
262 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Failure Resiliency With Only a Few Tunnels –
Enabling Segment Routing for

Traffic Engineering
Timmy Schüller , Nils Aschenbruck , Member, IEEE, Markus Chimani, and Martin Horneffer

Abstract— Traffic engineering is an important concept that
allows Internet Service Providers (ISPs) to utilize their existing
routing hardware more efficiently. One technology that can be
used is Segment Routing (SR). In this paper, we address the use of
SR to increase the resilience against failure scenarios. In addition,
we develop solutions that are manageable and, thus, deployable
in a tier 1 ISP network. We propose a post-convergence aware
SR based optimization model. With it, we can proactively find
a single SR configuration that is beneficial in all predefined
failure scenarios, including single link failures, shared risk
link group failures, and node failures. In addition to this use-
case, we also extend the optimization model to include other
important practical requirements such as keeping the number
of SR tunnels to a minimum, avoiding arbitrary traffic splitting,
or meeting latency bounds. We evaluate our approaches with
recently measured data from a tier 1 ISP and show that we can
improve over state of the art routing approaches.

Index Terms— Segment Routing (SR), traffic engineering, opti-
mization, failure resiliency.

I. INTRODUCTION

AS WE are slowly but surely stepping into the age of
5G, higher mobile bandwidth and lower latency will

likely motivate end users to stream and consume more content.
Even without 5G, the increasing demand [5] is a non-trivial
challenge for ISPs. The obvious solution is to physically
expand a network, but this is very expensive. To use existing
hardware efficiently, providers additionally deploy some form
of traffic engineering [14]. The general goal is to distribute
traffic demands over the networks resources so that certain
requirements are met. Avoiding congestion is the most typical
example for such a requirement.

A common way to perform traffic engineering in networks,
where shortest-path-based Interior Gateway Protocols (IGPs)
such as Open Shortest Path First (OSPF) or Intermediate
System to Intermediate System (IS-IS), are used, is to tweak
link metrics [3], [11]. This, however, is a very delicate process,

Manuscript received October 24, 2019; revised September 8, 2020; accepted
October 7, 2020; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor S. Uhlig. Date of publication October 20, 2020; date of current version
February 17, 2021. This is an extended version of an article previously
published at the 44th IEEE Conference on Local Computer Networks (LCN)
in October 2019. (Corresponding author: Timmy Schüller.)

Timmy Schüller is with the Institute of Computer Science, University of
Osnabrück, 49090 Osnabrück, Germany, and also with Deutsche Telekom
Technik GmbH, 48147 Münster, Germany (e-mail: schueller@uos.de).

Nils Aschenbruck and Markus Chimani are with the Institute of Com-
puter Science, University of Osnabrück, 49090 Osnabrück, Germany (e-mail:
aschenbruck@uos.de; chimani@uos.de).

Martin Horneffer is with Deutsche Telekom Technik GmbH, 48147 Münster,
Germany (e-mail: martin.horneffer@telekom.de).

Digital Object Identifier 10.1109/TNET.2020.3030543

which is shown to be NP-hard [10]. This is intuitive, as there
typically are many more demands to find arbitrary paths
for, than metrics to configure. Most often, it is not possible
to achieve metric configurations that result in an optimal
routing and resource utilization. Another way to perform traffic
engineering is by signaling explicit tunnels with Resource
Reservation Protocol Traffic Engineering (RSVP-TE) [2]. The
downside here is that these tunnels account for a significant
maintenance overhead. Thus, many providers currently are
looking into using SR [7] as a traffic engineering strategy [6].
SR is a source routing paradigm, which defines selected check-
points along a packet’s intended path and consults the IGP in
between. This results in a packet following multiple, efficiently
concatenated shortest paths. By using either Multiprotocol
Label Switching (MPLS) or an IPv6 extension, as well as
an IGP extension, it introduces no additional protocol and
no additional state information to the network. Instead, all
decisions take place at the source and are attached to the
packet itself. SR is sometimes also referred to as the de-facto
architecture for Software-Defined Networking (SDN) [6], as it
can easily be used to tailor a network using a central controller.

There already are propositions for traffic engineering opti-
mization models using SR. But when trying to translate them
from theory into a real deployment, many practical constraints
arise [24]. One important and non-trivial requirement is to
make the network resilient against failures. While this is a
fact everyone can agree on, it is not directly obvious what
this means in detail. There are multiple different types of
failures that may or may not be important to an operator.
This paper considers three different failure types: link failures,
node failures, and Shared Risk Link Group (SRLG) failures.
We furthermore assume at most one failure to occur at any one
point in time. This is realistic, as about 70% of all unplanned
failures can be traced back to single link failures [20]. The
remaining cases are multi-link failures, however, most of them
can be attributed to a common, single SRLG. In other words,
the SRLG failures we use in this work can be interpreted
as practically relevant multi-link faults, while node failures
essentially are an extreme case of SRLG failures.

The timing with which to look at a failure produces com-
pletely different use-cases. In an ISP network, link failures
happen on a daily basis, but most of them are resolved quickly,
as presented in [15]. For these cases, there are technologies
that aim to provide a short-term compromise as fast as
possible. An example for this is the classic Fast Reroute (FRR)
or the more widely applicable Topology Independent Loop

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-2466-3231
https://orcid.org/0000-0002-5861-8896
https://orcid.org/0000-0003-2097-9909

SCHÜLLER et al.: FAILURE RESILIENCY WITH ONLY A FEW TUNNELS 263

Free Alternate (TI-LFA) [7, Chapter 9]. But a small portion
of failures do take a substantial amount of time to resolve.
A prominent example for this are failures with undersea cables.
This work can be categorized as a solution to these longer
outages. Additionally, a traffic engineering technology may
be classified by the action it takes when an outage occurs.
A central controller, for example, could recompute upon fail-
ure and then reconfigure routers. Alternatively, backup paths
for all possible failures could be precomputed. In this case
routers only have to switch and nothing has to be computed.
The model we propose here, however, achieves a resilient
configuration without any routing changes and solely relies
on the synergy between SR and the IGP.

The contributions of this work are three-fold.

1) We propose the proactive SR-based traffic engineering
optimization model that is resilient against severe fail-
ures that are unlikely to be fixed in a few hours. We call
it Post Convergence Aware 2SR (PCA2SR). The mathe-
matical formulation is described and options on how to
choose the configurable parameters are discussed.

2) We combine our approach for failure resiliency PCA2SR
with an extension that limits the number of tunnels
deployed: The Tunnel Limit Extension (TLE) (intro-
duced in [24]). By doing so, we make sure our
approaches can be deployed in real networks. We also
include the compliance with specific latency constraints.

3) We evaluate both approaches on a recent set of traces
measured in a tier 1 ISP backbone network. This
includes topology information, traffic data, and real
SRLGs. Our approaches show that they are successful
and advance the state of the art towards failure resilient
and manageable traffic engineering using SR.

The paper is structured as follows. In Section II, we cover
the basics of SR. Related work is presented in Section III.
With this knowledge, we are ready to present PCA2SR
in Section IV and show the linear programming formulation in
Section V. Before showing how this formulation performs in
trace based simulations in Section VII, we shortly describe our
evaluation setup in Section VI. Section VIII introduces a set
of additional practical requirements along with an extended
optimization model and evaluation. Finally we close with a
summary and future work in Section IX.

II. SEGMENT ROUTING

SR is an emerging source routing architecture. Its devel-
opment and standardization is largely pushed by Cisco [6] in
cooperation with multiple ISPs and the Source Packet Routing
in Networking (SPRING) working group of the IETF. RFC
8402 [9] defines the SR architecture along with different
segment types that can be thought of as different types of
checkpoints that a packet has to visit. For this paper, only node
segments, which uniquely identify a node within a network,
will be considered. To steer a packet through a series of
segments, the segment IDs are added onto the packet itself.
This is done either by using Multiprotocol Label Switching
(MPLS) labels or directly via an IPv6 Type-Length-Value
(TLV) field. The IGP is consulted to reach a segment, overall

creating a concatenation of multiple shortest paths. Traffic
engineering is only one of the possible use cases of SR.

The number of segments that can be stacked onto one packet
is a practical constraint. In [4], [24], it was shown that, on the
scale of tier 1 ISPs, a near optimal routing is achievable with
only 1 intermediate segment per path. The approach of limiting
the segment stack to one intermediate and one destination
segment is called 2SR and will be used in this work.

Multiple additions to a basic 2SR Linear Program (LP)
formulation by Bhatia et al. [4] exist, adding different practical
constraints [23], [24]. While at first we focus exclusively
on failure resiliency, these additional requirements will be
reincorporated in Section VIII. General use-cases of resiliency
in conjunction with SR are documented in [8].

III. RELATED WORK

TI-LFA [7, Chapter 9] is a strategy that can be used to
precompute backup paths from the Point of Local Repair
(PLR) to the destination for predefined failures. With the use
of SR and strategically placed segments, it manages to avoid
routing loops and steer the packet along the post-convergence
path. It does, however, not incorporate any considerations
regarding possible network congestion. Also, the backup path
only represents the so-called post-convergence path starting
at the PLR and not from the ingress node, where the demand
enters the network. Thus, even though TI-LFA works well as a
short term compromise, it is not well suited for longer outages.

Exact optimizations of SR are not fast enough to be used
in an online fashion. To recompute and reconfigure a net-
work upon failure, heuristic approaches are required. In [12]
Gay et al. develop a local search that can be used to provide
sub-second optimization with SR. Another framework that is
capable of online computations is Declarative and Expressive
Forwarding Optimizer (DEFO) [13]. It uses a constraint pro-
gramming technique to solve the problem. Both strategies use
up to 2 intermediate segments and attempt to minimize the
Maximum Link Utilization (MLU). This is a widely used
objective in network traffic engineering that will also be
applied in this work. These and similar online approaches
do, however, require the abilities of a central controller to
recompute routing paths and reconfigure the network. This
can be achieved, for example, by an SDN.

Kumar et al. [19] also make use of an SDN, but follow
a very different approach. They propose a system that finds
multiple paths for each end-to-end connection that are selected
by predefined metrics, but independent of the traffic demands.
A central controller then dynamically adapts sending rates
for those paths, taking the current state of the network into
account. This idea is based on the fact that redefining end-to-
end paths is relatively slow, while only adapting sending rates
can be done quickly. The authors show that this method yields
competitive results and is robust against single link failures.
For the latter, a simple recovery mechanism is implemented,
which redistributes traffic onto all paths that are still intact.

Aubry et al. [1] define the notion of robustly disjoint paths.
They subsequently propose an optimization problem to find
these paths with the help of SR. Their general approach is
similar to the one presented in this paper, as they try to find SR

264 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Fig. 1. Routing of two demands, blue and green, before and after a failed link, with and without proactive SR. All links have the same metric and can
route exactly one demand. Dashed demands indicate load balancing. A colored node specifies that it has been configured as an intermediate segment for the
matching traffic.

paths that remain disjoint after IGP convergence in predefined
failure cases. As a secondary goal the latency is minimized.
They test the approach using all single link and 2-link, as well
as random 3-link failures. This work, while being similar to
ours in idea, serves a different use-case. Both approaches could
be run in parallel. The robustly disjoint paths optimization
works best for enterprise traffic, where it is critical to have
disjoint paths in place. PCA2SR results can in turn be applied
to best-effort traffic to keep utilization to a minimum.

While we focus on SR based IGP traffic engineering in this
work, significant impact can also be achieved by tweaking
Border Gateway Protocol (BGP) to manipulate the entry and
exit points of traffic within an Autonomous System (AS). One
example is the tool Tweak-it [26] that additionally minimizes
changes to BGP. In [3] another hybrid approach is proposed.
The authors focus on optimizing metrics within an AS, but
they add virtual nodes with information from BGP with the
goal to include interdomain links in the weight optimization
process.

IV. POST CONVERGENCE AWARE 2SR

This section discusses the conceptual idea behind the opti-
mization, which is explained in detail in the next section.
Please note that the concept below is too complex to be imple-
mented with a traditional metric tuning approach, as discussed
in the second paragraph of the introduction.

The concept of PCA2SR is introduced in the form of an
example in Figure 1. It shows a simple, constructed network
containing 5 nodes and 7 undirected edges. All edges have the
same capacity and link metric. We now attempt to route two
demands. The blue demand enters the network on node D and
exits through node B, while the green demand also originates
at node D, but is destined towards node E. Both demands
are equal in size and match the capacity of an edge. Figure
1a traces the shortest paths for each demand. Since there are
two equal routes for the blue demand, it is distributed evenly
between them. We now assume that the link between node D
and E breaks down. Figure 1b depicts the post-convergence
paths. The path of the blue demand remains unchanged, while
the green path now uses C to bypass the failed link. This
congests the link between node D and C, as 50% of the blue
demand and 100% of the green demand now traverse it.

Because post-convergence paths can be computed in
advance, this scenario could have been anticipated and avoided

with the help of SR. Figure 1c shows the network before the
failure occurs. This time, the blue demand follows an SR path
with an intermediate segment on node A. It is no longer load
shared along two paths and, thus, does no longer use the link
between node D and C. Upon failure of edge D-E, as seen in
Figure 1d, edge D-C is free to be used by the post-convergence
path of the green demand and all demands can be handled
without issue.

While this is a very contrived example, it showcases the key
idea behind PCA2SR. First, topological data of the network
and traffic data is measured and collected. Additionally, the
operator defines a set of failure cases, which the network
should be resilient against. Then, all post-convergence paths of
these failure cases are computed in advance. Using this infor-
mation, PCA2SR finds an SR configuration that minimizes
utilization in all predefined failures. The linear programming
formulation behind this is explained in the following section.
The resulting SR configuration can be deployed. If any of the
predefined failures do occur, a short term solution, such as
FRR, takes over to provide a well defined and fast emergency
routing to bridge the gap until the IGP reconverges. Then,
the network will continue to run with little to no congestion
without any configuration changes.

V. OPTIMIZATION MODEL

The optimization model described in this section is based on
the 2SR formulation by Bhatia et al. [4]. The original linear
program minimizes the Maximum Link Utilization (MLU),
which is a widely used traffic engineering objective. We add
a set of failure constraints and adapt the objective function to
match our new use-case.

Before discussing the formulation, a few notations have
to be introduced and defined. We define a network as a
multi-graph G = (V, E) with a set of nodes V and a multi-set
of directed edges E between pairs of nodes. Each edge e ∈ E
is associated with a capacity c(e) and a link metric m(e).
With this information we can compute shortest paths between
all node pairs. Using these, we can compute the share of
each end-to-end traffic that is going to be routed along an
edge e, which is denoted by gk

ij(G, e). Note that there are
three node indices: i, j, and k. This is because each traffic
is being routed on a 2SR path, with i being the source, j
the destination, and k the intermediate segment. In practice,
we do not need a 2SR path for each end-to-end connection,

SCHÜLLER et al.: FAILURE RESILIENCY WITH ONLY A FEW TUNNELS 265

as in some cases the simple shortest path is sufficient. We use
xj

ij to define the amount of traffic that is being routed along
this shortest path. If k happens to be unreachable, for example
in case of a node failure, the function g returns gj

ij(G, e)
instead of gk

ij(G, e). In this case, when node i knows that
k is unreachable and recognizes that, the configured SR path
is, thus, invalid. The node then proceeds to route traffic along
the shortest path instead. The total amount of traffic that is to
be routed throughout the network is measured and recorded
in tij , where i is the ingress node and j is the egress node of
a specific demand.

We now define a set of failure scenarios F . A failure
scenario f ∈ F is a list of one or more edges. This allows us to
model various failure types in a modular fashion. We consider
the following three failure types:

• Link failure. A link failure of a single edge e can be
modeled by the failure scenario f = [e]. Note that in most
ISP backbone networks, there is more than one physi-
cal link between two nodes. This scenario specifically
focuses on single link failures, which does not necessarily
mean a disconnect between two nodes. Rather, in most
of the cases, a single link failure implies a reduction of
the total bandwidth installed between two routers.

• Node failure. The failure of node n can be modeled by
the failure scenario f = [{(i, j) | n ∈ {i, j}}]. It contains
all ingoing and outgoing edges of the failing node.

• Shared Risk Link Group failure. An SRLG contains
multiple resources that share a common risk. Usually
many links are bundled and buried together. This not
necessarily means that they have the same source and/or
destination, but all of them will fail if the link bundle is
cut. The failure of an SRLG s can be modeled by failure
scenario f = [{e | e ∈ s}].

Since the model does not differentiate between different
failure types, any combination of them, or even completely
new types can be used.

All symbols introduced until now are either constants or can
be computed in advance. Problem 1 shows the optimization
model including its variables, objective function, and config-
urable parameters.

min
∑

f

(φf − Φ)

s.t.
∑

k

xk
ij ≥ tij ∀ij (1)

∑

ij

∑

k

gk
ij(G, e)xk

ij ≤ Θ c(e) ∀e (2)

∑

ij

∑

k

gk
ij(G \ f, e)xk

ij ≤ φf c(e) ∀f, e (3)

φf ≥ Φ ∀f (4)

xk
ij ≥ 0 ∀ijk (5)

Problem 1: Post-convergence aware 2 SR optimization

First, we define the set of 2SR path variables xk
ij . Semantically

speaking, xk
ij counts the amount of traffic originating at node

i that is destined towards node j and uses node k as an

intermediate segment. Inequality (1) guarantees that the sum
over all intermediate nodes matches the measured traffic tij .

There are two parameters by which the model can be con-
figured. First, we define Θ as the normal case link utilization
upper bound. Inequality (2) ensures that, while the network
is completely intact and no failures occur, the link utilization
of each edge is less or equal than Θ. Note that, rather than
computing and minimizing the MLU as it is done in the
original formulation, we use it as a constant to limit the
solution space. This also means that Θ may not be lower
than the optimal MLU, or the LP will be infeasible. From an
operator’s point of view, it is less important how exactly the
utilization looks like or if the configuration is optimal. In fact,
it is more relevant to avoid congestion. By using Θ as an upper
bound for the normal case, this is guaranteed. We found that
if the normal case constraint is left out, this guarantee does
not hold, despite the fact that the topology gets more sparse
with any failure and thus more difficult to route.

The second parameter is Φ. We define it as the failure case
MLU threshold. If the MLU is below or equal to this value
after a failure f occurred and the IGP converged, we ignore
it. If it is above the threshold, we add it to the objective
value, which is to be minimized. In other words, we minimize
all failure MLUs higher than Φ. From an operator’s point
of view this can be motivated similarly as Θ. As long as
the utilization stays below a certain threshold, in this case
Φ, it does not matter if it is not the most efficient routing
configuration. Instead, we want to focus on the more difficult
failure scenarios and keep overutilization to a minimum.

In Problem 1, this behavior is ensured by the objective
function, as well as constraint (3). We define a set of variables
φf , which represents an upper bound to the MLU after the
IGP reconvergence, triggered by failure scenario f , is finished.
In the mathematical formulation, this is indicated by the use
of G \ f , which is the network graph G without the edges
contained in f . Apart from this, the computation of the MLU
for each failure scenario is the same as in inequality (2).

The objective function essentially minimizes the sum of all
φf . The minimum value of φf is set to Φ, to reflect the fact that
only values above this threshold matter in the optimization.
This does not imply that every failure case MLU has to be at
least Φ—it only has to be less or equal than the respective φf .
To make the objective value easier to interpret, the sum of all
minimal values of φf is subtracted again. The final result is the
total failure MLU overutilization. Since it is highly non-trivial
to weight one failure against another, we decided to treat every
failure scenario equally. If the importance or probability of
each failure scenario could be quantified, a vector of weights
could easily be incorporated into the objective function.

Another potential modification of the objective is the addi-
tion of counting variables. Instead of minimizing the total
overutilization, the number of links or link failures leading
to congestion could be minimized. The objective in this case
is to minimize the cases where congestion occurs, regardless
of how bad it is. This, however, would require the introduction
of integer variables. Since this makes the problem harder to
solve, we only briefly tested this modification. We found no
benefit over the presented formulation.

266 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

VI. EVALUATION SETUP

In this section we briefly describe the algorithms we run
PCA2SR against, as well as tested parameter configurations.
We also discuss the computational performance and describe
the traces the evaluation is based on.

A. Algorithms

We compare our approach against the following two routing
strategies:

• Shortest Path Routing (SPR). SPR is used as a sim-
plified IGP simulation. It uses Equal-Cost Multi-Path
(ECMP) to split traffic onto equally weighted paths and
serves as a comparison against state of the art routing.

• Theoretical Lower Bound (LB). To get a sense for the
lower bound, we computed a separate 2SR configuration
for each individual failure scenario. It uses the optimiza-
tion problem introduced in [4]. Please note that this is a
theoretical lower bound, as it would have to be calculated
and configured for the specific failure, when the failure is
detected. Unfortunately, such real-time calculations can
not be performed fast enough today. Nevertheless, for
each individual failure scenario this is optimal.

All computations were performed on a Dell PowerEdge R620
cluster node with a 12 core Intel Xeon E5-2620 CPU and
8×32GB DDR3 synchronous 1600 MHz RAM running 64-bit
Ubuntu 12.04.5. LPs were solved using CPLEX 12.6.2 [16].

B. Computational Performance

A major challenge of trying to find one SR configuration
for many failure scenarios is the high number of variables
and constraints it entails. Constraint (3) is written down
for each edge in every failure case. If we look at single
link failures this results in O(n4) inequalities. Within each
constraint, we summarize over all possible source, destination,
and intermediate nodes. We, therefore, have a complexity of
O(n7) by just writing down constraint (3). This leads to a
runtime of approximately 7–8 hours for each instance, which
already incorporates parallelization.

Because a majority of the time is spent writing down
constraint (3), we tried modeling it via a separation routine.
This means the LP is initially solved without failure constraints
and the solution is checked for violations. If any occur, the cor-
responding constraints are added and the problem is optimized
again. Following this strategy, we managed to significantly
reduce the runtime for testing topologies with up to 50 nodes.
Unfortunately this did not carry over to the full sized instances
used in the evaluation.

C. Data

We test our optimization model on nine snapshots measured
in a tier 1 ISP backbone network evenly spaced within a
time frame between April and September 2018. Each snapshot
contains topological data, which includes the network graph,
as well as SRLG information, and a traffic matrix. Each
traffic matrix is a capture of a 15 minute period during the
peak hour [24]. One network topology snapshot consists of

about 114 nodes with approximately 2800 individual edges.
The edges are configured with link weights as optimized by
the operator. This improves the quality of simple SPR, making
it a good estimation for a state of the art traffic engineering
approach. At the same time, we have shown in [21] that metric
optimization neither hinders SR traffic engineering, nor is it
necessary to get practical results.

It should be noted that, while the data is based on a
real network, all results shown in this paper are attained
by trace-based simulations. They may not necessarily reflect
the actual state of the network if any of the algorithms
were actually deployed. Unfortunately, we can not provide
further details on the configuration of the network due to
confidentiality beyond the details (including a visualization of
the topology) described in [24].

VII. EVALUATION RESULTS

As discussed in Section V, PCA2SR is configurable by two
parameters: the normal case utilization upper bound Θ and the
failure case MLU threshold Φ. We evaluate different values of
these parameters on the set of single link failures to show
that the optimization works with almost any configuration.
Furthermore, we evaluate the ability of our optimization model
to optimize for single link failures and SRLG failures at
the same time. Subsequently, we investigate node failures,
before investigating an outlier trace that proves to be especially
difficult to optimize. We close the evaluation with performance
considerations.

A. Single Link Failures

We use a failure set of all possible single link failures to
evaluate the parameters Θ and Φ. To reiterate, our optimization
model seeks to find a singular, completely static configuration
that is acceptable while the network is fully intact (i.e. there
are no failures) and minimizes overutilization in case of any
single link failure.

While we recommend to selected an Φ greater than Θ, it can
theoretically be set to any value. A higher value decreases the
complexity of the optimization, because it accepts a higher
number of sub-optimal solutions that are still acceptable and,
thus, terminates more quickly. But a higher threshold does,
in turn, leave less breathing room for any unexpected traffic
spikes or failures that were not taken into account. Constant
Θ, on the other hand, may not be set to an arbitrary value.
If it is set too low, the linear problem becomes infeasible.
This happens, because constraint (2) limits the solution space
to configurations that achieve an MLU of at least Θ when the
network is completely intact. We, thus, recommend to run a
basic 2SR optimization first, to get an estimate on the lower
bound, and then select a value higher than the estimate for Θ.

For the parameter evaluation, we tested values of Θ ∈
{0.7, 0.8, 0.9} and Φ ∈ {0.9, 0.95, 1}. We found that PCA2SR
manages to remove any cases where congestion might have
occurred, reducing the objective value to zero in all but one
instance for all parameter combinations. The last instance will
be excluded in the following figures and discussed later on,
as it illustrates a special case. To look at the optimization

SCHÜLLER et al.: FAILURE RESILIENCY WITH ONLY A FEW TUNNELS 267

TABLE I

THE DISTRIBUTION OF MLUS IN ALL SINGLE LINK FAILURES AND IN ALL
INSTANCES AS OPTIMIZED BY PCA2SR WITH DIFFERENT CONFIGU-

RATIONS OF Θ AND Φ IS SHOWN HERE. THE RANGE OF RESULTING

MLU IS CLUSTERED INTO BINS OF SIZE 0.025 ON THE Y-
AXIS. ONE CELL ENTRY COUNTS THE NUMBER OF FAILURE

CASES THAT RESULT IN AN MLU THAT FALLS WITHIN

THE CORRESPONDING BIN. IT BECOMES CLEAR

THAT MOST OF THE RESULTING VALUES POSI-
TION THEMSELVES TOWARDS THE BIN Θ

BELONGS TO, WHILE ANOTHER CLUSTER

CAN BE OBSERVED AT THE TOP OF

EACH COLUMN

results in more detail, Table I shows the distribution of MLUs
in all failures and all instances in different parameterizations.
The range of possible MLUs is grouped into 13 bins in steps of
0.025. Each bin contains the number of failure cases leading to
an MLU that fits into its range. The table uses rlim to define
the maximum value of each range. The bin corresponding to a
row with rlim = 0.875, for example, collects all MLUs with
a value v of 0.85 < v ≤ 0.875.

The two parameters are distinctly visible, as every bin above
the normal case utilization upper bound Θ or below Φ is
empty. All configurations show comparably large bins at the
value of Θ. Note that the optimization model prohibits normal
case utilizations higher than Θ, but does not distinguish them
any further. Hence, in most cases, a normal case utilization
of exactly Θ will be selected. Approximately 10% of single
link failures appear to be more challenging and form a second
cluster at the upper threshold Φ, but none surpass it. It should
be noted that all values that are being grouped in the top-most
bin, which theoretically can contain values greater than Φ,
exactly match Φ. To make this clear, we added an extra line
at the top, which counts all values above Φ, which is empty in
all parametrizations. This means that the objective was fully
met by all shown configurations.

To conclude, PCA2SR is able to work with different con-
figurations and can eliminate congestion for all single link
failures in all shown instances. The parameters can, thus,
be almost freely chosen by the operator, following their indi-
vidual requirements. For the remainder of this paper, we are
going use a configuration of Θ = 80% and Φ = 100%. This
leaves a reasonable buffer for anomalies in the normal case
and avoids congestion in failure cases.

Now that a configuration for PCA2SR is selected, we can
look at the performance in relation to other traffic engineering

Fig. 2. Comparison of MLU distributions in all single link failure cases as
determined by SPR, PCA2SR (Θ = 0.8, Φ = 1.0), and the lower bound.

strategies. Figure 2 additionally shows the results of SPR,
an estimation of state of the art routing, and the lower bound
for PCA2SR. Each subfigure visualizes the distribution of
failure MLUs φf for a single instance. Each distribution is
visualized by its Empiric Complementary Cumulative Distri-
bution Function (ECCDF). The distribution corresponding to
PCA2SR is colored in blue, SPR in orange, and the lower
bound computed by individual 2SR solutions per failure in
green. Φ is indicated with a red vertical line and Θ with a
green dashed line. Generally, values on the left are better than
values on the right. However, to satisfy the use-case described
in Section IV, it is sufficient to minimize values to the right
side of the red line. For a few failures handled by SPR, this
goal is not met. Instance C or G, for example, show more than
one link failure with a resulting MLU of more than one. If we
consider the complete distribution, it may seem that SPR is
better than PCA2SR, because in most other cases, its curve lies
to the left of the blue optimized distribution. But, to re-iterate,
for the objective of minimizing overutilization in failure cases,
this is irrelevant. A utilization of 60% instead of 80% does
not matter in our use-case. More importantly, PCA2SR avoids
congesting links in all nine instances, whereas SPR can avoid
congestion only for a single instance; in all other instances,
at least some failures result in MLUs above one.

While our use-case does not call for the lowest possible
network utilization, our optimization model is also able to
produce results close to the theoretical lower bound. We test
this by setting Φ to zero, thereby minimizing the MLU in
all failure scenarios. We also set Θ = 70%, a tighter value
than chosen in our reference parametrization, to show the
potential of PCA2SR. The results are visualized in Figure 3.
There appear to be two categories of distributions across the
instances. (1) PCA2SR is able to reach the optimal MLU for
98–99% of all failure scenarios in instances E–I with just a sin-
gle, static SR configuration. (2) In instances A–D, the failure

268 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Fig. 3. Comparison of MLU distributions in all single link failure cases as
determined by SPR, PCA2SR (Θ = 0.7, Φ = 0.0), and the lower bound.

MLU are only pushed as low as Θ = 70%. This is likely due
to an implementation detail to save memory: assuming Θ ≤ Φ,
we omit φf variables and corresponding constraints (3) if
their respective g(G \ f, e) function is identical to g(G, e).
In the somewhat strange scenario Φ � Θ here, this sometimes
results in a solution that is already considered optimal when
achieving Θ (similar to before). Nonetheless, we can see in
instances E–I that PCA2SR is theoretically able to yield close
to optimal results when optimizing single link failures.

B. Shared Risk Link Group Failures

The impact of PCA2SR seemed very low and most of
the time unnecessary when only looking at single link fail-
ures, as most of these failure cases did not notably affect
the network at all in the first place. This changes, when
the complexity and number of failure cases increases. Now,
we add SRLG failures into the set of failures to optimize.
One SRLG commonly contains many links, which makes it
more difficult to find configurations that avoid congestion.
It should also be noted that we consider these SRLG failures in
addition to single link failures. In other words, PCA2SR aims
to find a single 2SR configuration that removes congestion in
every possible single link failure and every SRLG failure case.
Despite this increased difficulty, the distribution of MLUs for
single link failures appears to be the same as without adding
SRLG failures.

Figure 4 shows the MLU after each SRLG failure that
was configured. We compare the same three traffic engi-
neering strategies as before. The number of failure cases
where the result of PCA2SR matches the normal case link
utilization lower bound Θ is considerably lower than observed
in Figure 2. This supports the assumption that SRLG failure
cases are more challenging to compensate than single link
failures. But most importantly, there are now much more

Fig. 4. Comparison of MLU distributions in all SRLG failure cases
as determined by SPR, PCA2SR (simultaneously optimized for single link
failures, Θ = 0.8, Φ = 1.0), and the lower bound.

failures where using SPR leads to congestion. These cases,
additionally, are now much more severe, as we can observe
values of up to two. While the lower bound manages to elim-
inate these completely, PCA2SR manages to avoid congestion
in seven out of nine instances. In Instance C and D there
remains a single link failure that results in an almost negligible
overutilization. Overall it provides a significant improvement
over SPR, for which up to 10% of all SRLG failures result in
congested links.

C. Node Failures

Node failures are the most severe failure types considered in
this paper. They rarely occur in practice, as there typically is
some form of redundant backup hardware that takes over if the
primary router fails. More commonly, single components, such
as line cards, fail. These are already covered by single link
and SRLG failures. Nonetheless, node failures should at least
be considered. Due to the severity, we solely focus on node
failures and do not simultaneously optimize other failures.

Figure 5 shows the results after computing SPR, PCA2SR,
and the lower bound considering node failures. It quickly
becomes apparent that these failures are indeed difficult to
compensate, because even the lower bound is now unable
to avoid congestion in five out of nine cases. Yet, in four
instances PCA2SR does manage to remove any overutilization
that SPR produces. In the remaining cases it matches the
lower bound. This supports our argument that PCA2SR is
able to yield results close to the theoretical lower bound
(cf. Section VII-A), despite only using one, static SR
configuration.

Interestingly, when looking at SPR, the overutilization that
is present appears to be less severe than with SRLG failures.
In particular instances B and E appear to have no cases of
congestion for any strategy and failure case. This may be,

SCHÜLLER et al.: FAILURE RESILIENCY WITH ONLY A FEW TUNNELS 269

Fig. 5. Comparison of MLU distributions in all node failure cases as
determined by SPR, PCA2SR (Θ = 0.8, Φ = 1.0), and the lower bound.

because the traffic that originates at or is destined towards a
node that fails will be ignored, as discussed in Section IV.
As a result, there are fewer traffic demands across the whole
network.

D. Optimization of Challenging Topologies

In this section, we enlarge our view by considering
another (tenth) topology. It is from the same network as the
other nine instances (see Section VI-C). But it was measured at
a point in time where there were two simultaneous interconti-
nental sea-cable faults already present in the topology. This is a
special, challenging scenario, as the failure optimization starts
in a state where failures are already present. Nevertheless,
the optimization of this instance does yield some interesting
results.

The optimization of link, SRLG, and node failures are
displayed in Figure 6. As before, we optimized link and SRLG
failures simultaneously, while node failures are kept separate.
Looking at the performance of SPR, we can see that the
network is in a state that is congested regardless of which
failure is added. This proves that the outage of two major
sea-cables is a severe scenario. Yet, PCA2SR manages to
eliminate the overutilization in most failure cases. While it is
not optimal for link and SRLG failures, it matches the lower
bound for node failures.

VIII. INCORPORATING REAL-WORLD CONSTRAINTS

In [24], we extended the basic 2SR formulation by
Bhatia et al. [4] with various real-world constraints and
requirements to make the results practically deployable. Fail-
ure resiliency, however, was not addressed in [24]. We now
want to combine all those practical requirements, including the
failure resiliency of PCA2SR. First, we give a brief overview

Fig. 6. Comparison of MLUs in all failure classes in a tenth instance as
determined by SPR, PCA2SR (Θ = 0.8, Φ = 1.0), and the lower bound.

of the additional requirements. Second, the extended mathe-
matical model is presented. Third, we conduct an evaluation
and discuss the results.

A. Practical Requirements

We consider the following four additional real-world con-
straints (6)–(12), as shown at the bottom of the next page.

1) Number of SR Tunnels: The previously featured opti-
mization results require upwards of 3000 2SR tunnels to be
installed, because the PCA2SR model is completely agnostic
in this regard. It does not incentivize choosing shortest paths
over 2SR tunnels and, therefore, almost all demands are routed
using 2SR. Additionally, a single demand is commonly divided
onto multiple 2SR paths, which increases the total number of
tunnels further. However, this poses a significant maintenance
overhead in practice, which is avoidable, as we will see later
in the evaluation.

2) Traffic Splitting: The basic 2SR formulation allows each
end-to-end demand to be divided into arbitrary fractions on
any number of different SR paths in addition to ECMP.
Current router hardware is not able to replicate this. For
example, a router running JUNOS [18] can split a single traffic
demands into at most 32 or 64 equally sized parts. We found
that restricting each demand to use at most one intermediate
segment is a good solution and synergizes perfectly with
requirement 1. It should be noted that this does not interfer
with ECMP, which can freely be used in between segments.

3) Router Blacklist: ISPs may have special nodes in their
network architecture that must not be chosen as intermediate
nodes. This can be solved using a blacklist. Nodes added to the
blacklist can only be source or destination nodes of demands.
An ISP could, for example, blacklist all Label Edge Routers
(LERs), in order to avoid transit traffic on edge nodes.

4) Latency Policies: With SR, latency policies that were
previously enforced through link metric design, can be easily
bypassed. We implement a simple hierarchical node classifi-
cation to counteract this. Each node is categorized in regard
to its continent, country, and site. If source and destination
are in the same country, for example, then the intermediate
node may not be from a different country. This approximation
method was first presented in [25].

B. Post Convergence Aware 2SR Tunnel Limit Extension

The mathematical model of the Post Convergence Aware
2SR Tunnel Limit Extension (PCA2TLE) differs slightly from
the original design of the 2SR TLE in [24]. The main idea,

270 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Fig. 7. Exemplary geographical classification of router locations for
requirement 3.

however, is similar. There are two objectives: Minimizing the
MLU (in failure cases) as primary objective, and minimizing
the number of SR paths used as secondary objective. At first,
the primary objective is optimized. Afterwards, the result
is injected into the model and the secondary objective is
optimized. Latency is another objective that could have been
investigated here. We chose not to, because it is implicitly
covered in the secondary objective.

In [24], the first step serves as quick approximation of 2SR.
Additional constraints are introduced in the second step only.
Due to this design, the first problem can be much simpler
than the second one. This can lead to the second optimization
being infeasible and especially becomes problematic if the
constraints become more impactful, like the failure constraints
do. It also makes the model more difficult to configure. Thus,
in this extension, we chose to incorporate all constraints to
both optimization steps.

The first optimization step is presented in Problem 2.
In order to satisfy requirement (1), the absolute, fractional
traffic flow variables xk

ij are changed to relative, binary traffic
flow variables αk

ij . This implicitly entails that if an αk
ij is set

to 1, then k (and no other k) is used for the traffic from i
to j. This implicitly fulfills requirement (2). Apart from this
change, the inequalities 6–8 are as in Problem 1. Equation 9
models requirement (3). We define B as a set of nodes that
the network operator would like to blacklist. A blacklisted
node may not be selected as intermediate node k, except if
the shortest path (k = j) is used:

Fig. 8. Two design concepts for PCA2TLE. On the left, the tradeoff constant
λ is used only in the second optimization step. On the right, it is incorporated
in both steps. The plots show exemplary MLU values for four fictional failure
scenarios A–D for both steps, as well as a theoretical optimum.

Consider a 2SR path that originates at node i, visits the
intermediate segment k, and ends at node j. A corresponding
demand is then treated as being routed along the direct shortest
path iff αk

ij = 1 with k = j.
Equation 10 handles requirement (4). Each node is associ-

ated with geographical information, which can be sorted into
three hierarchy tiers, and thus, a geographical tree according
to its continent, country, and site. We consider the exemplary
hierarchy depicted in Figure 7 for demonstration purposes.
The Lowest Common Ancestor (LCA) of Router AX11 and
Router AX12 is Site 1. Every leaf node of Site 1 may be used
as intermediate node for traffic between these two routers.
Every other node, such as Router AY31, must not be used
and the corresponding traffic flow variable is set to 0 by
equation 10. To give another example, TLCA(AX11,AY31) returns
the subtree with Continent A as the root. Router AX12 is a
leaf node of Continent A, and may, therefore, be used as an
intermediate node for traffic between AX11 and AY31. All
nodes in Continent B, however, are forbidden.

In the second optimization step, we change the objective to

min
∑

k �=j

αk
ij

min
∑

f

(φf − Φ − λ)

s.t.
∑

k

αk
ij = 1 ∀ij (6)

∑

ij

∑

k

gk
ij(G, e)αk

ijtij ≤ Θ c(e) ∀e (7)

∑

ij

∑

k

gk
ij(G \ f, e)αk

ijtij ≤ φf c(e) ∀f, e (8)

αk
ij = 0 ∀ijk | k ∈ B ∧ k �= j (9)

αk
ij = 0 ∀ijk | k /∈ TLCA(i,j) (10)

φf ≥ Φ − λ ∀f (11)

αk
ij ∈ {0, 1} ∀ijk (12)

Problem 2: Post-convergence aware 2 SR optimization with real-world constraints.

SCHÜLLER et al.: FAILURE RESILIENCY WITH ONLY A FEW TUNNELS 271

TABLE II

APPROACHES CONSIDERED IN THE EVALUATIONS

This minimizes the total number of SR tunnels chosen
(requirement 1). Note that we do not count traffic variables
that are associated with the shortest paths, as the shortest path
will be used automatically if no SR tunnel is specified.

We also adjust the upper and lower bounds of φf to

0 ≤ φf ≤ φ∗
f + λ ∀f

where φ∗
f are the now constant results from Problem 2. The

tradeoff constant λ is added onto the upper bound to give
the secondary objective some more room to work with. It
should be noted that λ is not only used here, but also lowers
the failure MLU threshold Φ in the first step. In [24], λ
only came into play in the second optimization step. This,
however, does not work in combination with Φ. To illustrate
this issue, we use four fictional failure scenarios A–D and
plot hypothetical MLUs after both optimization steps and a
theoretical optimum (possibly achieved by setting Φ to 0) in
Figure 8. We show two different designs in terms of the usage
of λ. On the left-hand side, the first step runs without the use
of the tradeoff constant. We use a λ of 5% in the second step,
which is added onto the results of the first step, just like in
2TLE. But, because the model does not distinguish results that
score lower than Φ, most scenarios will return Φ in step one.
Adding the additional 5%, therefore, leads to unnecessarily
high utlization, especially in scenario D. On the right-hand
side, we additionally reduce the failure MLU threshold in
step one by λ, just like in Problem 2. As a consequence,
we can add λ to the intermediate results and solve step two
without producing unnecessary high utilization. Meanwhile,
difficult failure scenarios, like scenario A, still get the same
amount of flexibility as in the design on the left. Note that
λ, in contrast to the original formulation of 2TLE, is used as
an additive constant instead of a coefficient. This makes the
model much easier to understand and configure, since we are
handling multiple utilizations instead of just one.

C. Evaluation

To test the combination of PCA2SR and TLE, we use the
same scenarios, configurations, and hardware as in Section VI.
We furthermore use a tradeoff constant of λ = 5%, as sug-
gested in [24]. Table II summarizes all approaches considered
in the evaluations.

In Figure 9 we can see the results for optimizing link
failures. Additionally to the format of the previous figures,
each subfigure now features a counter in the top right corner
that shows how many SR tunnels were deployed to reach the
results of PCA2TLE, visualized by the purple distribution.
The number of 2SR paths required to implement the PCA2SR
results are not displayed, because PCA2SR optimizes obliv-
ious of this secondary objective. The resulting numbers are

Fig. 9. Comparison of MLU distributions in all single link failure cases as
determined by SPR, PCA2TLE (Θ = 0.8, Φ = 1.0), and the lower bound.
For PCA2TLE, the corresponding number of mandatory SR tunnels (#SRT)
is displayed additionally.

all well above 3000 in all instances and, as noted earlier, this
is not a manageable number in practice. There are two main
points to observe in Figure 9. First, the distribution for the
optimized failure MLUs of PCA2TLE is much more akin to
the SPR curve than PCA2SR. This can be explained using
the second observation: The number of deployed SR tunnels
is quite low in all instances. In Instance A, there is no SR
needed at all, because the SPR solution already satisfies all
our thresholds and constraints. In the other cases, as stated in
the first part of the evaluation, SPR only leads to congestion in
very few cases, which can be repaired using as few as one to at
most four SR tunnels in Instance C. While we are now using
a significantly smaller number of SR tunnels, at the same time
this eliminates the impression that the optimized results appear
to be worse for the majority of failure scenarios, as discussed
in Section VII-A. Here, the results of PCA2TLE consistently
look on par with SPR for most failures and better for the tail
end of the distributions.

As explained in Section VII-B, the introduction of SRLGs
makes the problem more difficult. This is underlined by the
noticeably higher number of SR tunnels per instance, as visu-
alized in Figure 10. Instances C and E stand out especially,
as they require more than 100 SR tunnels. Meanwhile, the
other instances can be optimized using between 10 and 20
paths. Just as observed with single link failures in the previous
paragraph, the optimized distribution of SRLG failure MLUs
is not as close to the two configurable thresholds as with
PCA2SR. Rather, it is closer to the distribution of SPR results.
This, however, is only true for utilizations below Φ. In most
instances the distribution of PCA2TLE remains below this
threshold, while the usage of SPR exceeds it significantly.
For most failure cases the results even look better than as
optimized by PCA2SR, because of the fact that the latter does

272 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Fig. 10. Comparison of MLU distributions in all SRLG failure cases as
determined by SPR, PCA2TLE (simultaneously optimized for single link
failures, Θ = 0.8, Φ = 1.0), and the lower bound. For PCA2TLE,
the corresponding number of mandatory SR tunnels (#SRT) is displayed
additionally.

not further differentiate any solutions that result in an MLU
of below Φ. PCA2TLE does this by rewarding solutions with
less 2SR tunnels.

It should be noted that the results for instances C and E are
not fully optimal, as the optimization was interrupted when
coming close to running out of memory. Even though the
results have a relatively small relative gap upon termination,
which means that the results are not far off, the fact that
the results are not exactly optimal and the high number of
2SR tunnels is not satisfying. In Figure 11 we present an
alternative configuration of PCA2TLE for the problematic
instances. In order to reduce the number of 2SR tunnels,
we increase the tradeoff constant λ from the previously used
5% to 10%. As the numbers in the respective subfigures prove,
we are now able to reduce the number of tunnels to a similar
level as in the other instances. In order to do so, the purple
distribution does surpass the blue curve of PCA2SR for a
handful of failure scenarios, but the overutilization is only
marginal in comparison to the state of the art. To draw a
preliminary conclusion, PCA2TLE works well with the simul-
taneous optimization of single link and SRLG failures. While
some instances require an adaptation of the configuration, all
requirements can be satisfied appropriately.

The optimization of node failures is a little easier to compute
than the previous scenario in regards to additional require-
ments, because we have a much smaller set of failure cases.
But, as explained in Section VII-C, the lower bound starts
to be more relevant. The results are displayed in Figure 12.
In some instances and failure scenarios, even the lower bound
appears to have congested links. As it is close to the shortest
path simulation, the optimization model can get away with
a very low number of SR tunnels. The most extreme case

Fig. 11. Results of PCA2TLE with λ = 0.1 for two instances that were
difficult to compute with λ = 0.05 in comparison to PCA2SR (Θ = 0.8,
Φ = 1.0), SPR, and the lower bound. For PCA2TLE, the corresponding
number of mandatory SR tunnels (#SRT) is displayed additionally.

Fig. 12. Comparison of MLU distributions in all node failure cases as
determined by SPR, PCA2TLE (Θ = 0.8, Φ = 1.0), and the lower bound.
For PCA2TLE, the corresponding number of mandatory SR tunnels (#SRT)
is displayed additionally.

can be observed in Instance D, where SPR is optimal above
the 100% mark. As a result, no SR tunnels are needed, even
though some failure cases lead to congestion. These cases,
as indicated by the lower bound, are not possible to avoid
with 2SR. Because of the tradeoff constant λ, the failure
MLU can be slightly higher than with PCA2SR. This effect
is visible only in Instance C, where the purple distribution of
PCA2TLE sometimes lies slightly to the right of PCA2SR,
but this is barely noticeable. Most importantly, we are able
to compute a deployable set of SR tunnels that leads to no
congestion, and, where impossible, close to the lowest possible
overutilization.

D. Discussion

Before we move on to the conclusion, we would like to
discuss the evaluation approach, as well as ideas that go
beyond this publication.

SCHÜLLER et al.: FAILURE RESILIENCY WITH ONLY A FEW TUNNELS 273

First, it should be noted that the algorithms proposed
here are not lightweight. It takes 7–8 hours to optimize one
instance. These numbers are definitely not viable for online
traffic engineering. Furthermore, the optimization models use
traffic aggregates and are not based on individual flows. But
this, as indicated in the introduction, is not the intended
goal. Rather, we aim to provide a solution that is stable
in the long term. We envision that an operator re-optimizes
its network once a week or once a month based on latest
traffic peak matrices. In [23], we have shown that SR in itself
can provide stable configurations for longer periods of time.
The approach essentially uses statistical analyses on multiple
optimization runs to achieve stability. It could be combined
with the optimization model presented here.

Additionally it should be noted that the evaluation was
done based on a single tier-1 network. As shown in [11], the
success of traffic engineering approaches can vary between
different networks. Our main contribution falls into the
field of failure management and one of the major strengths
lies in the use of real SRLG data. To our knowledge,
there is no publicly available data set we could compare
our results with and SRLGs are complex and - if at all
- difficult to synthesize. Thus, we unfortunately can only
see it as future work to evaluate our approaches on other
topologies.

IX. CONCLUSION

Being resilient against failures is one of the most important
use-cases for network traffic engineering systems. In this paper
we propose PCA2SR, an optimization model that minimizes
overutilization after the IGP converges, given any failure sce-
nario contained in a predefined set of failures, while reducing
the MLU to acceptable levels (below 80% in our sample
parametrization) when no failure is present. As a result it
returns a set of 2SR paths that attain this goal. We additionally
enhance the model with real-world requirements that have to
be respected in order to receive a practically deployable SR
configuration. These include the minimization of the number
of 2SR paths used, the prevention of splitting up traffic
demands in arbitrary fractions, the possibility to blacklist
nodes, as well as securing latency policies. We call the final
model PCA2TLE.

We evaluated our two optimization models using topology
snapshots, traffic matrices, and SRLG information measured
in a tier 1 ISP backbone network. Within this dataset, some
failure cases can lead to congestion if standard shortest path
routing with ECMP is applied. PCA2SR manages to avoid
congestion in almost all cases for single link, single link
and SRLG, or node failures. Furthermore, it does not require
any recomputation or reconfiguration if one of the predefined
failures does occur. This holds true even for challenging
situations. PCA2TLE additionally complies with all added
practical requirements, without noticeably deteriorating the
quality of results.

While our main intent is to provide a resilient and deploy-
able traffic engineering solution, the optimization models can
also aid in planning the physical expansion of a network. The
resulting MLU distribution gives insight into which failures

are problematic and difficult to circumvent. This insight could
be used to specifically expand links or create redundancies.

Unfortunately, our approach is costly in terms of run-
time. Optimizing one instance using PCA2TLE can range
from 3 to 20 hours depending on the set of failures and
on the configuration of the model. For future work, the idea
of using constraint separation could be investigated further,
or other ideas of improving the runtime could be explored.
Alternatively, using a completely different approach to more
efficiently optimize SR paths, such as proposed in [17], could
be looked into.

Also, it would be valuable to expand the evaluation to
different topologies. Unfortunately, most public data sets only
contain topology information, rarely to no real traffic matrices,
and no data about SRLGs.

REFERENCES

[1] F. Aubry, S. Vissicchio, O. Bonaventure, and Y. Deville, “Robustly
disjoint paths with segment routing,” in Proc. 14th Int. Conf. Emerg.
Netw. Exp. Technol., Dec. 2018, pp. 204–216.

[2] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
RSVP-TE: Extensions to SVP for LSP Tunnels, document RFC 3209,
2001.

[3] S. Balon and G. Leduc, “Combined intra-and inter-domain traffic
engineering using hot-potato aware link weights optimization,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 36, no. 1, pp. 441–442, 2008.

[4] R. Bhatia, F. Hao, M. Kodialam, and T. V. Lakshman, “Optimized
network traffic engineering using segment routing,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2015, pp. 657–665.

[5] Cisco Systems. (2019). Cisco Visual Networking Index: Global
Mobile Data Traffic Forecast Update, 2017–2022. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/vis
ual-networking-index-vni/white-paper-c11-738429.html

[6] Cisco Systems. (2019). Segment Routing. [Online]. Available: https:
//www.segment-routing.net

[7] C. Filsfils, K. Michielsen, and K. Talaulikar, Segment Routing
Part I. Scotts Valley, CA, USA: CreateSpace Independent Publish-
ing Platform, 2017. [Online]. Available: https://books.google.de/books/
about/Segment_Routing.html?id=1zMyMQAACAAJ

[8] C. Filsfils, S. Previdi, B. Decraene, and R. Shakir, Resiliency Use
Cases in Source Packet Routing in Networking (SPRING) Networks,
document RFC 8355, 2018.

[9] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, L. Litkowski, and
R. Shakir, Segment Routing Architecture, document RFC 8402, 2018.

[10] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing
world,” IEEE J. Sel. Areas Commun., vol. 20, no. 4, pp. 756–767,
May 2002.

[11] B. Fu and S. Uhlig, “On the relevance of on-line traffic engineering,”
in Proc. ITC Spec. Seminar Netw. Usage Traffic, 2008, pp. 1–15.

[12] S. Gay, R. Hartert, and S. Vissicchio, “Expect the unexpected:
Sub-second optimization for segment routing,” in Proc. IEEE Conf.
Comput. Commun. (IEEE INFOCOM), May 2017, pp. 1–9.

[13] R. Hartert, P. Schaus, S. Vissicchio, and O. Bonaventure, “Solving
segment routing problems with hybrid constraint programming tech-
niques,” in Proc. Int. Conf. Princ. Pract. Constraint Program. (CP),
2015, pp. 592–608.

[14] G. Hasslinger, S. Schnitter, and M. Franzke, “The efficiency of traffic
engineering with regard to link failure resilience,” Telecommun. Syst.,
vol. 29, no. 2, pp. 109–130, Jun. 2005.

[15] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of link failures in an IP backbone,” in Proc. 2nd ACM
SIGCOMM Workshop Internet Measurment (IMW), 2002, pp. 237–242.

[16] (2014). IBM ILOG CPLEX Optimization Studio V12.6.2. [Online]. Avail-
able: http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.6.2

[17] M. Jadin, F. Aubry, P. Schaus, and O. Bonaventure, “CG4SR: Near
optimal traffic engineering for segment routing with column generation,”
in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), Apr. 2019,
pp. 1333–1341.

[18] Juniper. (2013). Junos OS Administration Library for Routing
Devices: Maximum-ECMP. [Online]. Available: http://www.juniper.net/
documentation/en_US/junos15.1/topics/reference/configuration-
statement/maximum-ecmp-edit-chassis.html

274 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

[19] P. Kumar et al., “Semi-oblivious traffic engineering: The road not taken,”
in Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2018,
pp. 157–170.

[20] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an opera-
tional IP backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4,
pp. 749–762, Aug. 2008.

[21] T. Schuller, N. Aschenbruck, M. Chimani, and M. Horneffer, “On the
practical irrelevance of metrics on segment routing traffic engineering
optimization,” in Proc. IEEE 43rd Conf. Local Comput. Netw. (LCN),
Oct. 2018, pp. 640–647.

[22] T. Schuller, N. Aschenbruck, M. Chimani, and M. Horneffer, “Failure
resilient traffic engineering using segment routing,” in Proc. IEEE 44th
Conf. Local Comput. Netw. (LCN), Oct. 2019, pp. 625–632.

[23] T. Schuller, N. Aschenbruck, M. Chimani, M. Horneffer, and S. Schnit-
ter, “Predictive traffic engineering with 2-Segment routing considering
requirements of a carrier IP network,” in Proc. IEEE 42nd Conf. Local
Comput. Netw. (LCN), Oct. 2017, pp. 667–675.

[24] T. Schuller, N. Aschenbruck, M. Chimani, M. Horneffer, and
S. Schnitter, “Traffic engineering using segment routing and considering
requirements of a carrier IP network,” IEEE/ACM Trans. Netw., vol. 26,
no. 4, pp. 1851–1864, Aug. 2018.

[25] T. Schüller, Real-world Pitfalls of Segment Routing Traffic Engineering,
RACI contribution at RIPE, document 78, 2019. [Online]. Available:
https://ripe78.ripe.net/archives/video/39/

[26] S. Uhlig and B. Quoitin, “Tweak-it: BGP-based interdomain traffic
engineering for transit ASs,” in Proc. Next Gener. Internet Netw.,
Apr. 2005, pp. 75–82.

Timmy Schüller received the master’s degree
in computer science in 2015 and the Ph.D.
degree from the University of Osnabrück, Germany.
From 2015 to 2019, he was working in a joint project
with Detecon International GmbH and Deutsche
Telekom Technik GmbH. Since then, he has been
working as a Systems Engineer with Deutsche
Telekom Technik GmbH. As such, he works towards
developing and deploying next-gen traffic engineer-
ing strategies in a global IP backbone network.

Nils Aschenbruck (Member, IEEE) received the
graduate diploma and Ph.D. degrees in computer
science from the University of Bonn, Germany,
in 2003 and 2008, respectively. He continued as
a Senior Researcher and the Head of the research
area tactical wireless multi-hop networks at the
Communication Systems Group, University of Bonn.
Since 2012, he has been a Full Professorship for dis-
tributed systems with the University of Osnabrück.
His research interests include mobile and wireless
networks, security, and scenario modeling.

Markus Chimani received the diploma degree in
computer science from TU Vienna in 2004 and
the Ph.D. degree from TU Dortmund in 2008.
From 2010 to 2013, he was a Junior Professor of
algorithm engineering with University of Jena. Since
2013, he has been a Professor and the Head of
the Theoretical Computer Science group, University
of Osnabrück. His research interests include exact
solutions for NP-hard problems, graph drawing and
graph theory, i.p., non-planarity measures as well
as topological network optimization, combinatorial

optimization, and algorithm engineering.

Martin Horneffer studied electrical engineering at
RWTH Aachen University until 1995. He received
the Ph.D. degree in computer science from the Uni-
versity of Cologne in 2000. He currently leads the
squad for the development of IP Backbone Network
Design and Architecture at Deutsche Telekom Tech-
nik GmbH. As such, he is also the Lead Architect
and a Network Designer for a global IP/MPLS core
network comprising five autonomous systems and
formerly separate core networks. He works toward
evolving the network architecture by switching to

segment routing and thinking multilayer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

