection and forward­
ing of notifications to managing entities enrolled 
(through MIT records) to receive them. A CMISE 
entity provides SAPs (depicted in Table 1) to 
support communications with the agent. It dis-
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• Fig u re 6. Aggregated and selective retrieval. 

• Figure 7. Example of an Mo. 
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patches/receives CMIP PDU s to/from other service 
elements such as ACSE and ROSE. These PDUs 
are exchanges through a connection-oriented 
transport. CMIP PDUs are best viewed as carri­
ers of requests and replies generated by respec­
tive CMISE primitives. For example, a CMISE 
M-GET accessed by a manager generates a CMIP 
GET -REQUEST PDU to the agent and respec­
tive GET-RESPONSE PDUs from the agent. 

The interactions pursued by management 
applications peers are typically confirmed through 
the standard OSI request-reply model. For exam­
ple, an invocation by a manager of the M-INI­
TIALIZE SAP results in a CMISE invocation of the 
ACSE through a CMIP PDU. The manager ACSE 
sends an association request to a peer. The peer 
ACSE at the agent passes the CMIP request to 
the agent's CMISE. A confirmation PDU will 
then propagate back from the agent's CMISE through 

State 

Uptime 

• Fig u re 8. A subclass of node. 

an ACSE and back to the originating manager. 
The core services of CMISE provide access to 

managed information. The GET construct provides 
means for bulk retrieval and agent's information 
filtering. This is illustrated in Fig. 6. To accom­
plish bulk retrieval, a GET need only specify a 
subtree of the MIT from which data is to be 
retrieved. This subtree is specified by its base 
node and the scope of the GET request. To spec­
ify a selection criterion, a GET must provide a fil­
ter defined by a simple language. Retrieval of all port 
data on SalesNet whose error rates exceed some 
threshold is illustrated in Fig. 6. The GET request 
identifies the scope of the search and filter and 
the agent performs the search and selection. 

Remote invocation of operations is accomplished 
through M-ACTION. It is necessary to specify 
the MO instance, the action to be invoked, and 
the parameters to be passed to it. The invocation 
is supported through the ROSE. Event notifications 
are handled by enrolling appropriate records on 
the MIT, using M-CREATE. A manager uses M­
CREATE to place an event-notification-man­
aged object on the MIT. Upon detection of an event, 
the agent uses the MIT to identify subscribers for 
notifications. An M-EVENT-NOTIFICATION is 
generated for each such subscriber. 

SMI Model 

T he structure of managed information (SMI) 
model plays a central role in the OSI standard . 

It is introduced in [8] and is elaborated in the 
guidelines for the definitions of managed objects 
(GDMO) [10]. This model is based on an extend­
ed object-oriented (00) data model [16]. MOs, 
like 00 classes, provide templates to encapsu­
late data and management operations (methods, 
actions) associated with managed entities. MO 
extends the class concept to include event notifi­
cations. Event notifications add a new dimension. 
Traditional 00 software assumes a synchronous 
model of interaction between an object and its 
users (programs). Programs may invoke methods 
synchronously. On the other hand, events may 
occur independently and asynchronously with the 
manager computations that access them. 

The MO model supports inheritance. An MO 
definition can include attributes, operations, and 
events of a more general MO. For example, a gen­
eral MO describing an interface may be used to define 
specialized interfaces (e.g., Ethernet, Token­
ring). The data, operations, and events associated 
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<class-label> MANAGED OBJECT CLASS 
[DERIVED FROM <class-label> [,<class-label>l*;l 
[ALLOMORPHIC SET <class-label> [,<class-label>l*;l 
[CHARACTERIZED BY <package-label> [,<package-label>l*;l 
[CONDITIONAL PACKAGES <package-label> PRESENT IF <condition-definitions> 

[,<package-label>PRESENT IF <condition-definitions>l*;l 
[PARAMETERS <parameter-label> [, <parameter-label>l*;l 

REGISTERED AS <object-identifier> 

• Figure 9. SampleMOclass template. 

eventLogRecord MANAGED OBJECT CLASS 
DERIVED FROM logRecord; 
CHARACTERIZED BY eventLogRecordPackage PACKAGE 

ATTRIBUTES managedObjectClass GET, managedObjectInstance GET;;; 
CONDITIONAL PACKAGES 

eventTimePkg PACKAGE ATTRIBUTES eventTime GET;; 
PRESENT IF the event time parameter was present in the CMIP event report; 

REGISTERED AS {smi2MobjectClass 5}; 

• Fig u re 10. Example of eventLogRecord. 

system 

with an interface MO will be inherited by these 
specialized subclasses. Inheritance is primarily a syn­
tactic mechanism as one could simply include the 
definitions of the superclass in the subclass MO def­
initions to accomplish the same effect. To illus­
trate inheritance, consider an MO defining a 
class of node objects as depicted in Fig. 7. Ellipsoidal 
shapes describe data attributes. Rectangular shapes 
describe operations to test and start a node. 
Events are described by triangular shapes. 

eventForwardingDiscriminator 

Consider now a specialization of a "node"­
an IpSystem MO. An IpSystem can be defined as 
a subclass of node. It inherits all the node 
attributes, operations, and events. The IpSystem may 
replace some of these inherited components 
(e.g., a new start operation) and add new attributes, 
operations, and events. 

Relationships Are Significant in 
Management 

Relationships among managed data items are of 
great importance in correlating information. In 
the earlier storm example, it was necessary to 
correlate observations of physical layer errors 
with those of an interface processor queue han­
dling retransmission tasks. It would have been 
necessary to represent the relations among these 
objects to be able to correlate their behaviors. 
The managed information model of OSI, in contrast 
to SNMP, provides explicit means to represent rela­
tionships. 

An MO may include relationship attributes 
with pointers to related MOs. For example, a 
port attribute representing the relationship "con­
tained-in" may include a pointer to the interface 
object that contains it. The pointer value is the 
distinguishing name (D N) path identifier of the inter­
face object on the MIT. 

The OSI model includes a number of generic 
relationships that may be used in modeling MO such 
as "is-contained-in," "is-peer-of' (for protocol enti­
ties), and "is-backup-of" (for systems or compo­
nents). The use of relationship attributes is 
similar to techniques used in the network model 
of databases [17]. It achieves great generality in rep­
resenting, in principle, any entity-relationship model. 
For example, one can easily identify and retrieve 
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• Fig u r e 11. The MO class hierarchy 

information associated with all ports contained in 
a given interface, by traversing the respective 
relationship pointers. Of course, traversal may require 
substantial manager-agent interactions to retrieve 
and dereference pointers. This could have been sim­
plified if the protocol included traversal primi­
tives (GET -NEXT) to follow relationship pointers, 
similarly to network databases. 

GDMO Provides Syntax for MO 
Definitions 

The GDMO introduces substantial extensions of 
ASN.l to handle the syntax of managed information 
definitions. A new language structure (template), 
is introduced to combine definitions. Templates play 
a similar role as ASN.l Macro, except they do 
not lend themselves to simple extensions of 
ASN.l compilers. A sample template is the MOciass 
template (Fig. 9). It is used to define MO struc­
ture and register the definitions on the ISO regis­
tration tree. 
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I I IpRouter I I I 
I I I XXRouter II 

system MANAGED OBJECT CLASS 
DERIVED FROM top; 
CHARACTERIZED BY systemPackage PACKAGE 

ATTRIBUTES systemID GET, operationalState GET, usageState GET, 
administrativeState GET REPLACE, managementS tate GET; 
ATTRIBUTE GROUPSstate, relationship; 
NOTIFICATIONS objectCreation, objectDeletion, objectNameChange, 
attributeValueChange, state Change, ...... ,environmentalAlarm;;; 

CONDITIONAL PACKAGES 
dailyScheduling PRESENT IF both the weekly scheduling and 
external scheduler package not present in an instance 

repairStatusPkg PACKAGE 
ATTRIBUTES ... 
PRESENT IF both the weekly scheduling and external 
scheduler package are not present in an instance 

REGISTERED AS {smi2MOBJECTClass l4}; 

• Fig u re 1 2. Schematic subset of system Mo. 

The <class-label> is a place-holder for an 
MO name. The "Derived from" section describes 
the superclasses whose definitions are inherited 
by the MO. The "Characterized by" part includes 
the body of data attributes, operations, and event 
notifications encapsulated by the MO. "Pack­
ages," "Conditional packages," and "Parameters" 
are templates used to combine definitions of 
attributes, operations, and event notifications. 
The "Registered as" part registers the MO defini­
tion on the ISO registration tree. 

An example of definition of an eventLogRecord 
(Fig. 10) [9], using this template, follows. An 
eventLogRecord inherits attributes of a general 

I System I 

logRecord (its superclass). It includes definitions 
taken from a package for eventLogRecordPack­
age and a conditional package eventTimePkg, 
and is registered on the OSI registration tree as 
the subtree labeled 5 under the label smi2Mob­
jectClass. Attributes are followed with descriptors 
such as GET !REPLACE, denoting read/write access 
mode. Notice the informal statement of the con­
dition under which the definitions by the conditional 
package are to be included. Thus, automated 
compilation of definitions, unlike SNMP MIBs, may 
be impossible. 

The definitions of managed information (D MI) 
[9] define a class hierarchy as depicted in Fig. II. 
Boxes represent different MO classes, while the tree 
represents inheritance relationsamong them. 

I lpNode I I SnaNode I I Element I 
These generic MOs focus on definitions of 

various forms of management logs. The system 
MO is the main tool in building MOs associated with 
a given system. It includes attributes to identify 
the system, represent its operational and adminis­
trative state, and provide generic notifications 
and packages of definitions for handling sched­
uled operations maintenance. A schematic subset 
of its definition is provided in Fig. 12. 

I 
I 

IpHost I 
YYRouter 
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I Interface I I Protocol I 

I I I 4c�n To 

1 

I 
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a/cd I i I 
enRing ! 

Fddi : I 

I 
I 

TCP II ICMP I 

• Fig u re 1 3. An MO class hierarchy to represent networked devices. 

For example, consider the problem of devel­
oping a class hierarchy to model typical net­
worked systems, as a specialization of the system 
MO. A possible class hierarchy is illustrated in 
Fig. 13. This hierarchy considers two kinds of sys­
tems: complex systems (as on the left part ofthe tree) 
and simple systems, or elements (as on the right 
side of the tree). 

• Fig u re 14. Typical hub components and containment. 
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Putting It Together 

Building an 051 Managed Element 

This section completes the picture through a 
brief sketch of OSI modeling of a LAN hub. Typ­
ical hub components and their containment rela­
tions are depicted in Fig. 14. 

Step 1: Identify Class Structure and Inheritance 
Relat i o n s  Amo ng MOs - An MO must be 
designed for each managed component. The first 
step is to 
identify similarities of managed elements and 
capture them in MO classes, to use inheritance. 
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A possible class inheritance hierarchy is depicted 
in Fig. 15. (For example, EtherPort and Token­
Port components may share some attributes, 
operations, and events. The MO describing them 
may be developed as specialization of a generic 
port object.) 

Step 2: D esign and S pec ify MO Syntacti cal 
Structures Using GDMO - Using the GDMO, 
define managed attributes, operations, and event 
notifications for each of the MO classes needed. 
An example of port MO definitions is shown in 
Fig. 16. MO libraries defined by protocol com­
mittees (e.g., FDDI) may be used to capture 
standardized components. 

Step 3: Design Generic MIT Structure for the Device 
- Design of the MIT follows the containment 
tree of Fig. 14. Each component is replaced byrespec­
tive MO instances. For each 
MO, it is necessary to identify respective attributes 
forming a unique relative distinguishing name 
(RDN). For each device component, the respec­
tive MO instance must be created on the MIT 
(using a CMIP Create primitive). Dynamic managed 
objects (e.g., different logs) may be created and 
deleted by managers during network running 
time. Relationship attributes values are set after the 
respective MO instances are located on the MIT. 
For example, a "contained-in" relationship may 
be associated with port-card pairs. An instance 
of an etherPort MO may include a pointer to the 
etherCard MO instance. Similarly, an etherCard 
instance may point to an etherChannel instance 
(sub net) to represent the relationship "attached-to." 

Critical Assessment 

T he OSI model seeks to provide a comprehen­
sive framework for handling management of arbi­

trari�y complex systems. We will briefly evaluate some 
tradeoffs associated with this generality, and contrast 
the choices of OSI with those of the Internet SNMP. 

Managed Infor m a t i o n  ModeJ 

OSI provides an extended 00 database frame­
work to model managed information. It seeks to max­
imize the information modeling power to handle 
complex systems. Management information 
bases, however, need to balance conflicting 
requirements for functionality and real-time per­
formance under resource constraints. It is not yet 
established whether the OSI design choices can strike 
such balance. For example, a dynamic MIT 
database can easily saturate agent's memory 
and/or processing resources. Demand for event noti­
fications may tie agent's processing and commu­
nication resources, starving GET or ACTION 
requests (and vice versa). 

Generally, the performance of 00 databases is 
not yet understood [16]. Deletion of MO records 
may result in orphaned relationship pointers, requir­
ing complex garbage collection at agents. Multiple 
managers pursuing CREATEIDELETE activities 
can lead to inconsistent views of the MIT. 

Complexity of information model can lead to 
conformance difficulties. For example, the seman­
tic of event notifications must be formally cap­
tured to permit specifications of conformance criteria. 
The meaning of events, however, is tied to device 
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TokenRingChannel 

• Fig u re 1 5. A class hierarchy for hub MOs. 

port MANAGED OBJECT CLASS 
DERIVED FROM element; 
CHARACTERIZED BY portPackage PACKAGE 

EtherChannel 

FDDIChannel 

ATTRIBUTES portNum GET, portStatus GET, ... ; 
OPERATIONS diagnose,disconnect,connect ... ; 
NOTIFICATIONS portFailure, portlnitialized .. ; 

REGISTERED AS { . . . . . .  }; 

• Figure 16. Example ofportMO definitions. 

operations extrinsic to the MIT and its contents. 
In contrast, SNMP pursues a simple static MIB, 

seeking to minimize and constrain the agent's 
resource demand. The memory and processing 
resources needed to handle the MIB may be 
carefully evaluated and planned at design time. How­
ever, the data modeling power of SNMP is limited. 
For example, composite systems may need multi­
ple MIB instances to represent their different 
parts. These MIBs cannot be combined into a sin­
gle database nor be accessed from a single agent. 
Thus, a composite system requires as many SNMP 
agents as its components. As another example, 
lack of explicit modeling of relationships limits 
the ability of applications to correlate managed data. 
Recent proposals of SNMP V.2 [4] seek to resolve 
some of SNMP's information modeling limita­
tions. The proper balance between modeling 
power and performance of managed information 
databases remains an elusive design goal. 

Managed Information Access ModeJ 

The OSI model introduces two important func­
tionalities missing in SNMP: bulk and selective 
retrievals. Both capabilities are central in control­
ling the flow of management information. With­
out bulk retrieval, managers are forced to pursue 
a large number of polling requests. Without 
selective (filtered) retrieval, managers are forced to 
retrieve large amounts of irrelevant data. 

Explicit invocation of agent's operations is anoth­
er OSI capability missing from SNMP. Remote invo­
cations are important for distribution of management 
computations to agents and improve manager 
control over agent's activities. They also can 
reduce the complexity of manager-agents interac­
tions by limiting it to procedure interfaces. SNMP 
supports implicit invocations as side effects of 
SET requests. A diagnostic operation, for exam­
ple, may be invoked by a "set" of a respective 
variable. Implicit invocations offer only limited capa-
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bilities in passing parameters and in synchroniz­
ing invocations with managers. Additionally, they 
increase agent's complexity since SET requests must 
be trapped to invoke respective procedures. 

Communication Model 

OSI management uses connection-oriented trans­
port and confirmed interactions. These provide reli­
ability and enable bulk retrieval; a single GET 
can result in multiple-linked replies. They require, 
however, complex communication environment and 
result in failure-sensitivity. During network stress 
time, connections may not be sustainable over 
sufficiently long time to accomplish the management 
functions needed. Management entities may need 
to spend significant time and resources in han­
dling lost connections. Connection-based trans­
port may become an obstacle in accomplishing 
management interactions at a time when they are 
needed most. 

Conversely, SNMP communications use a con­
nectionless datagram transport (UDP) with con­
firmed GET/SET interactions and unconfirmed event 
notifications (TRAPs). The responsibility to ensure 
reliable communications is passed to agent/manager 
applications. Forexample, managers can detect loss 
of a GET/SET request when the GET-RESPONSE 
confirmation does not arrive. They can ignore the 
loss, reissue the request, or choose other alternatives 
to recovery. During stress time, managers may flex­
ibly adjust their computations to handle loss, rather 
than confront an all-or-nothing choice of a reliable 
connection service. A datagram model requires a 
simple communication environment that is easy 
to implement. Managers, however, can only 
retrieve information that fits within a single UDP 
frame. This limits bulk retrieval mechanisms. 

The Platform-centered Management 
Paradigm 

How useful is the OSI model in supporting plat­
form-centered management? The OSI model pre­
scribes powerful agents requiring substantial 
computational resources, on par with the resources 
available at the platform. This raises interesting ques­
tions concerning allocation of responsibilities among 
platforms and agents. If agents are to be as power­
ful, what functions should be removed from them and 
assigned to platform managers and why? If the 
platform is to play an incidental role in manage­
ment, does it require a comprehensive, or even 
any, general management protocol? Why should 
it not limit exchanges with agents to application­
specific APIs (e.g., using ROSE or an RPC)? How 
does a maximal access model, which exposes inter­
nal object details of managed entities to a plat­
form, serve a minimal platform? However, if the 
platform is to be maximal, why are maximal agents 
required? The balance among the complexities 
and responsibilities of agents, platforms, and 
their interaction protocols is not yet understood. 

How useful is platform-centered manage­
ment? Platform-centered management suffers 
fundamental technical limitations [18]. First, it is 
unscalable. The rates at which device objects 
must be accessed and processed typically exceed the 
network/platform capacity. Platform processing 
and/or management communication resources 
can be quickly saturated as network size, speed, 
and complexity increase. Second, during stress times 

the platform must increase its interactions with 
agents, at a time when the network is least capa­
ble to handle these. Management response-time and 
reliability, furthermore, tend to stretch at a stress 
time, when fast and reliable response is most 
needed. Third, platform-centered management can 
lead to intense and unrealistic micromanagement of 
agents by platform applications. Fourth, platform 
heterogeneity and semantic heterogeneity, arising 
in the context of platform-centered management 
create barriers in the development of manage­
ment applications. 

Alternative management paradigms are need­
ed to reflect the needs and opportunities of 
emerging networks and resolve the limitations of 
platform-centered management. Management 
should pursue flexible decentralization of respon­
sibi�ities to devices and maximal automation of man­
agement functions through application software. 
Research toward such distributed management is 
described in Reference [18]. A management by 
delegation (MBD) paradigm is used to distribute 
management applications to device agents dynam­
ically. Management application programs are del­
egated by platforms to device agents who execute 
them under remote platform control. MBD per­
mits platforms to flexibly assign management respon­
sibi�ities to devices, and even program devices to 
perform autonomous management. Additional 
research efforts to develop distributed management 
are described in References [13, 14]. 

Conclusions 

I t is useful to reconsider the central questions of 
network management: What should be monitored? 

How should it be interpreted? How should this anal­
ysis be used to control the network behavior? 
Management protocol standards provide syntac­
tic structures to organize and access managed 
information. Such a syntactic frameworkcan be use­
ful in enabling systematic answers to these questions. 
However, the semantics of managed information, 
rather than its syntax, is the key to the answers. Clear-
1y, the data that should be monitored needs to be 
derived from the model that is used to interpret 
the data. The model must be based on the seman­
tics of the network operational behavior. U nfor­
tunately, the manner in which interactions among 
network processes lead to faults or performance inef­
ficiencies is not well understood. The storm 
example illustrated that, even when a fault behav­
ior can be understood, it is unclear what symp­
toms need to be observed and how to correlate 
their respective data to handle it. 

Significant research is needed to develop 
improved understanding of network operations and 
to build effective manageability. Standardization 
of managed information syntax is best viewed as a 
first step toward handling the semantics of net­
work operations. Network management needs and 
scenarios are likely to continue and change as 
new types of networks, new applications, and bet­
ter management technologies arise throughout 
the coming decade. As our understanding of the 
semantics of operations improves, new syntactic 
structures to support manageability will continue 
to emerge. Standardization of these mechanisms 
likely will continue and evolve in a manner not asim­
ilar to the SNMP's evolution. 
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