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Network  synchronization deals with the  problem of  distributing 
time  and  frequency among spatially remote locations. Network 
synchronization is an integral part of any  large communication 
system, such as the  telephone  network.  It also plays an important 
role  in many diverse applications like navigation and position 
determination,  computer  communication, data gathering, control 
and  command systems, and phaseoCarray antennas. 

The purpose of this paper is to introduce  the reader to  the 
subject of  network  synchronization by organizing and presenting a 
tutorial  of  the  theoretical work accomplished to date. Since the 
subject  material is scattered, disconnected, and couched in differ- 
ent  notations,  the authors have long  felt that it  would be significant 
to organize  the  materialandpresent  the reader with an overview of 
the  growth  of  the subject. A by-product of such a  review  should 
serve as an aid to set direction for future studies and research work. 

The paper begins by  providing  the classification of  networks  into 
plesiochronous (asynchronous) and synchronous. Further break- 
down  of this basic classification into  a  treestructure hierarchy is 
presented. Since the  time and frequency waveforms transmitted 
between nodes experience propagation delay, some form of  rang 
ing system application is usually required  in order to compensate 
for these delays. Several delay compensation techniques are  de- 
scribed and incorporated  into  a more detailed classification of  the 
synchronization systems.  This is then  followed by presenting func- 
tional  network models from  which  a generic and unified mathe- 
matical  model is formulated.  Network performance measures  are 
defined  and  the mathematical model is used to characterize the 
synchronization behavior of the  network in terms of these  mea- 
sures.  Emphasis is placed on characterizing and understanding 
network  stability,  steadrstate behavior, effects of clock phase 
noise,  and  channel thermal noise. The nonlinear behavior of syw 
chronization systems is also explored. Numerous applications are 
pointed  out  and  a rather complete  list  (unfortunately nonexhaus- 
tive)  of  the references is provided for the purpose of  directing 
future research work. 

I .  INTRODUCTION 

Network synchronization deals with the  distribution of 
time and frequency over a network  of clocks which are 
spread over a wide geographical area.  Fig. 1 provides the 
concept. The clocks are  at different locations and are nor- 
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mally  interconnected by some  means  as,  e.g.,  cables or 
radio  links. The goal is to align (synchronize) the  time and 
frequency scales of all the clocks which  belong  to the 
network  by using  the data communication capacity of these 
links. In some applications, interest is in establishing, dis- 
tributing, and maintaining a reference time as, e.g., 
”Greenwich  Mean Time.” The local time can  easily be 
obtained  by adding an appropriate offset time. Numerous 
applications  of network synchronization are technical in 
nature. The following are  some of the better known appli- 
cations: 

Establishing of a world-wide time distribution system. 
Synchronization of clocks located at different multi- 
plexing points in a digital  communication  network. 
Synchronization of clocks in networks which require 
some form of  time-division  multiplexing, such as sat- 
ellite networks. 
Time distribution  in a network for the purposes of 
network  control and the performance of commands 
at specific times. 

Fig. 1. An example of network of clocks 

0018-9219/85/1ooO-1445$01.00 s1985 IEEE 

PROCEEDINGS O F  THE IEEE, VOL 73, NO, 10, OCTOBER 1985 1445 



e)  Range measurement between two nodes in the  net- 
work. Also position  determination and navigation by 
the  network users. 

9 Establishing a supercomputer by interconnecting 
several computers together in a  network. 

g) Scientific research. 
h) Phased-array  antennas. 

Many  intriguing examples of  the synchronization of a 
large number of oscillators can be found  in nature. One of 
the most spectacular ones is described in a fascinating 
article by J. Buck and E. Buck on synchronous fireflies [I]. 
These fireflies flash their light organs  at  regular and individ- 
ual"interva1s if they are not close together. However, i f  
many  of these insects are placed in a relatively close prox- 
imity they exhibit a synchronization of their light organs 
until they all flash in unison. Other  biological examples are 
the synchronization of individual fibers in heart  muscles to 
produce the familiar heartbeat,  or the resting and active 
periods of mammals, which exhibit rhythms. 

The mathematical treatment of network synchronization 
was largely stimulated by the introduction of pulse-code 
modulation (PCM) in the 1950s and the development of  the 
first all-digital communication networks. Telephone com- 
panies were attracted to the use of PCM and digital com- 
munication  in general for the many  advantages that it 
offered. However, the problem with a  digital  communica- 
tion  network is that  when  the signals remain in digital form 
throughout  the network, it is necessary to use time-division 
multiplexing and/or switching. Therefore, bits arriving at 
the  multiplexer must be available at the right  time so that 
the assigned time slots are filled correctly and no bits are 
lost. Since these bits arrive from  different nodes in the 
network, it is essential that the clocks located at these 
nodes be adequately synchronized. To take advantage of 
the  low cost of digital  communication and to avoid the 
problem  of  network synchronization, telephone companies 
adopted  the use of  the  pulse-stuffing  technique at  each 
multiplexing  point [2]-(131. In this technique, extra bits are 
added to each of  the  bit streams arriving at the multiplexing 
point  to  bring  them  to the same frequency. This allowed 
time-division  multiplexing  to be used on the bit streams. 
The location  of these added or stuffed bits are then  com- 
municated to the other end of the link where the extra bits 
are removed  and  the bit streams  are returned to their 
original  form except for some jitter that may  have been 
introduced  by the addition and removal operations [14], 

Another  possibility for using digital transmission while 
avoiding  network synchronization would be to perform a 
digital-to-analog conversion on all the digital signals arriv- 
ing at the multiplexer. These analog signals  can then  be 
multiplexed  without any difficulty and the  resulting signal 
could be digitized and transmitted to its destination. How- 
ever, this method incurs additional cost due to the need for 
digital-to-analog and analog-to-digital converters at  each 
multiplexer. Also, i f  encryption is used on the digital signals 
arriving at the multiplexer, the use of decryption/encryp- 
tion devices is required, adding to the cost of  implementa- 
tion and reducing the security of  the system. Another 
problem associated with  the above methods is  that  they 
cannot  be applied  to networks with sources that operate at 
frequencies above several  megahertz. 

~ 5 1 .  

A  more  economical alternative to the above methods, 
which allows sources with higher frequencies and which 
also permits the signals to remain in digital  form  throughout 
the network, is to synchronize all the sources  (nodes) in the 
network. This is what is referred to as network synchroniza- 
tion. By spatially synchronizing all the nodes in the net- 
work, not  only  the problem of time-division multiplexing is 
solved but also the  network  could be used for other appli- 
cations, e.g., navigation, position determination, satellite 
communication, and scientific research. 

Today the  field  of  network synchronization has become 
very diverse and is an essential part of many  facets of 
modern electronic  communication and data gathering sys- 
tems. Time transfer accuracies relate directly to the require- 
ments of these modern systems. 

II. NETWORK SYNCHRONIZATION TECHNIQUES 

The problem  of network synchronization has been widely 
investigated and various methods have been proposed for 
achieving synchronism among a set of spatially remote 
clocks. It is, however, possible to categorize these methods 
according to the employed synchronization algorithm 
(1  61-[21 I, [791, W I ,  [%I. 

Depending  on the nature of  the controlling signals  used 
in obtaining synchronization, the general class of  time- and 
frequency-transfer networks can be partitioned into  two 
main categories;  namely, plesiochronous (asynchronous) 
and synchronous networks, see  Fig. 2. In synchronous net- 
works all the clocks are locked in phase and frequency, 
whereas in plesiochronous networks no such attempt is 
made, however, the network consists normally of very  accu- 
rate clocks which exhibit extremely small frequency offsets 
and drifts. The basic operating principles of these networks 
and some of their  internal advantages and disadvantages  are 
discussed separately below. 

A. Plesiochronous Networks 

In a  plesiochronous network each node contains its own 
precise clock and there are no control signals coordinating 
the  operation  of these clocks [22],  [%I,  see  Fig. 3. Initially, 
the clocks are  set such that  the  time  difference  between 
them is zero (or at  least one tries to get as close to zero as 
possible). This calibration can  be done centrally before 
shipping  the clocks to their final locations or can be done 
by a "traveling clock." Since the clocks in a plesiochronous 
network are independent, their free-running frequencies 
are slightly different from each other. This frequency dif- 
ference leads to a linearly increasing time error between the 
clocks in the  network.  Other factors,  such as frequency drift 
and phase noise, also contribute to the  accumulation  of 
time errors between the nodes in the  network. This time 
error might eventually exceed an acceptable value at which 
point the  operation  of the network should be  halted and 
the clocks reset. The length  of  the  time interval between 
updating is a function of the clock quality and the tolerable 
time difference  between  the  network clocks. 

The advantages of plesiochronous networks is their ease 
of  implementation and their robustness to failures in the 
nodal clocks since the failure of  a certain clock does not 
impair the performance of any other clock in the  network 
due  to  their independence. The major drawback of plesio- 
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Fig. 2 Classification of time and frequency distribution networks. 

chronous  networks are the  high purchase and maintenance 
costs of very  accurate clocks as well as the  possibility  of 
frequent clock updating.  Atomic clocks are also relatively 
heavy and exhibit a  high  power  consumption which rules 
them  out  for most space applications. An example of  a 
plesiochronous network employing cesium clocks is  the 
TRI-TAC timing system which has an updating period of 24 
h. The Global Positioning System  (GPS)  also employs this 
technique. 

B. Synchronous Networks 

The clocks in synchronous networks are all locked in 
time (phase) and frequency to a common  network  time and 
frequency, i.e., the time scales generated by spatially re- 
mote clocks are, on the average, identical. This synchronism 
can be achieved in several  ways.  The synchronization 
techniques employed  in synchronous networks can  be di- 
vided  into centralized and decentralized ones depending 
on  the nature of  the  control signals, see Fig. 2. 

Centralized  networks use the master-slave synchroniza- 
tion  technique  in  which all the network clocks are either 
directly or indirectly slaved to a network master clock. 

0 
W 

0 

Fig. 3. A plesiochronous network. 

The master clock dictates the network  time scale and the 
network frequency. Fig. 4 shows a typical hierarchial mas- 
ter-slave network structure. 

Decentralized networks are based on the principle of 
mutual synchronization. Mutually synchronized networks 
do  not  contain a master clock, instead all the clocks con- 
tribute equally to the determination  of the network 
frequency  and time scale,  see  Fig. 5 .  

1) Implementation of Master-Slave  Synchronization 
Techniques: Of the  two synchronous techniques, the mas- 
ter-slave synchronization technique is the better known 
and more widely applied [23]-[33], (741, [93]-[95].  Fig. 6 
shows the  operating  principle  of a basic two-nodal 
master-slave network. Clock 1 i s  the designated master 
clock and clock 2 is  the slaved clock. The time scales 
produced  by  the  two clocks are T,( t )  and T2( t ) ,  respec- 
tively. In order to synchronize the slave clock to the master 
clock the  latter transmits its time scale to the slave.  The 
slave clock generates an error  signal by comparing the 
incoming  time signal T,( t - T )  (the  time scale of the master 
clock delayed by the transmission  delay), with its own time 
scale T, ( t )  in a time difference (TD) detector. This error 
signal i s  then used to correct the slave clock. 

In the steady  state, the slave time scale i s  locked to the 
delayed version of the master time scale. Hence, there is a 
nonzero steady-state time  difference  between  the two 
clocks, which depends on the transmission delay between 
the master and  the slave clock. Any  change in the transmis- 
sion delay will be translated into a corresponding change in 
the  time difference  between the two clocks. If clock 2 is  
now used as a master to a third clock in a hierarchial 
structure (see  Fig.  4) then the steady-state time error be- 
tween clocks 1 and 3 is the sum of  the  time errors between 
clocks 1 and 2 and clocks 2 and 3. 

To remove the steady-state  bias between the clocks and 
to make their  time scales less dependent on the transmis- 
sion delay, one must compensate for the transmission de- 
lays between  the clocks. One possible compensation tech- 
nique,  which is  applicable if the transmission delay can  be 
estimated, is shown  in Fig.  7.  The  slave clock time signal is  
delayed by this estimate before comparing it with the 
received master time signal. In this way there will be no 
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Fig. 4. A hierarchical master-slave network. 

Fig. 5. A partially  connected  mutually synchronized N-nodal  network. 

TD: T t n  Dlfference (or PD: Phase Detector) 
TD: Time Diffeence (or PD: Phase Detector) 

MSTER 

Fig. 6. Block diagram of basic two-nodal master-slave net- 
work. 

steady-state bias if the estimate of the delay is  completely 
accurate. However, if the estimate is not completely accu- 
rate, as it is  usually the case, the  time error between  the 
clocks  depends  only on the  difference  between  the actual 
delay and the estimate. The  delay-compensation technique 

IUSTER SLAVE 

Fig. 7. Delay-line-compensated master-slave two-nodal  net- 
work. 

just  described will be referred to as delay-line compensa- 
tion technique. There  are other delay-compensations tech- 
niques.  These  are  discussed in Section 11-64. An alternate 
approach is to phase  advance the  transmitted signal at each 
node. 
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One  problem associated with master-slave networks is 
the possible loss of  the master timing system.  This problem 
can be partially corrected by designating alternate master 
clocks or  running the slave clock  independently until  the 
master signal can be restored.  The latter approach necessi- 
tates in most cases a very  accurate, and therefore expensive, 
back-up  clock at  each node. Because of the  potential loss 
of  the master clock, master-slave synchronization tech- 
nique is not always acceptable for military applications. 
On the  other hand, many of the civilian communications 
networks, e.g., most telephone networks, prefer the mas- 
ter-slave method for its ease of  implementation. 

2) Implementation of Mutual Synchronization: As  was 
mentioned earlier there is no master clock in a mutually 
synchronized  network, rather it is the ensemble of clocks in 
the  network  which establishes a communication time scale. 
Here, each clock in the network adjusts its  time (phase) so 
as to reduce the  time error between itself and a weighted 
average of the rest of  the network [34]-[73],  [75]-[88],  [%I, 
[ q l ,  [%I, [ W .  

Fig. 8 shows the basic operation  of two mutually synchro- 
nized clocks. At each  node, an error signal is generated by 

TD: Time Dlffercnce (or PD: Phase Detector) 

CLOCK 1 CLOCK 2 

Fig. 8. Basic mutual synchronization in a  two-nodal  net- 
work. 

comparing  the  incoming  time signal to  the local one, as was 
done at the slave node in the master-slave network. This 
error signal is then used to correct the local clock. 

T D :  Time DIfference (or PD: Phase Detector) ;=TFxx 
LINE  LINE 

UDCK 1 CLOCK 2 

Fig. 9. Delay-line-compensated mutually synchronized two- 
nodal  network. 

As in the case of master-slave networks, the steady-state 
time error between the two clocks depends on the trans- 
mission delays. In addition, the steady-state network 
frequency depends on the transmission delays  (see Section 
VI). Any  of the delay-compensation techniques including 
the case discussed under the master-slave technique can 
be used to reduce this dependence. Fig. 9 shows the block 
diagram of a two-nodal delay-line compensated mutually 
synchronized network. 

So far only two-nodal  network examples  have been 
shown. How can the  clock-correction signal be obtained in 
a general network  with an arbitrary number of nodes where 
some of  the nodes are connected to more than one neigh- 
bor? The solution is phase  averaging as shown in Fig. 10 
which depicts the general nodal processing. Instead of 
having  only one input as in Fig. 8, there are N inputs to the 
node shown in Fig. IO. Therefore, N time differences be- 
tween the received and the local timing signals  are com- 
puted. The clock-correction signal is then obtained as a 
weighted  combination of all N error signals. Normally, it is 
a straightforward summation. 

Fig. 11 shows the  implementation which corresponds to 
that of Fig. 10 when delay-line compensation is used.  Here 
the  time signal of the local clock (node i )  is delayed by the 

WOML SIGWAL  PROCESSING 

S I W L  FRUH. 
MOLE 1 

c 

S I G I U L  FROM 
WOM 2 

c 
SIGWAL . UE16HTIN6 

AND 

COCBIN- 

ATION 

LOOP 
FILTER 

SIGWAL FRon 
NDDE N . 

OUTPUT -- 

fig. 10. Phase averaging at node i of an N-nodal  network with  no delay compensation. 
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TO:  Time Difference (or PD: Phase k t w t o r )  

M: Delay Llne 

Fig. 11. Nodal processing at node i of an N-nodal  network with delay  compensation. 

estimate of  the transmission  delay between  node j and 
node i (where node j is connected to node i) and then 
compared with the incoming time signal from node j .  

The advantages of mutually synchronized networks are 
the lack of a master clock and the fact that they are  less 
affected by clock phase  noise as compared to the other 
synchronization methods, as will be  discussed in Section 
VIII. One  of  the problems of  mutually synchronized net- 
works is  their stability associated with transients. The  ex- 
istence of closed loops in the networks can render them 
unstable for certain parameter  values. However, it  will be 
shown  in Section V that these  are simple conditions which 
can be  met to ensure a stable operation. 

A summary of the advantages  and  disadvantages of 
plesiochronous, master-slave, and mutual synchronization 
is provided  in Table 1. 

3) Classification o f  Delay Compensation Techniques: It 
has been pointed  out already that the basic implemen- 
tations  of master-slave  and mutual synchronization systems 
suffer from a transmission-delay dependence. To overcome 
this  degradation some form of ranging system  must be 
added to  the synchronization system in order to accom- 
modate  this delay. There  are  several delay-compensation 
techniques to remedy this. Fig. 12 shows a classification of 
delay-compensation techniques in synchronous networks. 
They can be split into  two subgroups depending on whether 
an explicit  or implicit delay  measurement is employed. 

Explicit delay measurement implies  that  the transmission 
delay is somehow measured, possibly by means external to 
the synchronization system, and this value is then used in 
the synchronization system.  Examples of a delay-compen- 
sated systems which rely on explicit delay measurement are 
the delay-line-compensated systems  (Figs. 7 and 9) and 
advanced clock systems  (Fig.  13). In the advanced clock 
method, instead of delaying the signal of  the local clock 
and  comparing it to the incoming signal, the time signal of 
each clock is first advanced by the measured channel delay 
and then transmitted to the other node. 

Implicit delay measurement implies that the transmission 
delay is not measured internal or external to the synchroni- 
zation system; however, this delay could be  computed from 
data available within the synchronization system. All the 
systems in this category exchange synchronization informa- 
tion  between  the  network clocks. Examples of such systems 
are the Equational Timing System  (ETS)  [SS], and the 
Returnable Timing System (RTS) [75]. Block  diagrams of 
these systems  are shown in Figs. 14 and 15, respectively. For 
simplicity, the figures show two-nodal networks. The oper- 
ation of these systems is described together with their 
mathematical models in Section lll-C2. 

As will  be seen, delay compensation minimizes  the ef- 
fects of transmission delays and their variation on the per- 
formance of  the synchronization network. In almost all 
networks  of practical interest, some form  of delay com- 

I 
A +  

DELAY COUPENSATION 
TECHNIQUES 

ex l i c l t  dela il;plicit  dela 
measurements measurements 

EXPLICIT DELAY IMPLICIT DELAY 
COMPENSATION COMPENSATION 

COMPENSATION 
DELAY LINE ADVANCED OTHERS RETVRNABLE 

CLOCKS 
EQUATIONAL 

SYSTEM SYSTEM 
TIMING SYSTEM TIMING SYSTpl 

Fig. 12 Different methods of delay compensation in synchronous  networks. 
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TaMe 1 Summary of the  Advantages  and  Disadvantages of the Different Synchronization 
Network Structures 

NETWORM STRUCTURE 

PLESlOCHRONOUS 

0 0  
0 

0 0  

0 NO CLOSED Loocs 

D E L A Y  D E L A Y  
ESTIMTE ESTIMTE 

Fig. 13. A two-nodal mutually synchronized network  employing advanced  clock method. 

pensation is necessary to achieve acceptable network syn- 
chronization performance. 

4) Derivation of Synchronization Information: There  are 
basically five different methods which can be  employed to 
obtain the necessary synchronization information. They  are: 

1) burst position measurement, 
2) clock time scale sampling, 
3) continuous correlation  of timing signals, 
4) buffer  fill measurement, 
5) frequency  difference measurement. 

In the burst position measurement, the synchronized 
clocks are timing  the transmission bursts at predetermined, 
repetitive, instances of  time. At the reception of a data 
burst their actual position is compared to the  nominal one. 
This time difference is  proportional to the  time  difference 
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between  the transmitting and the receiving clock plus the 
transmission. delay. Let T, ( t )  and G ( f )  be  the time scales 
generated by clocks 1 and 2, respectively, the  computed 
quantity A,, at clock 1, is 

A, = q ( t - 7 ) -  T , ( t )  (1 ) 
where T is the transmission delay encountered by the burst. 
The equivalent value at clock 2 is 

T ( t - 7 ) -  T , ( t ) .  ( 2) 

In the second method, the clock time is read  (sampled) at 
regular intervals. This  value is  then transmitted over a digital 
data link  to  the neighboring  clock where the  difference 
between  the received clock time sample and a local clock 
time sample is computed. This value is again proportional 
to the  time difference  between  the two clocks plus trans- 
mission and sampling delays,  i.e., the computed value at 
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TD: Tine Difference  (or PO: Phase Detector) A,( t )  = T,( t - T) - T,( t )  (6 )  

Fig. 14. Equational timing system in a mutually  synchro- 
nized  two-nodal  network. 

T D: Time Difference (or PD: Phase Detector) 

Fig. 15. Retunable timing system in a mutually synchro- 
nized  two-nodal  network. 

clock 1 is 

4 = T , ( t - u )  - T, ( t )  (3) 

where u is now the sum of the transmission and data 
processing delays. A similar expression holds for clock 2. 

The third  method relies on a continuous  tracking  of a 
received timing signal at  each node. One possible way to 
achieve this is to have  each clock drive a pseudonoise (PN) 
sequence generator. This  sequence is then transmitted. At 
the  receiving side of the  link,  the PN sequence is  tracked 
and compared to  the local version in a delay locked  loop. 
The phase offset  between the received and the local PN 
sequence is again proportional to the time difference be- 
tween the clocks plus  the transmission delay as in (1). 

The fourth approach is applicable in store- and forward- 
type data networks or in general networks in  which  the 
received data are read into a buffer by a clock derived from 
the data link whereas the  buffer is emptied at the local 
clock rate. If the  two clock rates  are not identical  then  the 
buffer tends to  fill  up or to empty  depending on whether 
the local clock rate is lower or higher than  the received 
one. Therefore, the  buffer fill status is  related to the syn- 
chronism  of the  two clocks,  and mathematically at clock 1 

Al( t )  = f  [ G(  s - T) - f,( s)] ds ( 4) 

where A, is the buffer fill value at node 1 and ((s) i s  the 
data clock rate of clock i ,  i = 1,2. Defining 

-m 

T;( t )  = -1 (.( s) ds 
1 '  

(5) C -m 

where f,, is the nominal clock frequency, the  buffer fill 
status can be expressed as 

which is equivalent to (1). 
The last method employs a measurement of  the frequency 

difference  between the two clocks,  i.e., at node 1 one 
computes 

A, G( t - T) - fl( t )  ( 7) 

and uses this to effect synchronous operation. 

111. MATHEMATICAL MODEL OF SYNCHRONIZATION NETWORKS 

Insight into  the behavior of synchronization networks can 
only  be gained through  the analysis of  their mathematical 
models. In  this section, the mathematical model of  a clock, 
which is  the  main  building block of a synchronous network, 
is  first presented and then  this  model is used to develop the 
mathematical model of  the  network. 

A. Mathematical  Model of a Clock 

The mathematical model of a clock is the representation 
of  the  time process  observed at the output of the clock. A 
clock is a device which consists of an oscillator and a 
counter. The oscillator is  used to generate a cyclic wave- 
form at a uniform rate while the counter records the  num- 
ber of cycles that have  elapsed.  The oscillator output can  be 
modeled  by a periodic waveform 

s( t )  = A (  t )  sin@( t )  (8) 

where 
A ( t ) = A + S A ( t ) .  ( 9) 

SA( t )  characterizes the amplitude variation about some 
fixed value, and t denotes the ideal time according to a 
reference clock. 6 A ( t )  is usually very  small and can  be 
ignored for most timing applications. The instantaneous 
radian  frequency function dj( t )  can be modeled in the form 

where q, is a constant denoting  the nominal value of  the 
free-running frequency of  the oscillator. L(0) i s  a zero-mean 
random variable representing the initial frequency error 
(departure). This error arises from the uncertainty which 
exists in  the  initial setting (setability) of the free-running 
frequencies of  the oscillators. The L(k)'s ( k  = 1,- e, M - I), 
specify a set of time-independent random variables model- 
ing  the  kth-order frequency drifts, and { ( t )  i s  a stationary 
zero-mean random process characterizing the short-term 
oscillator  instabilities. 

The oscillator phase  process  can  be obtained by integrat- 
ing (IO) from 0 to t .  This  results in 

for M 2 1. The "time process" of  the clock is obtained by 
dividing the oscillator phase by the nominal  free-running 
frequency of  the oscillator q,. Hence, the  time process T( t )  
can be written as 

T ( t )  = T(0) + t +  T t & +  q(k) q t )  (12) 
k - 1  

where q(k) = L(k - l)/q,(k = I,...,M) are a set of ran- 
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dom variables modeling the (k - 1)th-order time drifts and 
\k( t )  = { [( t )  - [(O)}/w, is, in general, a nonstationary sto- 
chastic process characterizing the short-term  clock  instabili- 
ties. Fig. 16 shows the plot of the time process T ( t )  against 
the ideal time t. 

0 
7 

t (Ideal Time) 

Fig. 16. Plot of the time process of a clock. 

B. Mathematical  Model of Plesiochronous Networks 

In plesiochronous networks, the clocks are located at 
different geographical positions with  no interconnections 
between  them. Therefore, a clock  located at node i gener- 
ates a time process T;(t) which is independent  of all time 
processes generated by other clocks in the network. T;( t )  i s  
given by (12) and is  of the form 

M 

T;( t )  = T;(O) + t + 7 tk  + \ k j (  t )  (13) 
k - 1  

i = 1,2;. ., N, where N is  the number of nodes in the 
network. The derivative of the time process T;(t) can be 
written as 

i = I,..., N. For  ease of notation, Q,( t )  is defined as 

and is  referred to as the normalized frequency. Therefore, 
the system of equations describing the  operation of plesio- 
chronous  networks is given by 

q t )  = Q( t )  (1 6)  

i < t ) = [ T ; ( t ) , T ; ( t ) ; - , f , ( t ) ] "  (1 7) 

Q ( t )  = [Q,(~),Q2(~),...,52,(~)]" (1 8) 

where 

and tr indicates the transpose operation on the vectors. 

C. Mathematical  Model of Synchronous Networks 

in synchronous networks, the tlme process of  the clock at 
each node is  controlled by an error signal which is gener- 
ated from  the  time signal of some or all the clocks in the 
network. in order to show how the general mathematical 
model of synchronous networks is  obtained, first the math- 

ematical model of a two-nodal network is  developed then 
the results are extended to N-nodal networks. 

I )  Mathematical  Model of Synchronous Networks with 
N o  Delay Compensation: This is the most  basic model of 
synchronous networks. A two-nodal mutually synchronized 
network  with  no delay compensation is first considered 
(Fig. 8). In this  network,  the  time signal of each clock is  
transmitted to the other node in the  network. The received 
signal, which is the delayed version of the transmitted time 
signal, is  then compared with the locally generated time 
signal to produce an error  signal that is proportional to the 
time difference  between the clocks in the  network. This 
error signal is  then used to  control the local clock. By 
inspection, the equations governing the operation  of this 
network can be written as 

where B; is the  loop gain at node i ,  F ( p )  is the loop filter at 
node i, gj j (  .) is  the characteristics of the  time (phase) detec- 
tor at node j receiving  time signal of node i,7rj i s  the delay 
encountered by the signal traveling from node i to node 
j ,  Njj( t )  is the equivalent thermal noise in that channel, and 
Qj( t )  i s  given by (15). 

The mathematical model of a master-slave network, with 
node i as master,  can  be obtained  from (19) by letting 4 
equal zero. The mathematical model  of plesiochronous 
networks can also be  obtained from (19) by equating both 
B, and S, to zero. 

The mathematical model of the two-nodal  network pre- 
sented so far  can  be  easily generalized to N-nodal  net- 
works. (Although the generalization to N-nodal networks is 
not unique, the method presented here is the only one that 
is used in  the literature.) Fig. 11 depicts the nodal processing 
at node i of an N-nodal  network with  no delay compensa- 
tion. In this network, the time signal of the local clock 
(clock i )  is compared with all the  incoming time signals. 
The resulting error signals  are then inputted  to the nodal 
processor where a weighted average of these  signals is 
formed  to generate an error  signal that is used to control 
the local clock. The operation of this network can be 
described by the following system of equations: 

?( t )  = Qj (  t )  + B,F(p) 
N 

. C g;j[ $ ( f  - 7;j) - T;( t ) ]  + N;i( t ) }  (20) 
j -1  

for i = 1,2; . e ,  N, where a j j  are normalized weighting coef- 
ficients with 

N 

ajj  = 1 and a;; = 0, 
j-1 

forall  i=1,2;..,N. (21) 

2) Mathematical  Model of Synchronous Networks with 
Delay Compensation: 

a)  Delay  line compensation: A two-nodal  mutually syn- 
chronized  network  with delay line compensation is shown 
in Fig.  9. in this network each node estimates  or measures 
the transmission delay between  the other node and itself 
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and  then delays the  time signal of the local  clock  before 
comparing  it  to  the arriving time signal. The mathematical 
model  of  this  network is analogous to (19)  and is given by 

i ; <  t> = Ql(  0 + V l ( P )  

* { g 1 2 [ W - 7 1 2 )  - W - e l 2 ) l  + N l 2 ( t ) )  

( 2 2 4  
T;( = Q 2 (  t )  + 4F2(P) 

* {  g21[ T,( t - 721) - T,( t - e 2 1 N  + N24 t>> 
(22b) 

where t, is the estimate of qj. For the N-nodal  network 
with delay line compensation (Fig.  11) this becomes 

?.( t )  = a;( t )  + 4 6 ( p )  
N 

* a , {  g;,[ q( t - q,) - T;( t - $,)I + Njj( t ) }  
j - 1  

(23) 
where i = 1,2;. -, N. 

6) Advanced clock method: The mathematical  model 
for a two-nodal  network using this  compensation  method 
(Fig. 13) can be written by inspection as follows: 

T;( 9 = Q l ( t )  + BlFl(P) 

.{  8121  T,(t  - 7 1 2 )  + e12 - T, ( t ) l  + N12(t)> 

(244 

4 0 )  = Q 2 ( 0  + !2F2(P)  

* {  8 2 4  T,( t - 721) + e21 - T,( 0 1  + N21( 91. 
(24b) 

The generalization  of  this  model  to  N-nodal  networks is 
very similar to (23). 

c) Equational  Timing System  (ETS): A method of delay 
compensation  which has been described in the literature is 
the Equational Timing System (ETS) [56]-[59]. A two-nodal 
mutually synchronized  network which uses ETS is depicted 
in Fig.  14. In this  network, the time  difference  between  the 
incoming  time signal  and the local  time signal is measured 
and then  its value is  transmitted to the other node in  the 
network.  At each  node, the control signal is formed  by 
adding  this received value of the time  difference to the 
locally measured value of the time  difference  between the 
clocks. The mathematical  model for this network is given 
bY 

T;( t )  - $( 0 + F,(p)[4g12[ T,( t - 7 1 2 )  - T,( 0 1  
+ N12(t) + B l & 2 [  T,( t - 42) 
- T,(t  - 721 - &) I  + f i 1 2 ( t ) I  ( 2 5 4  

T;( t )  * Q 2 (  + F2(P)[  4g24 T,( t - 721) - T, ( t ) l  

+ N24 t )  + k 2 1 [  T,( t - 4 1 )  

- T,( t - 712 - d21)I + f i 2 4  91 ( 25 b) 

where gjj[ 7j( t )  - 7;.( t - 7j.;)] is the  measurement of the dif- 
ference between  time signal of clock i and clock j mea- 
sured at node j and transmitted  to node i, and d, is the 
time that it takes for this value to reach node i (processing 
time at node j plus the transmission  delay). Njj(t) is  the 
equivalent noise in the transmission line  between node j 
and i, and f i j i ( t )  is the  noise which is present in the 

measurement gj j ( . ) .  Equation (25) can  easily  be extended to 
obtain the mathematical  model of N-nodal  networks 

tj( t )  = Q;( t )  + 6 ( p )  

N 

+ h; bj j [g j j [  ?( t - d;,) 
j - 1  

- T (  t - 7; - di j ) ]  + i ; j (  t ) ]  i 
d) Returnable Timing System  (RTS): Another  method of 

compensating  for transmission  delays is the use of Return- 
able  Timing System (RTS) shown in Fig. 15p4] ,  [75]. In this 
network,  the  output of the time detector TD  at node 2 is 
proportional  to  the  difference  between the time signal from 
node 1 and the  timeAgnal of the local  clock. The output of 
the  time  detector TD is proportional  to the difference 
between  the signal from  clock 1 and the time signal of 
clock 2 returned  by node 1. Therefore, the system of equa- 
tions  describing the operation of this  network is given by 

T;( t )  = Ql( t )  + Fl(P)[ 4g12[ T,( t - 7 1 2 )  - T,( 0 1  
+ N12( t )  + kg12[ T,( t - 7 1 2 )  

- T,( t - 721 - e1211 + i 1 2 (  0 1  ( 2 7 4  

+N21( 0 + &21[ T,( t - 721)  

- T,(t - 712 - .i21>l + i21(t>l (27b) 

T;(t)-Q,(t)+F2(p)[~g21lT,(t-721)- W ) l  

where #,(e) i s  the characteristic of the time detector TD  at 
node i, N j j ( t )  is the equivalent noise in the transmission 
channel  between node j and node i, and f i j j ( t )  is the 
equivalent noise in the returned channel. 

c. 

D. Generalized Mathematical Model of Synchronization 
Networks 

A generalized mathematical  model which can  be  used to 
describe the  operation  of the class of synchronous  and 
plesiochronous  networks is given by 

i ( t ) = n ( t ) + F ( p ) [ C +  C +  N + f i ] * /  (28) 

where 

qt) = [ T,( t )  ,T , ( t ) , . . . ,T , ( t ) ] "  ( 29) 

Q ( t )  = [512,(t) ,512(t), . . . ,n,(t)l" (30) 

F ( P )  = diag[F,(p),F,(p) , . . . ,F , (p ) l , x ,  (31 ) 

(32) 

C = [ &bjgj,[ q( t - ujj) - T;( t - s,)]] (33) 

N = [ g;N;j( t>] , y X N  (34) 

f i  = [ h;i,(  t ) ]  N X N  (35) 

/ =  [1,1;..,1]". (36) 

G = [ B+;jg;j[ ?( t - 7;j) - T (  t - + ~ ; j ] ]  

The weighting coefficients ajj  and bj must  satisfy the fol- 
lowing  conditions: 
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N N 

aj j  = b, = 1, V i  (37) 
j - 1  j = l  

and 
a ; ; =  b j i = 0 ,   V i = l ; . - , N .  ( 38) 

Bv an appropriate choice of coefficients, (28) can  be  used 
to c ?scribe the operation  of all the networks discussed so 
far. 

I )  Plesiochronous Networks: If B, = hj = 0, then (28) 
reduces to 

i( t )  = Q( t )  (39) 

which is the same as (16) derived for plesiochronous net- 
works. 

2) Synchronous Networks: Equation (28)  can be  used to 
describe the operation  of master-slave  or mutually syn- 
chronized networks or  any hybrid of both of them. In 
master-slave networks, the timing signal of  the master 
clock is independent  of other clocks. Therefore, if the i th  
clock is the master clock, the coefficients Bj and E; must  be 
equal to zero.  Also, in master-slave networks, the time 
signal of each clock is controlled  only by its immediate 
master clock. Therefore, at node k ,  the coefficients bkj = 
ak j  = 0 V i  # and b k f =  akf = 1 ,  where clock t' is the 
master of  clock k .  Any hybrid of master-slave and mutual 
synchronization can be represented by (28) with appro- 
priate choices of a j j ,  bjl, B,, and 6;. 

Different delay-compensation techniques can  also  be 
represented by (28) by choosing values of q j j ,  pi,, q j (  t ) ,  and 

a)  No delay compensation: If there is  no delay com- 
a;,( t ) .  

pensation, then 

Ei = 0, vi 

q . . = p . . = a . . = a . = o  rl ,I  I V i , i .  

E' = 0, vi 
1.. = 7.. a l l ,  v i , i  

and 

b)  Delayline compensation: In this case 

and 

p . . = ~ . . = a . . = o ,  v i , j .  
' I   ' I  ' I  

C) Advance clock method: For these networks 

h' = 0, vi  
P .  = 7. .  V i , i  

and 

d) Equational  Timing System  (ETS): To represent this 
delay-compensation technique, it is required that 

and 
6.. = 7.. + d. .  V i , i .  ( 50) 

e) Returnable  Timing System (RTS): For this case 

p i ,  = qj j  = 0, V i ,  j (51) 

E. Linearized Mathematical Model of Synchronization 
Networks 

Analysis of  the mathematical model in its most general 
form given in (28) is a difficult analytical problem. For 
several of the  network performance measures (to be de- 
scribed in  the  following section) it is sufficient to consider 
the linearization of the model of (28). In the linearized 
model,  the  functions g j j ( . )  and gj j ( . )  are assumed linear. 
This assumption can  be well justified by the use of PN 
sequences, or by assuring that the phase detectors are 
operating in the linear region of their characteristic curves. 
The linearized mathematical model of the time process  at 
node i is given by 

i;( t )  = a;( t )  + F,(p) 

N 

+ p j j  + Nj j (  t ) ]  + hjc b,[ [ T,( t - uj j )  
j = l  

- T (  t - a;,)] + ijj( t ) ]  , i (54) 

IV. NETWORK PERFORMANCE MEASURES 

The performance of the various network synchronization 
methods can only be judged and compared on a set of 
meaningful measures tailored to the  intended  application. 
However, these measures  have to be general enough such 
that  they can be evaluated for different implementations. 

The measures which are  discussed here  can  be divided 
into  two major categories.  The first category includes per- 
formance measures to judge the steady-state behavior of 
the synchronization system under relatively ideal condi- 
tions. They result in an estimation of  the basic limits of  the 
systems as a function of several nonrandom network param- 
eters,  e.g., the free-running clock frequencies and the trans- 
mission delays. These performance measures  are  very crude 
and are merely an indication as to whether a particular 
synchronization system  is worth the effort  of any further 
investigation. The performance measures in this category 
are: 

a) Steadystate Network Behavior: The  steady-state net- 
work behavior is an indication  of the basic limitations  of 
the  network  in an ideal environment such as constant 
delays, no oscillator instabilities, and in fact, no channel 
noise, It shows how the  network parameters and connectiv- 
ity  influence such  values as the network frequency and the 
time errors between nodal clocks. 

b) Network Stability: Network stability deals with the 
decay of transients in the network.  Two sets of results  can 
be obtained  in analytical form. The first is a set of  sufficient 
conditions,  formulated as a function of network parameters, 
like delays,  gains,  etc., to guarantee decaying network tran- 
sients. The second set of results  deals with the rate at which 
these transients decay as a function of the  network parame- 
ters and the  topology (connectivity  between the clocks). 
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The second category contains the statistical performance 
measures dealing with the accuracy of the time and 
frequency distribution  in the  network in the presence of 
random disturbances and  noise  processes.  These perfor- 
mance measures  are: 

a) Time Error  Process: This is defined as 

T j ( t )  T ; ( t )  - T; . ( t ) ,  i,j=I;.-,N;i# j. ( 5 5 )  

This time difference should ideally be zero. Oscillator 
frequency  instabilities and  phase  noise, channel thermal 
noise, and topological changes, however, make it a random 
process.  This  process will have  values  dispersed about a 
mean value which may not be  zero.  This performance 
measure is particularly  important when a  common time 
base  has to be established in a network, e.g., in very long 
baseline interferometry or world-wide  time distribution. 

Another version of this performance measure using the 
phase counterparts of the time process in (55) is  also  used. 
The phase error between  the nodes is defined as 

Q j j ( t )  L @ ; ( t )  - a j ( t ) ,  i,j.=I,--.,N;i# j (56) 

where @;(t) i s  the phase  at the output  of the oscillator in 
the i t h  node at some time t .  (ajj(t) has also been denoted 
by AQjj(t) in the literature.) This  process is also referred to 
as the “space increment”  of  the nodal phase  processes. 
Space in this  context refers to the spatial difference or 
geographical separation of  the nodes under consideration. 

b) Time Interval Process: A time interval of  length h as 
observed on  the  time scale  at node i is given by 

AT;( t ;h)  = s ; ( t+  h ) -  T ( t ) ,  i = l , - . .  ,N. (57) 

This process should ideally be equal to the value h at all t .  
The instabilities and noises in the  network  diffuse it and 
can even make its expected value not equal to h. 

The phase version of (57) is defined as 

h @ ; ( t ; h ) = @ , ( t + h ) - @ ; ( t ) ,  i=l;..,N. (58) 

This process is referred to as the “time increment” of  the 
phase process at node i. 

c) Time Interval Error  Process: The time interval error 
means the  difference  in the measurement of a time interval, 
say of length h, at one node and the measurement of the 
same interval at another node. It is defined as follows: 

ATj( t; h)  [ T(  t + h)  - T (  t ) ]  - [ 7;.( t + h)  - $( t ) ]  . 
(594 

Using (57), this can be written as the  difference  between 
the  time interval processes  at nodes i and j 

A q j (  t;  h )  = A q (  t; h )  - AT;.( t; h) .  (5%) 

Or using (55) i t  can  be written as the difference of the time 
error processes  at time t + h and time t 

ATj( t; h)  = qj( t + h)  - s;j( t ) .  (594 

From the  definition, the ideal mean  value of  the time 
interval error process is zero. However, as we shall see, 
certain  oscillator instabilities can lead to nonzero mean 
time interval error. This indicates that one of  the oscillators 
under consideration is either faster  or slower than the 
other. As such, this performance measure  characterizes the 
accuracy of  the frequency transfer in the  network. Time 
interval  error is a C C l n  approved performance measure for 
plesiochronous networks. 

The phase version of this performance measure is defined 
in a similar manner as 

A@;j( t;  h) @ j j (  t + h)  - @ j j (  t )  (60) 
and is referred to as the ”space and time increment” of the 
phase processes  at  nodes i and j. 

In the sections to follow, the different performance mea- 
sures described herein will be  used to develop an under- 
standing of  the characteristics of synchronization networks. 

V. NETWORK STABILITY 

This section deals with  the stability  of synchronous net- 
works and how it is influenced by the network parameters 
and  the  network topology. Stability, as used in this section, 
deals with  the behavior of transients in the network, viz., 
the  conditions under which transients decay and at which 
rate the transient decay is taking place. The goal of this 
section is to show  in a very rudimentary form, the methods 
which have been  employed in the literature to  obtain 
information  on  the stability  of synchronized clocks. The 
interested reader is referred to more detailed treatments in 
the literature [%I-[102]. It has been shown earlier that the 
network can be described by a linearized set of equations 
for most cases of interest. Therefore, the  stability of the 
network synchronization systems can be discussed by ele- 
mentary Laplace transform methods. However, analytical 
results are sti l l  not easily obtained due to the large number 
of parameters and  the  nonzero transmission delays between 
the  network nodes. In the most general case, i.e., in the 
absence of any restricting assumptions on the network 
topology, it is only possible to develop sufficient  stability 
conditions. Analytical results giving  the approximate loca- 
tions  of  dominant system poles can only be  obtained for a 
restricted subclass of  network topologies in which all the 
transmission delays between  the connected nodes are equal. 

A. Sufficient Stability Conditions 

Taking the Laplace transform of the linearized mathe- 
matical model in (44) the network can be described in  the 
Laplace domain  by the matrix equation 

Q ( s )  * T ( s )  = p(s)  (61 1 
where Q(s) is an N X N matrix, P(s)  and T(s) are N-vec- 
tors. T(s) is the vector of the Laplace transforms of the 
nodal  time scales,  i.e., it is the desired system output, and 
P(s)  is a  vector with  no poles in R+= { s: Re (s) 2 0, s # O}. 
Equation (61) can be solved for T(s) if Q-’(s) exists.  The 
derivation  of  the sufficient  stability  conditions are  based on 
the existence of Q-’ (s ) ,  in particular on the following 
theorem: 

Theorem 5.7: Let Q(s) = [ q j k I N x N  be  a complex matrix 
which is  diagonally  dominant in R+,  i.e., 

N 

19;;l > E 19;,It i 3  1,2, .** ,N (62) 
j-1 
j +  i 

then  the roots of det [Q(s)] have negative real  parts with 
the possible exception  of roots at the origin. 

The proof  of  this theorem is given in [39]. Sufficient condi- 
tion can now be  obtained  from (62) after some tedious but 
straightforward algebra  [SA.  The  results are shown in Table 
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Table 2 Sufficient  Conditions  for  the  Stability  of  Synchronous 
Networks 

Network Type No Loop Filter 

Master-Slave 

1 
f k ( 5 )  =- 

I + P k s  

Networks always stable 

Mutually Synchronized 
with no Delay 
Compensation always stable B k .   p k  1/2, V k  

Mutually Synchronized 
with Delay Line 
Compensation B, ' ? k c <  1/2, Vk* B k [ ? k { +   P k ]  1/2, Vk*  

Mutually Synchronized 
with ETSor RTSt B, . 8 k ( <  fi - 1, Vk**  Bk[8, ,+ p k ]  < fi - 1, Vk** 

(Miller) 

*ikc = rnax iki 

**Skc-  max8, 

'Ski  - eki + qk,  for RTS 
t j k i  = dki + T ~ ,  for ETS. 

j +  k 

/ + k  

2 for various types of delay compensation methods as 
discussed in Section 11-83, in the presence and absence of a 
first-order Butterworth filter in the local feedback loops. 

The results indicate that there is an upper limit for the 
gain-delay product (channel delay times the open-loop gain 
in the nodal phase locked loops) to assure  system stability. 

6. Approximate Pole Locations  for Dominant Poles 

An  important consideration in synchronous networks is 
the rate at which the transients die  down. This result 
cannot be  obtained  from the  sufficient  conditions since 
they only guarantee that all the system poles are in the left 
half plane but  do  not give the position  of these poles. 

Analytical results for the dominant  pole  location can only 
be  obtained  for a special subclass of network topologies, in 
particular it has to be assumed that all the delays between 
the  connected nodes are equal, all nodal loop gains  are 
equal, and no nodal loop filters are employed. With respect 
to  the general noise-free linear model in (54) i t  is required 
that 

7.. = 0.. = 6../2 = 7 ,  Q i , j :  i c) j 

a.. = b.. 
JI  JI Jl 

Q i , i  

q = B ; = B ,  Qi 

c(s)  = I ,  Qi 

in which case the mathematical model takes the  form of 
the matrix differential-difference  equation: 

i ( t ) = O ( f ) - B T ( f ) + 2 B A T ( t - ~ ) - B T ( t - 2 7 )  

(63)  
where A = [ a j j I N x N  is the network  weighting matrix. If the 
matrix A can be diagonalized in the  form 

A = UAU-' 
A = diag(X,,X,;.-,A,) 

then  the set of differential-difference equations in (63) can 
be  decoupled  by  the transformation 

X( t )  = U - l q  t )  

into 

X( t )  = U-lCJ( t )  - BX( t )  + 2BAX( t - 7) - BX( t - 27) .  

(64) 
Under  the aforementioned  conditions it is possible to de- 
compose the N-dimensional problem into a  decoupled set 
of N one-dimensional problems. The network  stability can 
now be  studied via the  dominant poles of the characteristic 
equations associated with the homogeneous part of (64). 
The normalized characteristic quasi-polynomials associated 
with (64) are given by 

+( s) = I + s - 2 ~ ; e - ~ y  + (65)  

where y = 6 .  T is the gain-delay product which has already 
played an important role in the  sufficient  stability condi- 
tions. It can be  shown that the eigenvalues X i  of the 
weighting matrix A satisfy the condition IX,I Q 1, i = 
1,2;-- ,  N. Given the specific eigenvalues X; i t  is now 
possible to numerically solve the characteristic equation 
+(s) = 0 for the dominant pole. No analytical solution is  
possible at this  point and one has to resort to numerical 
methods. Fig. 17 shows the  location  of  the  dominant poles 
associated with four real  eigenvalues.  Similar plots can  be 
generated for complex eigenvalues [97]. The value of  the 
gain-delay product y is increasing in the  direction  of  the 
arrows; three specific values of y are marked in Fig. 17. 
Notice that the set of eigenvalues {X;} reflects the network 
topology whereas y reflects the  influence  of  the transmis- 
sion delays between the nodes. Fig. 18 shows the behavior 
of  the real part of the dominant poles as a function of  the 
logarithm  of  the gain-delay product y. The figure shows 
that  there exists  an optimum value of  the gain-delay prod- 
uct for which  the dominant  pole is located a maximum 
amount  into  the  left half plane. 

This optimum  point is a function of the network  topol- 
ogy, since the  topology influences the set of eigenvalues of 
the  weighting matrix A.  In the case of equal delay networks 
it is possible to  find a more accurate sufficient stability 
condition than  the one presented in Section V-A for an 
arbitrary network. The derivation is too lengthy to be in- 
cluded here. The interested reader is referred to [97]. It is 
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fig. 17. Location of dominant  network poles for  real eigenvalues. 
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fig. 18. Real part  of  dominant poles versus gain-delay product. 

shown there  that  the bound given in Section V-A is very 
conservative in case that the weighting matrix A has only 
real eigenvalues. However, the same bound becomes tight 
in cases where A has complex eigenvalues  near the unit 
circle. 

VI. STEADY-STATE BEHAVIOR OF SYNCHRONOUS NEWORKS 

Steady-state network behavior is a basic performance 
measure of synchronous networks which deals with  the 
operation of the  network after the transients  have  decayed. 
In determining steady-state behavior, it is  always  assumed 
that  the  network is stable  and that there is no clock insta- 
bility or channel noise present. 

In the steady  state, the parameters of interest are the 
steady-state frequency of  the clocks and the time error 
between  them. These parameters indicate the basic limita- 
tions of a network and  can  be  used as comparative rnea- 
sures between different networks. 

- Rc(r) 
10 

5 

The linearized mathematical model of the network is 
given by (54). The assumption that there are no short-term 
or long-term  clock instabilities present implies  that Q,( t )  is 
constant. Furthermore, it is assumed that there are no 
channel noise or loop filters in the  network (the results will 
hold  for networks with  loop filters if the filters satisfy the 
condition 

l imF(s) = I ,  V i  
s+o 
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If  the  network is assumed to be  stable with its steady-state 
frequency  (this is in fact the normalized frequency) de- 
noted by n,, then 

Iim i( t )  = D,, vi. ( 67) 

The time process q( t - q j )  can in general  be written as 

T (  t - q j )  = T;( t )  - 1 t.( x )  dx. (68) 

t+m 

t 

t-T,j 

In  the steady  state, $ ( x )  = Q,, therefore (68) reduces to 

T (  t - T i j )  = T(  t )  - "Tij, ( 69) 

Substituting (69) in (66) results in 

+ Bidij + b.b.. 
-' ' I  7j( t )  + - (70) Y. 

j-1 B; + Bi Bi + bi 

N 
y; = 4 a . .p . .  11 ' I  ' 

j-1 

The matrix representation of (70) is given by 

n,x = Q, + CT(t)  + y (73) 

where 

and C is the connectivity matrix of the  network  with 

(-1, i = j  

It can be easily shown  that the connectivity matrix of  a 
connected  network has rank ( N  - 1). Therefore, there ex- 
ists a vector Ysuch that 

y"C = 0" 

where 0 is a vector of all zeros.  The  steady-state frequency 
of a network is  obtained by multiplying  both sides of (73) 
by Ytr and is given by 

( 79) 

rtro, + r t r y  
r t rx n, = 

Equation (80) gives a general formula  for  calculating the 
steady-state frequency of any network  with arbitrary con- 
nectivity. 

The steady-state time error between  the nodes in  the 
network can also  be found  from (73).  This is done by 
choosing one  of the clocks in the network as a reference 

clock and then calculating the  time error between this 
clock and the rest of the clocks in the network. If the 
steady-state time error between  the reference clock and 
clock i is denoted by T,,,I 6 r 6 N, then (73)  can be 
written as 

CT, = 0, - n,x + y (81 1 
where 

~ = [ ~ 1 t T , 2 , * . * t ~ N ] t r .  (82) 

Since the rank of the matrix C is ( N  - I), i t  does not have 
an inverse and therefore T, cannot be found directly from 
(81). However, by definition T,, = 0, and hence the r th 
equation in (81) can be eliminated, leaving ( N  - 1) equa- 
tions. The  steady-state time error can now be evaluated 
from 

?, = e'[ Q, - D,i + f ]  
where 5, i, 8,, and f are obtained by deleting  the rth  row 
of T,, X, Q,, and y, respectively, and c is obtained by 
deleting  the rth  row and the rth  column of C. 

To gain better  insight into  how network structure and the 
synchronization  technique  employed by the  network affect 
its steady-state behavior, the steady-state frequency and 
time error of  fully connected mutually synchronized net- 
work and a hierarchical master-slave network are evaluated 
and the results are shown in Tables  3-5. 

In  obtaining  the steady-state frequency for the  fully con- 
nected  network given in Table 3, it is assumed that the 
weighting coefficients at all nodes are equal. As i t  can be 
seen from this table, the steady-state frequency for the 
network  with  no delay compensation depends on the trans- 
mission delay between the nodes. With the use of delay- 
compensation techniques, this dependence is either elim- 
inated or reduced considerably. The same effect can be 

Table 3 Steady-State  Frequency  of a Fully Connected 
Mutually Synchronized Network of N Nodes 

Network  Configuration Steady-State  Frequency Q, 
N 

No Delay 
Compensation 

Delay-Line 

c Q J E ;  

. .  
Compensation 

Equational l iming 
System 

Returnable  Timing 
System 

i-1 
. .  , . 

1-1 j - 1  
j #  i 

N c W E ,  
i -1  

i - I  

N 
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Table 4 Steady-State  Time  Error Between the  Nodes of a Fully Connected Mutually 
Synchronized Network of N Nodes 

Network  Configuration Steady-State Time Error T,; 

Delay-Line 
Compensation N 

j #  r j #  i 

Table 5 Steady-State lime Error  Between  Master  Clock  and  Clock i in the  Hierarchical 
Master-Slave Network of N Nodes. Q-: Frequency  of Master Clock, Q, = QmaS 

Network  Configuration Steady-State  Time  Error Gj 
No Delay 

Compensation 

Delay-Line 
Compensation 

Equational  Timing 
System 

Returnable liming 
System 

and 

k - j  

k + j  

observed in the results obtained  for the steady-state time 
error between  the nodes given in Table 4. For example, in 
the case of  the delay-line compensation technique when 
the estimates of the transmission delays  are  exact, then the 
steady frequency and time error of the network are com- 
pletely independent of the transmission delays and are 
given by 

In the case of  the hierarchical master-slave networks (see 
Fig. 4) the steady-state frequency of  the  network is equal to 
the frequency of the master clock, and the time error 
between  the master clock and other clocks in the network 
is  given in Table 5. In this table Mi denotes the set of all 
the master clocks of node i in  the hierarchical structure 
including clock i itself and k -P j indicates the value of k 
for  which  clock k is the immediate master of  clock j .  It is  
clear from  the structure of this network  that for each j ,  only 
one value of k can  exist,  except for j = 1 where clock 1 

does not have a master. It can be seen from this table that 
the steady-state time error between the master clock and a 
clock in the  network accumulates as the  clock moves down 
in  the hierarchy. Also, as the  clock moves further down the 
hierarchy, its time process  becomes more dependent on the 
transmission delays.  This property is one of  the major 
drawbacks of hierarchical master-slave networks. To reduce 
the  buildup  of  time error in the network and to lessen the 
dependence on  the channel delays, a delay-compensation 
technique must be employed. The  results given for the 
delay-compensation technique in Table 5 indicate the re- 
duction  in  the  time error buildup and reduced effect  of the 
transmission delays. 

VII. EFFECTS OF LONG-TERM CLOCK  lNSTABlLlT lES 

In deriving the steady-state behavior of  the network  it 
was  assumed that there are no long-term clock instabilities 
present in  the  model of  the network clocks. Therefore, the 
steady-state time error between the nodes of  the network 
was found  to be  independent of time. However, in practice, 
even the best clocks have  some long-term  instabilities asso- 
ciated with  them. As mentioned in Section I l l ,  these long- 
term clock  instabilities correspond to the frequency drift 
terms of  the oscillators. If these frequency drift terms  are 
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slowly varying, i.e., the time constants of  the  drifts are 
much greater than the time constants of the  network, then 
the steady-state results obtained in the previous sections 
are still valid. So, for the case of slowly varying clock 
frequencies, the steady-state  results  can  be obtained by 
simply  replacing  the constant frequencies in the equations 
with  the time-varying frequencies. For  example, in the case 
of  fully connected  mutually synchronized networks with 
delay line compensation, the steady-state time error be- 
tween  the nodes is given in Table 4. If slowly varying clock 
frequencies are  assumed for this case, the steady-state time 
error is  given by 

T,;( t )  = - 
N - 1 Qr( t )  - Q;( t )  

N B 
r 1 

N 

Assuming that the delays  are fully compensated in this 
network, i.e., = 0, V i , j ,  and substituting  for  the free- 
running frequencies of  the clocks from (15), gives the 
steady-state time error 

T,;( t )  = - - N - 1 1 Sr;( k )  
N Bk.l ( & - I ) !  

- t k - l  (87) 

where 

For comparison purposes the  time error buildup  in a 
plesiochronous network can  be found from (13), and is 
given by (short-term instabilities neglected) 

Comparing (88) and (89), it can be seen that by mutually 
synchronizing the network, the rate of increase in the  time 
error between  the nodes has been slowed considerably. 
This is the main advantage of synchronous networks over 
plesiochronous networks. From (87), i t  is clear that by 
increasing the  loop gain 8, the  time error between  the 
nodes is  reduced. However, the maximum allowable value 
of B i s  determined from the stability condition of  the 
network given in Section V. 

VIII. INFLUENCE OF CLOCK PHASE NOISE 

The mathematical model  of  the clock given in (12) indi- 
cates that the  time process of each clock depends on  the 
short-term clock instabilities 'k( t ) .  Although the process 
'k( t )  is in general a nonstationary stochastic  process, 'k( t )  
can be assumed to be stationary [89]. 

Since the  time process T ( t )  given by (12) is a nonsta- 
tionary  random process, its behavior cannot be char- 
acterized in terms of power spectral density. However, the 
nth increment (n 2 M )  of T ( t )  is a stationary process and 
can be used as a measure of performance of  the  clock. Thus 
the performance of the  network can  be characterized in 
terms of  the  nth increment of the  time processes observed 
at the  network nodes, the  time error generated between 
them, and their associated structure functions. The time 
error process and its first increment, the time interval error 
process, were defined in Section IV. Similarly, one can 
define the  higher increments of the time error  process.  The 
nth increment of the  time error  process, for n > 1, is  
defined recursively by [89] 

A ~ T ~ (  t ;  h )  = A"-'[  AT^( t;  h ) ]  . (go) 

The process T j ( t )  is called a process with stationary nth 
increment  if A"nT;i( t; h)  is a stationary process.  The nth 
structure function  of a process T j ( t )  with stationary nth 
increment is defined by 

D5< h )  f [ A"Tj( t;  h)]' (% 1 
which is basically the variance of  the  nth-increment process 
and can be related to the power spectral density of  the 
appropriate interval process through 

In a similar manner one can define  the nth increment 
and hence the nth-structure function of  the  time processes 
observed at the network nodes by 

D;( h)  and DTi ( h )  have been calculated for plesiochronous, 
master-slave, and mutually synchronized networks of clocks 
[87],  [92], and the results are tabulated in Tables 6 and 7, 

Table 6 The nth Structure Function of the  Time Processes Generated at 
Network  Nodes 

Plesiochronous Network 

Master-Slave Network 
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TaMe 7 The nth Structure  Function  of  the Time Error  Process  Generated  Between  Network 
Nodes 

where 

Plesiochronous  Network 

Master-Slave Network 

Mutually Synchronized  Network 

with 

F ( s )  -- 1 
1 +- Ts (95) 

is the  loop transfer function, L is the level of  the  clock in 
the hierarchy, N is the number of clocks in the  fully 
connected mutually synchronized network, and T is the 
delay between  the clocks which is assumed to be  the same 
between all clocks. 

From the results presented in these  tables it can be seen 
that the master-slave and mutual synchronization tech- 
niques have the effect  of filtering the clock phase noise 
processes by some fitler  function. For the case where the 
effect of phase noise on the time processes of the nodal 
clocks is considered, the  filter function introduced by  mu- 
tual synchronization is Gmu(o) with a frequency response 
as shown in Fig. 19 and the frequency response of the filter 
introduced  by master-slave synchronization GmS( o) is 
shown  in Fig. 20. These figures indicate that as far as the 

3 
L 

L 4 L 7  
Ld I 1 I I 1 
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Fig. 19. Frequency response of  the  nodal filtering function 
for mutually synchronized  network. 

Lt 
P 
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fig. 20. Frequency  response  of  the  nodal filtering function 
for master-slave synchronized  network. 

m 1 m  FEamx ann, 

effect  of phase noise on  the  time processes of  the clocks is 
concerned, the performance of the master-slave networks 
is inferior to that of plesiochronous networks, while better 
performance can be seen in mutually synchronized net- 
works. Moreover, as the number of levels in the hierarchy 
increases, the effect of phase noise becomes more signifi- 
cant, whereas as the number of nodes in the  mutually 
synchronized network increases the  effect of phase  noise is 
reduced. 

For the case where  the  effect of phase noise on the time 
error processes between  the clocks of  the  network is being 
considered, the  filter  function introduced by mutual syn- 
chronization is  Hmu(o) whose frequency response is de- 
picted in Fig. 21, and the filter  function  introduced by the 
master-slave synchronization is H,,(o) whose frequency 
response is shown  in Fig. 22. From  these figures it can  be 
seen that mutual synchronization results in the  reduction of 
the effect of phase noise on the  time error processes, 
especially in low-frequency regions where this reduction is 
of particular  importance because of l/f-type spectrum of 
the phase noise processes.  This reduction becomes more 
significant as the number of nodes in the network N 
increases.  Master-slave synchronization also  results in  the 
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Fig. 2l. Frequency response of the time error filter  function 
for mutually synchronized network. 

Fig. 22. Frequency response of the time error filter  function 
for master-slave synchronization technique. 

reduction  of  the effect  of phase noise at low frequencies, 
however, this technique increases the effect of phase noise 
at other frequencies. Thus  master-slave synchronization 
can improve  or degrade the performance of the  network 
depending  on  the spectrum of the phase  noise, the loop 
gain at each node, and the level of the node in the hierarchy. 

Ix. SYNCHRONIZATION BEHAVIOR IN THE PRESENCE OF 
CHANNEL NOISE 

As mentioned earlier, it may be convenient to ignore the 
channel  thermal noise when it is  desired to obtain fairly 
simple estimates of the synchronization performance under 
somewhat  idealized  conditions. This  has been done, for 
example, in Sections V and VI. Although the presence of 
channel noise complicates the behavior of synchronization 
networks, no complete understanding of the process of 
synchronization may be gained without analyzing the ran- 
dom effects of thermal noise. 

The mathematical model developed for synchronization 
networks in Section Ill accounts for thermal noise.  The 
solution  of (28) in its most general form and in the presence 
of channel noises is a formidable, if not impossible, task. 
Equation (28) is in general a set of N coupled nonlinear 
stochastic differential equations. The  key to studying  the 

behavior of  the  network  in the presence of thermal noise is  
to begin by simplifying the network  topology as much as 
possible. This means studying a network consisting of two 
nodes only. After  the results are developed and understood 
for  that case, the trends that occur with increasing the 
nodes from  two  to N are predicted. 

Plesiochronous networks are naturally unaffected by 
channel  thermal noise. This is true since no information is  
transmitted between the nodes.  Master-slave and mutually 
synchronized  networks are treated using the same approach 
based on phase-lock loop (PLL) theory. The development 
here will concentrate on the simplest of  the statistical 
performance measures,  viz., the phase  error between nodes. 
This is because it is the least difficult  to obtain and explain. 
The development for a pair of  mutually synchronized nodes 
is somewhat  more general than for a pair of master-slave 
nodes and will be outlined first. The  results for the 
master-slave case will then be given and the two perfor- 
mances compared. 

Assuming a first-order PLL (no  loop filter) for the  config- 
uration of Fig. 9, we can write the equations of  operation  of 
the  two PLLs in terms of  the phase  processes and thermal 
noise as follows' [81]: 

-- dal(t) - am -t A,6, sin[@,(t - T12) 
dt 

where 

0 0 ;  free-running frequency of oscillator i, i = 1,2. 
A; open-loop gain of PLL i; i = 1,2. 
A,Bj closed-loop gain of PLL i; i = 1,2. 
a;( t )  phase  process  at output of oscillator i; i = 1,2.  This 

is the phase of the sinusoidal oscillation at the 
output  of the i th oscillator at time t. 

nj (  t) equivalent phase  noise  process for PLL i [81]; it is 
white Gaussian with N0/2  power spectral density.* 

Here the phase characteristics of  the PLLs are  assumed to 
have their inherently sinusoidal nature. Also, it is  assumed 
that the system is observed  over a period during  which the 
long-term  clock drifts can  be neglected. With today's tech- 
nology these periods can  be as long as hours,  days, or 
longer. The  system is assumed to reach a steady  state in 
which a steady-state frequency process os( t) is sustained at 
the  output  of the two oscillators [82], [W]. The instanta- 
neous fluctuations in q ( t )  are due to the noise in the 
system and therefore a,(t) can be assumed first-order sta- 
tionary. This  means that it has a constant time-independent 
mean W. This  leads to the steady-state approximation [82] 

a;( t + T ; ~ )  Oj( t )  + T;,G. (97) 

Subtracting (%a) from (%b) and using (97) gives (when 
A, = A, = A and 6, = S, = 6) 

'The notation  followed here is slightly different  from the nota- 
tion used in (22) but is more in agreement with that used in the 
literature on this  topic. 

'The reader unfamiliar  with the theory of PLLs is advised to 
consult [81] for  a comprehensive description of the signal and noise 
processes in a PLL. 

LINDSEY et d l . :  N E T W O R K  SYNCHRONIZATION 14.63 



and as previously  defined Aqj = T~~ - % j .  

Equation (98) is the key  stochastic differential  equation 
describing  the phase  error A@2l. Its solution resembles the 
solution of the  differential  equation describing the phase 
error in a sinusoidal PLL [81]. Ahl(t)  i s  first defined  to be 
the  mod-2n  reduction  of Amn(t) about (2n & 1)n. The 
solution  of  the Fokker-Planck equation associated with (98) 
gives in the steady  state ( t  dropped) for Ah1c[(2n - l)n, 
(2n + l)n] and any integer n [9l] 

.JP+"+*"exp{ - [ & y +   a c o s ( y +  e,)]} dy (101) 

where p(Ah1) is the  probability density function (pdf) of 
Ahl and 

Y * A+,, 

a = p cos 4, (1 02) 

a, = 2 ( Y  - Ol)/@NO (1 03) 

with 

p = 4A/BNo. (1 04) 

p is the familiar signal-to-noise ratio (SNR) in the  loop 
bandwidth [81]. a is the effective SNR for  the  mutually 
synchronized nodes. it depends on the residual delays. &, 

is the  normalized  frequency  detuning  between the two 
oscillators. 

The effects of residual delays on the density of  the phase 
error between  the  two  mutually synchronized oscillators is 
shown  in Fig. 23. The effects of residual  delays are mani- 
fested in  two ways: 

1) The effective SNR is reduced. if #, increases from  its 
ideal value of zero to r/2, a drops from  its maximum value 
of p to zero.  This causes the flattening of P(A+,~).  It 
implies an increased uncertainty  in the phase error,  and an 
increase in the  probability  of losing synchronization due to 
cycle  slipping [W]. Here  cycle slipping refers to a slip by 
one  oscillator relative to the other. 

2) If  the residual delays in the two directions are not 
equal, i.e.,  AT^^ #  AT^, p(Ahl) is shifted to a nonzero 
mean 8,. If  this  timing bias is known  it can  be calibrated 
out.  If, however, it varies slowly  with time, as it inevitably 
will, there will be  an unknown bias error in the  time 
difference  between  the  two nodes. 

The effect of k1 on p(A&) is similar to  the effect of 
detuning  on a sinusoidal PLL [SI]. k1 causes p(A&,) to 
be asymmetric  about zero and introduces a nonzero mean 
into  it. 

For a pair of nodes synchronized in the master-slave 
mode (Fig. 7), the  equation  for  the master node may be 
written as d m ( t ) / d t  = om (the subscript rn denotes the 
master, the subscript s will denote the slave). Subtracting 
this  from  the  equation of the slave PLL gives the following 
equation  for  the phase  error between the master  and the 
slave: 

.sin [ Amms( t) - OAT,,,,] - B p s (  t ) .  (105) 

Equation (105)  leads to a solution very similar in  form  to 

'1 

-180  -140 -100 -60 -20 0 20 60 1W 140  180 
"'i 1 

Fig. 23. The effect of residual  delays on the  probability  density  function p(A&) of the 
phase  error in  a  two-nodal mutually synchronized network. 
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(101). There  are  some differences, however, that can  be 
seen by comparing (105) and (98). 

1) The factor cos(#,) multiplying sin [.] is absent in (105). 
This means that p(Ahl) for the master-slave case does not 
exhibit a reduction in effective SNR due to nonzero residual 
delays,  i.e., for  the master-slave  case a = p. 

2) GAT,,,, in (105) replaces 0, = G ( A T ~ ~  - A7,,)/2. This 
indicates that  for  the master-slave  case there is an  increase 
in the dependence of the bias shift in p(A&) on the 
residual delays.  This is  because AT,, and AT,, will tend to 
cancel out. If the residual delays  are viewed as random 
variables (very slowly varying processes compared to  the 
thermal noise) the mean of 19, will be proportional to  the 
difference  of the means of the two residual delays, while 
GAT,,,, will have a mean proportional to that of AT,,. More- 
over, the variance of 0, will be half the variance of  GAT^,. 

3) The constant  coefficients in (98) are different from 
those in (105). The coefficients in (105) yield a normalized 
detuning b,, = 4(o, - oS)/B2N,. Comparing this value to 
b2, in (103) shows that the master-slave is twice as sensi- 
tive  to  detuning as the  mutual  configuration. 

The density function of Ah, resulting from (105) is simi- 
lar to (101) except for the replacement of & by&,, using 
a - p ,  and  replacing 9, by GAT,,,,. The effects of  combin- 
ed  detuning and residual delays on the densities of the 
phase error are compared in Fig. 24 for  the  mutual and 
master-slave cases. 

As clearly seen from Figs. 23 and 24 the thermal noise 
causes the spread in the density of the phase error about i ts  
mean. It would  be thus expected that for very high SNR the 
value of  the phase  error will be  the mean value of its 

density. This is indeed true. First,  at high SNR, the curve for 
p(Ah,) becomes very  close to a Gaussian  curve. p(Ah1) 
is closely approximated by a Gaussian density of mean 
( B 2 , / p )  - 0, for mutual synchronization [%I. This is similar 
to  the behavior of  the phase error in a single PLL at high 
SNR [all. For  master-slave, the mean phase error is &J 
p - GAT,,,,. For both cases, the variance is approximately 
l /p  (provided  the residual delays  are not  too large for the 
mutual case). It is  very interesting to note that these means 
agree with  the values of  the timing errors predicted in  the 
absence of noise. This is seen from the second entry in 
Tables 4 and 5 when the SNR is sufficiently  high. 

At moderate and lower SNRs, the network  with N nodes 
is much harder to analyze.  This problem has been address- 
ed in [90] and [103]. It is concluded that for mutual syn- 
chronization  the  timing bias  errors between each two con- 
nected nodes depends on the average of  the residual delays 
throughout  the network. The expected values of the phase 
or timing errors average out  in a way similar to that shown 
in the second entry  of Tables 4 and 5 provided that the 
residual delays are small. A more detailed  exposition of the 
deleterious effects of noise and residual delays in N-nodal 
networks is beyond the scope of this tutorial review. 

Other  work  aiming at a more complete understanding of 
the synchronization behavior in the presence of thermal 
noise has also been performed. The random nature of  the 
nodal time scales and the  time interval errors described in 
Section IV by  the statistical performance measures (b) and 
(c), respectively, have been characterized [82], [%I. Random 
oscillator  frequency  instability effects have been studied, 
also useful Gaussian approximations to the densities de- 
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fig. 24. Comparison of the  combined effects of  the residual delays and  detuning on the 
probability  density functions of the phase  error in  mutual and  master-slave synchroniza- 
tion. 
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scribing the nodal  time intervals and time interval errors 
have been developed. The interested reader is referred to 
[82] and [9l] for these  results. 
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