
182 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

Segment Routing: A Comprehensive Survey
of Research Activities, Standardization Efforts,

and Implementation Results
Pier Luigi Ventre , Stefano Salsano , Senior Member, IEEE, Marco Polverini ,

Antonio Cianfrani , Member, IEEE, Ahmed Abdelsalam, Clarence Filsfils, Pablo Camarillo, and Francois Clad

Abstract—Fixed and mobile telecom operators, enterprise
network operators and cloud providers strive to face the chal-
lenging demands coming from the evolution of IP networks
(e.g., huge bandwidth requirements, integration of billions of
devices and millions of services in the cloud). Proposed in the
early 2010s, Segment Routing (SR) architecture helps face these
challenging demands, and it is currently being adopted and
deployed. SR architecture is based on the concept of source
routing and has interesting scalability properties, as it dramat-
ically reduces the amount of state information to be configured
in the core nodes to support complex services. SR architecture
was first implemented with the MPLS dataplane and then, quite
recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture
(SRv6) has been extended from the simple steering of pack-
ets across nodes to a general network programming approach,
making it very suitable for use cases such as Service Function
Chaining and Network Function Virtualization. In this arti-
cle, we present a tutorial and a comprehensive survey on SR
technology, analyzing standardization efforts, patents, research
activities and implementation results. We start with an introduc-
tion on the motivations for Segment Routing and an overview
of its evolution and standardization. Then, we provide a tuto-
rial on Segment Routing technology, with a focus on the novel
SRv6 solution. We discuss the standardization efforts and the
patents providing details on the most important documents
and mentioning other ongoing activities. We then thoroughly
analyze research activities according to a taxonomy. We have

Manuscript received June 30, 2019; revised January 23, 2020, June 22,
2020, and August 26, 2020; accepted October 9, 2020. Date of publication
November 10, 2020; date of current version February 24, 2021. This work was
supported in part by the Cisco University Research Program Fund and in part
by the EU H2020 5G-EVE Project. (Corresponding author: Stefano Salsano.)

Pier Luigi Ventre is with the Department of Electronic Engineering,
University of Rome Tor Vergata, 00100 Rome, Italy (e-mail: pier.luigi.ventre@
uniroma2.it).

Stefano Salsano is with the Department of Electronic Engineering,
University of Rome Tor Vergata, 00100 Rome, Italy, and also with the
Research Unit Roma Tor Vergata, Consorzio Nazionale Interuniversitario per
le Telecomunicazioni, Rome, Italy (e-mail: stefano.salsano@uniroma2.it).

Marco Polverini and Antonio Cianfrani are with the Department of
Information Engineering, Electronics and Telecommunications, University of
Rome Sapienza, 00184 Rome, Italy (e-mail: marco.polverini@uniroma1.it;
antonio.cianfrani@uniroma1.it).

Ahmed Abdelsalam is with the Computer Science Department, Gran Sasso
Science Institute, 67100 L’Aquila, Italy, and also with the Segment Routing
Architecture Group, Cisco Systems, 00142 Rome, Italy (e-mail: ahmed.
abdelsalam@gssi.it).

Clarence Filsfils is with the Segment Routing Architecture Group, Cisco
Systems, 1831 Brussels, Belgium (e-mail: cfilsfil@cisco.com).

Pablo Camarillo is with the Segment Routing Architecture Group, Cisco
Systems, 28108 Madrid, Spain (pcamaril@cisco.com).

Francois Clad is with the Segment Routing Architecture Group, Cisco
Systems, 92130 Paris, France (e-mail: fclad@cisco.com).

Digital Object Identifier 10.1109/COMST.2020.3036826

identified 8 main categories during our analysis of the current
state of play: Monitoring, Traffic Engineering, Failure Recovery,
Centrally Controlled Architectures, Path Encoding, Network
Programming, Performance Evaluation and Miscellaneous. We
report the current status of SR deployments in production
networks and of SR implementations (including several open
source projects). Finally, we report our experience from this sur-
vey work and we identify a set of future research directions
related to Segment Routing.

Index Terms—Segment routing, MPLS, IPv6, SR-MPLS, SRv6,
source routing, monitoring, traffic engineering, failure recovery,
path encoding, networking programming, performance, Linux,
VPP, data plane, control plane, southbound APIs, northbound
APIs, open source, software defined networking, SDN, service
function chaining, SFC, standards.

I. INTRODUCTION

SEGMENT Routing (SR) is based on the loose Source
Routing concept. A node can include an ordered list of

instructions in the packet headers. These instructions steer the
forwarding and the processing of the packet along its path in
the network.

The single instructions are called segments, a sequence of
instructions can be referred to as a segment list or as an SR
Policy. Each segment can enforce a topological requirement
(e.g., pass through a node) or a service requirement (e.g., exe-
cute an operation on the packet). The term segment refers to
the fact that a network path towards a destination can be split
into segments by adding intermediate way-points. The seg-
ment list can be included by the original source of the packet
or by an intermediate node. When the segment list is inserted
by an intermediate node, it can be removed by another node
along the path of the packet, supporting the concept of tunnel-
ing through an SR domain from an ingress node to an egress
node.

The implementation of the Segment Routing Architecture
requires a data plane which is able to carry the segment lists in
the packet headers and to properly process them. Control plane
operations complement the data plane functionality, allowing
the allocation of segments (i.e., associating a segment identifier
to a specific instruction in a node) and the distribution of the
segment identifiers within an SR domain.

As for the data plane, two instances of SR Architecture have
been designed and implemented, SR over MPLS (SR-MPLS)
and SR over IPv6 (SRv6). SR-MPLS requires no change to

1553-877X c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6610-0547
https://orcid.org/0000-0003-3040-3559
https://orcid.org/0000-0002-2614-7567
https://orcid.org/0000-0003-3488-8901

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 183

the MPLS forwarding plane, see RFC 8660 [1]. SRv6 is based
on a new type of IPv6 routing header called SR Header (SRH)
defined in RFC 8754 [2].1

Temporally, SR-MPLS has been the first instance of SR
Architecture, while the recent interest and developments are
focusing on SRv6. In particular, the IPv6 data plane for SR
is being extended to support the so-called SRv6 Network
Programming Model [3]. According to this model, Segment
Routing functions can be combined to achieve an end-to-end
(or edge-to-edge) networking objective that can be arbitrar-
ily complex. This is appealing for implementing complex
services such as Service Function Chaining. SRv6 can be
used as an overlay tunneling mechanism directly exposed
and used by servers and as an underlay transport mecha-
nism in network backbones (supporting Traffic Engineering
and Resilience services). In light of this, SRv6 can simplify
network architectures avoiding the use of different protocol
layers.

As for the SR Control Plane operations, they can be based
on a distributed, centralized or hybrid architecture. In the dis-
tributed approach, the routing protocols are used to signal the
allocation of segments, and the nodes take independent deci-
sions to bind packets to the segment lists. In the centralized
approach, an SR controller allocates the segments, takes the
decision on which packets need to be associated to which
SR Policy and configures the nodes accordingly. Very often,
an hybrid approach which consists of the combination of the
previous strategies is used (see for example [4]).

The goal of this article is to provide a comprehensive survey
on Segment Routing technology, including all the achieved
results and the ongoing work. Hereafter (Section I-A), we
start with the historical context behind the development of
Segment Routing. In Section II, we provide an introduction to
the main concepts of Segment Routing architecture. We con-
sider both the SR-MPLS and the SRv6 data planes, but we
focus more deeply on SRv6 which is currently attracting a
lot of interest. In Section III, we provide a classification and a
discussion of the standardization efforts together with an anal-
ysis of the most relevant patents. We provide a comprehensive
review of research activities in Section IV, covering 88 sci-
entific papers. The most relevant implementation results and
the status of ongoing deployments are reported in Section V.
We report in Section VI lessons learned and our experience.
We highlight future research directions and open issues in
Section VII. Finally, we include in Appendix A a table of
the abbreviations.

A. Segment Routing Motivations and Evolution

The Source Routing approach consists of the inclusion of
the route of the packet as a list of hops in the packet header.
This has two variants. Strict Source Routing requires the spec-
ification of the full sequence of hops from the source to the
destination. Loose source routing consists of specifying a list

1Such a header has not been specified so far for IPv4; thus, segment routing
is not possible in current IPv4 networks. Of course, it is possible to encapsulate
IPv4 packets inside SR-MPLS and SRv6 packets. In fact, SR-MPLS and SRv6
are commonly used as transport networks for IPv4 traffic.

of nodes that represent way points to be crossed (in their order)
before reaching the destination.

These two variants of Source Routing have been considered
among the possible solutions for packet routing and forward-
ing since the early phases of the design of packet switching
technologies. In particular, they have been considered in the
original definition of IPv4 protocol in the late 1970s. RFC
791 [5], which defined IPv4 in 1981, included the Strict Source
and Record Route (SSRR) and the Loose Source and Record
Route (LSRR) options in the IPv4 packet header. These options
have been rarely used in IPv4 networks, also due to secu-
rity issues. Packets carrying the SSRR or LSRR options are
typically filtered (dropped) by IPv4 routers on the Internet.

Segment Routing follows the loose variant of Source
Routing, using the same approach of IPv4 Loose Source
Routing, but it is specifically based on MPLS or IPv6 data
planes.

The research and standardization activities on Segment
Routing originated in the late 2000s. Their main goal was to
overcome some scalability issues and limitations [6], which
had been identified in the traffic engineered Multi Protocol
Label Switching (MPLS-TE) solutions used for IP backbones.
In particular it was observed that MPLS-TE requires explicit
state to be maintained at all hops along an MPLS path; this
may lead to scalability problems in the control-plane and in
the data-plane. Moreover, the per-connection traffic steering
model of MPLS-TE does not easily exploit the load balancing
offered by Equal Cost MultiPath (ECMP) routing, typically
used in IP networks.

Therefore, the first important motivation and advantage of
Segment Routing consists in the dramatic reduction of the
per-flow state that needs to be maintained in network nodes
to support traffic engineered paths. With Segment Routing
it is not needed to configure forwarding tables in the nodes
along the path, only the ingress node will store the association
between a flow and its path to be enforced (i.e., the Segment
List). This also means that no configuration messages (e.g.,
using the RSVP-TE protocol) need to be sent to all nodes
along the path to establish a tunnel. The second important
motivation is that using segments instead of “pinning” the full
sequence of hops as with traditional MPLS-TE it is possible to
exploit multiple paths (ECMP routing) within each segment.

In the early 2010s, the IETF started the “Source Packet
Routing in Networking” Working Group (SPRING WG) to
deal with Segment Routing. The activity of the SPRING WG
has included the identification of Use Cases and Requirements
for Segment Routing (for example, [7], [8], and [9] have
become IETF RFCs). In July 2018, the SPRING WG has
issued the “Segment Routing Architecture” document (RFC
8402 [10]) along with another informational RFC on monitor-
ing use cases [11]. More recently (December 2019) other 3
RFCs have been issued, while many other documents are still
under discussion by the WG, as it will be analyzed later in
this article.

Looking at the scientific bibliography, the seminal paper on
the Segment Routing Architecture is [12]. Published in 2014,
it provides an overview of the motivations for SR, describes
a set of important use cases and illustrates the architecture.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

184 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

Fig. 1. SR policy and segments.

The basic concepts proposed in [12] have been elaborated and
refined in the RFC 8402 [10].

Currently, Segment Routing is receiving a lot of interest
from operators for its applications in different types of
networks (transport backbones, access networks, datacenters
and 5G networks).

The MPLS based data plane (SR-MPLS) relies on the well
established MPLS technology. SR-MPLS can be seen as an
improvement and a simplification of the traditional MPLS con-
trol plane, so it is beneficial to operators with an already
deployed MPLS infrastructure. The IPv6 based data plane
(SRv6) is gaining traction as it offers the possibility to com-
bine overlay and underlay networking services and features
only using the IPv6 technology. The SRv6 network program-
ming model offers unprecedented flexibility in designing and
operating network services, so SRv6 is an attractive choice
for operators that are deploying new networks or planning the
evolution of their networking architectures.

We conclude this short historical review by noting that a
very large number of patents (about 900) have been registered
related to Segment Routing, as it is possible to verify with
a cursory on-line search. We provide an overview and anal-
ysis on the most relevant patents in Section III, they further
demonstrate the high interest of vendors and service providers
in SR technology.

II. THE SEGMENT ROUTING (SR) ARCHITECTURE

This section includes a short tutorial on the main aspects
of SR architecture. Our goal is to provide a common ground
and a conceptual framework reference for the survey. RFC
8402 [10] represents the most important source of information
for SR architecture. The work in [13] (published in 2017)
provides a short and effective introduction to Segment Routing
architecture, with a focus on the MPLS data plane. The survey
paper [14] has a section about SR architecture, which attempts
to give more details related to both data plane (for SR-MPLS)
and control plane aspects.

Following the RFC 8402, let us start by discussing the gen-
eral concepts of SR, which are independent from the specific
data plane (MPLS or IPv6). A simple example of an SR path
composed of three segments (S1,S2,S3) is shown in Fig. 1. We
can refer to the list of segments as an SR Policy: the Segment
Routing policy P = <S1,S2,S3> consists of steering the pack-
ets through node S1, then through node S2 and then to the
destination S3. The ordered list of segments (segment list) is

Fig. 2. Segment Routing operations.

inserted in the packet headers by the source node of the SR
Policy. The Segment Routing domain (SR domain) is the set
of nodes participating in the source-based routing model.

A segment is described by a Segment Identifier (Segment
ID or SID). For the MPLS data plane, a SID is an MPLS label,
while for the IPv6 data plane a SID is an IPv6 address. As
shown in Fig. 2, the segment list is added to the packet head-
ers by a headend node that steers the packets of a flow onto
the SR policy. The headend node can be the originator of the
packet (e.g., an host) or an intermediate node that performs a
classification of the traffic and associates the SR policies to
the packets (as in Fig. 2). In other words, the hosts can be
part of an SR domain, but this is not required and depends on
the overall scenario in which SR is applied. It is expected that
all nodes in an SR domain are managed by the same admin-
istrative entity. For example, a Service Provider backbone can
constitute an SR domain and the headend node will be the
ingress edge router of the backbone (in this case, the hosts
are not part of the SR domain).

Three basic operations on SIDs and segment lists have
been defined for a generic SR data plane: PUSH, NEXT and
CONTINUE. In the examples of Fig. 1 and Fig. 2, We assume
for simplicity that S1 and S2 represent topological instructions
and S3 is the destination node of the SR policy P, so that the
policy P instructs the packet to cross two nodes identified by
the SIDs S1 and S2 (in this order) and then to reach the node
identified by the SID S3.

The PUSH operation consists of the insertion of a segment
on top of the segment list, i.e., as the new first segment of
the SR policy. In order to build the SR policy P described
above, the headend node executes the PUSH operations in this
order: PUSH(S3), PUSH(S2), PUSH(S1). In an SR packet, the
segment that specifies the instruction to be executed is called
the active segment. In the considered example with the SR
policy P, the headend node will send the packet with active
segment S1.

The NEXT operation is executed by a node that has pro-
cessed the active segment and considers the next segment of
the SR policy to be executed. In our example, the node identi-
fied with SID S1 receives the packet and performs the NEXT
operation. The next segment is S2, which becomes the active
segment so that the packet is forwarded toward S2. The NEXT
operation also covers the case of the last node of an SR policy,
in which the NEXT operation usually results in processing the
packet according to regular IP forwarding.

Finally, the CONTINUE operation is performed by nodes
that are in the path between two segments. For example, the

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 185

intermediate nodes in the path between S1 and S2 perform
the CONTINUE operation. The path between S1 and S2 is not
prescribed by the SR policy and will be chosen considering the
regular IP routing toward node S2 in the SR domain. If there
are multiple equal cost paths between nodes S1 and S2 (as
in Fig. 2) and the ECMP (Equal Cost MultiPath) mechanism
is supported by the IP routing in the SR domain, it can be
conveniently exploited by Segment Routing.

The segments can be classified into Global Segments and
Local Segments. Global Segments correspond to instructions
that are globally valid in an SR domain. Local segments
correspond to instructions that are valid within a single node.

The typical example of a global segment is an instruction
to forward packets toward a given destination IP network or a
destination IP node. Considering that an IGP (Interior Gateway
Protocol) routing protocol (e.g., OSPF or ISIS) is used in the
SR domain, these instructions are called IGP-prefix segment
and IGP-node segment (or simply prefix segment and node
segment). All nodes in the SR domain can execute the prefix
segment or node segment instructions by considering the path
toward the destination network or destination node in their
routing table.

The most important example of local segment is the instruc-
tion to forward a packet to a node identified as adjacent by the
IGP routing protocol. This corresponds to sending the packet
on a specific outgoing interface and can be executed only
by a specific node. This instruction is called IGP-Adjacency
Segment. Thanks to the use of IGP-Adjacency segments, it is
possible to prove that any path across an SR domain can be
expressed by an SR Policy (which can include a combination
of global and local segments) [15]. Local segments can also
be used to represent service instructions to be executed in a
given node. The mapping of global and local segments into
Segment Identifiers (SIDs) and the distribution of the SIDs in
an SR domain are different for SR-MPLS and SRv6 and will
be discussed in the next subsections.

The IGP-Anycast Segment is an IGP-Prefix segment that
corresponds to an anycast prefix, i.e., a prefix advertised by a
set of routers that can be used for High Availability or Load
Balancing purposes.

The Binding Segment is used to associate an SR policy
(i.e., a Segment List) to a SID (called Binding SID or BSID)
in a given node. This means that the node that processes
the Binding SID replaces this segment with a Segment List:
a packet received with the BSID as active segment will be
steered according to the associated SR policy. In this way,
the packet classification can be executed by a node X that
adds the Binding SID in the SR Header. The node X does not
need to know the details of the SR policy to be applied (i.e.,
the Segment List). Thanks to the BSID, the packet will be
forwarded to a node Y, which is able to apply the SR Policy.

As an example, the node X can classify traffic for a given
destination network N that requires “low latency” and traffic
for the same destination network N that requires “low loss”.
Node Y is an ingress node of a backbone that provides connec-
tivity toward the network N. Two SR policies (“low latency”
and “low loss”) are used to forward traffic toward the network
N across the backbone. The respective lists of segments can

TABLE I
MAPPING SR CONCEPTS INTO SR-MPLS AND SRV6

change over time, based on Traffic Engineering considerations.
Upon these changes, the node Y is re-configured to apply the
current SR Policy to the packets identified by the Binding SID.
Node X does not need to be reconfigured, as the Binding SIDs
remain constant over time. This approach improves the scal-
ability, resilience and service independence of the solutions
based on Segment Routing.

Table I summarizes the mapping of the SR concepts into
the two data planes (MPLS and IPv6) and will be discussed
in the next two subsections.

It is interesting to note how some requirements that led
to the definition of the SR solutions are currently fulfilled
by “Over the top” (OTT) providers to deliver services with a
lower degree of flexibility, using tunneling technologies such
as GRE (Generic Routing Encapsulation) [16] and VXLAN
(Virtual eXtensible LAN) [17]. These technologies allow to
encapsulate traffic and forward packets toward remote nodes
according to an overlay logical topology. Unfortunately, they
come with a penalty, for example a protocol like VXLAN
needs an L3 underlay to transport traffic and loses full L3 for-
warding capabilities such as ECMP forwarding [18]. They are
not really forms of source routing and do not allow the user to
define way-points to which traffic can be directed. To further
elaborate, in [18] it is reported an interesting use case where
multi-tenancy in a datacenter fabric has been implemented
using SRv6 as overlay/underlay instead of the commonly used
technologies such as VXLAN with a drastic simplification of
the architecture.

As of Service Function Chaining (SFC) scenarios, the
Network Service Header (NSH) [19] is a solution that works
on top of the tunneling technologies. Therefore, NSH can
be used in conjunction with Segment Routing, when SR is
used only as a tunneling mechanism (enhanced with Traffic
Engineering features). On the other hand, NSH can be seen
as an alternative to Segment Routing for implementing the
Service Function Chaining functionality. In this respect, the
works in [20] and [21] elaborate on Service Function Chaining
scenarios where SRv6 would allow for a full replacement of
the NSH layer, leading to a simplification of the infrastructure
and a reduction in the burden on the devices.

A. MPLS Data Plane (SR-MPLS)

The MPLS data plane (SR-MPLS) is specified in [1]. For
SR-MPLS, Segment Routing does not require any change to

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

186 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

the MPLS forwarding plane. An SR Policy is instantiated
through the MPLS Label Stack: the Segment IDs (SIDs) of
a Segment List are inserted as MPLS Labels. The classi-
cal forwarding functions available for MPLS networks allow
implementing the SR operations. The PUSH operation cor-
responds to the Label Push function, i.e., pushing an MPLS
label on a packet. The NEXT operation corresponds to the
Label Pop function, i.e., removing the topmost label. The
CONTINUE operation corresponds to the Label Swap func-
tion, i.e., associating an incoming label with an outgoing
interface and outgoing label and forwarding the packet on
the outgoing interface. The encapsulation of an IP packet
into an SR-MPLS packet is performed at the edge of an
SR-MPLS domain, reusing the MPLS Forwarding Equivalent
Class (FEC) concept. A Forwarding Equivalent Class (FEC)
can be associated with an SR Policy.

The mapping of Segments to MPLS Labels (SIDs) is
a critical process in the SR-MPLS data plane. In general
cases, different routers in the SR domain could have differ-
ent available ranges of labels to be used for Segment Routing.
Therefore, each router can advertise its own available label
space to be used for Global Segments called SRGB - Segment
Routing Global Block (in general, this label space can even be
composed of a set of non-contiguous blocks). For this reason,
in the SR domain Global Segments are identified by an index,
which has to be re-mapped into a label, taking into account the
node that will process the label. This methodology has been
also covered by the patent [22] and defines the following.

Assuming that the SRGB of a node is a label range starting
from 10000, for a Global Segment with index X, the node
needs to receive the label 10000+X. As an example, in Fig. 3 A
we consider how to implement the SR policy described in
Fig. 2 using the SR-MPLS data plane. We assume that different
nodes are using different SRGBs. The SRGBs of the nodes
and the segment index associated to the segments S1, S2 and
S3 are shown in the gray rectangle. The headend node needs
to consider in advance which is the SRGB of the nodes that
will perform the NEXT operation to the segments, because the
label for the next segments needs to be crafted accordingly. In
particular, the initial label for segment S2 set by the headend
node will be 1002, i.e., the SRGB of node S1 (1000) plus the
index for segment S2 (2). Node S1 will have to modify the
label to 4002 if the packet is forwarded to node N4 (whose
SRGB is 4000) or to label 6002 if the packet is forwarded to
node N6 (whose SRGB is 6000). Both nodes N4 and N6 will
remap (swap) the label to 2002 when forwarding the packets
to S2. The initial label for node S3 set by the headend node
is 2003, i.e., the SRGB of node S2 (2000) plus the index for
segment S3 (3). This label will reach node S2 unmodified,
then it will be properly processed by node S2 that will remap
(swap) it considering the SRGB of the next hop in the path
toward node S3.

This remapping process complicates operations and trou-
bleshooting. There are also services (e.g., involving anycast
segments) that cannot be realized if different SRGBs are used
by different nodes. For this reason, it is strongly recommended
in [10] that an identical range of labels (SRGB) is used in all
routers, so that a Global Segment will always be mapped to the

Fig. 3. SR-MPLS data plane: mapping segments to labels using the SRGB.

Fig. 4. Segment Routing Header.

same SID (MPLS label) in all nodes. In Fig. 3 B we present
the mapping of the same SR policy under the suggested oper-
ating mode in which an identical SRGB is used in all nodes.
We observe that the MPLS labels do not need to be remapped,
so that the same label consistently identifies the same global
segment throughout the SR domain.

B. IPv6 Data Plane (SRv6)

For the IPv6 data plane (SRv6), a new type of IPv6 Routing
Extension Header, called Segment Routing Header (SRH) has
been defined in [2]. The format of the SRH is shown in Fig. 4.
The SRH contains the Segment List (SR Policy) as an ordered
list of IPv6 addresses: each address in the list is a SID. A ded-
icated field, referred to as Segments Left, is used to maintain
the pointer to the active SID of the Segment List.

In order to explain the SRv6 data plane, we consider three
categories of nodes: Source SR nodes, Transit nodes and SR

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 187

Fig. 5. SRv6 data plane operations.

Segment Endpoint nodes. A Source SR node corresponds to
the headend node discussed above. It can be a host originating
an IPv6 packet, or an SR domain ingress router encapsulat-
ing a received packet. In Fig. 5 we consider the latter case,
the Source SR node is an edge router that encapsulates a
packet (which can be IPv6, IPv4 or even a Layer 2 frame)
into an outer IPv6 packet and inserts the SR Header (SRH)
as a Routing Extension Header in the outer IPv6 header. The
encapsulated packet is indicated as Payload in Fig. 5. The
Segment List in the SRH is composed of S1, S2 and S3 which
are stored in reverse order (the fist SID is S3, the last seg-
ment in the SR policy). The Segment Left field is set to 2, so
that the active segment is S1, represented in red in the figure.
The Source SR node sets the first SID of the SR Policy (S1)
as IPv6 Destination Address of the packet. These operations
correspond to a sequence of the PUSH operations described
above.

The SR Segment Endpoint node receives packets whose
IPv6 destination address is locally configured as a segment.
The SR Segment Endpoint node inspects the SR header: it
detects the new active segment, i.e., the next segment in the
Segment List, modifies the IPv6 destination address of the
outer IPv6 header and forwards the packet on the basis of
the IPv6 forwarding table. These operations correspond to the
NEXT operation described above. In Fig. 5, we can see that
S1 is the first SR Endpoint node, it decrements the Segment
Left fields to 1, making S2 the active segment, and sets S2 as
IPv6 destination address.

A Transit node forwards the packet containing the SR
header as a normal IPv6 packet, i.e., on the basis of the (outer)
IPv6 destination address, because the IPv6 destination address
does not locally match with a segment. These operations cor-
respond to the CONTINUE operation. In Fig. 5, nodes N4,
N5, N6 and N7 are Transit nodes, which perform a regular
forwarding of the packet toward the IPv6 destination address.
Note that in SRv6 the Transit nodes do not need to be SRv6
aware, as every IPv6 router can act as an SRv6 Transit node.

In the given example, the PUSH operation is performed by
encapsulating a packet (IPv6, IPv4 or Layer 2 frame) into an
outer IPv6 packet with a Segment Routing Header. Another
possibility is to perform the insertion of an SRH as a new
header between the IPv6 header and the Next Header (e.g., the

Trasport Layer Header, TCP or UDP), without encapsulating
the packet in a new IPv6 packet. This option only applies to
IPv6 packets and it is especially suited in case the source host
is acting as Source SR node (Headend node).

In addition to the basic operations (PUSH/ NEXT/
CONTINUE), the SRv6 Network Programming model [3]
describes a set of functions that can be associated to segments
and executed in a given SRv6 node. Examples of such func-
tions are: different types of packet encapsulation (e.g., IPv6 in
IPv6, IPv4 in IPv6, Ethernet in IPv6), corresponding decap-
sulation, lookup operation on a specific routing table (e.g., to
support VPNs). The list of functions described in [3] (dis-
cussed in Section II-C) is not meant to be exhaustive, as any
function can be associated to a segment identifier in a node.
Obviously, the definition of a standardized set of segment rout-
ing functions facilitates the deployment of SR domains with
interoperable equipment from multiple vendors.

According to [3], we can revisit the notion of Segment
IDentifier (SID) taking into account that IPv6 addresses are
used as SIDs in SRv6. A 128 bit SID can be logically split into
three fields and interpreted as LOCATOR:FUNCTION:ARGS
(in short LOC:FUNCT:ARG) where LOC includes the L most
significant bits, FUNCT the following F bits and ARG the
remaining A bits, where 128 = L + F + A.

The LOC corresponds to an IPv6 prefix (for example with a
length of 48, 56 or 64 bits) that can be distributed by the rout-
ing protocols and provides the reachability of a node that hosts
a number of functions. The length L of the locator is not fixed
and can be chosen by each operator for its own SR domain
(also independently for different nodes). All the different func-
tions residing in a node can share the same locator and have
a different FUNCT code, so that their SIDs will be different.
From the routing point of view, the solution is very scalable,
as a single prefix is distributed for a node, which implements
a potentially large number of functions, with limited impact
on the routing tables of the nodes in the SR domain. The
ARG bits can be used to provide information (arguments) to a
function. They are optional: if A = 0, the SID can be simply
decomposed in two fields as LOC:FUNCT, and 128 = L + F.

A SID, that splits into LOC:FUNCT:ARG, is a global seg-
ment if the LOC prefix is routable in the SRv6 domain, which
is the typical case. It is also possible to define local segments
in SRv6, i.e., non routable SIDs that can be executed by a
node and need to be preceded by a global SID used to for-
ward the packet to the node. In any case, the use of such local
SIDs can be avoided as the FUNCT part of a global SID in
the form LOC:FUNCT:ARG can represent the needed local
function.

C. SRv6 Network Programming Model

The SRv6 Network Programming model is defined in [3].
It consists of combining functions that can reside in dif-
ferent nodes to achieve a networking objective that goes
beyond mere packet routing. The functions described in [3]
can support valuable services and features such as layer 3
and layer 2 VPNs, traffic engineering and fast rerouting.
The Network Programming model offers the possibility to
implement virtually any service by combining the basic

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

188 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

functions in a network program that is embedded in the packet
header.

As shown in Fig. 4, the SRH can include an optional sec-
tion that carries Type Length Value (TLV) objects. These TLV
objects can be defined to transport information that needs to be
elaborated by one or more segments of an SR policy (Segment
List). For example, the so-called HMAC TLV can be added
and used to verify that an SRH header has been created by an
authorized node and that the segment list is not modified in
transit. Another potential use of TLV objects is for exchang-
ing Operation and Maintenance (OAM) information among
the nodes of the SR domain.

The draft [3] defines two different sets of SRv6 behaviors,
known as SR policy headend and endpoint behaviors. With ref-
erence to Fig. 5, SR policy headend behaviors are executed in
the SR source nodes, while endpoint behaviors in SR endpoint
nodes (e.g., S1, S2, S3). SR policy headend behaviors steer
received packets into the SRv6 policy, matching the packet
attributes. Each SRv6 policy has a list of SIDs to be attached
to the matched packets. Note that in an earlier version of [3],
the SR policy headend behaviors were referred to as transit
behaviors, which was misleading because the same attribute
(transit) was applied to the SR source nodes and to the transit
nodes not fulfilling any operation. On the other hand, an SRv6
endpoint behavior, also known as behavior associated with a
SID, represents a function to be executed on packets at a spe-
cific location in the network. Such function can be a simple
routing instruction, but also any advanced network function
(e.g., firewall, NAT).

Table II reports a non-exhaustive list of SRv6 behav-
iors, listing the documents that provide their description.
The H.Encaps behavior encapsulates an IPv6 packet, which
becomes the inner packet of an IPv6-in-IPv6 packet. The outer
IPv6 header carries the SRH header, which includes the SIDs
list. The H.Encaps.L2 behavior is the same as the H.Encaps
behavior, with the difference that H.Encaps.L2 encapsulates
the full received layer-2 frame rather than the IP packet
(Ethernet over IPv6 encapsulation). The H.Insert behavior
inserts an SRH in the original IPv6 packet immediately after
the IPv6 header and before the transport level header. The orig-
inal IPv6 header is modified; specifically, the IPv6 destination
address is replaced with the IPv6 address of the first segment
in the segment list, while the original IPv6 destination address
is carried in the SRH header as the last SID of the SIDs list.

The End behavior represents the most basic SRv6 function
among the endpoint behaviors. It replaces the IPv6 destina-
tion address of the packet with the next SID in the SIDs list.
It then forwards the packet by performing a lookup of the
updated IPv6 destination address in the routing table of the
node. We will refer to the lookup in the routing table as FIB
lookup, where FIB stands for Forwarding Information Base.
The End.T behavior is a variant of the End behavior, in which
the FIB lookup is performed in a specific IPv6 table associated
with the SID rather than in the main routing table. The End.X
behavior is another variant of the End behavior, in which the
packet is directly forwarded to a specified layer-3 adjacency
bound to the SID, without performing a FIB lookup of the
IPv6 destination address.

TABLE II
(NON-EXHAUSTIVE) LIST OF SRV6 BEHAVIORS

The End.DT6 behavior pops out the SRv6 encapsulation and
performs a FIB lookup of the IPv6 destination address of the
exposed inner packet in a specific IPv6 table associated with
the SID. It is possible to associate the default IPv6 routing
table with the SID, in this case the inner IPv6 packets will be
decapsulated and then forwarded on the basis of its IPv6 des-
tination address according to the default routing of the node.
The End.DX6 behavior removes the SRv6 encapsulation from
the packet and forwards the resulting IPv6 packet to a spe-
cific layer-3 adjacency associated to the SID. End.DT4 and
End.DX4 are respectively the IPv4 variant of End.DT6 and
End.DX6, i.e., they are used when the encapsulated packet is
an IPv4 packet. The End.DX2 behavior is used for packets
encapsulated at Layer 2 (e.g., with H.Encaps.L2). It pops out
the SRv6 encapsulation and forwards the resulting L2 frame
via an output interface associated to the SID.

D. Control Plane for SR and Relation With SDN

Control Plane operations are needed to complement the
data plane functionality and provide a complete solution for
Segment Routing. The Control Plane can be based on a fully
distributed approach, in which the routers have the capability
to take independent decisions to setup and enforce SR Policies.
It can rely on a centralized SR controller that takes a decision
and instructs the routers according to SDN principles, or on a
combination of the two approaches (hybrid solution).

For the SR-MPLS data plane, the definition of a fully
distributed approach has been worked out within the IETF,
with the definition of extensions to the IGP routing proto-
cols (OSPF, ISIS, see [25], [26], [27]). These extensions to
the routing protocols are used by each router to advertise the
different types of IGP-segments (prefix, node, adjacency, any-
cast) and to distribute some SR configuration data. All other
routers in the SR domain will receive this information by
means of the IGP routing protocol. This information is needed
to map the segments included in an SR policy into SIDs rep-
resented as MPLS labels in the SR-MPLS data plane. As we
have discussed in Section II-A, in the general case each router

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 189

could allocate different ranges of labels to be used for Global
Segments. The range of labels used for the global segments
by a router, called SRGB - Segment Routing Global Block is
among the SR configuration information advertised using the
routing protocol. We recall that it is strongly recommended to
use an identical range of labels (SRGB) in all routers.

For the IPv6 data plane, the process of advertising the
IGP-prefix, IGP-node and IGP-anycast segments is simplified
thanks to the use of IPv6 addresses as SIDs. In particular,
there is no need to extend the IGP routing protocols to dis-
tribute these segment types, as they are natively distributed
by the routing protocols. Also the definition of a Segment
Routing Global Block as in the SR-MPLS is not needed, and
the operations related to Global Segments can rely on IPv6
addresses that are globally routable in the SR domain. This
means that the Control Plane for SRv6 can use the regu-
lar IGP routing protocols (OSPF, ISIS) to support the basic
operations, while extensions are still needed ([28], [29]) to
distribute IGP-Adjacency segments and other SR configuration
information.

The definition of the control plane for Segment Routing has
started from the SR-MPLS data plane and then the SRv6 data
plane has inherited most of the functionality, which has been
adapted to the new data plane. We observe that an original
design goal of the control plane for Segment Routing has been
to support the fully distributed approach, in which routers are
capable of taking autonomous decisions. This allows the same
functionality of a traditional MPLS network to be offered,
which does not need a centralized SDN controller for its
operations. On the other hand, we observe now a trend to
focus on an hybrid approach in which distributed routing pro-
tocols coexist with an SR controller. This hybrid approach
is aligned with the vision of Software Defined Networking,
which aims to remove complexity from the devices and to
centralize control plane function in SDN controllers.

In light of this, the Segment Routing architecture can be
deployed by seeking the right balance between distributed
and centralized control. The distributed control is used by the
routers to exchange reachability information and evaluate the
shortest paths in a traditional way; with no need to interact
with the centralized controller. We observe that this is the best
approach to provide connectivity in Wide Area Networks in
which the control connections between the nodes and the SDN
controllers are affected by non-negligible latency and failure
probability. Segment Routing can be still used for Fast Reroute
by pre-configuring SR policies that provide alternate paths
in case of link or node failures, and these are automatically
activated by the node when the failure happens.

The pre-calculation of such SR policies can be performed
in a distributed mode or can be centralized in a controller;
these concepts have also been explored in [30], which patents
a method for the orchestration of SR based WANs. Basic
topology information and additional information for Traffic
Engineering need be conveyed to the controller, as well as
service related information that is advertised by nodes using
distributed routing protocols. The SDN controller can receive
this information in different ways. For example, it can partici-
pate to the IGP routing protocol or it can interact with routers

in a proprietary way to extract their IGP databases. Otherwise,
it can receive information by routers using extensions to BGP-
LS (BGP-Link State) [31]. Whatever mechanism has been
used to retrieve the needed information from the nodes, the
SDN controller is in charge of taking decisions about the SR
policies that implement advanced features or services such
as Traffic Engineering, VPNs or Service Function Chaining.
This approach allows the clear decoupling of the data plane
operations from the service logic operating in the control
plane.

The mechanisms and protocols for the SDN controller to
enforce the SR policies by configuring the nodes are left
open in the definition of SR architecture. As mentioned
in [10], some options are Network Configuration Protocol
(NETCONF), Path Computation Element Communication
Protocol (PCEP) [32], and BGP. The OpenFlow protocol can
be used as a mechanism to configure the SR policies only
for SR-MPLS, while the processing of the SRv6 header is
not supported by the latest standard version of the protocol.
An Open Source implementation of a SouthBound API for
SRv6 based on gRPC is reported in [4]. The main character-
istic of the Segment Routing solution compared to other SDN
solutions is that only the edge nodes need to be configured to
enforce a given SR policy, while the internal nodes do not need
to keep state per SR policy. This feature gives a substantial
improvement in terms of scalability.

E. Segment Routing Motivations and Use Cases

As anticipated in the introduction section, the RFC 5439 [6]
has identified some scalability issues of traditional MPLS
networks with Traffic Engineering support. These issues gave
rise to an interest in defining a more scalable solution such
as Segment Routing back in the late ‘00s. Several use cases
and requirements for Segment Routing have been collected in
a number of documents.

In [7], the main use cases identified are: MPLS tunnel-
ing (i.e., to support VPN services), Fast ReRoute (FRR) and
Traffic Engineering (further classified in a number of more
specific use cases). A set of Resiliency use cases is described
in [8]. In [9], the Segment Routing use cases for IPv6 networks
are considered with a set of exemplary deployment environ-
ments for SRv6: Small Office, Access Network, Data Center,
Content Delivery Networks and Core Networks.

III. STANDARDIZATION ACTIVITIES AND PATENTS

In this section we propose a classification and description
of the standardization activity related to Segment Routing and
the analysis of the most relevant patents. We have classi-
fied 14 Request For Comment (RFC) and 50 Internet Drafts.
Our taxonomy is based on 7 categories and the result of the
classification is shown in Table III.

Hereafter we discuss the categories of the classification and
then in the next subsection we report an overview of the key
standardization activities. The first category is Architecture,
where all the documents regarding the description of the gen-
eral architecture of a Segment Routing network are considered.
The RFC 8402 [10] falls into this category and describes the

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

190 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

TABLE III
CLASSIFICATION OF THE STANDARDIZATION ACTIVITIES DOCUMENTS

main features of SR, such as the source routing paradigm idea,
the concept of SID and the definition of the two supported data
planes. In the category Use-case and Requirements the doc-
uments describing use case scenarios for SR, e.g., use of SR
in WANs, data center networks, mobility and network slic-
ing, are inserted. Specifically, in this category there are three
RFCs: i) RFC 7855 [7] introducing the Source Packet Routing
in Networking (SPRING), ii) RFC 8355 [8] related to network
resiliency using SR, and iii) RFC 8354 [9] that describes how
to steer IPv6 or MPLS packets over the SPRING architecture.

The third category is FRR one, i.e., Fast Reroute real-
ized through SR. The main standardization activity in this
category is related to fast recovery after a link failure, and
is referred to as Topology Independent Loop Free Alternate
(TI-LFA), described in [45]. No RFC has been published in
this category. Operations, Administration, and Maintenance
(OAM) is the fourth defined category, where we include
all the standardization activities related to tools used for
maintenance of the network. As example, RFC 8287 [48]
focuses on the implementation of the ping and traceroute
tools in SR-MPLS, while in [49] the same is done for SRv6.
In the Performance Measurement category we consider all
the documents describing measurement procedures related to
performance parameters, such as delay and packet loss, in an
SR network. We include in this category also the two specifi-
cations RFC 6374 [55] and RFC 7876 [56] that explain how
to measure delay and packet loss in MPLS. Despite these two
documents have not been produced during the standardization
activities of SR, we decided to include them in Table III since
they are massively used in the drafts for performance moni-
toring regarding SR. Finally, the Protocol Extensions category
covers two different set of documents related to extensions
of legacy protocols: i) data plane protocols extensions, and
ii) control plane protocols extensions. As for the data plane,
we include RFC 8660 describing SR-MPLS [1] and RFC 8754
describing SRv6 [2]. As for the control plane, we the consider
the documents on modifications to routing protocol (e.g., BGP
and OSPF) for the dynamic distribution of the SIDs in the SR
network, or control protocol for the communication between
a central controller (in case of centralized control plane) and
the devices at the data plane (e.g., PCEP).

As regards the patents, we have reported 18 docu-
ments. Our analysis has covered different type of doc-
uments including use case driven patents. Section III-B
elaborates on the surveyed documents. Among these, there
are 4 patents covering the founding principles of Segment
Routing: [84], [85], [86], and [87]. Another group of
patents are related to the extensions of the routing pro-
tocols that are needed to transport SR related config-
urations [31], [88], and [89]. Then, there is a large
group of documents covering specific mechanisms and use
cases: [22], [30], [90], [91], [92], [93], [94], and [95]. Finally,
during our research we have found a number of recent doc-
uments like [96], [97], and [98] that show the centrality of
Segment Routing also in the deployment of future networks.

A. Key Standardization Efforts

In this subsection, we provide an overview of the most
important standardization efforts, by considering 9 doc-
uments among the almost 70 listed in Table III. The
works [10] and [33] define key tenets of the SR architecture
and discuss the benefits brought by SR in terms of scalabil-
ity, privacy and security. The support of key use cases like
NFV/SFC, SD-WAN and next generation of mobile networks
are evaluated in [23], [40], and [24]. Extension of basic SR
concepts [3] and SR-based Fast Re-route (FRR) mechanisms
against single failures [45] are also proposed. Finally, the
improvements of the routing stability and extensions to the
routing protocols are analyzed in [46] and [75].

The Segment Routing architecture and its overall design is
described in [10]. It defines the concept of a segment as a
network instruction and presents the basic types of segments:
prefix-SID, adjacency-SID, peering-SID and binding-SID. It
also explains how such segments can be attached to data pack-
ets, leveraging the MPLS or IPv6 data planes, in order to steer
traffic flows on any path in the network without requiring any
per-flow state in the fabric.

The concept of an SR policy is detailed in [33]. It explains
how Candidate Paths are defined as explicit SID-lists or as
dynamically computed paths based on some optimization cri-
teria, and how the active Candidate Path is selected. Moreover,
it presents various ways of steering traffic into an SR Policy,
automatically by coloring BGP service routes, remotely using
a Binding-SID, or statically with route policies. The concepts
described in this draft equally apply to the MPLS and SRv6
data planes.

The SR architecture is extended from the simple steering
of packets across nodes to a general network programming
approach in [3]. Using this framework, it is possible to encode
arbitrary instructions and not only locations in a SID-list. Each
SID is associated with a function to be executed at a specific
location in the network. A set of basic functions are defined
in [3], but other functions can be defined by network operators
to fit their particular needs. Moreover, SID arguments allow
functions to be provided additional context or their behavior
to be tweaked on a per-flow basis.

Reference [23] defines the service SIDs and describes how
to implement service programming (i.e., Service Function

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 191

Chaining) in SR-MPLS and SRv6 enabled networks. The key
tenet is to associate a SID to each network function (either
physical or virtual). These service SIDs may be combined
together in a SID-list and finely programmed by leveraging
the network programming concept. They can also be com-
bined with other types of SIDs to provide traffic engineering
or VPN services. Service segments can be associated to legacy
appliances (SR-unaware VNFs, i.e., VNFs with no SRv6 capa-
bilities), thanks to the SR proxy mechanisms which perform
the SR processing and hide the SR information from the VNF.
The three endpoint behaviors that has been defined in [23] for
supporting Service Function Chaining are: End.AD, End.AS
and End.AM. The first two implement respectively a static
and a dynamic SRv6 proxy for SR-unaware Virtual Network
Function (VNF). They support IPv6 SR packets in H.Encaps
mode. The SRv6 proxy intercepts SR packets before being
handed to the SR-unaware VNF, hence it can remove the SR
encapsulation from packets. For packets coming back from the
SR-unaware VNF, the SR proxy can restore the SRv6 encap-
sulation updating the SRH properly. The difference between
the static and the dynamic proxies is that the SR information
that needs to be pushed back in the packets is statically con-
figured in the first case and it is learned from the incoming
packets in the dynamic case. Instead, End.AM implements the
masquerading proxy that supports SR packets travelling in
H.Insert mode.

Enabling underlay Service Level Agreements (SLA) for a
VPN in a scalable and secure way using SR, while ensur-
ing service opacity, is explained in [40]. SR based VPNs are
analyzed considering the case of a single provider and of
multiple providers. Moreover, the draft addresses the control
plane aspects of such solution, which are managed by an over
the top SD-WAN controller. Finally, the benefits brought by
the SR technology to VPN services are analyzed in term of
scalability, privacy, billing management and security.

The applicability of SRv6 to the user plane of mobile
networks is described in [24]. Three modes are addressed:
traditional mode, enhanced mode and enhanced mode with
interworking. In the traditional mode, the mobile user plane is
unchanged except for the use of SRv6 as transport instead
of GTP-U [99]. Enhanced mode uses only SRv6 and its
programming framework. Finally, the enhanced mode with
interworking uses SRv6 but provides also interworking func-
tionality with legacy components still using GTP. The docu-
ment describes a mechanism for end-to-end network slicing
and defines the SRv6 behaviors for the SRv6 mobile user
plane. Among these behaviors, the most important ones define
the functions for the coexistence of GTP-U [99] and SRv6.
In particular, T.M.Tmap translates a GTP-U over IPv4 packet
to a SRv6 packet. Its counterpart is End.M.GTP4.E, which
maps an SRv6 packet to a GTP-U over IPv4 packet. Finally,
End.M.GTP6.D and End.M.GTP6.E define respectively the
translation of GTP-U over IPv6 packet to a SRv6 packet and
SRv6 packet to a GTP-U over IPv6 packet.

Topology Independent Loop-free Alternate (TI-LFA) [45]
provides Fast Re-Route (FRR) mechanisms protecting against
link, node or local Shared Risk Link Groups (SRLGs) failures
in SR enabled networks. For each destination in the network,

a backup path is pre-computed and installed in the forwarding
table, so that it is ready to be activated as soon as a failure
is detected. For each destination, the backup path matches
the post-convergence path, which is followed by the traffic
after the network convergence. The draft analyzes also the
benefits of using Segment Routing with respect to traditional
FRR solutions.

A mechanism leveraging SR to prevent transient routing
inconsistencies during the convergence period that follows a
network topology modification, is described in [46]. Instead
of directly converging to a new next-hop after a topology
modification, a node can temporarily steer the impacted traffic
through a set of loop-free SR Policies, thus preventing it from
being affected by routing inconsistencies. After the network
has fully converged, the temporary SR Policies are removed
with no impact on the traffic.

A set of extensions to the IGP routing protocols that enable
Prefix-SIDs to be associated with operator-defined shortest
path algorithms, called SR Flexible Algorithms (Flex-Algo),
are introduced in [75]. These algorithms are defined as an
optimization metric (IGP, TE or delay) and a set of con-
straints (e.g., resources to be excluded from the path). Each
node participating in a Flex-Algo computes the shortest paths
to the Prefix-SIDs of that Flex-Algo and installs them in it
forwarding table. SR Flexible Algorithms allow traffic to be
steered along traffic-engineered paths such as low-latency or
dual-plane disjoint path with a single Prefix-SID.

B. Relevant Patents

In this section we reviewed 18 among almost 1000 patents
that can be found in patent search engines. It is interesting to
note that SR is the central technology of the patent only in
around 200 of the 1000 patents. For most of the patents there
is a corresponding standardization activity (e.g., an Internet
draft or an RFC) promoted by the same vendor that produced
the patent.

We will start by analyzing [84], [85], [86], and [87] which
cover key tenets of the SR architecture.

Despite the fact that the name refers to MPLS and SR, a
primitive architecture for Segment Routing is patent in [86].
It has likely been one of the first patents related to Segment
Routing and basically describes a mechanism to map egress
ports of the routers to labels, to advertise these data with a
link state protocol and to forward data packets in the network
with this information attached.

The patent in [84] is related to RFC8402 [10], and it
includes the definition of a SID list and explains how a node
can build such a stack of labels; it shows the forwarding behav-
ior of the SR nodes and makes a clear distinction between the
operations of an IP router, Label/MPLS router and SR router.
Moreover, the patent covers the different types of SIDs, and
for each them a definition is provided. Finally, different use
cases for SR are illustrated.

Another fundamental document [85], which shares a lot of
concepts with [2], patents the usage of an IPv6 extension
header for native implementation of Segment Routing in IP
networks. The document also describes the SRv6 Extension

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

192 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

Header along with the operations performed by the nodes to
update the extension header and IPv6 header upon the recep-
tion of a packet. Instead, the applicability of Segment Routing
in a scenario where a computer network has been partitioned
in multiple sub-networks is described in [87].

The second group of documents mainly describe extensions
to the routing protocols. For example, extensions for BGP-LS
to signal SIDs within an IGP domain are described in [31].
A method for the creation and maintenance of SR policies
through BGP protocol is proposed in [88]. The method relies
on receiving BGP update messages with additional metadata
referring to an SR policy. Several scenarios regarding the
advertisement of adjacency segment identifiers are covered
in [89]. The method applies both to point-to-point links and
LAN segments.

The vast majority of patents elaborate on the support
of key use cases such as TE, SD-WAN, network monitor-
ing, NFV/SDN, SFC and so on. Different methods and an
architecture for the monitoring of network paths which lever-
age SR technology are described in [90]. According to the
patent, nodes can assemble a SID list with the aim of test-
ing/monitoring a specific network path. It is possible find a
lot of similarities with the works of Section IV-A.

The use of SR in a Label Distribution Protocol (LDP)
domain and the coexistence of MPLS nodes with nodes that
are SR enabled is faced in [91]. The patent also includes the
definition of hybrid nodes that are capable of operating both
as LDP enabled nodes and SR aware routers.

Three patents are related to fast reroute mechanisms and
loop avoidance. In [92], a method to detect and avoid loops
into SR traffic engineered paths is described. It is based on
the idea of defining for each tunnel a second path, which is
exploited when the traffic is received from a node internal
to the network. Instead, various methods for loop avoidance
upon network failures are defined in [93]. Finally, FRR mech-
anisms for Segment Routing based networks are described
in [94].

A method for the orchestration of connectivity services in an
SR-enabled WAN is described in [30]. The controller is con-
sidered outside the network. It is able to monitor the current
state of the WAN and leverages a solver to perform traffic engi-
neering. Decisions taken by the solver are enforced using SR
technology. A method for the assignment of the SIDs, based
on assigning a global index value to each node and transmit-
ting a base value to calculate the final segment identifiers, is
proposed in [22]. The patent in [95] describes an algorithm
to “translate” an explicit path into a set of SIDs (like the
works in Section IV-E). The main idea of the proposed algo-
rithm is to compute, starting from the source node, the shortest
path towards the farthest node without ambiguity, i.e., with no
multiple equal cost paths: a SID of the resulting Segment List
is associated to each farthest node.

An analysis of the most recent patents highlights that
SR represents a key technology also for the deployment of
future networks in many different scenarios: i) in [96], the
implementation of a network slicing mechanism exploiting an
SR-flexible algorithm is proposed; ii) in [97], a mechanism
to report mobile node location information in 5G networks

TABLE IV
CLASSIFICATION #1 BASED ON RESEARCH CATEGORIES

using SR is proposed; iii) in [98], the flexibility of path encod-
ing provided by SR is exploited to define a Virtual Machine
migration procedure with zero loss [100].

IV. RESEARCH ACTIVITIES

In this section, we describe research activities related to SR,
and we provide two different classifications to characterize
research papers on the basis of their main scope. We also
show how to extract useful information regarding ongoing SR
research activity from analyzing the relationship between the
two classifications proposed.

The first classification proposed is based on the identi-
fication of seven main Research Categories, as reported in
Table IV. The first one is the Monitoring category, collect-
ing all the works that describe and implement tools related
to network monitoring activities. Some examples include the
measurements of the end to end delay over a given input
route or the assessment of the volume of the traffic flows.
The second category is Traffic Engineering, where we include
all works proposing advanced routing strategies to optimize
network performances. The third category is Failure Recovery,
covering solutions to provide fast network recovery in the case
of a node/link failure. Due to the time scale constraints, the
works in this category are based on local mechanisms, i.e., not
involving the central controller. The fourth category defined is
Centrally Controlled Architectures, including all papers focus-
ing on the implementation of an SR network with a centralized
control plane realized on top of an underlay network (IP, SDN,
MPLS). Here we point out that, despite some works classified
as Traffic Engineering being based on a centrally controlled
architectures, they are not included in the Centrally Controlled
Architectures category. This is due to the fact that their main
scope remains to optimize a TE goal (such the reduction of
the congestion, or the minimization of energy consumption).
In the Path Encoding category, we group all the papers that
propose algorithms aiming to translate network paths into an
SL. Specifically, we take as input a path in the form of a
sequence of nodes and links that the generic path encoding
algorithm provides as output a sequence of SIDs to be pushed
in the packet header in order to steer the packet along the input
path. The sixth category is Network Programming, where we
inserted scientific works proposing solutions that exploit the
programmability feature of SR, i.e., using service based SIDs
to define the functions to be executed on packets crossing a
specific segment list. A significant example of works falling
into this category include works related to Service Function

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 193

Fig. 6. Number of references for each category of the defined taxonomy.

Chaining. Finally, we define a Miscellaneous category, where
we place all works not belonging to previous categories.

In Fig. 6 we can see an histogram showing the num-
ber of references falling into each of the defined categories.
Analyzing Fig. 6, it is evident that Traffic Engineering and
Centrally Controlled Architectures are the most investigated
subjects, while the other categories have been covered by
almost the same number of works. This behavior is quite
expected since the main feature of SR is to define routing paths
in a very flexible way and to make use of widely deployed data
planes. This phenomenon is really appealing for the definition
of new solution to TE problems and for the realization of over-
lay networks. On the contrary, the number of papers related
to Network Programming could indicate a low interest in such
a novel topic among the research community. We believe that
Network Programming represents a highly interesting research
topic for near future, and that the lower number of available
papers is only due to its early definition state.

In order to better investigate the research activity related to
SR, we propose a second classification based on the specific
SR topics considered in the research works. The new SR-
related classification is reported in Tab. V. The different SR
topics are also aggregated into three main groups:

• SR feature exploitation;
• SR functions optimization;
• SR extensions.
The SR feature exploitation group covers all works making

use of SR features to solve classic networking problems, such
as network resource optimization and performance improve-
ment. The first SR topic is routing flexibility, i.e., the possibil-
ity of steering a packet over a non trivial path (e.g., containing
ECMP, loops, etc.). The second feature is the source routing,
i.e., the capability of SR to instruct only the source node for the
configuration of a specific network path. The third SR feature
is programmability, i.e., the possibility to force a packet to go
through a function by using specific SIDs. All the remaining
SR features are included in the other topic. Here, we merged
the following topics together: i) the Adj-SIDs, used to force a
packet to be forwarded on a specific output port; ii) the ECMP,
i.e., the ability of SR to balance the traffic over multiple paths
provided by the IGP routing protocols; iii) the Type Length
Value (TLV) used to add optional data to the SR header; iv) the
Binding SID (BSID) that allows a user to define SR tunnels

Fig. 7. Graph showing the relation between the research categories and the
SR topics.

in a transit node; v) the SR traffic counters (Base Pcounters
and TM Pcounters), which collect traffic statistics based on the
active segment carried in the packet headers; and vi) the spray
policy, which allows the duplication of an incoming packet
over multiple output ports and using different SLs.

In the SR functions optimization group, there is a promi-
nence of research activities aimed at improving the inner
functions of an SR network. The first topic of the group is
the SR Steering Policy, i.e., the definition of policies to be
installed on network devices in order to attach the proper SL
to each incoming packet. The second topic is SL length, i.e.,
the number of SIDs of a segment list, that has an impact on
SR header insertion and processing.

The last group, i.e., SR extensions, is represented by a sin-
gle topic (new functions) and is related to new functionality
implemented in SR to support advanced services.

Tab. V reports the classification of the research works
according to the SR topics. Differently than Tab. IV, where
the same reference can appear only once, in Tab. V, it can be
classified under different categories. As a matter of example,
the Adj-SIDs SR feature is used in [159] in order to perform
SR functions optimization from the point of view of SL length.

Tab. V shows that the most used SR feature is the source
routing one, while there is still a limited amount of works
focusing on network programmability and on the definition of
new functions.

In order to obtain further insights into SR research activity,
we defined a way to show the relationship between classifica-
tions reported in Tab. IV and Tab. V, respectively. In Fig. 7
we can see a graph which is defined in the following way:
each node represents a research category (violet rectangles
at the center of the figure) or an SR topic (divided in red,
blue and green rectangles at the border of the figure), and an
edge among a category and an SR topic is present only if
both are present in the same work. Moreover, the thickness of
an edge depends on the number of papers covering the spe-
cific category/topic pair. The graph in Fig. 7 shows several
interesting outcomes: i) the works related to the Monitoring
category mainly exploit the routing flexibility and the source

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

194 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

TABLE V
CLASSIFICATION #2 BASED ON SR TOPICS

Fig. 8. Histogram showing the relation between the Classifications defined
in Tab. IV and Tab. V.

routing paradigm; ii) the same result is obtained for Traffic
Engineering works, but in this case SR steering policy and
SL length topics are also covered; iii) in order to provide
Failure Recovery solutions, new functions generally need to
be defined; iv) source routing is the most used SR feature
for Centrally Controlled Architecture solutions, since it allows
the reduction of communication between the central controller
and network devices; v) as expected, Path Encoding works
are mainly focused on the optimization of the SL length (it
is in any case interesting to note that the Adj-SID is the
main SR feature used to achieve this scope); vi) finally, works
falling into the Network Programming category always exploit
the programmability feature of SR, and, in some cases, new
functions need to be defined.

In Fig. 7, we report for each category/SR topic the number
of related references.

In the next subsections we briefly describe all research
works, considering the classification proposed in Tab. IV.

A. Monitoring

Eight research works proposing monitoring solutions able
to exploit SR have been defined, as shown in Table VI. These
works have been classified on the basis of their main aim:

• delay measurements, aiming to obtain the delay for links
and routers exploiting the possibility of modifying the SL
at source nodes, i.e., source routing SR feature;

• health checking of network devices, aiming to monitor the
network state exploiting the capability of SR in defining
ad-hoc routes, i.e., routing flexibility feature.

TABLE VI
CLASSIFICATION OF THE REFERENCES RELATED TO MONITORING

• traffic measurements, aiming to assess the traffic matrix of
a network exploiting routing flexibility and SR counters;

• traceroute, aiming to implement the well-known tracer-
oute utility in SR.

In the following paragraphs, we provide a brief overview of
the references classified as monitoring related works.

A novel monitoring system powered by Segment Routing
(SR), used for the provisioning of delay-aware network
services spanning multiple-domains, is proposed in [101].
Based on SR-MPLS principles, it enables delay measurements
over multiple candidate routes without requiring related LSP
signalling sessions. The authors consider two types of probes
using SR-MPLS. The first type is originated and terminated by
network stations, allowing the retrieval of round-trip measure-
ments only. They also have less accuracy. Moreover, they are
typically used for performance measurements over a single
link. Instead, the second type relies on external monitoring
components, which inject and receive timestamped probes
routed according to the enforced SR segment list. The sec-
ond type of measurement requires synchronization between
the end-points, but also allows for the measurement of uni-
directional delay, which is more useful when it is necessary
to deploy services in the network. Along with most of related
works, the project shares the objective of the reduction of con-
trol plane complexity through SR. However, from the paper is
not clear which implementation the authors used for SR, or if
they relied on any vendor solution.

The traffic steering capabilities of SR have been used in
SCMon [102], a new solution for continuous monitoring of
the data-plane. It allows the user to track the health of all
routers and links: i) forcing “monitoring probes to travel over
cycles”; and (ii) testing “parallel links and bundles at a per-link
granularity”. The key insight is that network nodes compute a
second network graph and calculate routes on this monitoring
topology, which spans all network links. Nodes then carefully
select ECMP paths and enforce packet forwarding through

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 195

cycles leveraging SR in order to detect/localize failures and
overloading of single/multiple links. A prototype implemen-
tation of SCMon has been evaluated on publicly available
topologies and emulated networks. In the first experiment, the
ratio of number of cycles over number of edges is evaluated to
analyze the percentage of the networks covered. The authors
then evaluate the time to detect black holes, showing that most
of them are detected within less than 100 msec. The work’s
results are very interesting and can be applied to real use cases.
However, an open-source implementation is not available at
the time of writing.

In [103], the authors focus on bandwidth-efficient moni-
toring schemes based on cycles. They propose four different
algorithms to compute cycles which are designed to tra-
verse/cover every link in the network. This optimization based
on cycles allows network resources to be saved and the
network to be monitored from a single point of advantage.
Segment Routing is used as transport technology to forward
the probes along the network. The paper builds upon the
results of [102]: the authors leverage the phase 1 of SCMon to
build the monitoring topology of the network, and then apply
their two-phase algorithms in order to minimize the cycle
cover length. Performance evaluation shows the effectiveness
of these algorithms in terms of cycle cover length, segment list
depth and improvements with respect to the baseline (SCMon).

Instead, three ILP formulations for the construction of
monitoring-cycles are described in [104], builds on [103]. A
first ILP formulation solves optimally the problem of cover-
ing every link in the network using monitoring-cycles with
minimum cycle cover length. To further conserve network
bandwidth, the first formulation is extended to jointly mini-
mize the total segment list size needed. Finally, since the time
required to detect a network failure is affected by the longest
cycle, the first formulation is also extended to minimize the
length of the longest cycle jointly.

The flexibility of SR is exploited in [105] to perform traffic
measurements and obtain the Traffic Matrix. A traffic measure-
ment is performed by rerouting a flow and checking the load
variations caused on the network links. Even though the idea
of measuring traffic through routing perturbations is not new,
SR turns out to be an enabling technology for the applicabil-
ity of such an approach. In fact, while in the past traffic flows
were rerouted by acting on the OSPF link weights, causing
routing instability and performance degradation, SR allows the
modification of a path by simply acting on the ingress node,
then reducing the impact of a rerouting. In [105], the problem
of assessing the TM while minimizing the routing perturba-
tions is formulated as an ILP and an heuristic algorithm called
SERPENT is presented. Due to the high computational com-
plexity of SERPENT, a lighter greedy heuristic called PaCoB
is proposed in [106].

An attractive feature of SR is the introduction of specific
interface counters that allow statistics on network traffic flows
to be obtained. If this feature is included in the hardware
design of the router, the update of the traffic counters can be
associated with the normal processing in the SR data plane,
thus having a negligible impact on the router performance.
The simplest type of SR counters, named Base Pcounters,

collect traffic statistics (byte/packets) passing through a router
and having a specific active segment. Enhanced SR counters,
named TM (Traffic Matrix) Pcounters, allow the user to dis-
tinguish between traffic that is internal to the SR domain and
flows that are injected into the SR domain. Specifically, a TM
Pcounter collects traffic statistics of traffic flows received by
an interface marked as external (this is a configuration option
for the network operator). Since TM Pcounters can discrim-
inate packets on the basis of the incoming interface, using
TM Pcounters provides a thinner granularity with respect to
using Base Pcounters and facilitates the estimation of the
Traffic Matrix. Starting from the availability of this new type
of traffic related information, in [107] the Traffic Matrix
Assessment problem has been extended to include SR counter-
measurements. The authors show that, depending on the
structure of the Segment Lists used in the network, the Traffic
Matrix can be assessed with no error.

In [108] the Linux kernel is extended to run eBPF programs
as in-network functions attached to the SRv6 SIDs; further
details about the implementation are provided in Section V.
The authors demonstrate the effectiveness of their approach
by building three different applications. The first one offers a
passive monitoring solution of network delays (direct links or
end-to-end paths) [53]. The high level idea is that a small
percentage of traffic is encapsulated with a special SRH
carrying on additional information like timestamps. These
timestamps are then used by the recipient nodes to calcu-
late one-way or round-trip delays. The second application
realizes a link aggregation group using SRv6. In particular,
a weight-round-robin scheduling is realized to aggregate the
bandwidth of two different links. Finally, an enhanced ver-
sion of traceroute has been realized, implementing a new
SRv6 behavior, the so-called End.OAMP. This behavior, when
triggered, performs a fib lookup in the node and return to
a destination address specified in the SRH all the ECMP
next hops. If possible, this function is leveraged at each
hop, otherwise the program reverts to the legacy ICMPv6
mechanism.

In the following paragraphs we provide a comparison of the
works classified in the Monitoring category.

Regarding the solutions related to delay measurements,
both ([101] and [108]) allow the one-way end to end delay
between two points in the network to be obtained. While the
former requires the use of an external monitoring tool to gener-
ate timestamped probes (the use of SR is limited to the creation
of the end to end path), the latter does not. In any case, the
solution proposed in [108] is suitable only for networks real-
ized by means of Linux based SRv6 routers, since it exploits
the definition of eBPF programs to perform the measurement.

There are two SR based monitoring tools for checking the
health status of the network links. The first is ([102], and the
second is a tool proposed in [103] and [104]). The approach
they follow is similar, i.e., the creation of cyclic paths through
SR where probe messages are sent. With respect to [102], the
tools in [103] and [104] optimize the use of the monitoring
resources needed to check the status of all the network ele-
ments. In any case, link bundles are not supported in [103]
and [104], differently than in [102].

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

196 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

TABLE VII
CLASSIFICATION OF THE REFERENCES RELATED

TO TRAFFIC ENGINEERING

Among the Traffic measurement tools based on SR, two
different approaches can be identified in [105], [106], [107].
The first approach [105], [106] aims at measuring traffic flows
by causing link load variation through re-routing operations.
The second approach [107] is based on the use of specific
traffic counters, available in SR enabled nodes. While both
approaches offer comparable performances in terms of the
quality of the assessed Traffic Matrix, the counter based solu-
tion does not affect the network performance. This is different
from the two re-routing based solutions.

B. Traffic Engineering

Due to its appealing features in terms of routing flexibil-
ity, SR is widely used to face Traffic Engineering related
problems. During our investigation, we have found twenty
two papers exploiting SR to provide advanced TE solutions.
TE research works all employ the classic structure of an
optimization problem: i) an objective function must be mini-
mized/maximized, ii) taking into account a set of parameters,
and iii) considering a specific network scenario. Three dif-
ferent TE objectives have been covered by the literature,
i.e., the minimization of network energy consumption, the
optimization of congestion and the minimization of the num-
ber of rejected requests. The high routing flexibility allowed
by SR might cause the presence of complex and long network
paths. For this reason, while optimizing routing according to
a specific objective, it is important to take into account the
impact that excessively complex routing solutions might have
on the network performance. As well as end to end delay,
some of the reviewed works also take into account SR related
overhead, both in terms of bandwidth wasted due to the inser-
tion in the packets of the SR header, and the number of SR
steering policy to be configured in the edge routers. Finally, the
considered network can be a full SR one, i.e., all the nodes are
SR capable, or a partially deployed SR, where only a subset
of nodes can process the SR header.

Table VII show the classification of the TE related refer-
ences. It is interesting to note that most of the works consider
the congestion minimization as the main objective, and that
there are few solutions that can work also in a hybrid network
scenario.

In the following paragraphs we provide a brief overview of
the references classified as TE related works.

The TE algorithm based on SR for an SDN infrastructure
presented in [109], is able to build a path with bandwidth
guarantees and to minimize at the same time the possibility
of rejecting traffic demands. With respect to other solutions,
it takes into account the “link criticality” and not only link
residual bandwidth. Citing [109]: “Link criticality is based
on the concept of the minimal interference routing method”.
It minimizes the possibility of rejecting requests when the
network becomes overloaded. The proposed algorithm not
only achieves the goal of balancing network traffic load, but
it also promises to reduce network costs. Since it is based on
SR principles, the proposed solution also considers the extra
network overhead caused by the segment labels in the packet
headers. The path length has been modeled as a constraint of
the heuristic, adopting an extra hop limitation in order to save
network resources - extra bandwidth used by the segment lists
in the packet headers. According to the authors, the time com-
plexity of the algorithm can meet the requirements of dynamic
online routing. However, there are no open source implemen-
tations available, and only simulation results are provided by
the authors.

Bahnasse and Louhab [110] propose an SDN based architec-
ture for managing MPLS Traffic Engineering Diffserv-aware
networks, which bases its forwarding on SR-MPLS principles.
This architecture is supposed also to support hybrid deploy-
ments whereby SDN equipment coexist with legacy devices,
guaranteeing the same forwarding capabilities. Legacy devices
are confined in the core of the network while SDN capabilities
have to be supported by edge devices. In this way, once the
controller has calculated the paths meeting the SLA parame-
ters of the flows, it programs the network interacting with the
edge and setting up the SR paths. Then over time the controller
monitors the network and dynamically manages the SR-LSPs
in order to ensure that the routing realized by segments does
not violate end-to-end QoS constraints.

Segment Routing and Multicast are combined in [111]. The
authors propose a routing solution for Multicast based on
SR and an heuristic for Multicast tree calculation with band-
width guarantees, which takes into account the load of the
links, the number of branching points and the state in the
network. The objective is to minimize the number of requests
being rejected. In particular, the SDN controller computes an
explicit Multicast tree using the aforementioned heuristic, and
then programs the source node of the tree and its branch-
ing points: each time a packet reaches a branching point it
needs to be duplicated and forwarded on different paths, and
a modification of the segment lists is performed. Simulation
results show that the proposed method outperforms other rout-
ing algorithms, although an open source implementation is not
available and deeper analysis is not feasible.

SR based TE is also investigated in [112]. In particular, the
authors design an online energy-efficient Traffic Engineering
method. They use the SDN controller to selectively switch off
and put in sleep mode a subset of links. They then dynamically
adapt the number of the powered-on links to the traffic load.
In this work, SR is used to dynamically re-route traffic. First,

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 197

a least-congested link technique is run to identify the eligible
links that can be switched-off. At this point new routes are cal-
culated, thus solving via heuristics the “Multicommodity Flow
Problem”. Finally, the SDN controller enforces new paths
through SR or IGP forwarding is leveraged if the route cor-
responds to the shortest path. At this point it is not necessary
to turn the links off. Similarly to other works, the problem
is solved by identifying first the hop-by-hop paths and then
mapping them into SR paths keeping the constraint of the
fixed routing over the given hop-by-hop path. The authors of
these works provide an interesting analysis implementing the
solution in the OMNET++ simulator. However, only numeri-
cal results are given, and as far as we know an open source
implementation is not available.

The flexibility in path selection achieved by SR is exploited
in [113] to propose a new energy efficiency routing strategy.
The main focus of the work is to switch off a subset of network
links by properly selecting alternative paths for the traffic cur-
rently steered through the target links. Clearly, the new paths
must have enough bandwidth resources to handle the new traf-
fic. In order to better exploit the available capacity, differently
from other energy aware routing strategies that work at the
level of traffic flows, in [113] the alternative path selection
is performed at per-packet level. This allows a more accu-
rate traffic splitting strategy to be defined which makes more
efficient use of the available bandwidth, thus increasing the
number of switched off links.

The authors in [114] propose an architecture which com-
bines SDN with SR-based TE. An open source implementation
of SR-MPLS is provided together with the realization of
an SDN control plane which deals with the calculation of
the optimal SR paths in the network. The authors begin
implementing a basic TE heuristic, which solves in approx-
imate way the flow assignment problem. The latter allows the
overall network congestion to be minimized. This first pro-
cedure is also used as admission control for the next phase
whereby the admitted paths are mapped onto SR paths using an
heuristic of assignment (which has been described extensively
in [15]—Section IV-E). Performance evaluation analyzes the
distribution of path lengths comparing TE paths with the short-
est paths and the distribution of the segment list lengths, thus
showing that most of the paths can be implemented using
1 or 2 SIDs. All developed code is open source and available
at [181]

A theoretical analysis of the computational complexity of
the Traffic Engineering problems in Segment Routing enabled
networks is provided in [115]. Two different TE problems are
considered: i) the throughput maximization, and the ii) max-
imum link load minimization. As first the General Segment
Routing paradigm is considered. In such a scenario, segments
are not constrained to follow shortest paths, but can repre-
sent any (possible) complex path. The resolution of both the
aforementioned TE problems results to be NP-hard. This find-
ing provides a theoretical foundation to the reason why, in
Segment Routing, shortest paths are considered for each seg-
ment. Following this, the complexity of the TE problems is
studied for the case of Segment Routing with the shortest path.

An interesting outcome of this analysis is that, when the num-
ber of segments to be used for each segment list is fixed,
the problem of minimizing the maximum link utilization can
be solved in weakly polynomial time. Despite this, when the
length of the segment lists is only upper bounded (not fixed),
then the investigated TE problems fall again in the NP-hard
class.

In [116], the authors deal with SR-based TE designing solu-
tions for the optimal allocation of traffic demands using an
ECMP-aware approach. The authors propose two optimal solu-
tions for online and offline optimization using a 2-segment
allocation, i.e., limiting the length of Segment Lists to two
SIDs. The latter consists of the computation for each flow the
optimal segment list of two segments with the objective of
minimizing overall network congestion. The key idea of this
work is to minimize the worst-case link utilization by con-
sidering ECMP forwarding in the offline case. While in the
online case, the traffic split values are properly computed also
to minimize rejections of requests. Performance evaluation
shows that the n-segment routing problem (“Multicommodity
Flow Problem”), i.e., with no constraints on the Segment Lists
length, is just slightly better than 2-segment routing problem
but the computation complexity is higher due to more degrees
of freedom.

An extension of the models in [116] is proposed in [117]. In
particular, the authors make use of the 3-segments forwarding
demonstrating that the one defined in [116], using two seg-
ments, is not sufficient to determine the optimal paths and
leads to wasting bandwidth.

DEFO (Declarative and Expressive Forwarding Optimizer)
is a two layer architecture, described in [118], which is realized
on top of a physical communication network, aiming at provid-
ing a flexible and highly programmable network infrastructure.
At the bottom of the architecture there is a connectivity layer,
which is in charge of providing default paths between the
network routers. In DEFO, the connectivity layer is repre-
sented by an Interior Gateway Protocol (IGP). By means of
an optimization layer, the routing paths of a subset of traf-
fic demands is deviated by the default behaviour, provided
by the connectivity layer, and is steered through a set of opti-
mized paths. DEFO exploits the flexibility of Segment Routing
to implement the optimization layer and configure optimized
paths on top of underlying routing paths. The Service Provider
can program the network, thus leveraging a high level interface
that allows specific network goals to be defined through the
use of Domain Specific Languages (DSL). DEFO makes pos-
sible for a network operator to define multiple cost functions to
be optimized. In the basic case, referred to as “Classic Traffic
Engineering,” maximum link utilization is minimized; in the
“Tactical Traffic Engineering” case, the objective function is a
combination of the maximum link utilization and the number
of modified paths. Once the goal has been specified, DEFO
starts the computation of optimized paths, by running an algo-
rithm that exploits the concepts of Middle-point Routing (MR)
and Constraint Programming (CP).

The problem of reacting quickly to sudden traffic changes
is faced in [119]. In fact, these unexpected events, which

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

198 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

occur at a low time scale, can create temporary conges-
tion on links, thus degradating the network performance.
Classic solutions to this issue are based on MILP models or
Constraint Programming, see [116] and [118]. Unfortunately,
these approaches suffer with high computation time, since they
work on a time scale of seconds or minutes, providing TE rout-
ing strategies that on average allow a reduction of the network
congestion, but that might incur in-link overloading due to
sudden traffic spikes. For this reason, in [119] the authors
present an algorithm which aims to mitigate link congestion
under a hard time constraint. The proposed solution exploits
SR to re-route a subset of flows quickly and flexibly in order
to decrease the maximum link utilization. The time constraint
is taken into account under two different perspectives: i) it
is directly considered as a hard constraint during the algo-
rithm execution, i.e., it is a termination condition, and ii) the
selected routing strategy has to be as close as possible to the
current one in order to minimize the number of reconfigu-
rations needed to make it work. These two requirements are
simultaneously satisfied by the proposition of a Local Search
(LS) based heuristic, which takes as input an initial solu-
tion and iteratively goes from that solution to another one,
by applying local changes called moves, until a stop criterion
is met (e.g., the solution is good enough, or a time limit).
Results show that the proposed algorithm overcomes MILP or
Constraint Programming based heuristic, allowing for a sig-
nificant reduction of network congestion with execution times
lower than 1 second.

The Segment Routing Path variable is introduced in [120]
with the aim of reducing the memory space and the computa-
tion time to formulate and solve TE problems in SR networks.
In fact, while the memory space needed to instantiate classical
TE problem formulations based on links, paths or nodes vari-
ables do not scale well with the size of the considered network
and with the number of demands to be routed, SR path vari-
ables promise to increase efficiency in the problem resolution.
SR Path variables are based on the concept of a Forwarding
Graph (FG). An FG is a Direct Acyclic Graph (DAG) that
originates from a node s and terminates on a sink node t.
The path followed by a demand in the network is encoded as
a sequence of FGs, and this sequence is stored into an SR
path variable. Array-based sparse-sets are used to implement
SR path variables. A Large Neighborhood Search approach is
used to compute optimized paths for the demands. The idea is
to iterative improve the best-so-far solution trying to reassign
the value of a subset of SR path variables, related to demands
that are critical (e.g., all the ones that are currently routed over
the most loaded link).

The problem of migrating an IP network into a full SR-
enabled one is investigated in [121]. The idea is that the
process of upgrading the system of IP routers to enable SR
capabilities is carried out incrementally in order to reduce
the chance of introducing possible misconfigurations or caus-
ing the unavailability of the service. To do that, the Segment
Routing Domain (SRD) is defined as the subset of SR capa-
ble nodes. Depending on whether the SRD is a connected
set or not, two different models are proposed: Single-SRD
or Multiple-SRD. Two main advantages of the S-SRD model

are that it limits the number of flow states to be maintained
at the edges of the SRD, and the average length of the seg-
ment list is restrained. As a main drawback there is a potential
decrease in the flexibility in the definition of network paths.
On the contrary, M-SRD allows more complex paths to be
defined at the cost of having a higher number of flow states
and a higher average segment list length. The Segment Routing
Domain Design problem is formulated as an ILP, where the
main goal is to maximize Traffic Engineering opportunities,
i.e., the identification of a subset of nodes, of a given size,
to be upgraded with SR capabilities, so that the highest pos-
sible flexibility is achieved in balancing the links load in the
network. The proposed formulation is able to capture both
S-SRD and M-SRD models. The work shares several design
principles with other works reported in this survey, for exam-
ple it considers incremental deployments of SR and deals with
path-aware encoding of the segments list in order to guaran-
tee that the SR path will follow exactly the hop-by-hop path
decided by TE heuristics. With respect to other works, the
authors also propose a loose forwarding solution whereby the
packets belonging to the same flow can cross the network
using different paths.

ILP models and heuristics for TE applications in SR-
based networks are proposed in [122]. Three ILP models are
proposed and they are only used as a benchmark for the
heuristics due to their high computational complexity. The first
is able to leverage ECMP forwarding, the second one com-
putes single routes and implements a hop-by-hop forwarding.
Finally, the third one is able to leverage the full capability
of Segment Routing. An heuristic has been implemented as
some instances of the ILP models require too much time to
be solved. The heuristic computes an unique route for each
flow and tries to keep the total and the maximum network
utilization as low as possible. Moreover, it is able to guaran-
tee that the maximum value of the segment list depth is not
exceeded.

A TE solution for path computation that, leveraging at most
three labels, is able to optimize link resources and avoid con-
gestion in the network is proposed in [123]. Firstly, the SDN
controller addresses the problem of properly computing the
weights of the IGP Link State protocol using Evolutionary
algorithms. Then, the traffic distribution is computed through
Distributed Exponentially-weighted Flow SpliTting (DEFT) or
Penalizing Exponential Flow-spliTting (PEFT), which assign
the flows to a next-hop with a probability that decreases expo-
nentially with the extra length of the path (with the respect
to the shortest path). SR is used to achieve detours and
implement traffic splitting. Performance evaluation shows that
the TE solution delivers a lower congestion with respect to
OSPF/ECMP with optimized configurations and is able to use
all available links.

The flexibility of SR in path selection, together with the
higher throughput provided by the Multi Path TCP (MPTCP),
are exploited in [124] in order to optimize the through-
put for large flows and cope with the explosive growth of
multimedia traffic in 5G networks. The proposed architecture
uses a centralized control plane, with a central controller in
charge of managing the Quality of Experience of each MPTCP

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 199

connection. In particular, the central controller finds multiple
paths for each connection, checks the bandwidth requirements
and installs specific flow rules at the ingress nodes of the
considered 5G network. When a new MPTCP connection is
established, the controller must find a path for each of the
subflows belonging to this connection. For each subflow, it
first checks the flow path and resource database, in order
to check whether there is already a pre-computed path that
has enough bandwidth to support the new subflow. If this
check fails, the controller calculates a new path, encodes
it into a segment list and installs a new flow entry in the
ingress switch. The algorithm used to compute the new paths,
named QoE-Centric Multipath Routing Algorithm (QoMRA),
attempts to find multiple disjoint paths while considering QoE
requirements.

The use of Multi Path TCP (MPTCP) in tandem with SR-
MPLS to maximize the throughput of traffic flows in a Data
Center network is investigated in [125] . MPTCP allows a sin-
gle connection to be split over several paths, thereby increasing
the total throughput. SDN-based MPTCP solutions are consid-
ered by the authors to achieve fine-grain control over TCP
connections. However, this drastically increases the overall
number of traffic flows that need to be stored in the devices,
by causing scalability issue to arise. SR is used to reduce the
number of flow rules needed to steer the single TCP con-
nections over disjoint paths and to save precious space in the
Ternary Content Addressable Memory (TCAM) of the devices.
The architecture envisages a reactive approach for flow allo-
cation: each time a new subflow is “generated” by MPTCP, a
Packet-In is sent to the SDN controller which allocates a new
disjoint path whenever is possible, and then installs the neces-
sary flowrules to support this subflow in the edge devices. SR
allows the state in the core device to be reduced. Unfortunately
from the paper is not clear how the authors can avoid the
explosion of the state at the edge of the network due to the
matching conditions at the transport layer.

In [126], ELEANOR, a northbound application for the
OpenDayLight (ODL) Software Defined Network (SDN) con-
troller is presented. ELEANOR considers an MPLS-SR data
plane, where a Maximum Stack Depth (MSD) constraint, i.e.,
an upper bound on the number of sids that can be stacked in
a segment list, has to be considered. The main components
of ELEANOR are: i) a path computation module, and ii) a
label stack optimization module. When a new request arrives
at the controller, it first finds a suitable path in order to meet
specific QoS requirements (bandwidth, delay, etc.), then the
appropriate SL is produced.

In [127], the authors propose two routing algorithms based
on SR for realizing TE applications in SDN networks. These
algorithms search for an appropriate selection of the link
weights for optimizing path costs and balancing load across
the links. This is obtained through the multiple objective par-
ticle swarm optimization (MOPSO) algorithm. Two objective
functions are used to measure path cost and load balancing
respectively. According to the authors, their algorithms not
only reduce the cost of the paths, better balance the network
load, and decrease the maximum link utilization rate, but also
can improve the satisfaction ratio with respect of shortest path

first (SPF), shortest widest path (SWP), widest shortest path
(WSP), minimum interference routing algorithm (MIRA), and
the Lee algorithm.

The Bounded Stretch constraint to boost the resolution of
the SR-TE problem is proposed in [128]. The Bounded Stretch
is used to shrink the set of intermediate node candidates, which
are selected during the building of the SL. This allows the
space of the solutions to be reduced. The high level idea of
the Bounded Stretch is that when an intermediate node is too
far away from a source node i to a destination node j then this
node should not be considered as a candidate. The selection
is achieved comparing the length of the intermediate shortest
paths with the length of the end-to-end paths scaled by a given
constant. The authors demonstrate through experiments that
the constraint helps in reducing the computation time at cost
of having a slightly higher utilization over the links.

In [129], the node constrained TE problem is defined
and analyzed, and SR is claimed to be an enabling tech-
nology for such routing strategies. This problem consists in
the optimization of one of these two objectives: maximiz-
ing network throughput, or minimizing maximum congestion.
Different routing strategies are considered. In the most gen-
eral case, end to end paths are constrained to go through a
set of middle-points, leaving the freedom to choose whatever
path between two middle-points. This problem is formulated
and proven to be NP-hard. Next, the feasibility region is lim-
ited by forcing the path between two middle-points to be the
shortest one. The derived problem formulation turns out to
be solved in weakly polynomial time. In any case, since the
solutions of the previous problem can contain routing loops
(the same link is crossed two times), the authors of [129] also
consider a variant whereby the solution is constrained to select
only acyclic end to end paths. This last variant of the node
constrained TE problem is shown to be NP-hard. A further
contribution of [129] is the proposition of the concept of flow
centrality as a design parameter to select the most suitable
middle-points. The flow centrality is expressed as the maxi-
mum percentage of traffic that can go through a node. This
concept is further enhanced by defining the group flow cen-
trality, which is a generalization of the flow centrality over a
set of N middle-points.

The work in [130] proposes a traffic engineering solution
(path computation and bandwidth allocation) for a hybrid
IP/SR network able to maximize a utility function reflecting
user satisfaction. User satisfaction is computed as a logarith-
mic function of the bandwidth assigned to flows. Routing paths
are constrained to be the shortest ones in the IP domain, while
SR routers can choose among a set of allowable paths in
the SR domain. After defining the optimization problem, a
two-step iterative algorithm is proposed: at each step of the
iteration, link weights inside the SR domain are updated. Two
main assumptions are made: i) each flow can be forwarded
on a single path, and i) a packet cannot cross the SR domain
more than one time.

Independently from the aim of the optimization and of
the considered constraints, the main goal of a TE strategy
is to find a routing configuration for a given set of input
demands. Here we outline some of the differences between

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

200 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

the SR related research works classified in the category Traffic
Engineering. Specifically, we point out five different crite-
ria to compare them: i) the type of approach (optimization
based, heuristic based, both), ii) the demand granularity level
(Origin-Destination or Ingress-Egress), iii) the path compu-
tation strategy, iv) how the TE routing is translated into
a set of SLs, and v) the traffic split policy (single SL or
multiple SLs).

Most of the works on Traffic Engineering with SR propose
a heuristic algorithm to determine a set of paths to satisfy
a given objective. Only in [115], [116], [121], [122], [128],
and [130] a problem formulation is also presented. Another
interesting difference between the research works on Traffic
Engineering is the model considered to describe the traffic
demands. In fact, while the works in [114], [118], [119], [124],
[125], [126], [128], and [129] consider an Origin-Destination
(OD) model, where multiple demands can enter and leave the
network from the same pair of Ingress-Egress (IE) nodes, all
the others assume an IE model (there is a single demand
between each pair of IE node that is representative of the
aggregation of many OD flows). This affects both the flexi-
bility of the solution, allowing for a thinner optimization, and
the complexity of the algorithms, since they have to deal with
a larger number of variables.

Different strategies are used to create the end to end paths.
Some of them are based on the definition of parameters able
to catch the current network status. The paths are then selected
according to a Least Cost rule. As an example, in [109] the link
“criticality” and the link congestion index are used, in [114]
the concept of network crossing time is proposed, in [129] the
feasible path space is reduced by imposing that only nodes
with high centrality can be used as middle points. In [130]
single path routing is considered, and the objective function
of the optimization problem is the user satisfaction calculated
as a logarithmic function of the bandwidth allocated to the user
flows. Furthermore, also in [124] the path search strategy is
based on the link criticality, while the concept of delay index
is exploited in [125]. The remaining works use more sophis-
ticated techniques, such as constraint programming ([118],
[120]), ILP based search ([112], [113], [116], [117], [121],
local search heuristic ([119]), and constrained Shortest Path
First algorithms ([126]).

Another interesting difference of the path selection strate-
gies adopted by papers falling into the Traffic Engineering
category is related to the way they generate the SLs associated
to the determined path. Specifically, two different approaches
are generally used: i) the path is found and then encoded into a
SL ([112], [121], [122], [124]-[126], or ii) the path is directly
constructed as a SL ([116]-[120], [123], [128], [129]).

The final comparison that we propose is related to the pos-
sibility to split the traffic demands over multiple SLs. This
option, which is allowed by properly configuring the SR poli-
cies, is explicitly used in the algorithms described in [116],
[117], [121], [124], [125], [182]. Clearly, having the possi-
bility to split the same flow over multiple SLs increases the
flexibility of the routing strategy at the cost of increasing the
information to be stored in the head end nodes, where SR
policies are installed.

TABLE VIII
CLASSIFICATION OF THE REFERENCES RELATED TO FAILURE RECOVERY

C. Failure Recovery

Nine research works dealing with SR for Failure Recovery
and Network Resiliency have been published in recent years.
The proposed solution can be classified considering the type of
failure they are able to recover from:, i.e.,link or node failures.
Table VIII shows the classification of the covered papers. In
the following paragraphs we provide a brief overview of the
references classified as Failure Recovery related works.

Resilient SR forwarding is investigated in [131] . In par-
ticular, the authors focus on static fast failover solutions for
Segment Routing, not requiring any interaction with the con-
trol plane. The algorithm proposed, referred to as Topology
Independent Multi-Failure Alternate (TI-MFA), is an improve-
ment of the Topology Independent Loop Free Alternate (TI-
LFA), described in [45] and elaborated upon in Section III-A.
TI-MFA has interesting performance guarantees and it is also
resilient to multiple failures, while traditional SR fast failover
based on TI-LFA can work only with a limited number of
failures. Firstly, the authors demonstrate that TI-LFA loops
indefinitely also for two link failures. Then, a robust but ineffi-
cient solutions is shortly presented which pre-compute routing
rules considering destinations, incident failures and incoming
ports of the packets. Even if this solution can provide bet-
ter resiliency guarantees, it introduces some inefficiencies (in
terms of path lengths) even if only one link failure occurs.
Finally, the authors present their solution which basically pro-
poses to store the already hit failures in the packet header and,
each time a new failure is faced in the network, the segment
list is re-computed using the pre-computed local table entries
and the state stored in the packets.

Traffic duplication through disjoint paths is explored
in [132]. In particular, the authors leverage SRv6 to realize
a traffic duplication service which can guarantee an 1+1 pro-
tection scheme through the use of disjoint paths. The main
difference from other protection mechanisms is that with 1+1
protection both channels are active and data is sent over both
paths. The authors use mirroring behavior in the Linux kernel
to realize the traffic duplication. The work builds upon the
results presented in [183], leveraging the Linux implementa-
tion of SRv6. Then, the authors propose an algorithm that
is able to compute disjoint paths with the least latency and
that can be implemented with a number k of segments (they
set an upper bound limit on their number and use only node
segments).

The introduction of robustly disjoint paths is exploited
in [133] and [132]. The authors built, extending routing theory
and leveraging configuration synthesis, an automated compiler
which is proactive, fast and self-healing (no external interven-
tion are required): it computes pairs of disjoint paths for given
sources and destination routers, which are robust in the way
that they remain disjoint even upon a set of failures. This

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 201

is achieved without requiring any intervention thanks to SR
technology. Indeed, SR allows sequences of segments to be
written, which map to different disjoint paths even when there
are topological changes. Finally in [133], leveraging the results
of the solution proposed in [132], Aubry et al. added to the
compiler the capability of limiting the number of segments
(i.e., path encoding problem) and computing paths that do not
degrade data-plane performance (finding low latency SR paths
- addressing also TE aspects).

In [134], Hao and Lakshman propose a linear program-
ming model to optimize the restoration in SR based networks.
The key idea of the optimized restoration is to share the
remaining bandwidth properly when several failures happen.
This is addressed through an optimal configuration of the
initial segments, knowing in advance the traffic matrix and
the network topology. In particular, the authors develop an
efficient primal-dual algorithm, which can handle single link
failures and multiple logical link failures at the same time
(including node failures). Moreover, with a simple random-
ized rounding scheme they can also take into account ECMP
forwarding in the network.

A logically centralized implementation of the SR control
plane (SDN based) is leveraged in [135], [136], and [137].
They describe a method to recover the network from link or
node failures dynamically. The failover mechanism envisages
a failover table for each interface of the node, and when a port
goes down automatically the related secondary table is used to
implement a loop-free backup path from the point of failure
to the destination node. Firstly, the node pops all the labels
in the segment list except the last label (which represents the
final destination), and then the packet processing is passed to
the correct failover table. The authors provide an implemen-
tation based on the OpenFlow (OF) protocol leveraging the
OF Group tables feature for monitoring and backup actions
(the use of OF Fast-Failover Group is explained in [184]).
In [137] and in [136], the SR path encoding algorithm can
lead to longer segment lists than the one generated by the algo-
rithm proposed in [135]. In general, a low number of labels is
necessary to implement most of the backup paths. The works
in [137] and [136] implement a simple detour from the node
detecting the failure towards the next-hop or the next-next-hop.

The same authors of the work in [108] propose an open
source implementation of SRv6 TI-LFA in [138] using the
extensible Berkeley Packet Filter framework (eBPF concepts
in the Linux kernel are described in [185]). The fast rerouting
solution is implemented as a custom BPF program compiled
on the fly and attached to a route. In particular a program
is loaded into the kernel for each link to be protected. The
repair list associated to the route is computed by the control
plane and then hard-coded in the eBPF program, which is
subsequently compiled and installed in the kernel. The solu-
tion has been complemented with a robust failure detection
architecture, which implements the Bidirectional Forwarding
Detection (BFD) [186] echo mode using SRv6. In particular,
the architecture envisages for each link a master node, peri-
odically sending probes which can activate the fast rerouting
mechanism described so far. The probes are sent with a special
segment list which allows the redirecting of traffic to a special

BPF program (BPF slave) on the remote peer and the loop-
ing back of probes to the master. The BPF slave, running in
the remote peer, handles the prob packets and can activate the
SRv6 TI-LFA mechanism for its side of the link. The master
uses SRv6 type-length-value to insert sequence numbers and
timestamps, which also allow the remote peer to detect fail-
ures. The evaluation in the paper considers the number of false
positives due to an overloaded CPU, the BPF implementation
of the peer nodes reduces the false positives almost to zero,
even when the failure detection is less than 10 ms. Instead,
the master node is still largely affected by the overloading of
the CPU since it uses an user space process for sending the
probes.

The problem of defining a backup path scheme that is robust
to the presence of multiple link failures is studied in [139].
Specifically, the main contributions are: i) the introduction
of a polynomial-time fast rerouting algorithm which allows a
backup path scheme for resilience to be defined under k simul-
taneous link failures, in particular the case of a hyper cube
topology, and ii) the formalization, by means of an ILP for-
mulation, of the problem of defining a backup path scheme that
maximizes the number of allowed simultaneous link failures
in general graphs.

Let us provide a comparison among the works classified
in the Failure Recovery category. An implementation of the
TI-LFA mechanism [45] in a Linux based SRv6 node is
proposed in [138]. The TI-LFA mechanism is extended by
adding the capability of handling multiple failures in [131].
Among the solutions based on SR to recover from network
failures, there are only two works ([131], [139]) which are
aimed at dealing with multiple failures. While the first is more
focused on implementation aspects, the latter is more theoreti-
cal and focused on the definition of algorithms to find loop-free
re-routing strategies. Not all other recovery mechanisms are
explicitly declared as being able to deal with such a failure sce-
nario. Another interesting difference between failure recovery
solutions is the method they are based on. Specifically, most
of them ([131], [135]-[139]) are based on a re-routing strategy,
i.e., the packets are detoured over a pre-computed alternative
path once a link is declared as failed. On the other hand, traf-
fic duplication scheme is exploited in [132], [133]. Without
going into the details, the main difference between works
in [131], [139] and [135]-[138] is the number of simultaneous
failures they allow recovery from.

D. Centrally Controlled Architectures

The definition of Centrally Controlled Architectures exploit-
ing the SR architecture has been widely investigated in
literature, resulting in sixteen different works. The solution
proposed has been classified on the basis of three differ-
ent aspects, as reported in Table IX. Considering the SR
data plane, a high number of works makes use of the SR-
MPLS data plane while only three works are based on SRv6.
Moreover, some works do not explicitly consider a specific
SR implementation, but simply exploit the SR possibility of
inserting the flow state in the packet header. A further aspect
used to classify the research papers is the protocol used for the

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

202 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

TABLE IX
CLASSIFICATION OF THE REFERENCES RELATED TO CENTRALLY

CONTROLLED ARCHITECTURES

southbound communication between the network devices and
the central controller. The considered protocols are Openflow,
PCEP or others. The last component that differentiates the
proposed architectures is the underlay network. Specifically,
the network devices can be IP/MPLS routers or Openflow
switches. In the following we provide a brief overview of
the references classified as Centrally Controlled Architectures
related works.

An SDN based SR-MPLS architecture in a multi-layer
packet-optical network is implemented in [140]. In particu-
lar, the authors demonstrate optical bypass upon traffic load
variations without requiring GMPLS operations. The RYU
SDN controller [187] has been extended to control the labels
stack configuration at the edge nodes (Open vSwitch based).
The SDN controller utilizes OF 1.3 to program the edge
devices. Open vSwitch has been modified to increase the
maximum MPLS stack depth from 3 to 15 labels. The OF
protocol has been modified as well to push all the required
labels as a single flow entry and with a single action.
Commercial Reconfigurable Optical Add-Drop Multiplexer
(ROADM) devices have been used to provide an optical bypass
between nodes and provide alternative paths during path com-
putation. In the performance evaluation, the authors asses
through emulation the influence of the 15-label deep stack,
evaluating the flows’ setup time and packet forwarding in the
devices. The latter is not influenced at all, while the setup time
is almost triple.

Later in [141], SR has been implemented in a multi-layer
network using a PCE architecture instead of SDN/OF. In this
scenario nodes consist of commercially available IP/MPLS
routers and the SR Controller is an extended version of a PCE
stateful control plane. Extensions to the PCE protocol allow
a centralized PCE to control the label stacking configuration.
PCC (PC client - devices) uses the SR-PCE-CAPABILITY
type-length-value for specifying the capability of handling SR-
enabled Label Switched Paths and the capability to perform
SR computation. The Explicit Routing Object (ERO) carried
out in the Path Computation Reply message contains the list
of computed SIDs and/or the Node or Adjacency Identifier
depending on the SID type. On the device the agent collects
the information derived from IGP protocol and configures the
related shortest path entries and the SID labels. When a new
PC replay message is received, the label stack is properly con-
figured. Also this SR implementation using PCE is able to

perform dynamic packet rerouting (with optical bypass capa-
bilities), by enforcing different segment-lists at source node,
without any signalling protocol and with no packet loss.

In [142] Segment Routing is proposed as a solution to real-
ize Network Service Chaining (NSC) in a metro-core network
scenario, where service chain requests are represented by the
so called micro flows, i.e., a huge number of low or medium
bit-rate flows. In this scenario, classic solutions based on
MPLS or pure SDN fail due to scalability issues. On the con-
trary, SR moves the flow state into the packet header, reducing
the configuration costs (and time) to the installation of the
encapsulation rule at the ingress point of the network (the one
used to add the segment list to each packet of the considered
flow). Based on this consideration, an SR Path Computation
Element (SR-PCE) is defined in [142]. The SR-PCE is in
charge of orchestrating connection setup/release/modification,
and is made up of two main modules: i) the flow computation
element, having the goal of find a path with available resources
to serve a micro flow and ii) flow steering API that is respon-
sible of installing the SR encapsulation rule in the ingress
node. An experiment evaluation of the proposed architecture
is proposed in [143].

An SR-based Software Defined Network (SDN) architecture
is described in [144]. The proposed solution is able to perform
load balancing among ECMP and non-ECMP routes in multi-
layer networks including an IP/MPLS layer over an optical
network layer. In particular, two solutions are described: i)
Centralized-SR; ii) Preconfigured-SR. The former leverages
a SDN controller to steer traffic over alternative paths upon
network failures. Instead, the second solution uses OpenFlow
load-balance groups to actively forward the traffic on sev-
eral routes. With the second solution the data plane layer can
autonomously react to a network impairment removing the
failed output port, while the first solution always requires the
intervention of the SDN controller, but results are more generic
with regards of the second one. Both solutions push the SID of
the destination node and leverage the available ECMP paths.
The recovery property of the architecture has been validated
simulating network failures. According to the authors, some
packet losses have been recorded and the recovery time was
around 170 ms.

The SPRING-OPEN project [145] is an ONOS [188] use
case, which provides an open source SDN-based implementa-
tion of SR. Its architecture is based on a logically centralized
control plane, built on top of ONOS, and it drastically elim-
inates the IP/MPLS Control Plane from the network. Part of
this work converged later in the Trellis project [189], an SDN
based leaf-spine fabric, built using bare-metal hardware, open-
source software from the OCP [190] and ONOS projects,
and OpenFlow-Data Plane Abstraction (OF-DPA) [191], an
open-API from Broadcom [192] to program merchant-silicon
ASICs. The leaf-spine fabric is based on SR-MPLS principles.
However, it does not implement fully-fledged SR architec-
ture, as it just uses global significant Node-SIDs. These MPLS
labels are statically configured in the SDN control plane and
are used to globally identify the ToR switches of the fab-
ric, routing the traffic towards them using a single MPLS
label.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 203

In order to provide resiliency against link and node failures
for Cloud Service Provides (CSPs), an overlay infrastructure
realized by means of Segment Routing and Software Defined
Networking control plane is proposed in [146]. The main idea
of the proposed architecture is to substitute the dedicated phys-
ical infrastructure that interconnects Data Centers of a CSP,
with an overlay network realized on top of an underlay infras-
tructure, represented by the interconnection of many Internet
Service Provider (ISP) networks. The prerequisite is the avail-
ability of multi-homed connections for each Data Center of
the CSP. Thus, the logical components of the proposed over-
lay infrastructure include: i) a central controller that monitors
the underlay network status and determines new paths in case
of failure, ii) the egress points that are responsible for rout-
ing the traffic flows leaving a Data Center toward the most
appropriate ISP, and iii) the routing inflection points that are
special nodes that manage the routing between two distant
Data Centers, by using SR encapsulation.

The use of SR in a hybrid IP/SDN network as a technique
to mitigate the problem of limited storage space in the flow
tables of SDN switches, is presented in [147]. The main goal
is to use SR to optimize the use of the flow tables and link
capacity. In the considered scenario, every node supports both
the OpenFlow operations and the normal IP forwarding opera-
tions. When a packet enters a node, it is first classified in order
to decide through which pipeline it has to be steered, then it
is processed accordingly. Operations attributed to the normal
IP pipeline are decided using a routing protocol (e.g., OSPF).
Alternatively, the path to be followed by traffic flows steered
through the OpenFlow Switching Layer (OFSL) are decided
by the central SDN controller. In order to limit the number
of flow entries to install in order to configure a path, SR is
exploited. In this way, a portion of the flow state information
is moved from the flow table of the switches to the packet
header. In order to insert the SR related information (i.e., the
segment list) in the packet header, the use of unused fields
(e.g., VLAN tag or optional fields) is proposed in [147].

Software Resolved Networks (SRNs) is a new SDN
architecture recently proposed for IPv6 enterprise
networks [148], [149]; further details about the imple-
mentation are provided in Section V. The network is
managed by a logically centralized controller, which interacts
with the end-hosts through an extended DNS protocol: appli-
cations are allowed to embed traffic and/or path requirements
in their requests, and the controller is able to return the
appropriate path to the applications satisfying their needs.
SRv6 is used as data plane technology to steer traffic on a
specific path according to network policies. Each component
that can be reached through the network is always referenced
through a DNS name. The default DNS resolver in the hosts
is modified to interact with the controller of the architecture.
SRN also provides a mechanism for the dynamic registration
of the end-points. In this way, the DNS database can be
properly updated and the name resolution can be performed
by the clients. The connections are always unidirectional, thus
it is necessary to establish two paths in order to enable the
communication between the endpoints. A binding segment is
used to implement a path id, and it is automatically translated

in a SRv6 policy in the access node. Path segmentation is
performed using the algorithm illustrated in [102], which
allows a given policy to be matched and the minimal list
of segments to be guaranteed. In order to optimize the
interaction with the controller, upon a request the controller
computes the two paths to support the communication and
then instruct the access device of a node to add also the
reverse binding segment in the SRH. In this way, the reply can
be simply echoed back. Software Resolved Network has been
implemented on Linux end-hosts, routers and controllers.

In [4] a novel SDN architecture is proposed for SRv6
technology; Section V provides further information about the
implementation and where it is possible to download the code.
The data plane is constituted by Linux based SRv6 nodes built
from open source components which expose an open API
towards the SDN controller. As a result, the nodes become
hybrid as they envisage the coexistence of a legacy IP con-
trol plane with an SDN control plane. The authors present the
design and implementation of the Southbound API between
the SDN controller and the SRv6 devices, which is used to
instantiate SRv6 policies in the network. Specifically, they pro-
pose a data-model and provide four different implementations
of the API, respectively based on gRPC, REST, NETCONF
and remote Command Line Interface (CLI). Topology dis-
covery is also addressed by actively extracting the topology
database from the IP routing daemons running in the network
nodes.

A hierarchical multi-domain control plane for SDN
networks based on SR has been demonstrated in [150]. The
control plane is composed by an orchestrator application,
which runs on top of multiple SDN controllers and lever-
ages their NB APIs to create multi-domain SR based services.
BGP-LS and PCEP are used as southbound in the SDN con-
trollers. They provide network topology respectively and the
creation of MPLS SR tunnels. IS-IS is used inside the domain
to exchange reachability information and SIDs between nodes.
SDN controllers do not exchange any reachability information
nor SIDs. The orchestrator interacts with the SDN controllers
and builds a global network view that will be used to per-
form the path computation and to instantiate SR services.
A practical demonstration has been realized using software
routers.

In [151] two solutions for multi-domain SR are proposed:
end-to-end Segment Routing and per-domain Segment
Routing. Both methods leverage a non-standard east/west
interface between peer controllers, thus relying on a flat
control-plane architecture and not using signaling sessions in
the data plane. In the first approach, the segment list already
contains the end-to-end path crossing several domains. The
originator domain sends a request to the destination domain.
The destination controller computes the segment list to reach
the destination from its ingress router and sends it back to
the previous domain. Each intermediate domain applies the
same procedure stitching the segment list computed by the
downstream until the reply is received back by the origina-
tor. Conversely, in the second approach the end-to-end path is
obtained stitching several SR paths: in each domain the seg-
ment list contains a virtual label as the bottom of the stack,

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

204 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

which triggers a modification of the segment list in the ingress
border node of the next domain. In this case, there is no global
view of the network, and controllers do not know the domain
sequence to reach the destination. Scalability of the proposed
schemes is evaluated in terms of segment list depth. Results
show that per-domain SR is able to encode 60% of the paths
using at most 3 labels while end-to-end SR just the 12%. In
general, the average SL depth is 5.34 and 3.36 respectively
for end-to-end SR and per-domain SR.

In [152] an advance of Carrier Ethernet architecture is
proposed and an approach mixing SR and SDN technolo-
gies is envisaged. It results in a trade-off between fully-
distributed control planes and centralized approaches: an
inventory database is maintained in the SDN controller with
the configuration for each device. The SDN controller provides
the IP configuration and SR configuration such as the loopback
address, node label, label range, gateway label information via
a southbound API such as NETCONF/Yang. For any commu-
nication inside the domain, the network will use the IGP based
forwarding by design without the need of the SDN controller
and will impose on the traffic a single MPLS label (loopback
SID). Multiple labels can be used to realize TE applications.
Instead, in a multi-domain scenario several SDN controllers
are deployed and exchange reachability information in order
to properly program the edge nodes. In this way, an inter-
domain path can be established simply with a label stack that
includes local and remote border router labels, plus the end
node label. Similarly to other works, further analysis is not
possible as the code of the control plane is not open source.
As for the data plane, the solution relies on Carrier Ethernet
hardware.

Busoni [153] is an orchestration framework for Segment
Routing based networks, which automates and simplifies many
aspects of the network management. From an architectural
standpoint, Busoni sits on top of a SDN controller and ben-
efits from the information exported by the controller to feed
its data-store. The latter is a graph database, which is used to
persist data. In particular, Busoni leverages it to keep track of
the SIDs advertised in the network, the installed policies, and
to respond to any dynamic event. The framework provides
users with programming tools to compose and manage SR
policies . It operates efficiently even under multi-tenancy envi-
ronments. Finally, Busoni automatically updates the nodes and
the edges of the graph database whenever there is an update
in the network and reflects these changes on the installed
policies. This allows their resilience to dynamic events to be
maintained.

A scalable centralized controlled architecture for the man-
agement of SFC Routing and Cloud Bandwidth resource
Allocation (SRCBA) based on SR is described in [154].
The proposed solution is thought to be applied in a multi
domain scenario, where a transport network interconnects a
set of private cloud infrastructures, possibly owned by differ-
ent providers. In particular, instead of using classic approaches
to solve the SRCBA problem, which require a detailed knowl-
edge of either the transport network or the cloud infrastructure,
the proposed architecture exploits the BSID concept to abstract
the services provided by a single cloud infrastructure to the

external network. The resulting Orchestrator is then divided
into two logical components: i) a centralized Network Service
Orchestrator (NSO), which is in charge of collecting SFC
requests and managing bandwidth in the transport network,
as well as deciding to which datacenter to assign the process-
ing of the incoming requests, ii) and a set of local Resource
Orchestrators that are in charge of managing the network and
cloud resources in the context of a single infrastructure. In this
way, the centralized NSO can rely on summarized information
to take decisions while solving the SRCBA problem. This
allows for a great reduction of computation time, while assur-
ing comparable performance in terms of efficiency in the use
of the resources.

In the following paragraphs we provide a comparison among
the works classified in the Centrally Controlled Architecture
category. An interesting aspect to compare the research works
falling into this category is related to the way they use SR. For
instance, some solutions exploit SR to overcome some limi-
tations existing when other technologies are adopted. Other
centrally controlled architectures make use of SR to realize
specific functions, which are more complex if realized by
means of other paradigms. Finally, some works falling into this
category have the goal of proposing an implementation, and
provide a demonstration of the feasibility and the performance
achieved.

Several works [142], [147], [153], [154] exploit SR to over-
come limitations of other existing approaches. Specifically,
in [142] SR allows for the reduction in the complexity of con-
figuring and updating the path for an incoming SFC request,
thanks to the adopted source routing paradigm. In [147],
they exploit the same principle to show that, by adopting
SR, the stringent TCAM size constraint can be overcome.
Finally, in [153] an orchestration framework to simplify the
policy management is proposed. Similarly, a scalable cen-
tralized controlled architecture for the management of the
SFC Routing and Cloud interconnect bandwidth allocation is
defined in [154].

Different functions at the network level are realized in cen-
trally controlled architectures proposed in [144], [146], [151].
As an example, in [151] SR is used to realize an optical
bypass, while it is exploited to overcome node and link fail-
ures in [144]. Finally, an overlay network to interconnect
geographical distributed DCs is realized through SR in [146].

As previously stressed, the aim of some of the works
falling into the Centrally Controlled Architecture category is
to propose possible implementations of SR, and to provide
a demonstration. This is the case in [4], [145], [150]. In [4],
SRv6 nodes based on the Linux implementation are considered
in the data plane, while the other works are focused SR-MPLS.
Furthermore, a demonstration of end to end paths setting in a
multi domain SR network is given in [150], while in [145] a
single domain scenario is considered.

E. Path Encoding

The translation of a network path, resulting from a specific
TE objective, into a sequence of SIDs, i.e., a Segment List, is
a key operation for the deployment of SR in a real network.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 205

TABLE X
CLASSIFICATION OF THE REFERENCES RELATED TO PATH ENCODING

This operation is usually referred to as Path Encoding. Eight
different papers have been defined for the definition of a proper
a solution to the path encoding problem. The different algo-
rithms differ according to the nature of the network path, i.e.,
the path to be encoded. Specifically, the input path might be
computed on top of a network with uniform link weight or
arbitrary ones. Moreover, it may or may not include ECMP.
A further aspect for the path encoding algorithms is the pos-
sibility of requiring additional device configurations, as the
insertion of a new policy. Finally, path encoding algorithms
can differ depending on the possibility of encoding the input
path with one or more SLs. Table X shows the paper classifica-
tion according to the aforementioned aspects. In the following
we provide a brief overview of the references classified as Path
Encoding related works.

In [155], SDN and PCE based implementations of the SR
controller share a common path engine, which performs the
hop-by-hop path computation and SR path assignment. As
regards the path computation engine, the controller selects the
least congested path on a set of candidate paths. Then, the
proposed SR path assignment algorithm provides the shortest
Segment list considering a unique path towards the destination
and avoiding load balancing through ECMP. The algorithm
uses two pointers, i and j, to navigate the target path from
source to destination. Firstly, j is incremented until the con-
sidered sub-path is no more the unique shortest path. At this
point, the SID of the node j − 1 is inserted into the Segments
list, the two pointers are both set to j − 1, and then the pro-
cedure restarts. This cycle is repeated until the node j is equal
to the destination. The algorithms provide the segment list of
minimum depth, but the solution only considers global Node-
SID, and therefore it cannot be applied to topologies with
arbitrary IGP link costs.

The authors of [156] propose a Segment list encoding algo-
rithm to express a given path, which minimizes (enforcing a
given threshold) the Segment list depth in SR-based networks.
It considers ECMP forwarding by default, but can also intro-
duce constraints to support a deterministic hop-by-hop path.
With respect to other efforts (such as [15]), the solution is not
able to support arbitrary hop-by-hop paths when arbitrary IGP
link costs are used. The core of the algorithm consists of the
creation of a graph, whose arcs model SR related instructions
(node and adjacency SIDs). Specifically, an arc connecting

two nodes represents the shortest path in the original network
between the same pair of nodes. The so-called auxiliary graph
is built firstly using the physical links of the paths, which
are computed by an external TE heuristic. Subsequently, vir-
tual links are added representing the ECMP paths between
two nodes. Each virtual link is annotated with the metrics and
the number of the ECMPs between the two nodes. Using this
auxiliary graph, a new path computation is performed adding
a new constraint related to the number of hops: each path
having a hop number greater than the maximum Segment list
depth is rejected. The candidate paths are then sorted firstly
according to their original metrics, secondly according to their
length, and then according to the number of ECMPs. Finally,
the paths are translated into SIDs using this approach: physical
links are changed with their respective Adjacency SID, virtual
links are mapped with the Node SID of the destination node.
If the Adjacency SID are not local the algorithm first inserts
the Node SID of the source and then the Adjacency SID.

In [157], two algorithms for the computation of the segment
lists are proposed; the algorithms are optimal in terms of stack
depth when a unique hop-by-hop path has been computed. The
key idea is to consider at each iteration bigger sub-paths and
verify whether a unique shortest path exists. It it exists, substi-
tute the sub-path with the tail node SID before moving to the
remaining part of the path. The main difference between the
algorithms is how to vary the breadth of the sub-paths until
considering the original hop-by-hop path. The first algorithm
navigates the target path starting from the source node toward
the destination, while the second one leverages the opposite
direction. The analysis of the overhead in the packet headers
shows that reverse algorithm introduces less overhead com-
pared to the direct algorithm, as the computed segment list
typically includes nodes that are near the source. Other works
(for example [15], [114]) share the same objective of reduc-
ing the overhead of the packet headers, but with respect to the
solutions described above, they start from the original hop-by-
hop path and then evaluate the sub-paths breadth reduction at
each iteration.

In [158], two algorithms for an efficient paths encoding are
proposed. The algorithms, referred to SR-LEAs, take as input
an explicit shortest path and then compute the relative seg-
ment list having as constraint a given maximum segment list
depth. They are composed of two main steps: i) computation of
successive shortest paths; ii) label replacing. Specifically, they
compute the subpaths of the original shortest path and take into
account the limitation of the hardware to reduce the number of
subpaths. In the second step, the subpaths composed of three
or more nodes are replaced by the Node-SID of their tailn-
ode. SR-LEA replaces two node subpaths using the Adj-SID.
The variant SR-LEA-A is very similar to the above algorithm
but takes advantage of the global Adj-SID to further reduce
the depth of the label stack. Of course, it requires the adver-
tisement of these SIDs in order to work properly. Simulation
results show that the algorithms are able to compute segment
lists with an average length lower than 3. SR-LEA-A deliv-
ers best results and can improve the segment list computation
compared to SR-LEA, but the gain is around 5% in terms of
average length.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

206 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

The authors of [15] propose an optimal SR path assignment
algorithm and prove that it is optimal in terms of the number
of used segments. The algorithm takes as an input a hop-by-
hop path resulting from a TE algorithm and define an SR path
for it composed by the minimum number of segments. The SR
assignment algorithm evaluates at each iteration if a shortest
path between the current source and the current destination
exists, considers different subpaths and updating the current
source or the current destination. Each time a new segment is
found, the current source is updated with the previous destina-
tion, and the current destination is replaced by the destination
of the original hop-by-hop path. In the worst case, the link
between the current source and its next hop is evaluated, and
if the link is not part of the shortest path, an adjacency segment
is pushed in the segment list.

The authors of [159] propose a two-step method for trans-
lating a given Traffic Engineering (TE) path into an SL.
In the first step, an auxiliary graph is created. The aim of
the auxiliary graph is to represent all the Interior Gateway
Protocol (IGP) paths available, i.e., forwarding paths, for the
specific TE path to be encoded. In the second step, a MILP
problem over the auxiliary graph is defined: the MILP problem
allows for the minimization of the overall Segment List length
given the target TE path. One of the main features of the
proposed solution is multi-path support, i.e., the ability to split
a source-destination flow among a weighted set of segment
lists.

The problem of optimizing the performance of an SR
network under the maximum Segment List Depth (max-SLD)
constraint is studied in [160]. In fact, especially when SR is
realized on top of the MPLS data plane, the constraint on
the max-SLD is particularly limiting. A possible solution is
to create new LSPs, thus increasing the availability of alterna-
tive paths in the underlay network, and consequently enabling
shorter segment lists to be written. Despite the fact that the cre-
ation of new LSPs reduces the length of the segment lists, its
main drawback is the increase in the number of required for-
warding rules to be installed in the routers’ forwarding tables.
In order to mitigate this negative effect, the concept of panel
based forwarding is defined in [160]: a panel refers to a set
of node-disjointed LSPs that can be represented by the same
label. Furthermore, an ILP formulation is proposed to solve
the path encoding problem, minimizing both the number of
new defined LSPs and the installed rules, while respecting the
max-SLD constraint.

To overcome the Maximum Stack Depth (MSD) constraint
in SR-MPLS, a new type of SID, named Targeted SID (TSID),
is defined in [161]. A TSID is a local segment that is asso-
ciated with a sequence of SIDs. The instruction related to a
TSID consists of replacing it in the SL with the associated
sequence of SIDs. By using a TSID, it is possible to reduce
the length of an SL at the cost of introducing a new flow
state in the node that implements the instruction related to the
TSID. For this reason, the authors of [161] propose two differ-
ent optimization problems that allow a trade-off between the
benefits and the costs of the TSID tool. The first optimization
problem takes as input the set of paths with an SL overcoming
the MSD bound and aims to minimize the number of defined

TABLE XI
CLASSIFICATION OF THE REFERENCES RELATED TO NETWORK

PROGRAMMING

TSIDs. The focus is then the reduction of the number of extra
flow states to be maintained by the network nodes. A second
optimization problem is presented with the goal of minimiz-
ing the PCEP sessions that have to be maintained between the
central controller (responsible for the TSID installation) and
the nodes where the TSIDs have to be installed. In this case,
the main idea is to install as many TSIDs as possible in the
same node.

A possible key to comparing the existing SL encoding tech-
niques is to focus on the method they use to obtain the final
list of SIDs. In particular, two different methods are exploited.
The first one is based on the Bellman-Ford principle, which
states that each sub path contained into a shortest path is in
itself a shortest path. Based on this consideration, these algo-
rithms explore the path to be encoded, starting from the source
node up to an intermediate one. Until the path between the
source and the intermediate node is found to be a shortest
path, they move on by considering the next node in the path.
When this condition does not hold, the first SID is found. The
process goes on until the full path is explored. SL encoding
tools presented in [15], [155], [157], [161] use this approach.
Furthermore, it is interesting to emphasize that all the works
using this approach do not allow the use of ECMP in the
underlay.

The second type of approach consists of the creation of an
auxiliary graph to represent the underlay paths. Specifically,
an arc of the auxiliary graph is an entire path in the under-
lay. This type of approach is used in [156], [159]. The main
difference between the solutions presented in these two works
is that, in [156] the end to end path is encoded by applying
the Dijkstra algorithm over the auxiliary graph, while in [159]
the problem is modeled as a Multi Commodity Flow over the
auxiliary graph. As a consequence, the use of multiple SLs to
steer a single flow is allowed also in [159].

F. Network Programming

Despite the fact that Network Programming is the most
attractive and innovative feature of SR, we have found only
eight papers related to this topic. As shown in Table XI,
these works can be classified in Service Function Chaining
related ones, or operational function. The latter are aimed at
implementing operational functions, such as a firewall, a load
balancer and a zero-loss VM migration tool, by exploiting the
network programming feature of SR. In the following para-
graphs we provide a brief overview of the references classified
as Network Programming related works.

In [162] the Linux SRv6 implementation described in [183]
is enhanced introducing the support for Service Function
Chaining. In more detail, the Linux kernel provides an API to
map a service segment, i.e., the identifier of a network service

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 207

running on a Virtual Machine. The experimental evaluation
shows that the impact of SR operations and service segment
processing on the packet forwarding capabilities is limited,
i.e., with a reduction lower than 10%.

The architecture of a network domain supporting Service
Function Chaining (SFC) through SRv6 is investigated
in [163]. The authors mainly focus on the implementation
of a VNF node able to host multiple VNF instances. The
main components of the VNF nodes are the SR/VNF con-
nector, in charge of logically connecting the SR routing with
local VNFs, and the VNFs, supporting specific network func-
tions. The VNFs can be SR-aware or SR-unaware: i) SR-aware
VNFs can process the information contained in the SR header
(SRH) of incoming packets; ii) SR-unaware VNFs are not
able to handle the SRH. Thus, in order to correctly apply
the VNF to the original packet, the SR/VNF connector must
pre-process the packet by removing the SR encapsulation, and
then re-apply it when the packet is returned by the VNF. The
authors propose a Linux-based implementation of a VNF node
supporting both SR-aware and SR-unaware VNFs. In more
detail, using the netfilter framework, a new kernel module
called srext (Segment Routing EXTensions) is implemented
to act as a SR/VNF connector and to support SR-unaware
VNFs. A virtualized testbed based on Virtualbox and Vagrant
is realized to evaluate the processing overhead introduced by
the proposed implementation with respect to a classic IPv6
forwarding solution.

SRV6Pipes [164] is an extension of the IPv6 implementa-
tion of Segment Routing in the Linux kernel, which enables
chaining and operation of in-network functions operating on
streams. SRv6 is used to enforce an end-to-end path between
the client and the server passing through the equipment hosting
the networking functions. The rationale behind SRv6Pipes lies
in the fact that some network functions need to include a TCP
implementation to work on the streams. SRv6Pipes leverages
“the TCP stack that is already present in the Linux kernel”
and implements a transparent TCP proxy to offload the TCP
functionalities to it and terminate the TCP connections where
a network function is deployed. In this way, it is possible to
expose to the network functions the bytestreams they need to
process. Special addressing is used to specify network func-
tions and their parameters. In particular each proxy exposes
an 80 prefix. The first 80 bits are used to traverse the proxy,
the following 16 bits are used to identify the network function
and the remaining ones are used to specify the parameters of
the function.

The concept of SR Aware VNF, as an application that is able
to process the SR information in the packet, is defined in [165].
In the same work the implementation of an SR Aware (SERA)
Firewall application is also proposed. The SERA Firewall is
able to work both as a legacy firewall (basic mode), or define
filtering rules that also include condition on the SR fields
(advanced mode). In the basic mode, it can apply the normal
firewall processing to the original packets even if they have an
SR based SFC encapsulation. It means that the filtering rules
are applied to the original values of the packet header (the SR
related fields are transparent). In the advanced mode, SERA

offers new matching capabilities and new SR specific actions
that allow fields in the SR Header to be modified.

Segment Routing Load Balancing (SRLB) [166] is an
Application-aware load-balancer that avoids cost due to mon-
itoring tasks. It is thought to work in the context of a Data
Center network, where several instances of the same appli-
cation are instantiated in different host machines. Each host
machine is equipped with a VPP based virtual router which
dispatches packets between physical NICs and application-
bound virtual interfaces. The Load Balancer (LB) is located at
the edge of the Data Center network. A request for an appli-
cation is represented by the first packet sent from the client to
the application server (generally a syn message). When a new
request arrives at the LB, the Service Hunting function, which
consists of finding a server that can serve the current request, is
executed. LB exploits SR to query a subset of servers that host
the requested application. Specifically, LB encodes the set of
randomly selected potential servers in the segment list before
encapsulating the first packet of the request. When the first
server receives the packet, it can decide whether to deliver it
to the application, and consequently assign to it the processing
of this request, or it can forward the packet to the next server in
the segment list. The decision about whether to accept/refuse
a request is taken according to a connection acceptance policy
which takes into account the internal state of the application
(CPU usage, memory usage, etc.).

A new architecture for the Content Delivery Networks
(CDNs) building upon the results of [166] is described
in [167]. In this new paradigm, CDN decisions (cache vs ori-
gin servers) are offloaded to the data plane. This architecture
is based on two fundamental pieces: i) chunk-level content
addressing and ii) in-network server selection. The first is real-
ized by assigning a unique and globally routable IPv6 address
to each chunk. Instead, the in-network server selection lever-
ages these identifiers exposed as IP addresses to make in-band
forwarding decisions, which are later bound to a SRv6 steer-
ing policy. In particular, upon arrival of a request at a CDN
proxy, the IPv6 identifier is used by the prediction engine
to perform cache admission by estimating the popularity of
requests with a Least-Recently-Used (LRU) filter. If this is not
available (cache miss), 6LB [166] is used to forward requests
directly to the origin servers instead of proxying them at the
cache. According to the authors, this mechanism allows the
load on the edge cache to be reduced and negative effects on
the Quality of Experience to be avoided.

An SR based live migration technique achieving zero packet
loss is proposed in [100]. The starting point is an SRv6 enabled
Data center network. Two new SR functions are defined and
used in the process of VM live migration. The first one is for-
ward to local if present, which is a conditional version of the
END behavior described in Section II-C. Specifically, in case
the last SID in the SL is locally available, then the packet is
directly processed, thus ignoring possible intermediate SIDs.
The second one is buffer and forward to local. This forces
the node to inspect the last SID, and if it is not locally avail-
able, the packet is buffered until the SID becomes available.
Assuming that a VM is migrated from host A to host B, all

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

208 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

requests received by the Data center gateway are then tun-
neled during the migration process using an SL whereby: i) the
first SID points at the forward to local if present function
implemented at A, ii) the second SID points at the buffer and
forward to local function implemented at B, and iii) the last
SID is referred to the VM. In this way, until the VM is avail-
able at A, the packets are directly delivered to the VM thanks
to the forward to local if present function. Then, during the
downtime, the packets directed to the VM are buffered at B
thanks to the buffer and forward to local. Finally, when the
VM becomes available at B, the buffered packets, as well as
new arrivals, are directly delivered to the VM at B. In this
way it is possible to implement VM live migration having no
packet loss.

SRNK [21] is an SR-proxy for legacy VNFs which are
unaware of SRv6 technology and expect to process traditional
IP packets. SRNK extends the implementation of SRv6 in the
Linux kernel [193] adding the support for the End.AS and
End.AD behaviors. The performance of the proposed solution
has been evaluated by the authors, who identified a poor scal-
ability with respect to the number of VNFs to be supported
within an NFV node. With an enhancement of the Linux Policy
Routing framework, they provided a second design SRNKv2,
which does not depend on the number of supported VNFs
in a node. They compared the performance with a reference
scenario not performing the encapsulation and decapsulation
operation and demonstrated that the overhead of SRNKv2 is
very small, on the order of 3.5%.

The Service Function chaining topic is investigated in [21],
[162], [163], [164]. At the same time, there are some impor-
tant differences that have to be highlighted. An API in the
SRv6 implementation of the Linux kernel to map the service
segments is defined in [162]; it mainly deals with SR-aware
VNFs. Instead, a SR-proxy for SR-unaware VNFs is proposed
in [21]. The work in [163] implements a solution able to deal
with both SR-aware and SR-unaware VNFs, but with respect
to the previous works it extends the netfiler framework, while
the previous solutions are extensions of the SRv6 implemen-
tation in the Linux kernel. Finally, a further extension of the
SRv6 implementation in the Linux kernel is described in [164],
but it enables the chaining of in-network functions operating
on streams, thus working at a higher level (Transport layer)
with respect to the previous works.

G. Performance Evaluation

In this subsection, we report four papers dealing with the
performance evaluations of SRv6 implementations.

SRPerf [168], [171] is a performance evaluation frame-
work for software and hardware implementations of SRv6.
SRPerf is able to perform different benchmarking tests such as
throughput and latency. At the time of writing, the framework
supports Linux kernel and VPP implementations of SRv6. The
architecture of SRPerf can be easily extended to support new
benchmarking methodologies as well as different SRv6 imple-
mentations. The framework supports two different metrics to
characterize the throughput of a SRv6 enabled node: No-Drop
Rate (NDR) and Partial Drop Rate (PDR). PDR is defined

as the highest throughput achieved without dropping packets
more than a predefined threshold. NDR, which corresponds to
the Throughput defined by RFC 1242 [194], can be described
as PDR with a threshold of 0%. The framework orchestrates
all aspects of an experiment starting from the setup of the
testbed to the enforcement of SRv6 configurations, thus reliev-
ing the experimenter from a significant configuration effort.
SRPerf has been used to evaluate the performance of SRv6
implementations in the Linux kernel and in VPP. Moreover,
in [171], the authors propose the evaluation of an enhanced
Linux kernel, which has been obtained by adding the imple-
mentation of missing behaviors and fixing the implementation
of existing ones.

A solution whereby low-level network functions, such
as SRv6 encapsulation, are offloaded to Intel FPGA pro-
grammable cards is presented in [169]. In particular, the
authors partially offload the SRv6 processing from a VPP
software router to the NICs of the servers, thus increasing
data-path performance and at the same time saving resources.
These precious CPU cycles are made available for VNFs or
for other workloads in execution on the servers. Tests results
of the End.AD use case show in the worst scenario a CPU
saving of 67.5%. Moreover, the maximum throughput achiev-
able by a pure VPP solution with 12 cores is obtained by the
accelerated solution using only 6 cores.

The use of SRv6 as alternative user plane protocol to
GTP-U [99] is studied in [170]. Firstly, the authors propose
an implementation of the GTP-U encap/decap functions and
of the SRv6 stateless translation behaviors defined in [24].
These behaviors guarantee the coexistence of the two proto-
cols, which is crucial for a gradual roll-out. The authors used
programmable data center switches to implement these data
plane functionalities. Since it is hard to get telemetry from a
commercial traffic generator when a translation takes place,
the authors injected timestamp with a resolution of nanosec-
onds to measure the latency of SRv6 behaviors. Finally, they
measured throughput and packet loss under light and heavy
traffic conditions in a local environment. Results show no
huge performance drop due to the SRv6 translation. Moreover,
the latency of the SRv6 behaviors is similar to the GTP-U
encap/decap functions.

H. Miscellaneous

In this section, we have included all works not belonging to
previous categories. In general, these works are very different
among them and have only Segment Routing in common.

A tutorial on Segment Routing and a survey on research
activity covering more than 50 scientific papers is provided
in [14]. The tutorial part focuses on the SR-MPLS data plane
part and does not consider the recent SRv6 data plane. SR stan-
dardization efforts, implementation activities and deployments
are not specifically analysed in [14].

The Control Exchange Point (CXP) defined in [172], even
if not explicitly based on SR, proposes the concept of path-
lets [173], which closely resembles the idea of the list of
instructions present in the SR architecture. The main goal of
Control Exchange Point (CXP) is to provide services with

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 209

QoS constraints across domains. This is achieved stitching the
pathlets which are partial paths advertised by domains. An
ISP abstracts its network as a set of pathlets connecting the
network edges, and then advertises these on the northbound.
More specifically, this abstraction is realized with tunnels
instantiated with OF, MPLS, optical paths and so on. The
pathlet abstraction is bundled with properties that the ISP pro-
vides such as latency, costs, available bandwidth and so on.
A CXP is an external entity acting as brokering layer and
providing inter-domain routing coordination based on SDN
APIs. The general idea seems to be in line with SR archi-
tecture presented so far, and it can be implemented using SR
data-plane technologies.

An alternative implementation of SR architecture through
Omnipresent Ethernet (OE), which is a modification of Carrier
Ethernet architecture, is proposed in [174], [175], and [176].
It is based on source-routed, binary-routed labels embedded in
an Ethernet frame. Details on the implemented SR header are
provided in [176]. The authors of the aforementioned works
address scalability issues of SR in the context of multi-domain
scenarios from two different points of view: packet header
size and the number of table entries required at the edge
nodes. They realize also a testbed to validate the implemen-
tation of the proposed schemes. However, further analysis is
not possible since the solution builds upon Carrier Ethernet
hardware.

The TE problem for SR is analyzed from a different per-
spective in [177]: the authors evaluate the influence of the
metrics used to define the cost of the links. Key findings of
the study indicate that the routing metric can influence short-
est path based TE. Very simple and reasonable metrics such as
inverse capacity work as well as a complex optimized metric.
They allow this to be close to the optimum with respect to
the most common traffic engineering objective of minimizing
maximum utilization. Finally, if other objectives are introduced
besides optimizing link utilization, the choice of the metric is
more important and there are significant differences between
the metrics. Although the work deals with Traffic Engineering,
it does not provide a new heuristic nor a different way to
address the problem, rather it is simply a study on the influ-
ence of the routing metrics. Therefore we have not classified
it in the TE category.

In [178], the authors take advantage of Segment Routing
to build an SR-based Multicast delivery mechanism to effi-
ciently provide live video streaming services for 5G users. SR
is used to alleviate the rule update overhead and to avoid the
explosion of routing tables in the devices. The work builds
upon an interesting problem, although it does not provide
a lot of details about SR implementation. The work mainly
focuses on the problem of building an efficient Multicast tree
to further reduce the rules update due to the user movements
(Handover-aware Multicast tree).

An Industrial IoT (Internet of Things) scenario with an
extremely large number of objects to be connected, also tak-
ing into account their mobility, is considered in [179]. The
proposed solution relies on Segment Routing for enabling scal-
ability and flexibility in packet forwarding. This is in particular
to bypass the overloaded links and to achieve load balance.

A novel distributed processing model for IoT, based on
the extension of the SRv6 Network Programming Model, is
proposed in [180]. The idea is that each IoT node offers an
abstract machine that can be programmed using an Instruction
Set Architecture. The program can be embedded in an SRv6
segment list. An SRv6 packet carries both the program and
the execution state. It can travel across IoT nodes, reading and
writing the I/O ports of the device and executing computations
as dictated by the program in the packet itself.

V. SR IMPLEMENTATIONS AND DEPLOYMENTS

In this section, we describe the implementation results
related to SR. We will mostly focus on the SRv6 version,
which is attracting a lot of interest and development efforts.
The SR-MPLS version is already in a mature development
phase, well supported by the main core router vendors (e.g.,
Cisco, Huawei, Juniper). SR-MPLS can be incrementally
deployed in current IP-MPLS backbones, as it only requires
software updates to networking devices. Operators can migrate
to SR-MPLS to simplify the control plane operations and
improve the scalability. As for the SRv6 data plane, there are
two main Open Source data plane implementations for soft-
ware routers: the Linux kernel implementation (described in
Section V-A) and the implementation done by the FD.io VPP
project (described in Section V-B). Section V-C presents other
open source implementations, mostly related to research activ-
ities. Finally, in Section V-D we briefly analyze the hardware
implementations of SRv6, the inter-operability efforts done by
several vendors and the current deployments of SRv6 in large
production networks.

A. Linux Kernel

The SRv6 capabilities were first added in Linux kernel
4.10 [193]. Kernel 4.10 includes the support for some SRv6
Policy Headend behaviors (formerly known as transit behav-
iors) (e.g., H.Insert and H.Encaps). The SRv6 Policy Headend
behaviors are implemented as Linux Lightweight Tunnel
(LWT). The implementation of the iproute2 [195] user space
utility is extended to support adding a localsid associated with
an SRv6 Policy Headend behavior [196]. SRv6 localsids with
SRv6 Policy Headend behavior are added as IPv6 FIB entries
into the kernel main routing table. Kernel 4.14 is another
important milestone for the SRv6 support in Linux: a set of
SRv6 endpoint behaviors have been implemented by adding
a new type of LWT [197]. The supported SRv6 endpoint
behaviors are End.X, End.T, End.DX2, End.DX4. End.DX6,
End.DT6, End.B6, and End.B6.Encaps. Some new SRv6 Policy
Headend behaviors have been added (e.g., H.Encaps.L2). The
iproute2 implementation was extended as well [195], [198].
The SRv6 capabilities in Linux kernel were extended in kernel
4.16 [199] to include the netfilter framework [200]. A new ipt-
ables match extension, named srh, was added to the kernel
to support matching of SRH fields. The srh match extension
is a part of the SERA firewall [165] and supports match-
ing all the fields of the SRH. The implementation of iptables
user space utility [201] is extended with a new shared library

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

210 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

(libip6t_srh) that allows to define iptables rules with srh
options.

Linux Kernel 4.18 [202] has added few more features both
in the core SRv6 stack and in the netfilter framework. In the
netfilter framework, the srh match is extended to provide the
matching of SRH’s Previous SID, Next SID, and Last SID. The
iptables user space utility is updated as well to support the new
matching options. Instead, a new feature is added in the Linux
SRv6 stack to support custom SRv6 network functions imple-
mented as small eBPF [185] programs. An extension of [3] is
provided in [108], with the introduction of a new End behav-
ior, i.e., the so called End.BPF. From an implementation point
of view, a new hook for BPF is added to the SRv6 infrastruc-
ture that can be used by network operators to attach small
programs written in C to SRv6 SIDs which have direct access
to the Ethernet frames. Moreover, specific SRv6-BPF helpers
have been provided in order to allow End.BPF functions to
execute basic SRv6 actions (End.X, End.T and many others)
or adding TLVs. This allows custom SRv6 Policy Headend
behaviors to be implemented (mainly to extend SRv6 encapsu-
lation policies implemented by the kernel). The tutorial about
eBPF extensions to SRv6 is available at [203]. The source code
of the sample applications described in [108] is freely avail-
able at [204]. Instead, the eBPF-based fast-reroute and failure
detection schemes described in [138] is available at [205].

SR-MPLS has not received the same attention of the SRv6
implementation in the Linux kernel. All the features which
are available are mostly related to the well-established MPLS
forwarding. They have been made available from the version
4.1 of the kernel. In particular, kernel v4.1 has seen the intro-
duction of the MPLS Label Switching Router (LSR) behavior.
MPLS capabilities have been extended later in the kernel v4.3.
LWT framework and MPLS tunnel were added allowing the
implementation of the MPLS Label Edge Router (LER) behav-
ior. Finally, MPLS multipath functionality has been added only
in the version 4.5 of the kernel.

In general, the Linux kernel lacks of the support of the
SR policy framework which is instead available for FD.io
VPP implementation (Section V-B). This means that at the
time of writing is not possible to create an SR policy (both
MPLS and IPv6) and associate a BindingSID to it nor instanti-
ate SR-MPLS/SRv6 steering rules pointing to SR-MPLS/SRv6
policies.

B. FD.io VPP

FD.io Vector Packet Processing (VPP) [206] platform is an
extensible framework that provides out-of-the-box production
quality switch/router functionality that can run on commodity
CPUs. VPP 17.04 included the support for the SRv6 Policy
Headend (formerly known as transit) behaviors and most of
the endpoint behaviors defined in [3]. These behaviors are
implemented in dedicated VPP graph nodes. The SRv6 graph
nodes perform the required SRv6 behaviors as well the IPv6
processing (e.g., decrements Hop Limit). Whenever an SRv6
segment is instantiated, a new IPv6 FIB entry is created for
the segment address pointing to the corresponding VPP graph
node. Release 17.04 also brought SR headend capabilities to

VPP by introducing the concept of SR policy in the SRv6
implementation. In VPP, an SR policy is uniquely identified by
its BindingSID address, which serves as a key to a particular
SR policy. This is not compliant with the SR policy defini-
tion [33], but a reasonable shortcut considering the absence of
control-plane capabilities in VPP.

The SR policies in VPP support several SID lists with
weighted load-balancing of the traffic among them. When
a new segment list is specified for an SR policy, VPP pre-
computes the rewrite string that will be used upon steering
traffic into that SID list, either via an SR Policy Headend
behavior or a BindingSID. VPP then initializes one FIB entry
for the SR policy BindingSID in the FIB and an entry in a
hidden FIB table for the IPv6 traffic steered into the SR pol-
icy via an SR Policy Headend behavior. Each one of these FIB
entries points to the SR policy object, which in turn recurses
on the weighted segment lists.

Traffic can be steered into an SR policy either by sending
it to the corresponding BindingSID or by configuring a rule,
called steering policy, that directs all traffic transiting towards
a particular IP prefix or L2 interface into an SRv6 policy.
The latter mechanism is implemented as FIB entry for the
steered traffic in the main FIB to be resolved via the FIB
entry of the SR policy in the hidden FIB table. In this way, a
hierarchical FIB structure is realized: the traffic is not directly
steered over an SR policy, but instead directed to a hidden FIB
entry associated with the policy. This allows the SR policy to
be modified without requiring any change to the steering rules
that point towards it.

Release 17.04 has also seen the introduction of the SRv6
LocalSID development framework and the SR-MPLS imple-
mentation. The former is an API which allows developers to
create new SRv6 endpoint behaviors using the VPP plugin
framework. The principle is that the developer only codes the
actual behavior, i.e., the VPP graph node. Instead, the segment
instantiation, listing and removal are performed by the existing
SRv6 code. The SR-MPLS framework is focused on the SR
policies, as well on its steering. Likewise in SRv6, an SR pol-
icy is defined by a MPLS label representing the BindingSID
and a weighted set of MPLS stacks of labels. Spray policies
are a specific type of SR-MPLS policies where the packet is
replicated on all the SID lists, rather than load-balanced among
them. To steer packets in transit into an SR-MPLS policy, the
user has to create an SR-MPLS steering policy. Instead, oth-
ers SR-MPLS features, such as for example adjacency SIDs,
can be achieved using the regular VPP MPLS implementa-
tion. In release 18.04, service programming proxy behaviors
End.AS, End.AD and End.AM were introduced as VPP plugins
leveraging the framework described before.

C. Other Open Source Implementations

Several research efforts analyzed in Section IV have
released the components and the extensions realized for SR
as open source. Some of the them build upon the implementa-
tions described in the previous subsections, while other ones
propose alternative solutions. The SREXT module ([163]) pro-
vides a complementary implementation of SRv6 in Linux

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 211

based nodes. When it was designed, the Linux kernel only
offered the basic SRv6 processing (End behavior). SREXT
complemented the SRv6 Linux kernel implementation provid-
ing a set of behaviors that were not supported yet. Currently
most of the behaviors implemented in SREXT are supported
by the mainline of Linux kernel (with the exception of the SR
proxy behaviors). SREXT provides an additional local SID
table which coexists with the one maintained by the Linux
kernel. The SREXT module registers itself as a callback func-
tion in the pre-routing hook of the netfilter [200] framework.
Since its position is at beginning of the netfilter processing,
it is invoked for each received IPv6 packet. If the destina-
tion IPv6 address matches an entry in the local SID table, the
associated behavior is applied otherwise the packet will follow
the normal processing of the routing subsystem. The source
code of SREXT together with the Vagrant box are available
at [207]. Using the Vagrant box, it is possible to bootstrap
a small testbed in few minutes and start the experiments on
SREXT features.

FRRouting (FRR) [208] is an open source routing pro-
tocol stack for Linux forked from Quagga [209]. In FRR,
there is an experimental support [210] of the draft [25]
which defines the OSPFv2 extensions for Segment Routing
(SR-MPLS). At the time of writing, there is no support for
SRv6.

The SPRING-OPEN project [145] provides an SDN-based
implementation of SR-MPLS. The architecture is based on a
classic SDN control plane (logically centralized), built on top
of ONOS. Part of this work converged later in Trellis [189],
an open-source multi-purpose leaf-spine fabric supporting dis-
tributed access networks, NFV and edge cloud applications.
Trellis includes also the support of P4/P4Runtime [211], [212]
devices as well as Stratum [213] enabled devices. Trellis
has been used as underlay/overlay fabric in the CORD
project [214] which aims at redesigning central-office archi-
tectures. Recently, it has been integrated in the SEBA
project [215] which targets residential-access networks. All
the software stack and the documentation is freely available
on [216]. Moreover, a tutorial together with a ready-to-go VM
can be downloaded from [217].

PMSR ([15] and [114]) provides an open source imple-
mentation of SR-MPLS together with the realization of an
SDN control plane. The data plane leverages the OSHI archi-
tecture ([218], [219]) which combines an SDN data plane,
implemented with Open vSwitch [220], and OSPFv2 control
logic, realized with Quagga. This architecture is extended in
PMSR with the introduction of a Routes Extraction entity
which connects to Quagga and receives routes update using
the FPM interface provided by Quagga [209]. These routes
are then translated in SIDs and installed in the SDN data
plane as OpenFlow MPLS forwarding rules. Authors provide
a set of management tools [221] which assist experimenters
and relieve them from a huge configuration effort. A tutorial
to start working with PMSR is available on [222]; instead a
ready-to-go VM with all the dependencies installed can be
downloaded from [223].

Software Resolved Network (SRN) (described in [148]
and [149]) is a variant of the SDN architecture. The network

controller is logically centralized and co-located with a DNS
resolver and uses extensions of the DNS protocol to inter-
act with end-hosts. The Open vSwitch Database Management
Protocol (OVSDB) [224] is used to enable the communica-
tion between SDN controller and the network nodes: i) the
latter populates the distributed database with the topology
information and TE metadata; ii) the former once computed
the path, upon a request, populates the OVSDB instance
with the SRv6 Segment list matching the desired require-
ments. Finally, this is pulled by the access device which
enables the communication of the end-hosts. The source
code is freely available at [225]. An overview of the archi-
tecture can be found in [226]. A ready-to-go VM with
packaged experiments can be created using the instructions
in [227].

A classical SDN architecture for SRv6 technology is
proposed in [4]: a centralized logic takes decisions on the
Segment Lists that need to be applied to implement the
services, then the SDN controller, using a southbound API,
interacts with the SR enabled devices to enforce the appli-
cation of such Segment Lists. The code related to the SDN
architecture, i.e., the four different implementations of the
Southbound API and the topology discovery, can be down-
loaded from the page of the project [228]. In addition the
authors, to support both the development and testing aspects,
have realized an Intent based emulation system to build real-
istic and reproducible experiments relieving the experimenters
from a huge configuration effort. The emulation tools are
available at [229].

SRV6Pipes [164] is an extension of the SRv6 implemen-
tation in the Linux kernel [193] which enables chaining
and operation of in-network functions operating on streams.
SRv6 policies are installed using the SRN architecture [148]
described earlier in this section. However, SRN components
are not mandatory since SRv6 policies can be installed in the
edge nodes using the iproute utility. SRv6Pipes is composed
by multiple components that necessarily need to be installed
in the target machines: TCP proxy, patched Kernel and user
space utilities. The minimum components can be downloaded
from the repository of the project [230]. The complete code
of the experiments together with a walkthrough can be found
in [231].

SRNK [21] extends the implementation of SRv6 in the
Linux kernel [193] adding the support for the End.AS and
End.AD behaviors. The source code is freely available at [232],
where it is possible to download the patched Linux kernel
(starting from 4.14.0 branch) and the patched iproute2 (starting
from iproute2-ss171112 tag). Instead, the detailed configura-
tions steps of the SR-proxy are reported in [21, Appendices
A and B].

The implementation of a path computation element able
to compute robust disjoints SR paths, which remain dis-
joint even after an input set of failures without the need of
configuration changes, is described in [133]. The java imple-
mentation of the algorithms, the public topologies used for
the experiments, the experimental results and a detailed walk-
through to replicate the experiments of the paper are available
at [233].

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

212 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

D. Hardware Implementations, Inter-Operability Efforts and
Deployments for SRv6

An overview of IPv6 Segment Routing implementa-
tions is proposed in [234]. The work also describes some
interoperability scenarios that have been demonstrated in pub-
lic events and reports a list of recent SRv6 deployments in
production networks.

With regards to the hardware implementations, eight ven-
dors that declare production support of SRv6 for their hard-
ware, are mentioned in [234]. The platforms ASR 1000,
ASR 9000, NCS 5500, NCS 540 and NCS 560 are reported
as the Cisco Routing platforms supporting SRH processing;
ASR 9000 and NCS 5500 being deployed in production
networks. As for Huawei, the reported platforms are: ATN,
CX600, NE40E, ME60, NE5000E, NE9000 and NG-OLT
MA5800, all with VRPV8 shipping code. The programmable
devices based on Tofino chipset [235] can be programmed
to support SRH processing. This is also true for the refer-
ence software implementation of the P4 devices [236], the
Stratum based devices [213] and all the programmable chipsets
(Cavium Xpliant [237] to give an example). Other SRv6 hard-
ware implementations are reported for the Prestera family of
Ethernet switches by Marvell, for the SkyFlux UAR500 router
by UTStarcom. Spirent and Ixia also support SRv6, respec-
tively in their TestCenter and IxNetwork testing platforms.
Finally, as reported in [2], Juniper’s Trio and vTrio NPUs
have an experimental support of SRH (SRH insertion mode
and End processing of interfaces addresses).

Three interoperability events are listed in [234]. The first (in
chronological order) interoperability testing scenarios show-
cased at the 2017 SIGCOMM conference [238]. The set
of experiments included a L3 VPN scenario augmented
with TE functionality and services function chaining pro-
cessing. SREXT, VPP, Linux kernel, Barefoot Tofino, Cisco
NCS5500 and Cisco ASR1000 routers were the network
devices implementing SRv6 behaviors. Iptables (firewall) and
Snort (Intrusion Detection System) have been used as ser-
vice functions. Finally, Wireshark and tcpdump have been
leveraged to verify the proper operations of the network.
The second set of interoperability test scenarios were run
in March 2018 by the European Advanced Networking Test
Center (EANTC) and their results [239] were presented at
the MPLS + SDN + NFV World Congress conference in
April 2018. In these tests, the implementations of CISCO and
UTStarcom and the testing platforms of Ixia and Spirent were
involved. The tests concerned Layer 3 IPv4 VPNs based on
SRv6 (also including Traffic Engineering features in the SRv6
underlay) and SRH based Topology Independent (TI-LFA)
Fast Reroute mechanisms. The third set of interoperability
test scenarios were run in March 2019 and their results [239]
were presented at the MPLS + SDN + NFV World Congress
conference in April 2019. In these tests, a routing platform
from Cisco (NCS 5500) and two from Huawei (NE9000-8
and NE40E-F1A) were involved. The tests concerned Layer 3
IPv4 and IPv6 VPNs based on SRV6, the validation of some
SRv6 behaviors, SRv6 based fast reroute and OAM procedures
(Ping and traceroute) based on [49].

Eight large scale deployments of SRv6 are listed in [234],
involving the following nationwide operator networks:
Softbank (Japan), China Telecom (China), Iliad (Italy), LINE
Corporation (Japan), China Unicom (China), CERNET2
(China), MTN Uganda Ltd (Uganda), NOIA Network. We
refer the reader to [234] for the details about these deploy-
ments.

The draft [234] elaborates also on the open source appli-
cations supporting the processing of the IPv6 Segment
Routing header, among which we mention the well known
Wireshark [240], tcpdump [241], iptables [242], nftables [243]
and snort [244].

The implementation of a solution that offloads the SRH
encapsulation/decapsulation operations and the SRv6 cache
handling from the servers to the Intel FPGA programmable
cards, is reported in [169]. Open Programmable Accelerator
Engine [245] developed by Intel and the VPP software router
are used as basic frameworks. The authors defined a new func-
tional splitting of the SRv6 behaviors between the hardware
and the software and the inter-working is realized introduc-
ing new graph nodes in VPP. These extensions to the VPP
graph are able to encode/decode/process metadata exchanged
between VPP and the Intel cards. For example, in the ingress
direction, the card performs a SID lookup, and based on
lookup result can strip the outer IPv6/SRH headers and add its
own metadata header. Since VPP is augmented with new nodes
is able to process this meta-header and the inner packets. As
explained above, the solution partially offloads the functions to
the hardware for example Route lookup and in general control
plane functions are still done in software by VPP leveraging
the CPU of the servers.

VI. LESSONS LEARNED

In this section we describe the main outcomes learned
during the survey activity. We first focus on some gen-
eral considerations, then we elaborate on research related
outcomes.

Despite the fact that the concept of Source Routing had
already been proposed in the past (late 70âĂŹ), included in
the initial specifications of IPv4 and implemented by some
vendors, it was rarely deployed by network operators, mainly
due to security issues. Novel SR architecture provides a secure
solution for the deployment of the concept of source routing
in operator’s networks. SR also provide a scalable solution: i)
the number of flow states to be maintained in network nodes
is highly reduced, ii) only border nodes are involved by classi-
fication procedures and transit nodes do not maintain any flow
state information.

SR-MPLS was the first deployment of SR concepts, only
in the last few years SRv6 architecture has been defined. SR-
MPLS architecture has, in our view, the main merit of not
requiring any change to the MPLS forwarding plane. In this
way, SR-MPLS represents a simple solution for the service
provider with an IPv4 infrastructure. The same considerations
apply to SRv6, the transition strategy from a classical IPv6
network to an SRv6 one can be realized in successive steps
with no service disruption.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 213

We have also noted that SR-MPLS implementation has not
received the same attention as SRv6 is receiving from the
research community. We believe that having available differ-
ent open source implementations (Linux kernel and VPP) from
the beginning has contributed decisively to this. Another rea-
son is to be found in the required control plane extensions.
Even though SR-MPLS has been the first implementation, the
researchers had to struggle to have something to work with.
MPLS data plane implementation has been unstable for a long
time in the Linux kernel, and a completely revised imple-
mentation has been merged quite recently. Finally, SR-MPLS
requires extensions to the routing protocols and there were no
such extensions at the time that SR was initially being studied.

One of the main features of SR is the native support of
NFV/SFC scenarios. Furthermore, the Network Programming
model of SRv6 offers the possibility of virtualizing any service
by combining the basic functions in a network program that
is embedded in the packet header (implementing a network
programming model on MPLS dataplane would not be scalable
despite its feasibility). In this context, we believe that SRv6
can simplify network architectures with respect to SR-MPLS,
since the use of different tunneling solutions can be avoided.
As such, SRv6 is an attractive choice for operators that are
deploying new networks or planning the evolution of their
networking architectures.

During the revision of the Internet Drafts, RFCs and patents
we noticed that there is a clear trend in the standardization
activities to “follow” patents. In facts, most patents have also
been standardized later or have been included in several stan-
dardization activities led by the same vendors. The most recent
patents also highlight that SR can have a significant role in the
deployment of networking core technologies, such as network
slicing, 5G and cloud-based networking.

Regarding the outcomes of the research activity and follow-
ing the classification provided in Section IV, we will briefly
describe the most significant lessons coming from different
research categories.

Research activity related to the Monitoring category
(Section IV-A) highlights a significant interest towards solu-
tions to improve existing monitoring tools or to define new
tools exploiting SR features. Contrarily, there are lack of works
focused on SR failure monitoring, such as misconfigurations,
undefined SIDs, SR related black holes, packet loss, etc.

Moving to the Traffic Engineering category (Section IV-B),
the main outcome of the reviewing activity is that one of the
interesting features of SR routing, i.e., the capability of split-
ting the traffic over several SLs, is not exploited in practice.
This unexpected outcome can be motivated by the capability
of obtaining an high routing flexibility also with a single SL
for each flow; in any case, the use of multiple SL per flow can
be considered in the future to further improve TE solutions.

An additional consideration comes from the Centrally
Controlled Architecture category (Section IV-D): the scien-
tific community is oriented towards a centralized control plane
for SR-MPLS networks, even if a distributed control plane
is also supported. However, this approach requires extensions
in the routing protocols in the case of MPLS, which repre-
sented a major barrier, thus causing many works to decide to
leverage the openness of the SDN approach to overcome such

limitations. It is also interesting to note that same trend cannot
be found with works related to SRv6, where such extensions
in routing protocols are not strictly required.

The Path Encoding (Section IV-E) related works highlight
two interesting outcomes. As first, the large effort taken by
researchers in reducing the overhead in the packet headers
demonstrates that is seen as a limiting factor for SR deploy-
ments. Two schools of thought can be found: i) optimize the
translation of the paths into SLs; ii) reduce its impact using a
smarter encoding of the paths into segment lists.

The second lesson learned is related to the adj-sids; they
are largely used by path encoding works to increase routing
flexibility, while they are not fully exploited in TE works: the
reason could be that including adj-sids leads to an increase in
complexity for optimization models used by TE algorithms.
It will be interesting to investigate the impact of adj-sids in
novel SR-based TE solutions both in terms of performance
and complexity.

The works related to the Network Programming category
(Section IV-F) suggest that this SRv6 feature opens up a wide
range of research opportunities: it can be applied in different
use cases, from Service Function Chaining to the implemen-
tation of complex operations (such as the management of
VM migration in a DC network). We believe that network
programming will attract significant attention in the coming
years.

Finally, an interesting consideration of the Performance
Evaluation category (Section IV-G) is related to the topics
of the analyzed works. All papers concentrate on the data
plane, while the only work studying control plane performance
is [4] (actually only a performance evaluation of different
southbound implementations has been conducted).

VII. FUTURE RESEARCH DIRECTIONS

Most of the SR works we have reviewed have focused on
the definition of novel solutions for classical network prob-
lems (such as Monitoring, Traffic Engineering and Failure
Recovery) or on optimization of specific SR procedures (such
as Path Encoding). In general, these works showed that SR
can provide significant enhancements with respect to other
solutions and we believe that there is still room and interest
for extending the achieved results in these areas. In addition,
we try to identify and discuss a set of research directions for
Segment Routing that are definitely worth exploring in the
near future: i) Service Function Chaining support, ii) SRv6
end-host implementation aspects, iii) Cloud Orchestration,
iv) Integration with Applications, v) 5G, vi.) IoT. All these
research areas are based on SRv6, i.e., on Segment Routing
over the IPv6 data plane, as we believe that the future evolution
of Segment Routing will be based on SRv6.

A. Service Function Chaining Support

The Programmability feature of SRv6 represents an
enabling factor for the implementation of Network Function
Virtualization (NFV) and Service Function Chaining (SFC) in
provider networks. In this regard, new abstraction models for
the management of Network Functions by means of dedicated
SRv6 control procedures could be studied.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

214 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

TABLE AI
TABLE OF THE ABBREVIATIONS

B. SRv6 End-Host Implementation Aspects

Another interesting topic is related to the implementation
of SRv6 in end-hosts. One aspect is related to moving SRv6
functions in end-hosts from the software closer to the hardware
with SmartNICs. Programmable NICs allow to implement

network traffic processing on the NIC instead of using the
CPU of the end-nodes/devices. Another aspect is related to
exploiting the recent advances in Linux kernel networking for
fast packet processing, namely eBPF [185] and XDP [246] for
implementing SRv6 functions.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 215

C. Cloud Orchestration

The third research opportunity regards integration
of the SRv6 technology into Cloud orchestrators like
OpenStack [247] and Kubernetes [248]. Considering Data
Center networking scenarios, it will be possible to replace
actual data plane mechanism based on legacy tunneling
mechanisms like VXLAN with SRv6, with a drastic simplifi-
cation of the network stack: the needed information will be
integrated into SRv6 SIDs and/or in the TLV field, with no
need of dedicated headers for tunneling.

D. Integration With Applications

Allowing direct interaction of applications with SRv6
features could enable innovative services and improve the
efficiency of existing ones. Applications could use SRv6
SIDs to express their service requirements and to inter-
act with network features, dynamically participating in the
definition/composition of network services. To achieve this
interaction, first the APIs of the operating system (e.g., Linux)
need to be extended, then SRv6 aware applications need to be
developed.

E. 5G

SRv6 is being considered for the data plane of future
releases of 5G networks thanks to its stateless traffic steer-
ing and programmability features. On one hand, SRv6 could
support 5G features like network slicing, on the other hand, it
will be important to evaluate the performance of SRv6 based
data plane, to verify that strict 5G constraints on latency are
met.

F. Internet of Things

Considering the problem space of Internet of Things,
which includes scalability aspects, routing aspects, interactions
between networking and application layers, the application of
the SRv6 architecture seems very promising.

VIII. CONCLUSION

Segment Routing technology is based on source routing
and tunneling paradigms. Segment Routing supports services
such as Traffic Engineering, Virtual Private Networks, Fast
Restoration in IP backbones and datacenters, and has proved
to be flexible in supporting new use cases. Moreover, SR archi-
tecture reduces the amount of state information that needs to
be configured in the core nodes.

SR-MPLS and SRv6 are the two data plane instantiations
of SR architecture. This is the first tutorial and survey work
covering in detail the novel SRv6 solution (i.e., SR over IPv6
data plane), which represents the most promising implemen-
tation for future research activity. SRv6 provides a consistent
solution for solving long-term problems in IP networks, sim-
plifying protocol stacks and improving scalability with respect
to current solutions.

In the survey we covered standardization work, patents and
research activities related to Segment Routing. We also con-
sidered the recent deployments of SR in real networks and
existing SR implementations, with a focus on the open source
tools that can support SR research and development activities.

As for research activities, we covered about 90 scientific
papers related to SR and proposed a taxonomy for their clas-
sification. One of the main outcomes of the classification was
to identify relationships between SR features and research
topics. For instance, the source routing paradigm has turned
out to be the key enabling feature for the implementation of
Traffic Engineering solutions in an SR network, while the
routing flexibility feature is mainly used to realize network
monitoring tools. We also identified the most interesting SR
standardization documents and provided a taxonomy for their
classification. A number of patents related to Segment Routing
has also been discussed.

The review of SR implementations has highlighted the
maturity of open source solutions based on Linux kernel and
VPP. Both Linux and VPP, widely used by the research and
developer community, allow the easy deployment of a virtual
SR playground. As part of our survey activity we have also
reported our vision and our experience in terms of lessons
learned and future research topics.

We hope that this tutorial and survey work will draw further
attention from the research community to Segment Routing
technology and motivate new researchers to join the develop-
ment of new use cases and standardization efforts. We have
anticipated future research directions which can be taken as
starting points.

New versions of this survey will be available at [249].
Moreover, we strongly encourage the community to provide
feedback and updates as new research works and SR deploy-
ments come out and technology evolves. For this reason we
have created a public repository,2 where interested researchers
can contribute and update this documentation.

APPENDIX A

See Table A1.

REFERENCES

[1] A. Bashandy, C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, and
R. Shakir, “Segment routing with the MPLS data plane,” IETF, RFC
8660, Dec. 2019. [Online]. Available: https://tools.ietf.org/html/rfc8660

[2] C. Filsfils, D. Dukes, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer,
“IPv6 segment routing header (SRH),” IETF, RFC 8754, Mar. 2020.
[Online]. Available: https://tools.ietf.org/html/rfc8754

[3] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li,
“SRv6 network programming,” Internet Eng. Task Force, Fremont,
CA, USA, Internet-Draft draft-ietf-spring-srv6-network-programming,
Jan. 2020. [Online]. Available: https://tools.ietf.org/html/draft-ietf-
spring-srv6-network-programming

[4] P. L. Ventre, M. M. Tajiki, S. Salsano, and C. Filsfils, “SDN archi-
tecture and southbound APIs for IPv6 segment routing enabled wide
area networks,” IEEE Trans. Netw. Service Manag., vol. 15, no. 4,
pp. 1378–1392, Dec. 2018.

[5] J. Postel, Ed., “Internet protocol,” IETF, RFC 791, Sep. 1981. [Online].
Available: https://tools.ietf.org/html/rfc791

[6] A. Farrel, O. Komolafe, and S. Yasukawa, “An analysis of scaling
issues in MPLS-TE core networks,” IETF, RFC 5439, Feb. 2009.
[Online]. Available: https://tools.ietf.org/html/rfc5439

[7] S. Previdi, C. Filsfils, B. Decraene, S. Litkowski, M. Horneffer, and
R. Shakir, “Source packet routing in networking (SPRING) problem
statement and requirements,” IETF, RFC 7855, May 2016. [Online].
Available: https://tools.ietf.org/html/rfc7855

2https://github.com/netgroup/sr-survey

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

216 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

[8] C. Filsfils, S. Previdi, B. Decraene, and R. Shakir, “Resiliency use
cases in source packet routing in networking (SPRING) networks,”
IETF, RFC 8355, Mar. 2018. [Online]. Available: https://tools.ietf.org/
html/rfc8355

[9] J. Brzozowski, J. Leddy, C. Filsfils, R. Maglione, and M. Townsley,
“Use cases for IPv6 source packet routing in networking (SPRING),”
IETF, RFC 8354, Mar. 2018. [Online]. Available: https://tools.ietf.org/
html/rfc8354

[10] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment routing architecture,” IETF, RFC 8402, Jul. 2018.
[Online]. Available: https://tools.ietf.org/html/rfc8402/

[11] R. Geib, C. Filsfils, C. Pignataro, and N. Kumar, “A scalable and
topology-aware MPLS data-plane monitoring system,” IETF, RFC
8403, Jul. 2018. [Online]. Available: https://tools.ietf.org/html/rfc8403

[12] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. François,
“The segment routing architecture,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), 2015, pp. 1–6.

[13] A. Farrel and R. Bonica, “Segment routing: Cutting through the hype
and finding the IETF’s innovative nugget of gold,” IETF J., vol. 13,
no. 1, pp. 5–9, Jul. 2017. [Online]. Available: https://www.ietfjournal.
org/segment-routing-cutting-through-the-hype-and-finding-the-ietfs-
innovative-nugget-of-gold/

[14] Z. N. Abdullah, I. Ahmad, and I. Hussain, “Segment routing in software
defined networks: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 1, pp. 464–486, 1st Quart., 2019.

[15] S. Salsano, L. Veltri, L. Davoli, P. L. Ventre, and G. Siracusano,
“PMSR-poor man’s segment routing, a minimalistic approach to seg-
ment routing and a traffic engineering use case,” in Proc. IEEE/IFIP
Netw. Oper. Manag. Symp. (NOMS), 2016, pp. 598–604.

[16] R. Bonica, C. Pignataro, and J. Touch, “Generic routing encapsu-
lation (GRE),” IETF, RFC 2784, Mar. 2000. [Online]. Available:
https://tools.ietf.org/html/rfc2784

[17] M. Mahalingam et al., “Virtual extensible local area network
(VXLAN): A framework for overlaying virtualized layer 2 networks
over layer 3 networks,” IETF, RFC 7348, Aug. 2014. [Online].
Available: https://tools.ietf.org/html/rfc7348

[18] H. Ichihara and T. Tsuchiya. LINE Datacenter Networking With SRv6.
Accessed: Dec. 3, 2020. [Online]. Available: https://speakerdeck.com/
line_developers/line-data-center-networking-with-srv6

[19] R. Browne, A. Chilikin, and T. Mizrahi, “Network service header
(NSH),” IETF, RFC 8300, Jan. 2018. [Online]. Available: https://tools.
ietf.org/html/rfc8300

[20] Does 5G Mean We Can Finally Update the Mobile Data Plane
Protocol. Accessed: Dec. 3, 2020. [Online]. Available: https://www.
metaswitch.com/blog/does-5g-mean-we-can-finally-update-the-mobile-
data-plane-protocol

[21] A. Mayer et al., “An efficient linux kernel implementation of service
function chaining for legacy VNFs based on IPv6 segment routing,” in
Proc. 5th IEEE Int. Conf. Netw. Softw. (NetSoft), 2019, pp. 333–341.

[22] C. Filsfils et al., “Indexed segment ID,” U.S. Patent 9 559 954 B2, 2014.
[23] F. Clad et al., “Service programming with segment routing,” Internet

Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-ietf-
spring-sr-service-programming-01, Oct. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-spring-sr-service-programming

[24] S. Matsushima et al., “Segment routing IPv6 for mobile user
plane,” Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft
draft-ietf-dmm-srv6-mobile-uplane, Mar. 2019. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-dmm-srv6-mobile-uplane

[25] P. Psenak et al., “OSPF extensions for segment routing,” Internet
Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-ietf-
ospf-segment-routing-extensions, Dec. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-ospf-segment-routing-extensions

[26] P. Psenak and S. Previdi, “OSPFv3 extensions for segment rout-
ing,” Internet Eng. Task Force, Fremont, CA, USA, Internet-
Draft draft-ietf-ospf-ospfv3-segment-routing-extensions, Jan. 2019.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-ospf-ospfv3-
segment-routing-extensions

[27] S. Previdi, L. Ginsberg, C. Filsfils, A. Bashandy, H. Gredler, and
B. Decraene, “IS-IS extensions for segment routing,” Internet Eng.
Task Force, Fremont, CA, USA, Internet-Draft draft-ietf-isis-segment-
routing-extensions, May 2019. [Online]. Available: https://tools.ietf.
org/html/draft-ietf-isis-segment-routing-extensions

[28] P. Psenak, C. Filsfils, A. Bashandy, B. Decraene, and Z. Hu, “IS-
IS extensions to support routing over IPv6 dataplane,” Internet Eng.
Task Force, Fremont, CA, USA, Internet-Draft draft-ietf-lsr-isis-srv6-
extensions, May 2019. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-lsr-isis-srv6-extensions

[29] Z. Li, Z. Hu, D. Cheng, K. Talaulikar, and P. Psenak, “OSPFv3
Extensions for SRv6,” Internet Eng. Task Force, Fremont, CA,
USA, Internet-Draft draft-li-ospf-ospfv3-srv6-extensions, Mar. 2019.
[Online]. Available: https://tools.ietf.org/html/draft-li-ospf-ospfv3-srv6-
extensions

[30] C. Filsfils, T. F. Telkamp, and A. T. Gous, “Segment routing based
wide area network orchestration in a network environment,” U.S. Patent
9 647 944 B2, 2014.

[31] H. Gredler, “BGP link-state extensions for segment routing,”
U.S. Patent 9 660 897 B1, 2014.

[32] S. Sivabalan, C. Filsfils, J. Tantsura, W. Henderickx, and J. Hardwick,
“PCEP extensions for segment routing,” Internet Eng. Task Force,
Fremont, CA, USA, Internet-Draft draft-ietf-pce-segment-routing,
Oct. 2018. [Online]. Available: https://tools.ietf.org/html/draft-ietf-pce-
segment-routing

[33] C. Filsfils, K. Talaulikar, P. Król, M. Horneffer, and P. Mattes,
“Segment routing policy architecture,” Internet Eng. Task Force,
Fremont, CA, USA, Internet-Draft draft-ietf-spring-segment-routing-
policy, Oct. 2018. [Online]. Available: https://tools.ietf.org/html/draft-
ietf-spring-segment-routing-policy

[34] C. Filsfils et al., “SR policy implementation and deployment
considerations,” Internet Eng. Task Force, Fremont, CA, USA,
Internet-Draft draft-filsfils-spring-sr-policy-considerations, Oct. 2018.
[Online]. Available: https://tools.ietf.org/html/draft-filsfils-spring-sr-
policy-considerations

[35] K. Raza et al., “YANG data model for segment routing pol-
icy,” Internet Eng. Task Force, Fremont, CA, USA, Internet-
Draft draft-raza-spring-sr-policy-yang, May 2019. [Online]. Available:
https://tools.ietf.org/html/draft-raza-spring-sr-policy-yang

[36] C. Filsfils et al., “Illustrations for SRv6 network programming,”
Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-
filsfils-spring-srv6-net-pgm-illustration, Feb. 2019. [Online]. Available:
https://tools.ietf.org/html/draft-filsfils-spring-srv6-net-pgm-illustration

[37] C. Filsfils, S. Previdi, G. Dawra, E. Aries, and P. Lapukhov, “BGP-
prefix segment in large-scale data centers,” Internet Eng. Task Force,
Fremont, CA, USA, Internet-Draft draft-ietf-spring-segment-routing-
msdc, Nov. 2018. [Online]. Available: https://tools.ietf.org/html/draft-
ietf-spring-segment-routing-msdc

[38] C. Filsfils, S. Previdi, G. Dawra, E. Aries, and D. Afanasiev, “Segment
routing centralized BGP peer engineering,” Internet Eng. Task Force,
Fremont, CA, USA, Internet-Draft draft-ietf-spring-segment-routing-
central-epe, Dec. 2017. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-spring-segment-routing-central-epe

[39] C. Filsfils, S. Previdi, G. Dawra, W. Henderickx, and D. Cooper,
“Interconnecting millions of endpoints with segment routing,”
IETF, RFC 8604, Jun. 2019. [Online]. Available: https://rfc-
editor.org/doc/rfc8604

[40] D. Dukes et al., “SR for SDWAN—VPN with underlay SLA,” Internet
Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-dukes-spring-
sr-for-sdwan, Dec. 2018. [Online]. Available: https://tools.ietf.org/html/
draft-dukes-spring-sr-for-sdwan

[41] P. Camarillo, C. Filsfils, L. Bertz, A. Akhavain, S. Matsushima,
and D. Voyer, “Segment routing IPv6 for mobile user-plane PoCs,”
Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-
camarillo-dmm-srv6-mobile-pocs, Oct. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-camarillo-dmm-srv6-mobile-pocs

[42] Z. Ali, C. Filsfils, P. Camarillo, and D. Voyer, “Building blocks for slic-
ing in segment routing network,” Internet Eng. Task Force, Fremont,
CA, USA, Internet-Draft draft-ali-spring-network-slicing-building-
blocks, Mar. 2019. [Online]. Available: https://tools.ietf.org/html/draft-
ali-spring-network-slicing-building-blocks

[43] C. Filsfils, Z. Ali, M. Horneffer, D. Voyer, M. Durrani, and R. Raszuk,
“Segment routing traffic accounting counters,” Internet Eng. Task
Force, Fremont, CA, USA, Internet-Draft draft-filsfils-spring-sr-traffic-
counters, Jun. 2018. [Online]. Available: https://tools.ietf.org/html/
draft-filsfils-spring-sr-traffic-counters

[44] M. Anand et al., “Packet-optical integration in segment routing,”
Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-
anand-spring-poi-sr, Jan. 2019. [Online]. Available: https://tools.ietf.
org/html/draft-anand-spring-poi-sr

[45] S. Litkowski, A. Bashandy, C. Filsfils, B. Decraene, and B. Voyer,
“Topology independent fast reroute using segment routing,” Internet
Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-ietf-rtgwg-
segment-routing-ti-lfa, Mar. 2019. [Online]. Available: https://tools.ietf.
org/html/draft-ietf-rtgwg-segment-routing-ti-lfa

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 217

[46] A. Bashandy, C. Filsfils, S. Litkowski, B. Decraene, P. Francois,
and P. Psenak, “Loop avoidance using segment routing,” Internet
Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-bashandy-
rtgwg-segment-routing-uloop, Sep. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-bashandy-rtgwg-segment-routing-uloop

[47] S. Hegde and P. Sarkar, “Micro-loop avoidance using SPRING,”
Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-
hegde-rtgwg-microloop-avoidance-using-spring, Jul. 2017. [Online].
Available: https://tools.ietf.org/html/draft-hegde-rtgwg-microloop-
avoidance-using-spring/

[48] N. Kumar, C. Pignataro, G. Swallow, N. Akiya, S. Kini, and
M. G. Chen, “Label switched path (LSP) ping/traceroute for seg-
ment routing (SR) IGP-prefix and IGP-adjacency segment identifiers
(SIDs) with MPLS data planes,” IETF, RFC 8287, Dec. 2017. [Online].
Available: https://tools.ietf.org/html/rfc8287

[49] Z. Ali, C. Filsfils, S. Matsushima, D. Voyer, and M. Chen, “Operations,
administration, and maintenance (OAM) in segment routing networks
with IPv6 data plane (SRv6),” Internet Eng. Task Force, Fremont, CA,
USA, Internet-Draft draft-ietf-6man-spring-srv6-oam-03, Dec. 2019.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-6man-spring-
srv6-oam-03

[50] Z. Ali et al., “Traffic accounting in segment routing networks,” Internet
Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-ali-spring-sr-
traffic-accounting, Jun. 2018. [Online]. Available: https://tools.ietf.org/
html/draft-ali-spring-sr-traffic-accounting

[51] Z. Ali, K. Talaulikar, C. Filsfils, N. Nainar, and C. Pignataro,
“Bidirectional forwarding detection (BFD) for segment routing poli-
cies for traffic engineering,” Internet Eng. Task Force, Fremont, CA,
USA, Internet-Draft draft-ali-spring-bfd-sr-policy, Oct. 2018. [Online].
Available: https://tools.ietf.org/html/draft-ali-spring-bfd-sr-policy

[52] R. Gandhi, C. Filsfils, D. Voyer, S. Salsano, and M. Chen, “In-band
performance measurement for segment routing networks with MPLS
data plane,” Internet Eng. Task Force, Fremont, CA, USA, Internet-
Draft draft-gandhi-spring-rfc6374-srpm-mpls, Feb. 2019. [Online].
Available: https://tools.ietf.org/html/draft-gandhi-spring-rfc6374-srpm-
mpls

[53] R. Gandhi, C. Filsfils, D. Voyer, S. Salsano, and M. Chen, “In-
band performance measurement using UDP path for segment routing
networks,” Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft
draft-gandhi-spring-rfc6374-srpm-udp, Feb. 2019. [Online]. Available:
https://tools.ietf.org/html/draft-gandhi-spring-rfc6374-srpm-udp

[54] R. Gandhi, C. Filsfils, D. Voyer, M. Chen, and B. Janssens,
“Performance measurement using TWAMP light for segment routing
networks,” Internet Eng. Task Force, Fremont, CA, USA, Internet-
Draft draft-gandhi-spring-twamp-srpm, Dec. 2019. [Online]. Available:
https://tools.ietf.org/html/draft-gandhi-spring-twamp-srpm

[55] D. Frost and S. Bryant, “Packet loss and delay measurement for
MPLS networks,” IETF, RFC 6374, Sep. 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6374

[56] S. Bryant, S. Sivabalan, and S. Soni, “UDP return path for packet
loss and delay measurement for MPLS networks,” IETF, RFC 7876,
Jul. 2016. [Online]. Available: https://tools.ietf.org/html/rfc7876

[57] A. Bashandy, C. Filsfils, S. Previdi, B. Decraene, and S. Litkowski,
“Segment routing interworking with LDP,” Internet Eng. Task Force,
Fremont, CA, USA, Internet-Draft draft-ietf-spring-segment-routing-
ldp-interop, Sep. 2018. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-spring-segment-routing-ldp-interop

[58] P. Sarkar, H. Gredler, C. Filsfils, S. Previdi, B. Decraene, and
M. Horneffer, “Anycast segments in MPLS based segment routing,”
Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-
ietf-spring-mpls-anycast-segments, Jan. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-spring-mpls-anycast-segments

[59] C. Filsfils, S. Previdi, P. Psenak, and L. Ginsberg, “Segment rout-
ing recursive information,” Internet Eng. Task Force, Fremont, CA,
USA, Internet-Draft draft-filsfils-spring-sr-recursing-info, Jun. 2017.
[Online]. Available: https://tools.ietf.org/html/draft-filsfils-spring-sr-
recursing-info

[60] H. Sitaraman, V. Beeram, I. Minei, and S. Sivabalan,
“Recommendations for RSVP-TE and segment routing (SR) label
switched path (LSP) coexistence,” IETF, RFC 8426, Jul. 2018.
[Online]. Available: https://tools.ietf.org/html/rfc8426

[61] X. Xu, S. Bryant, A. Farrel, S. Hassan, W. Henderickx, and Z. Li,
“SR-MPLS over IP,” Internet Eng. Task Force, Fremont, CA, USA,
Internet-Draft draft-ietf-mpls-sr-over-ip, Jun. 2019. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-mpls-sr-over-ip

[62] D. Voyer et al., “Insertion of IPv6 segment routing headers
in a controlled domain,” Internet Eng. Task Force, Fremont,
CA, USA, Internet-Draft draft-voyer-6man-extension-header-insertion,
Jun. 2018. [Online]. Available: https://tools.ietf.org/html/draft-voyer-
6man-extension-header-insertion

[63] K. Raza et al., “YANG data model for SRv6 base and
static,” Internet Eng. Task Force, Fremont, CA, USA, Internet-
Draft draft-raza-spring-srv6-yang, Mar. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-raza-spring-srv6-yang

[64] S. Previdi, C. Filsfils, A. Lindem, A. Sreekantiah, and H. Gredler,
“Segment routing prefix SID extensions for BGP,” Internet Eng. Task
Force, Fremont, CA, USA, Internet-Draft draft-ietf-idr-bgp-prefix-sid,
Jun. 2018. [Online]. Available: https://tools.ietf.org/html/draft-ietf-idr-
bgp-prefix-sid-27

[65] S. Previdi et al., “Advertising segment routing policies in BGP,”
Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft
draft-ietf-idr-segment-routing-te-policy, Jul. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-idr-segment-routing-te-policy

[66] G. Dawra et al., “SRv6 BGP based overlay services,” Internet Eng.
Task Force, Fremont, CA, USA, Internet-Draft draft-dawra-bess-srv6-
services, Mar. 2019. [Online]. Available: https://tools.ietf.org/html/
draft-dawra-bess-srv6-services

[67] S. Previdi, K. Talaulikar, C. Filsfils, H. Gredler, and M. Chen,
“BGP link-state extensions for segment routing,” Internet Eng. Task
Force, Fremont, CA, USA, Internet-Draft draft-ietf-idr-bgp-ls-segment-
routing-ext, May 2018. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-idr-bgp-ls-segment-routing-ext

[68] S. Previdi, K. Talaulikar, J. Dong, M. Chen, H. Gredler, and J. Tantsura,
“Distribution of traffic engineering (TE) policies and state using
BGP-LS,” Internet Eng. Task Force, Fremont, CA, USA, Internet-
Draft draft-ietf-idr-te-lsp-distribution, Jun. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-idr-te-lsp-distribution

[69] S. Previdi, K. Talaulikar, C. Filsfils, K. Patel, S. Ray, and J. Dong,
“BGP-LS extensions for segment routing BGP egress peer engineer-
ing,” Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-
ietf-idr-bgpls-segment-routing-epe, Mar. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe

[70] J. Tantsura, U. Chunduri, K. Talaulikar, G. Mirsky, and N. Triantafillis,
“Signaling maximum SID depth using border gateway protocol link-
state,” Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft
draft-ietf-idr-bgp-ls-segment-routing-msd, Oct. 2017. [Online].
Available: https://tools.ietf.org/html/draft-ietf-idr-bgp-ls-segment-
routing-msd

[71] L. Ginsberg, S. Previdi, Q. Wu, J. Tantsura, and C. Filsfils,
“BGP—Link state (BGP-LS) advertisement of IGP traffic engineering
performance metric extensions,” IETF, RFC 8571, Mar. 2019. [Online].
Available: https://tools.ietf.org/html/rfc8571

[72] G. Dawra et al., “BGP link state extensions for IPv6 segment routing
(SRv6),” Internet Eng. Task Force, Fremont, CA, USA, Internet-
Draft draft-ietf-idr-bgpls-srv6-ext, Mar. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-dawra-idr-bgpls-srv6-ext

[73] K. Talaulikar, C. Filsfils, K. Swamy, S. Zandi, G. Dawra, and
M. Durrani, “BGP link-state extensions for BGP-only fabric,” Internet
Eng. Task Force, Fremont, CA, USA, Internet-Draft draft-ketant-idr-
bgp-ls-bgp-only-fabric, Mar. 2018. [Online]. Available: https://tools.
ietf.org/html/draft-ketant-idr-bgp-ls-bgp-only-fabric

[74] G. Dawra et al., “BGP-LS advertisement of segment routing ser-
vice segments,” Internet Eng. Task Force, Fremont, CA, USA,
Internet-Draft draft-dawra-idr-bgp-ls-sr-service-segments, Jan. 2019.
[Online]. Available: https://tools.ietf.org/html/draft-dawra-idr-bgp-ls-sr-
service-segments

[75] P. Psenak, S. Hegde, C. Filsfils, K. Talaulikar, and A. Gulko, “IGP
flexible algorithm,” Internet Eng. Task Force, Fremont, CA, USA,
Internet-Draft draft-ietf-lsr-flex-algo, Nov. 2018. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-lsr-flex-algo

[76] M. Rasool, S. Sreenivasan, and M. Negi, “YANG model for IGP flexi-
ble algorithm,” Internet Eng. Task Force, Fremont, CA, USA, Internet-
Draft draft-rasool-lsr-flex-algo-yang, Apr. 2019. [Online]. Available:
https://tools.ietf.org/html/draft-rasool-lsr-flex-algo-yang

[77] J. Tantsura, U. Chunduri, S. Aldrin, and L. Ginsberg, “Signaling max-
imum SID depth (MSD) using IS-IS,” IETF, RFC 8491, Nov. 2018.
[Online]. Available: https://tools.ietf.org/html/rfc8491

[78] L. Ginsberg, A. Bashandy, C. Filsfils, M. Nanduri, and E. Aries,
“Advertising L2 bundle member link attributes in IS-IS,” Internet Eng.
Task Force, Fremont, CA, USA, Internet-Draft draft-ietf-isis-l2bundles,
May 2017. [Online]. Available: https://tools.ietf.org/html/draft-ietf-isis-
l2bundles

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

218 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

[79] L. Ginsberg, S. Previdi, S. Giacalone, D. Ward, J. Drake, and Q. Wu,
“IS-IS traffic engineering (TE) metric extensions,” IETF, RFC 7810,
May 2016. [Online]. Available: https://tools.ietf.org/html/rfc7810

[80] J. Tantsura, U. Chunduri, S. Aldrin, and P. Psenak, “Signaling max-
imum SID depth (MSD) using OSPF,” IETF, RFC 8476, Dec. 2018.
[Online]. Available: https://tools.ietf.org/html/rfc8476

[81] S. Giacalone, D. Ward, J. Drake, A. Atlas, and S. Previdi, “OSPF traf-
fic engineering (TE) metric extensions,” IETF, RFC 7471, Mar. 2015.
[Online]. Available: https://tools.ietf.org/html/rfc7471

[82] S. Sivabalan, C. Filsfils, J. Tantsura, J. Hardwick, S. Previdi,
adn C. Li, “Carrying binding label/segment-ID in PCE-based
networks,” Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft
draft-sivabalan-pce-binding-label-sid, Feb. 2019. [Online]. Available:
https://tools.ietf.org/html/draft-sivabalan-pce-binding-label-sid

[83] A. Rodriguez-Natal, V. Ermagan, F. Maino, D. Dukes, P. Camarillo,
and C. Filsfils, “LISP control plane for SRv6 endpoint mobil-
ity,” Internet Eng. Task Force, Fremont, CA, USA, Internet-
Draft draft-rodrigueznatal-lisp-srv6, Jan. 2019. [Online]. Available:
https://tools.ietf.org/html/draft-rodrigueznatal-lisp-srv6

[84] C. Filsfils et al., “Segment routing techniques,” U.S. Patent
9 929 946 B2, 2013.

[85] S. Previdi and C. Filsfils, “Segment routing extension headers,” U.S.
Patent 10 063 475 B2, 2014.

[86] D. Frost et al., “MPLS segment-routing,” U.S. Patent 9 049 233 B2,
2013.

[87] C. Filsfils et al., “Seamless segment routing,” U.S. Patent 9 450 829 B2,
2013.

[88] C. Filsfils et al., “Creating and maintaining segment routed traf-
fic engineering policies via border gateway protocol,” U.S. Patent
10 454 821 B2, 2017.

[89] S. Previdi et al., “Advertisement of adjacency segment identifiers,” U.S.
Patent 9 565 160 B2, 2014.

[90] C. Filsfils et al., “Method and system for path monitoring using
segment routing,” U.S. Patent 9 369 371 B2, 2015.

[91] C. Filsfils et al., “Segment routing into a label distribution protocol
domain,” U.S. Patent 9 749 187 B2, 2014.

[92] T. Saad et al., “Loop detection and avoidance for segment routed traffic
engineered paths,” U.S. Patent 10 182 000 B2, 2016.

[93] P. Francois et al., “Loop avoidance during network convergence in
switched networks,” U.S. Patent 9 401 858 B2, 2014.

[94] S. Previdi and C. Filsfils, “Fast reroute for segment routing traffic,”
U.S. Patent 9 485 150 B2, 2016.

[95] C. Filsfils et al., “Encoding explicit paths as segment routing segment
lists,” U.S. Patent 9 979 601 B2, 2018.

[96] C. Filsfils et al., “Scalable network slice based queuing using segment
routing flexible algorithm,” U.S. Patent 10 601 724 B1, 2020.

[97] S. A. Dodd-Noble et al., “Providing user equipment location
information indication on user plane,” U.S. Patent 10 285 155 B1, 2019.

[98] Y. Desmouceaux et al., “Zero-loss workload mobility with segment
routing for virtual machines,” U.S. Patent 10 635 480 B2, 2019.

[99] GTP-U Specification. Accessed: Dec. 3, 2020. [Online]. Available:
https://www.3gpp.org/dynareport/29281.htm

[100] M. T. Y. Desmouceaux and T. Clausen, “Zero-loss virtual machine
migration with IPv6 segment routing,” in Proc. 1st Workshop Segment
Routing Service Function Chaining (SR+SFC) CNSM, Rome, Italy,
2018, pp. 420–425.

[101] F. Aubry, D. Lebrun, S. Vissicchio, M. T. Khong, Y. Deville, and
O. Bonaventure, “Interoperable multi-domain delay-aware provision-
ing using Segment Routing monitoring and BGP-LS advertisement,”
in Proc. 42nd Eur. Conf. Opt. Commun. (ECOC), 2016, pp. 1–3.

[102] F. Aubry et al., “SCMon: Leveraging segment routing to improve
network monitoring,” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun. (IEEE INFOCOM), 2016, pp. 1–9.

[103] X. Li and K. L. Yeung, “Bandwidth-efficient network monitoring
algorithms based on segment routing,” Comput. Netw., vol. 147,
pp. 236–245, Dec. 2016.

[104] X. Li and K. Yeung, “ILP formulation for monitoring-cycle construc-
tion using segment routing,” in Proc. IEEE 43rd Conf. Local Comput.
Netw. (LCN), 2018, pp. 485–492.

[105] M. Polverini, A. Cianfrani, M. Listanti, and A. Baiocchi, “Routing
perturbation for traffic matrix evaluation in a segment routing network,”
IEEE Trans. Netw. Service Manag., vol. 15, no. 4, pp. 1645–1660,
Dec. 2018.

[106] M. P. A. Cianfrani and T. Nalawade, “A heuristic approach to assess
the traffic matrix of an ISP exploiting segment routing flexibility,” in
Proc. 30th Int. Teletraffic Congr. (ITC), vol. 1, 2018, pp. 194–199.

[107] A. C. M. Polverini and M. Listanti, “Interface counters in segment
routing v6: A powerful instrument for traffic matrix assessment,” in
Proc. IEEE 9th Int. Conf. Netw. Future (NOF), 2018, pp. 76–82.

[108] F. M. Xhonneux and O. Bonaventure, “Leveraging eBPF for pro-
grammable network functions with IPv6 segment routing,” in Proc.
ACM 14th Int. Conf. Emerg. Netw. Exp. Technol., 2018, pp. 67–72.

[109] M. Lee and J. Sheu, “An efficient routing algorithm based on seg-
ment routing in software-defined networking,” Comput. Netw., vol. 103,
pp. 44–55, Jul. 2016.

[110] A. Bahnasse and F. L. Louhab, “Novel SDN architecture for smart
MPLS traffic engineering-DiffServ aware management,” Future Gener.
Comput. Syst., vol. 87, pp. 115–126, Oct. 2018.

[111] J. Sheu and Y. Chen, “A scalable and bandwidth-efficient multicast
algorithm based on segment routing in software-defined networking,”
in Proc. IEEE Int. Conf. Commun. (ICC), 2017, pp. 1–6.

[112] O. G. R. Carpa and L. Lefevre, “Segment routing based traffic engi-
neering for energy efficient backbone networks,” in Proc. IEEE Int.
Conf. Adv. Netw. Telecommun. Syst. (ANTS), 2014, pp. 1–6.

[113] K. Ghuman and A. Nayak, “Per-packet based energy aware segment
routing approach for data center networks with SDN,” in Proc. IEEE
24th Int. Conf. Telecommun. (ICT), 2017, pp. 1–6.

[114] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano, “Traffic
engineering with segment routing: SDN-based architectural design and
open source implementation,” in Proc. IEEE 4th Eur. Workshop Softw.
Defined Netw. (EWSDN), 2015, pp. 111–112.

[115] G. Trimponias et al., “On traffic engineering with segment routing in
SDN based WANs,” 2017. [Online]. Available: arXiv:1703.05907.

[116] R. Bhatia, F. Hao, M. S. Kodialam, and T. V. Lakshman, “Optimized
network traffic engineering using segment routing,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), 2015, pp. 657–665.

[117] H. Roomi and S. Khorsandi, “Semi-oblivious segment routing with
bounded traffic fluctuations,” in Proc. IEEE Iran. Conf. Electr. Eng.
(ICEE), 2018, pp. 1670–1675.

[118] R. Hartert et al., “A declarative and expressive approach to control
forwarding paths in carrier-grade networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 5, pp. 15–28, 2015.

[119] H. R. S. Gay and S. Vissicchio, “Expect the unexpected: Sub-second
optimization for segment routing,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), 2017, pp. 1–9.

[120] R. Hartert, P. Schaus, S. Vissicchio, and O. Bonaventure, “Solving
Segment Routing problems with hybrid constraint programming tech-
niques,” in Proc. Int. Conf. Principles Practice Constraint Program.,
2015, pp. 592–608.

[121] M. L. A. Cianfrani and M. Polverini, “Incremental deployment of seg-
ment routing into an ISP network: A traffic engineering perspective,”
IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 3146–3160, Oct. 2017.

[122] A. B. E. Moreno and F. Cugini, “Traffic engineering in segment routing
networks,” Comput. Netw., vol. 114, pp. 23–31, Feb. 2017.

[123] M. R. V. Pereira and P. Sousa, “Optimizing segment routing
using evolutionary computation,” Procedia Comput. Sci., vol. 110,
pp. 312–319, 2017. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877050917312784

[124] A. A. Barakabitze, L. Sun, I.-H. Mkwawa, and E. C. Ifeachor, “A novel
QoE-Centric SDN-based multipath routing approach for multimedia
services over 5G networks,” in Proc. IEEE Int. Conf. Commun. (ICC),
2018, pp. 1–7.

[125] J. Pang, G. Xu, and X. Fu, “SDN-based data center networking with
collaboration of multipath TCP and segment routing,” IEEE Access,
vol. 5, pp. 9764–9773, 2017.

[126] O. Dugeon, R. Guedrez, S. Lahoud, and G. Texier, “Demonstration
of segment routing with SDN based label stack optimization,” in
Proc. IEEE 20th Conf. Innov. Clouds Internet Netw. (ICIN), 2017,
pp. 143–145.

[127] X. Hou, M. Wu, and M. Zhao, “An optimization routing algorithm
based on segment routing in software-defined networks,” Sensors,
vol. 19, no. 1, p. 49, 2019.

[128] T. Settawatcharawanit, V. Suppakitpaisarn, S. Yamada, and Y. Ji,
“Segment routed traffic engineering with bounded stretch in software-
defined networks,” in Proc. IEEE 43rd Conf. Local Comput. Netw.
(LCN), 2018, pp. 477–480.

[129] G. Trimponias, Y. Xiao, X. Wu, H. Xu, and Y. Geng, “Node-constrained
traffic engineering: Theory and applications,” IEEE/ACM Trans. Netw.,
vol. 27, no. 4, pp. 1344–1358, Aug. 2019.

[130] P. Zhang, Y. Gang, X. Huang, S. Zeng, and K. Xie, “Bandwidth alloca-
tion with utility maximization in the hybrid segment routing network,”
IEEE Access, vol. 7, pp. 85253–85261, 2019.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 219

[131] K.-T. Foerster, M. Parham, M. Chiesa, and S. Schmid, “TI-MFA:
Keep calm and reroute segments fast,” in Proc. IEEE INFOCOM
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), 2018,
pp. 415–420.

[132] F. Aubry, D. Lebrun, Y. Deville, and O. Bonaventure, “Traffic dupli-
cation through segmentable disjoint paths,” in Proc. IEEE IFIP Netw.
Conf. (IFIP Netw.), 2015, pp. 1–9.

[133] F. Aubry, S. Vissicchio, O. Bonaventure, and Y. Deville, “Robustly
disjoint paths with segment routing,” in Proc. ACM 14th Int. Conf.
Emerg. Netw. Exp. Technol., 2018, pp. 204–216.

[134] F. Hao, M. S. Kodialam, and T. V. Lakshman, “Optimizing restora-
tion with segment routing,” in Proc. IEEE 35th Annu. IEEE Int. Conf.
Comput. Commun. (INFOCOM), 2016, pp. 1–9.

[135] A. Giorgetti, A. Sgambelluri, F. Paolucci, F. Cugini, and P. Castoldi,
“Segment routing for effective recovery and multi-domain traffic
engineering,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 2,
pp. A223–A232, Feb. 2017.

[136] A. Giorgetti, A. Sgambelluri, F. Paolucci, F. Cugini, and P. Castoldi,
“Demonstration of dynamic restoration in segment routing multi-layer
SDN networks,” in Proc. Opt. Fiber Commun. Conf., 2016, p. 4.

[137] A. Giorgetti, A. Sgambelluri, F. Paolucci, and P. Castoldi, “Reliable
segment routing,” in Proc. IEEE 7th Int. Workshop Rel. Netw. Design
Model. (RNDM), 2015, pp. 181–185.

[138] M. Xhonneux and O. Bonaventure, “Flexible failure detection and fast
reroute using eBPF and SRv6,” in Proc. 14th Int. Conf. Netw. Service
Manag. (CNSM), 2018, pp. 408–413.

[139] K. T. Foerster et al. (2018). Local Fast Segment Rerouting on
Hypercubes. [Online]. Available: http://eprints.cs.univie.ac.at/5837/11
/2018-hypercubes.pdf

[140] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi,
“First demonstration of SDN-based segment routing in multi-layer
networks,” in Proc. IEEE Opt. Fiber Commun. Conf. Exhibit. (OFC),
2015, pp. 1–3.

[141] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi,
“SDN and PCE implementations for segment routing,” in Proc. IEEE
20th Eur. Conf. Netw. Opt. Commun. (NOC), 2015, pp. 1–4.

[142] F. Paolucci, “Network service chaining using segment routing in multi-
layer networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 10, no. 6,
pp. 582–592, Jun. 2018.

[143] F. Paolucci et al., “Service chaining in multi-layer networks using
segment routing and extended BGP FlowSpec,” in Proc. Opt. Fiber
Commun. Conf., 2017, p. 3.

[144] F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi, “Segment routing
in multi-layer networks,” in Proc. IEEE 19th Int. Conf. Transp. Opt.
Netw. (ICTON), 2017, pp. 1–4.

[145] Spring Open Project. Accessed: Dec. 3, 2020. [Online]. Available:
https://wiki.onosproject.org/display/ONOS10/Segment+Routing

[146] A. Fressancourt and M. Gagnaire, “A SDN-based network architecture
for cloud resiliency,” in Proc. 12th Annu. IEEE Consum. Commun.
Netw. Conf. (CCNC), 2015, pp. 479–484.

[147] Z. Li, L. Huang, H. Xu, and G. Zhao, “Segment routing in hybrid
software-defined networking,” in Proc. IEEE 9th Int. Conf. Commun.
Softw. Netw. (ICCSN), 2017, pp. 160–165.

[148] D. Lebrun, M. Jadin, F. Clad, C. Filsfils, and O. Bonaventure, “Software
resolved networks: Rethinking enterprise networks with IPv6 segment
routing,” in Proc. ACM Symp. SDN Res., 2018, p. 6.

[149] M. J. F. Duchene and O. Bonaventure, “Exploring various use cases
for IPv6 segment routing,” in Proc. ACM SIGCOMM Conf. Posters
Demos, 2018, pp. 129–131.

[150] N. Kukreja et al., “Demonstration of SDN-based orchestration for
multi-domain segment routing networks,” in Proc. IEEE 18th Int. Conf.
Transp. Opt. Netw. (ICTON), 2016, pp. 1–4.

[151] A. Sgambelluri, A. Giorgetti, F. Paolucci, F. Cugini, and P. Castoldi,
“Experimental demonstration of multi-domain segment routing,” in
Proc. IEEE Eur. Conf. Opt. Commun. (ECOC), 2015, pp. 1–3.

[152] D. Cai, A. Wielosz, and S. Wei, “Evolve carrier Ethernet architecture
with SDN and segment routing,” in Proc. IEEE 15th Int. Symp. World
Wireless Mobile Multimedia Netw. (WoWMoM), 2014, pp. 1–6.

[153] O. L. Barakat, P. L. Ventre, S. Salsano, and X. Fu, “Busoni: Policy com-
position and northbound interface for IPv6 segment routing networks,”
in Proc. IEEE 27th Int. Conf. Netw. Protocols (ICNP), 2019, pp. 1–4.

[154] V. Eramo, F. G. Lavacca, T. Catena, M. Polverini, and A. Cianfrani,
“Effectiveness of segment routing technology in reducing the band-
width and cloud resources provisioning times in network function
virtualization architectures,” Future Internet, vol. 11, no. 3, p. 71, 2019.

[155] A. Sgambelluri, A. Giorgetti, F. Paolucci, F. Cugini, and P. Castoldi,
“Experimental demonstration of segment routing,” J. Lightw. Technol.,
vol. 34, no. 1, pp. 205–212, Jan. 1, 2016.

[156] F. Lazzeri, G. Bruno, J. Nijhof, A. Giorgetti, and P. Castoldi, “Efficient
label encoding in segment-routing enabled optical networks,” in Proc.
IEEE Int. Conf. Opt. Netw. Design Model. (ONDM), 2015, pp. 34–38.

[157] A. Giorgetti, P. Castoldi, F. Cugini, J. Nijhof, F. Lazzeri, and G. Bruno,
“Path encoding in segment routing,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), 2015, pp. 1–6.

[158] R. Guedrez, O. Dugeon, S. Lahoud, and G. Texier, “Label encoding
algorithm for MPLS segment routing,” in Proc. IEEE 15th Int. Symp.
Netw. Comput. Appl. (NCA), 2016, pp. 113–117.

[159] M. L. A. Cianfrani and M. Polverini, “Translating traffic engineering
outcome into segment routing paths: The encoding problem,” in Proc.
IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
2016, pp. 245–250.

[160] L. Huang, Q. Shen, W. Shao, and X. Cui, “Optimizing segment routing
with the maximum SLD constraint using Openflow,” IEEE Access,
vol. 6, pp. 30874–30891, 2018.

[161] R. Guedrez, O. Dugeon, S. Lahoud, and G. Texier, “A new method
for encoding MPLS segment routing TE paths,” in Proc. IEEE 8th Int.
Conf. Netw. Future (NOF), 2017, pp. 58–65.

[162] D. Lebrun, “Leveraging IPv6 segment routing for service function
chaining,” in Proc. CoNEXT Stud. Workshop, 2015, pp. 1–15.

[163] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and
L. Veltri, “Implementation of virtual network function chaining through
segment routing in a linux-based NFV infrastructure,” in Proc. IEEE
Conf. Netw. Softw. (NetSoft), Jul. 2017, pp. 1–5.

[164] D. L. F. Duchêne and O. Bonaventure, “SRv6Pipes: Enabling in-
network bytestream functions,” in Proc. IFIP Netw., 2018, pp. 37–45.

[165] A. Abdelsalam, S. Salsano, F. Clad, P. Camarillo, and C. Filsfils
“SERA: Segment routing aware firewall for service function chaining
scenarios,” in Proc. IEEE IFIP Netw., May 2018, pp. 46–54.

[166] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. H. Clausen,
“SRLB: The power of choices in load balancing with segment routing,”
in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2017,
pp. 2011–2016.

[167] Y. Desmouceaux, M. Enguehard, V. Nguyen, P. Pfister, W. Shao, and
E. Vyncke, “A content-aware Data-plane for efficient and scalable
video delivery,” in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manag.
(IM), 2019, pp. 10–18.

[168] A. Abdelsalam et al., “Performance of IPv6 segment routing in
linux kernel,” in Proc. 1st Workshop Segment Routing Service Funct.
Chaining (SR+SFC) CNSM, Rome, Italy, 2018, pp. 414–419.

[169] HCL SRv6 Solution Team and C. Tato. Segment Routing Over IPv6
Acceleration Using Intel FPGA Programmable Acceleration Card
N3000. Accessed: Dec. 3, 2020. [Online]. Available: https://www.
intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/
wp-01295-hcl-segment-routing-over-ipv6-acceleration-using-intel-
fpga-programmable-acceleration-card-n3000.pdf

[170] C. Lee, K. Ebisawa, H. Kuwata, M. Kohno, and S. Matsushima,
“Performance evaluation of GTP-U and SRv6 stateless translation,”
in Proc. 2nd Workshop Segment Routing Service Function Chaining
(SR+SFC) CNSM, 2019, pp. 1–6.

[171] A. Abdelsalam et al., “SRPerf: A performance evaluation frame-
work for IPv6 segment routing,” 2020. [Online]. Available:
arXiv:2001.06182.

[172] V. Kotronis, X. A. Dimitropoulos, R. Klöti, B. Ager, P. Georgopoulos,
and S. Schmid, “Control exchange points: Providing QoS-enabled end-
to-end services via SDN-based inter-domain routing orchestration,” in
Proc. 3rd Open Netw. Summit (ONS), Santa Clara, CA, USA, Mar.
2014.

[173] P. B. Godfrey, S. Shenker, and I. Stoica, “Pathlet routing,” ACM
SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 111–122, 2009.

[174] S. Bidkar et al., “Scalable segment routing: A new paradigm for effi-
cient service provider networking using carrier Ethernet advances,”
IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 5, pp. 445–460,
May 2015.

[175] S. Bidkar, A. Gumaste, and A. K. Somani, “A scalable framework
for segment routing in service provider networks: The omnipresent
Ethernet approach,” in Proc. IEEE 15th Int. Conf. High Perform.
Switch. Routing (HPSR), 2014, pp. 76–83.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

220 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

[176] S. Bidkar et al., “Field trial of a Software Defined Network (SDN)
using carrier Ethernet and segment routing in a tier-1 provider,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), 2014, pp. 2166–2172.

[177] T. Schuller, N. Aschenbruck, M. Chimani, and M. Horneffer, “On the
practical irrelevance of metrics on segment routing traffic engineering
optimization,” in Proc. IEEE 43rd Conf. Local Comput. Netw. (LCN),
2018, pp. 640–647.

[178] T.-H. Chi, C.-H. Lin, J.-J. Kuo, and W.-T. Chen, “Live video multicast
for dynamic users via segment routing in 5G networks,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), 2018, pp. 1–7.

[179] J. Cao, X. Wang, M. Huang, and X. Zhou, “A mobility-supported
routing mechanism in industrial IoT networks,” IEEE Access, vol. 7,
pp. 25603–25615, 2019.

[180] A. Mayer, E. Altomare, S. Salsano, F. L. Presti, and C. Filsfils, “The
network as a computer with IPv6 segment routing: A novel distributed
processing model for the Internet of Things,” in Proc. 1st Int. Workshop
Next Gener. Oper. Syst. Cyber Phys. Syst. (NGOSCPS) CPS-IoT Week,
Apr. 2019, pp. 1–4.

[181] SDN-TE-SR. Accessed: Dec. 3, 2020. [Online]. Available:
https://github.com/netgroup/SDN-TE-SR

[182] V. Pereira, M. Rocha, and P. Sousa, “Segment routing single link failure
congestion optimization,” in Proc. ICETE, vol. 1, 2018, pp. 242–249.

[183] D. Lebrun, “A linux kernel implementation of segment routing with
IPv6,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), 2016, pp. 1019–1020.

[184] How to Work With Fast-Failover OpenFlow Groups. Accessed: Dec.
3, 2020. [Online]. Available: https://floodlight.atlassian.net/wiki/
spaces/floodlightcontroller/pages/7995427/How+to+Work+with+Fast
Failover+OpenFlow+Groups

[185] A Thorough Introduction to eBPF. Accessed: Dec. 3, 2020. [Online].
Available: https://lwn.net/Articles/740157/

[186] D. Katz and D. Ward, “Bidirectional forwarding detection (BFD),”
IETF, RFC 5880, Jun. 2010. [Online]. Available: https://tools.ietf.org/
html/rfc5880/

[187] RYU Project. Accessed: Dec. 3, 2020. [Online]. Available: https://
github.com/faucetsdn/ryu

[188] Open Networking Foundation. ONOS Project. Accessed: Dec. 3, 2020.
[Online]. Available: https://onosproject.org

[189] Trellis. Open Source SDN L2/L3 Spine Leaf Switching Fabric for
Networking. Accessed: Dec. 3, 2020. [Online]. Available: https://www.
opennetworking.org/trellis

[190] Open Compute Project. Accessed: Dec. 3, 2020. [Online]. Available:
http://www.opencompute.org

[191] Broadcom. OpenFlow Datapath Abstraction. Accessed: Dec. 3, 2020.
[Online]. Available: https://github.com/Broadcom-Switch/of-dpa

[192] Broadcom. Accessed: Dec. 3, 2020. [Online]. Available: https://www.
broadcom.com

[193] D. Lebrun and O. Bonaventure, “Implementing IPv6 segment routing
in the Linux kernel,” in Proc. ACM Appl. Netw. Res. Workshop, 2017,
pp. 35–41.

[194] S. Bradner, “Benchmarking terminology for network interconnection
devices,” IETF, RFC 1242, Jul. 1991. [Online]. Available: https://tools.
ietf.org/html/rfc1242

[195] Linux Foundation Wiki—Iproute2. Accessed: Dec. 3, 2020. [Online].
Available: https://wiki.linuxfoundation.org/networking/iproute2

[196] SRv6—Linux Kernel Implementation—Basic Configuration. Accessed:
Dec. 3, 2020. [Online]. Available: https://segment-routing.org/index.
php/Implementation/Configuration

[197] D. Lebrun. (2017). Reaping the Benefits of IPv6 Segment Routing.
[Online]. Available: https://inl.info.ucl.ac.be/system/files/phdthesis-
lebrun.pdf

[198] SRv6—Linux Kernel Implementation—Advanced Configuration.
Accessed: Dec. 3, 2020. [Online]. Available: https://segment-routing.
org/index.php/Implementation/AdvancedConf

[199] Linux Kernel Newbies—Linux 4.16. Accessed: Dec. 3, 2020. [Online].
Available: https://kernelnewbies.org/Linux_4.16

[200] Linux Netfilter Hacking. Accessed: Dec. 3, 2020. [Online]. Available:
https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-
HOWTO-3.html

[201] Arch Wiki—Iptables. Accessed: Dec. 3, 2020. [Online]. Available:
https://wiki.archlinux.org/index.php/iptables

[202] Linux Kernel Newbies—Linux 4.18. Accessed: Dec. 3, 2020. [Online].
Available: https://kernelnewbies.org/Linux_4.18

[203] Programming Network Actions With BPF. Accessed: Dec. 3,
2020. [Online]. Available: https://segment-routing.org/index.php/
Implementation/BPF

[204] SRv6-BPF. Accessed: Dec. 3, 2020. [Online]. Available: https://github.
com/Zashas/Thesis-SRv6-BPF

[205] SRv6-BFD. Accessed: Dec. 3, 2020. [Online]. Available: https://github.
com/Zashas/SRv6-BFD

[206] What Is VPP? Accessed: Dec. 3, 2020. [Online]. Available: https://
wiki.fd.io/view/VPP

[207] SRv6-Net-Prog. Accessed: Dec. 3, 2020. [Online]. Available: https://
netgroup.github.io/SRv6-net-prog/

[208] FRRouting. Accessed: Dec. 3, 2020. [Online]. Available: https://
frrouting.org

[209] Quagga Project. Accessed: Dec. 3, 2020. [Online]. Available: https://
en.wikipedia.org/wiki/Quagga_(software)

[210] OSPFv2 Segment Routing. Accessed: Dec. 3, 2020. [Online]. Available:
https://github.com/FRRouting/frr/blob/master/doc/developer/ospf-sr.rst

[211] P4Language Consortium. Accessed: Dec. 3, 2020. [Online]. Available:
https://p4.org

[212] P4Runtime. Accessed: Dec. 3, 2020. [Online]. Available: https://p4.
org/p4-runtime/

[213] Stratum Project. Accessed: Dec. 3, 2020. [Online]. Available: https://
stratumproject.org

[214] OpenCORD Project. Accessed: Dec. 3, 2020. [Online]. Available:
https://opencord.org

[215] SEBA Project. Accessed: Dec. 3, 2020. [Online]. Available: https:
//guide.opencord.org/profiles/seba/

[216] Trellis Documentation. Accessed: Dec. 3, 2020. [Online]. Available:
https://docs.trellisfabric.org

[217] Trellis Tutorial. Accessed: Dec. 3, 2020. [Online]. Available:
http://bit.ly/trellis-p4-slides

[218] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, and
E. Salvadori, “OSHI—Open source hybrid IP/SDN networking (and its
emulation on Mininet and on distributed SDN testbeds),” in Proc. IEEE
3rd Eur. Workshop Softw. Defined Netw. (EWSDN), 2014, pp. 13–18.

[219] S. Salsano et al., “Hybrid IP/SDN networking: Open implementation
and experiment management tools,” IEEE Trans. Netw. Service Manag.,
vol. 13, no. 1, pp. 138–153, Mar. 2016.

[220] Open vSwitch. Accessed: Dec. 3, 2020. [Online]. Available: http://
openvswitch.org

[221] S. Salsano et al., “Mantoo—A set of management tools for controlling
SDN experiments,” in Proc. IEEE 4th Eur. Workshop Softw. Defined
Netw. (EWSDN), 2015, pp. 123–124.

[222] PMSR Tutorial. Accessed: Dec. 3, 2020. [Online]. Available: https://
github.com/netgroup/SDN-TE-SR-tools

[223] OSHI Homepage. Accessed: Dec. 3, 2020. [Online]. Available: http:
//netgroup.uniroma2.it/OSHI

[224] B. Pfaff and B. Davie, “The Open vSwitch database management pro-
tocol,” IETF, RFC 7047, Dec. 2013. [Online]. Available: https://rfc-
editor.org/rfc/rfc7047.txt

[225] SRN. Accessed: Dec. 3, 2020. [Online]. Available: https://github.com
/segment-routing/srn

[226] SRN Overview. Accessed: Dec. 3, 2020. [Online]. Available: https:
//segment-routing.org/index.php/SRN/SRN

[227] Using SRN. Accessed: Dec. 3, 2020. [Online]. Available: https://
segment-routing.org/index.php/SRN/UsingSRN

[228] SRv6-SDN. Accessed: Dec. 3, 2020. [Online]. Available: https://
netgroup.github.io/srv6-sdn/

[229] ROSE. Accessed: Dec. 3, 2020. [Online]. Available: https://netgroup.
github.io/rose/

[230] SRv6Pipes. Accessed: Dec. 3, 2020. [Online]. Available: https://github.
com/segment-routing/SRv6Pipes

[231] SRv6Pipes Walkthrough. Accessed: Dec. 3, 2020. [Online]. Available:
https://segment-routing.org/index.php/SRv6Pipes/SRv6Pipes

[232] SRNK. Accessed: Dec. 3, 2020. [Online]. Available: https://netgroup.
github.io/srnk/

[233] RobustlyDisjointPathsCode. Accessed: Dec. 3, 2020. [Online].
Available: https://bitbucket.org/franaubry/robustlydisjointpathscode

[234] S. Matsushima, Z. Li, C. Filsfils, and Z. Ali, “SRv6 implemen-
tation and deployment status,” Internet Eng. Task Force, Fremont,
CA, USA, Internet-Draft draft-matsushima-spring-srv6-deployment-
status, Apr. 2020. [Online]. Available: https://tools.ietf.org/html/draft-
matsushima-spring-srv6-deployment-status

[235] Barefoot Networks. Accessed: Dec. 3, 2020. [Online]. Available:
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html

[236] BMv2 Switch. Accessed: Dec. 3, 2020. [Online]. Available: http://www.
bmv2.org

[237] Cavium. Accessed: Dec. 3, 2020. [Online]. Available: https://en.
wikipedia.org/wiki/Cavium

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

VENTRE et al.: SEGMENT ROUTING: COMPREHENSIVE SURVEY 221

[238] SRv6 Interop Demo. Accessed: Dec. 3, 2020. [Online]. Available:
https://blogs.cisco.com/sp/segment-routing-ipv6-interoperability-demo-
is-already-there

[239] EANTC. (Apr. 2018). MPLS+SDN+NFVVORD@PARIS2018
Interoperability Showcase. [Online]. Available: http://www.eantc.
de/fileadmin/eantc/downloads/events/2017–2020/MPLS2018/EANTC-
MPLSSDNNFV2018-WhitePaper-final.pdf

[240] Wireshark. Accessed: Dec. 3, 2020. [Online]. Available: https://www.
wireshark.org

[241] TCPDUMP. Accessed: Dec. 3, 2020. [Online]. Available: http://www.
tcpdump.org

[242] Iptables. Accessed: Dec. 3, 2020. [Online]. Available: https://www.
netfilter.org

[243] Nftables. Accessed: Dec. 3, 2020. [Online]. Available: https://wiki.
nftables.org/wiki-nftables/index.php/Main_Page

[244] Snort. Accessed: Dec. 3, 2020. [Online]. Available: https://www.snort.
org

[245] Open Programmable Acceleration Engine (OPAE). Accessed: Dec. 3,
2020. [Online]. Available: https://opae.github.io

[246] Express Data Path. Accessed: Dec. 3, 2020. [Online]. Available: https:
//en.wikipedia.org/wiki/Express_Data_Path

[247] OpenStack. Accessed: Dec. 3, 2020. [Online]. Available: https://www.
openstack.org

[248] Kubernetes. Accessed: Dec. 3, 2020. [Online]. Available: http://
kubernetes.io

[249] P. Ventre et al., “Segment routing: A comprehensive survey of research
activities, standardization efforts and implementation results,” 2019.
[Online]. Available: arXiv:1904.03471.

Pier Luigi Ventre received the Ph.D. degree in elec-
tronics engineering from the University of Rome
“Tor Vergata” in 2018. He is a member of Technical
Staff with the Open Networking Foundation (ONF),
where he works on Trellis—the leading open-source
leaf-spine fabric. Before joining ONF, he worked
with CNIT as a Researcher and a Postdoctoral
Researcher on several projects funded by the EU.
From 2013 to 2015, he was one of the beneficia-
ries of the scholarship “Orio Carlini” granted by the
Italian NREN GARR. His main interests focus on

software-defined networking, network function virtualization, virtualization,
and segment routing.

Stefano Salsano (Senior Member, IEEE) received
the Ph.D. degree from the University of Rome “La
Sapienza” in 1998. He is an Associate Professor
with the University of Rome Tor Vergata. Since July
2018, he has been the Coordinator of the Bachelor’s
Degree “Ingegneria di Internet” and the Master’s
Degree “ICT and Internet Engineering”. He has par-
ticipated in 16 research projects funded by the EU,
being a Project Coordinator for one of them and
a Technical Coordinator for two. He has been a PI
of several research and technology transfer contracts

funded by industries. He is the coauthor of an IETF RFC and more than
170 peer-reviewed papers and book chapters. His current research interests
include SDN, network virtualization, cybersecurity, and information-centric
networking.

Marco Polverini received the master’s degree
in telecommunications engineering and the Ph.D.
degree in information and communication engi-
neering from the University of Rome La Sapienza
in 2010 and 2014, respectively, where he is cur-
rently a Research Fellow with the Department
of Information, Electronic and Telecommunications
Engineering. His main research interests are rout-
ing protocols for energy saving in IP networks,
network traffic monitoring, and measurement in
next-generation routing technologies.

Antonio Cianfrani (Member, IEEE) received the
master’s degree in telecommunications engineering
and the Ph.D. degree in information and communi-
cation engineering from the University of Rome La
Sapienza in 2004 and 2008, respectively, where he
is currently an Associate Professor with the DIET
Department. His fields of interest include routing
algorithms, network protocols, performance evalu-
ation of software routers, and green networks. His
current research interests are focused on segment
routing and traffic matrix assessment. He is the coau-

thor of more than 70 peer-reviewed papers and book chapters. He serves on the
editorial boards of the IEEE TRANSACTIONS ON GREEN COMMUNICATIONS

AND NETWORKING.

Ahmed Abdelsalam received the Ph.D. degree in
computer science from Gran Sasso Science Institute
in 2020. He is a Software Engineer with the IPv6
Segment Routing “SRv6” Architecture Team, Cisco.
He contributed to many open source, including the
Linux kernel, FD.IO VPP, Tcpdump, IPTables, and
Snort. His main research interests focus on IPv6
segment routing (SRv6), network function virtual-
ization, software-defined networks, service function
chaining, and containers networking.

Clarence Filsfils received the Ph.D. degree in engi-
neering science, the Masters of Management degree
from Solvay Business School, and the Masters
of Engineering degree in computer science from
the University of Liege. He is a Cisco Systems
Fellow and has a 25-year expertise leading innova-
tion, productization, marketing, and deployment for
Cisco Systems. He invented the Segment Routing
Technology and is leading its productization, mar-
keting, and deployment. Previously, he invented and
led the Fast Routing Convergence Technology and

was the Lead Designer for Cisco System’s QoS deployments. He is a regular
speaker at leading industry conferences. He holds over 195 patents and is a
prolific writer, both in academic circles and in the standardization or books.

Pablo Camarillo is one of the engineers behind
Segment Routing v6 at Cisco. He is the coauthor of
various IETF drafts, holds several patents, and has
developed SR implementation in FD.io VPP. Prior
to joining Cisco, he was a Research Engineer with
the IMDEA Networks Institute, where he prototyped
a BGP route server in ExaBGP and researched the
algorithmic of TI-LFA (SR Topology-Independent
Loop-Free Alternates).

Francois Clad received the M.Sc. and Ph.D.
degrees in computer science from the University of
Strasbourg, France, in 2011 and 2014, respectively.
He spent one year as a Postdoctoral Researcher
with the Institute IMDEA Networks, Madrid, Spain,
before joining Cisco in 2015. His research activities
are focused on IP routing and in particular evolving
the segment routing technology.

Authorized licensed use limited to: BME OMIKK. Downloaded on December 12,2022 at 10:09:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

