
IEEE Communications Magazine • November 2004128 0163-6804/04/$20.00 © 2004 IEEE

CONSUMER COMMUNICATIONS AND
NETWORKING

INTRODUCTION

Although the idea of the “connected home” is
not new — after all, the concept formed a cor-
nerstone of the Jetsons cartoons dating from
1962 — it is beginning to look as if its time may
have finally come. With widespread Internet
access from homes, the growth in the use of
broadband and wireless LAN technologies, and
the emergence of new devices such as networked
audio players, the vision of “devices working
together with synergy to realize the potential of
the digital decade” (Bill Gates [1]) may soon
become a reality.

Given this context, this article explores the
role of fault diagnosis in the connected home
and reports on how agent technology may be
used to address this issue. It draws on experi-
ences gained through the development of an
experimental prototype fault diagnosis system
(FDS). It closes by looking to the future and
argues the need for standards to assist with suc-
cessful resolution of faults in multivendor home
systems of the future.

THE CONNECTED HOME CONCEPT
In the authors’ opinion, most current home net-
works can be categorized as first-generation sys-
tems: they typically encompass a few PCs sharing
an Internet connection and possibly a printer.
However, we believe the future lies with a sec-
ond generation of systems built around a service
gateway at the heart of the system.

A service-gateway-based system extends the
home network vision to include a range of devices,
not just PCs, attached to a variety of types of local

networks with differing properties, and in so doing
should help to realize the truly connected home
(Fig. 1). For example, both wired networks, such
as IP over Ethernet and Home Audio Video Inter-
operability (HAVi) over Firewire (IEEE1394),
and wireless networks, such as Wi-Fi
(IEEE802.11b), might be included. Indeed, con-
nectivity for some subnetworks may include pow-
erline technologies such as X10, where low-bit-rate
signals are transmitted over mains cabling.

The goal of such a home network is to enable
a wide range of different applications to execute
within the home environment. Applications
would involve processes running locally on one
or more devices and also possibly incorporate
external services executing on remote service
provider servers. Hence, such a system would
provide the framework for deployment of so-
called Internet appliances.

The essential characteristic of a service gate-
way is that it should support the dynamic down-
load and installation of program code to enable
on-the-fly selection and execution of new ser-
vices and the straightforward introduction of
new local devices and networks. Arguably, the
leading standard in this area stems from the
Open Services Gateway Initiative (OSGi) [2].
The OSGi was formed to develop and promote
open specifications for the network delivery of
managed services to devices primarily in the
home. To this end, the OSGi have defined a
standard known as the OSGi service platform
[3]. It is important to note the change in empha-
sis from service gateway to service platform as
the standard has evolved and matured, and its
value as a general-purpose distributed services
platform has been recognized.

Figure 2 provides a simplified representation
of a home networking system based on the OSGi
standard. This is based on Java, which enables
the required dynamic code download. It is hard-
ware- and operating-system-independent, merely
requiring a small footprint Java virtual machine,
and is designed to work with multiple network
technologies, device access technologies, and
services. OSGi functionality is structured into a
core set of framework services and an extensible
set of bundles. Bundles form the basis for dynam-
ic code download.

Peter Utton and Eric Scharf, Queen Mary, University of London

ABSTRACT

The connected home of the future, in which
all consumer appliances in a home are net-
worked together, is close to becoming the con-
nected home of today. This article explores the
role of fault diagnosis in such an environment
and explains how agent technology may be
applied. The article outlines the need for future
standards that can maximize the benefit of a
shared diagnostic system.

A Fault Diagnosis System for the
Connected Home

IEEE Communications Magazine • November 2004 129

Plug and play is a fundamental goal of OSGi,
and support for automatic discovery is built into
the OSGi device access manager. For this to
work smoothly end to end, with a minimum of
user interaction, the system requires devices to
be able to announce themselves on connection
to their LAN. This feature can be provided by a
number of complementary technologies, such as
Jini [4], UPnP [5], Bluetooth [6], and HAVi [7].
As a result, OSGi in combination with these
other technologies offers the basis for a sound
service-based home network environment.

The OSGi specification dictates that OSGi
platforms must support administration by a
remote service provider, hence the presence of
the remote manager role in Fig. 2. In fact, the
OSGi promotes a philosophy it terms zero user
admin to reflect the fact that negligible effort on
the user’s part should be devoted to systems
administration.

Another relevant emerging standard is the
home electronic system, part 1 of which was
published in 2003 [8]. Informally known as
HomeGate, it defines the architecture for a
modular platform to act as a gateway for deliv-
ery of broadband information to the home and
facilitate the interoperability of different LAN
technologies. In contrast to OSGi, HomeGate is
more hardware-oriented, mandating the use of
physical plug-in modules rather than remotely
downloadable software bundles. It does, howev-
er, have the backing of an international stan-
dard.

THE NEED FOR FAULT DIAGNOSIS
Within the home environment, the management
of faults will be critically important. Second-
generation home networks will be inherently
complex, but must appear simple to users. Faults
will occur and as systems are likely to be assem-
bled from components from different suppliers,
diagnosing problems and localizing them to an
individual component will be a key requirement.
It is likely that component suppliers will be
reluctant to accept responsibility for resolving
faults unless there is clear evidence that the
blame lies at their door. For home networking
to achieve widespread acceptance, it will
demand automated support for identifying and
resolving faults.

The management of fault conditions in net-
works is a long established discipline (and of
course gives rise to the F in the FCAPS
mnemonic for standard network management
functions, along with configuration, accounting,
performance, and security), but second-genera-
tion home networks are likely to exhibit certain
characteristics that differentiate them from tradi-
tional networks. They are likely to:
• Be smaller in scale than typical business or

telecommunications networks
• Incorporate a wide diversity of device types
• Perhaps crucially have limited user expertise

available to resolve problems
Certainly there will not be a team of skilled

human experts on hand to act as technical sup-
port. Consequently, maintaining the ethos of
zero user admin will demand a fault diagnosis
system that:

• Is highly autonomous
• Provides expert advice to users
• Exploits multiple knowledge sources to

enable the most informed decisions to be
made
This article will consider some fault scenarios

nnnn Figure 1. The connected home: system outline.

Internet

External
client

Service
provider

PC

PDA

TV

User
Lights

Gateway

LAN 1

Ethernet

Local domain —
customer premisesExternal domain

LAN 2

LAN 4

Wi-fi

LAN 3

HaVi

X10

User

nnnn Figure 2. An OSGi -based system.

Device
Device

App
server Bundles

OSGi service gateway

External domain

Hardware

OSGi framework

Java runtime environment

Operating system

Device

Internal domain: within the home

Internet

Remote service
provider

Management
server

Remote
manager

App
server

nnnn Figure 3. An example home network.

s2

h4h3

n5

n4

n7

h5

s1

h1g

wan

n1 n3

h2

Internet

n2 n6

IEEE Communications Magazine • November 2004130

for the example network shown in Fig. 3. In this
hypothetical network configuration, s1 and s2
are 4-port switches, node g acts as the gateway
for external connectivity, and hosts h1–h5 are
available to run applications. Network links are
labeled n1–n7, apart from the wide area network
link, labeled wan.

Our example uses a simple photo gallery
application built as a service using the OSGi
application programming interface (API). OSGi
enables services running on one service platform
to call other services running on the same plat-
form. Unfortunately, at present OSGi does not
support federations of platforms and does not
directly support calls to services on remote plat-
forms. However, the expectation is that a fami-
ly’s electronic photos would be distributed across
multiple nodes in the network, each node under
the control of a different family member. The
facilities offered by an OSGi framework provide
benefits for deployment of software on internal
hosts as well as the gateway, so nodes g and
h1–h5 in our scenario are all OSGi enabled plat-
forms. The photo application allows users to
browse JPEG images on both local and remote
nodes, and achieves this by using the Java remote
method invocation (RMI) API to make calls
between PhotoService instances on different
nodes.

The photo application is structured into two
types of OSGi bundle: a PhotoUI bundle, which
offers a browser based user interface and calls
the underlying PhotoService to access photo
resources; and a Photo bundle, which imple-
ments the PhotoService itself. Within the exam-
ple home network, these bundles are deployed
on nodes h2–h5 and can be accessed from
browsers on any of nodes h1–h5. Figure 4 illus-
trates a deployment model.

FAULT DIAGNOSIS APPROACHES
In general, the purpose of fault diagnosis within
systems is to identify least replaceable units (the
smallest faulty components that can actually be
replaced). Once such a component has been
identified there is no need to diagnose further
inside the component. The level of granularity of
components will depend on the system under
consideration. In the context of a connected
home, we can regard network links, nodes,
devices, and software as such components. To
generate a diagnosis we will need to collect
observations of operational behavior that we will
treat as a set of symptoms (i.e., the input to our
diagnostic process). The output is a diagnosis
that can be regarded as a logical proposition
asserting that a particular combination of com-
ponents is faulty. A diagnosis may be a complex
proposition covering sets of alternate suspects.

Candidate fault diagnosis techniques include
experience-based techniques using heuristic
knowledge [9] and model-based techniques
involving models of expected system structure
and behavior [10]. We have taken the model-
based approach.

Different models can be used to address dif-
ferent concerns. For example, models could rep-
resent user behavior, application structure,
application behavior, application deployment, or
network connectivity. This article shows how
models of application structure, deployment, and
network connectivity can help us resolve prob-
lems.

Each of the bundles for our Photo application
exposes a number of external interfaces (ways in
which the functionality they contain may be
invoked) and embodies a number of dependen-
cies (other system entities on which the code
relies for successful operation). Figures 5 and 6
illustrate dependency models for the two bundles.
White nodes represent external (callable) entry
points to the bundle, tan nodes represent code
within bundles, and orange nodes represent mis-
cellaneous other entities that may range from
complex subsystems (e.g., RMI) to simple appli-
cation configuration settings (e.g., PhotoRoot,
which represents the fact that a property identify-
ing the root directory for photos needs to be set
for PhotoService to operate successfully).

Dependency models are a common technique
within fault diagnosis and involve the application
of a simple principle: the fault free-operation of
an entity is reliant on the fault-free operation of
all dependent entities. Therefore, the successful
operation of an entity can be used to exonerate
all its dependents, whereas the detection of a
failure in an entity will implicate that entity and
all its dependents until they can be cleared.

nnnn Figure 4. The deployment model for a photo application with an example
home network.

PhotoApplication

PhotoServiceImpl PhotoUI

PhotoClient

Browser

h1 h2 h3 h4 h5

deployed on

deployed on deployed on

consists of

is a

nnnn Figure 5. The dependency model for the PhotoService implementation bundle.

PhotoRMIService

RMIPhotoRoot

PhotoService

PhotoServiceImpl

Framework HttpService

IEEE Communications Magazine • November 2004 131

These principles hold for analysis of both
applications and networks, and provide us with a
basis for diagnosing faults across a wide range of
systems. However, we do need a means of test-
ing our diagnoses. At a network level we can
incorporate and automate the long established
practice of pinging another network node to
check connectivity. This normally involves the
use of Internet Control Message Protocol
(ICMP) messages at a network level. At an
application level we can incorporate test proce-
dures for entities defined in a dependency
model. This article will explain how these fea-
tures are incorporated within an agent-based
fault diagnosis system (FDS).

AGENT-BASED SOLUTIONS
Arguably the leading innovation in the field of
artificial intelligence during the last decade has
been the emergence of so-called intelligent agents
operating in the context of distributed or multi-
agent systems. Developments in agent technology
have benefited immensely from the increasing
availability of low-cost distributed processing
power and the ubiquity of TCP/IP networks. The
technology has also received an impetus from
the emergence of Java as a platform-indepen-
dent programming environment and, more
recently, from the emergence of the Foundation
of Intelligent Physical Agents (FIPA) [11] as a
standards body encouraging interoperation
between competing agent platforms.

The key characteristic of a multi-agent-based
solution lies in the idea that the whole is more
than the sum of its parts. Individual agents need
not be very complex, but the emergent behavior
arising from their interactions should be able to
solve problems that are impractical or impossible
for an isolated agent to tackle.

There are a several reasons why agents are
suited to fault diagnosis within home networks:
• This task is naturally distributed. Agents can

operate within the distributed nodes of the
home network, execute local tests on com-
ponents, and cooperate with other agents to
identify problems. Decentralizing process-
ing also removes potential single points of
failure, and the processing load on a remote
manager can certainly be reduced if we pro-
cess diagnostics locally.

• Different agents can implement different
analysis techniques (e.g., heuristic or model-
based), and an open agent architecture
allows the straightforward introduction of
alternate analyzers within the FDS.

• The goal of the system being highly
autonomous aligns particularly well with
agent philosophy. We can visualize such a
system as embedding various rule-based
and model-based analyzers within the home
network, exploiting a range of knowledge
sources and taking the initiative to run a
variety of system tests in order to provide
proactive assistance to human users. Fur-
thermore, in the event of network disrup-
tion, agents operating in different partitions
can still reason about their view of the
problem and maintain some level of service
to users.

Of course, an agent approach is not without
its drawbacks. For example, the computing
resources at some nodes may be limited. Howev-
er, by separating essential “per node” functional-
ity from more computationally demanding
processes, it may be possible to accommodate a
balance between “lightweight” and “heavy-
weight” agents.

THE FDS PROTOTYPE
The FDS prototype is designed to take advan-
tage of three pre-existing software packages: an
OSGi framework developed by Gatespace [12],
the FIPA-OS Agent Framework [13], and JESS,
the Java Expert System Shell [14].

FIPA-OS provides an open source Java-based
implementation of a FIPA compliant agent plat-
form. As such it provides facilities for message
passing between distributed agents and directory
lookup of the identities of registered agents.

JESS provides a rule-based programming sys-
tem with good performance characteristics that
may be readily integrated with other Java-based
systems. JESS is used to implement various ana-
lyzer agents within FDS, including both applica-
tion- and network-level analyzers.

In addition to JESS- based analyzers, a pure
Java alternate analyzer agent has also been
implemented. This embodies a graph-based algo-
rithm to analyze network connectivity. FDS also
includes Modeller, Reporter, Tester and Collab-
orator agents. The Modeller maintains dynamic
models of the system (e.g., of network topology).
Static models (e.g., of application structure) are
generally packaged within application bundles.

The FIPA-OS, JESS, and FDS software has
been packaged into a set of OSGi bundles that
allow OSGi mechanisms to be used to deploy
FDS code by remotely and dynamically updating
the FDS software code for each distributed
node. To achieve this, compiled FDS code is
made available on a predefined code server
within the network.

GENERATING DIAGNOSES
Diagnosis results consist of alternate sets of sus-
pects (i.e., possibly faulty components) and a set
of cleared (i.e., fault-free) components. These
can be represented as AND/OR tree structures

nnnn Figure 6. The dependency model for the PhotoUI bundle.

DisplayRootServlet DisplayPhotoServlet

Framework HttpService

PhotoService PhotoUI IndexPage

IEEE Communications Magazine • November 2004132

or logical propositions. Within FDS, diagnoses
are generated from symptoms by analyzer agents.
Symptoms may be collected proactively by peri-
odically “routining” components within the net-
work (i.e., interrogating devices and invoking
test procedures) or by reacting to notifications of
abnormal behavior from instrumented applica-
tions or external agencies. The FDS prototype
exposes an interface, FDSService, as an OSGi
service that instrumented applications such as
the Photo application can use to pass informa-
tion into FDS when they encounter a problem.
In a Java application, this would typically follow
an exception being thrown. Although instrumen-
tation may be regarded as intrusive, without the
active participation of applications, diagnostic
ability will be limited. In such a case, periodic
automated checks of network connectivity are
still possible, and FDS also provides a User
agent to allow manual entry of observations.
However, this still requires application models
or heuristic knowledge to drive the diagnosis,
and manual symptom entry is intrusive for the
user. Essentially more informed diagnosis is pos-

sible with the cooperation of applications and, of
course, the availability of more information.

Let us consider some fault scenarios for our
example network. Imagine that an instance of
PhotoService running on h2 encounters a prob-
lem getting a response from the instance on h5.
This may be because the h5 node is unreachable,
perhaps the node itself is down, or network link
n3, n4, or n7 has become disconnected, or switch
s1 or s2 is faulty. Alternately, perhaps the Photo-
Service on h5 has experienced a runtime failure.

The application itself may attempt to present
advice to the user of the problem experienced,
although this may not prove to be helpful, even
to an experienced user. Figure 7 shows examples
produced by the PhotoUI bundle when encoun-
tering different exceptions. The second example
at least indicates there may be a network-level
problem, but the first is less than helpful (it was
actually triggered by deliberately seeding an
ArrayOutOfBounds fault in PhotoServiceImpl).

As mentioned, FDS employs different analyz-
ers for different models, but the results of these
different analysis viewpoints can be integrated

nnnn Figure 7. Example application error displays.

IEEE Communications Magazine • November 2004 133

and — a key point — faults at a lower level can
be used to subsume faults at higher levels. This
means that the application analyzer will look no
further if a network level analyzer has already
identified a problem that has generated suspects
that match any of its own suspect set and so
explain the symptoms being experienced.

The model used by the application analyzer is
generated by combining the bundle dependency
models and deployment models. In our example
scenario, PhotoUI running on h2 notifies its
local FDS agent of a problem with PhotoService
on h2 and in turn the PhotoService on h2 reports
a problem with PhotoRMIService on h5. This
triggers invocation of the application analyzer,
which in the absence of further symptoms con-
cludes there is a problem with one of the com-
ponents associated with the Photo application,
with either one of its dependent entities or one
of the platforms on which they are deployed.
This results in an initial 54 suspects: 49 software
components (the 11 distinct entities shown in
Figs. 5 and 6 deployed on each of platforms
h2–h5 plus the five instances of browser from
Fig. 4) and platforms h1–h5.

The application analyzer knows nothing of
network connectivity or network-level problems
but is able to consult with a network-level ana-
lyzer for this viewpoint. The network connectivi-
ty model in conjunction with reachability
symptoms enables a network analyzer to identify
possible faulty intermediate nodes and subnets,
not just faulty destination nodes. The more
symptoms input to an analysis, the more tightly
focused the results.

Let us assume that node h5 is powered down.
With the benefit of unreachable symptoms for
h5 and reachable symptoms for all other nodes,
the network-level analyzer would be able to con-
clude that either component h5 or n7 is faulty.
Either possible fault would explain why h5 is
unreachable but all other nodes are reachable.

The network analyzer contributes this conclu-
sion into the working hypothesis, and the applica-
tion analyzer is satisfied that its suspects are
subsumed by the network-level suspects. The
presence of the network fault is sufficient to
explain the symptoms. However, in this scenario
we need additional information to be able to
arbitrate between a fault in the IP network at n7
or a fault in h5 itself. For these situations, FDS
implements a low-bit-rate secondary communica-
tions channel using the powerline technology
X10. As a final test it sends a message to h5 over
the mains cabling. X10 is a broadcast medium,
and all powered up hosts will receive the message
via their serial port. However, only h5, assuming
it is up, would reply. The message times out, and
FDS concludes that h5 is indeed faulty.

Alternately, if our network is fully opera-
tional, FDS will start to test suspect software
components using Tester agents that invoke test
procedures devised specifically for the compo-
nents concerned. Test procedures are supplied
in Java classes named after specific entities in a
dependency model (e.g., Test_PhotoRoot is the
class containing the test procedure for entity
PhotoRoot) and deployed via OSGi bundles.

The test procedure embodies knowledge of
how to trigger execution of the particular entity

and what its expected results should be. The
procedure therefore returns a value indicating
whether the test has been passed or failed. This
enshrines the principle of information hiding
and decouples applications from the diagnostic
system: dependency models are built into bun-
dles as resource files and registered with FDS
on bundle activation; test procedures are pro-
vided in separate bundles that can be dynami-
cally updated. Therefore, FDS does not need to
know anything about the internals of the entities
under test.

It is computationally expensive to test every
suspect, and the order in which tests are
applied can have a significant impact on the
speed of problem resolution. Remember that a
successful test that demonstrates full function-
ality of a target entity can be used to exonerate
its dependents, so top-down testing of those
components more likely to be okay (as assessed
using heuristic knowledge) can be effective in
rapidly pruning the search space. Bottom-up
testing of suspects with known fault history can
help identify the culprit. Early targeting of sus-
pects on the primary problem node (h5) is also
a valid strategy.

However, the diagnostic procedure is only as
good as the models and test procedures available
to it. Identifying the ArrayOutOfBounds fault
would be dependent on the effectiveness of the
Test_PhotoServiceImpl procedure, and it is not
practical to guarantee complete test coverage for
every eventuality. Operational fault diagnosis
should not be considered a substitute for thor-
ough development testing. Configuration prob-
lems such as those detected by Test_PhotoRoot
are more typical of the class of problem this type
of approach can economically solve.

However, during this test phase, FDS would
proceed to test selected suspects, accumulate
additional symptoms, and rediagnose until a sin-
gle suspect set remains (i.e., the diagnosis is that
this combination of components is faulty) or test
options are exhausted.

Diagnosis, as we have considered it thus far,
has been driven from a single viewpoint within
the network, typically the location where an
abnormal notification has originated. However,
multiple problems may well be notified at differ-
ent locations in a distributed system, both in the
same timeframe and at different times. These
may relate to the same causal fault or different
ones. Rather than pursuing each problem inde-
pendently, agents within a multi-agent system
can interact with each other in various ways to
formulate a collective solution. We have experi-
mented with two distinct methods we call:
• Holistic diagnosis, to signify analysis using

all relevant observations (i.e., those ema-
nating from multiple locations and view-
points) in one operation

• Collaborative diagnosis, which involves
agents comparing the results of local diag-
noses and agreeing on a shared result
Hopefully, with the editors’ permission, a

future article will be able to explore these differ-
ent interaction methods and highlight their pros
and cons. Certainly we have found different situ-
ations where each method performs better than
the other.

The network

connectivity model

in conjunction with

reachability

symptoms enables

a network analyzer

to identify possible

faulty intermediate

nodes and sub-nets,

not just faulty

destination nodes.

IEEE Communications Magazine • November 2004134

LOOKING TO THE FUTURE

The ideas presented here could be extended to
more detailed models for addressing applica-
tion functionality and also to models covering
the internal behavior of devices. For example,
application models derived from UML-style
sequence diagrams (message sequence charts)
could be used to expose expected application
behavior to enable more informed model-
based reasoning about fault conditions and
help target suspect software components. Fur-
thermore, different problems, such as stream-
ing related issues for multimedia applications,
will demand different types of models and/or
heuristic knowledge and appropriate support-
ing analyzers.

Of course, individual applications could
embed more intelligence to resolve operational
problems for themselves, but there is a clear
benefit in using a shared diagnostic infra-
structure to avoid the need for repeated imple-
mentation of common functionality. In addition,
components cannot be expected to reason about
the effect of interactions between entities about
which they know nothing; hence, the need for an
independent diagnostic capability that is aware
of the applications deployed on the network and
the network topology.

To maximize the utility of a shared diagnostic
infrastructure, applications and devices would
need to be able to register models of their
expected behavior, thus enabling the diagnostic
mechanisms to be applied as the home network
is extended. This implies the need for standards
for the exchange of data between diagnostic
clients and the infrastructure.

Universal Plug-and-Play (UPnP), mentioned
earlier as a complementary technology to OSGi,
may provide a more elegant solution for the
interfacing of client applications and devices to
the diagnostic infrastructure than the current
mechanisms employed within the FDS proto-
type. UPnP employs wireline protocols, which
means it is platform-neutral, and uses XML for
data exchange. In the context of FDS with stan-
dardized analyzers, the data to be exchanged
would be problem notifications and models. For
an open FDS where individual analyzers and
other agents could be replaced, this would also
mean symptoms and diagnoses. For effective
communication, ontology and taxonomy agree-
ments are needed between participants. This is
an area where HomeGate could make valuable
contributions. Its purpose is to define the means
for disparate systems in the home to interoper-
ate. One aspect of this would be a common lan-

guage for communication; indeed, part 2 of the
standard is intended to address taxonomy issues.

CONCLUSIONS
This article has argued that fault diagnosis will
be important for home networks of the future. It
has outlined how agent-based diagnostic solu-
tions might be applied in this domain by means
of a worked example. It closes by looking to the
future and the need for standards to facilitate
fault diagnosis within a connected home embody-
ing components from multiple vendors.

If shared diagnostic infrastructure becomes a
reality and standardization bears fruit, the bene-
fits will be considerable: consumers will enjoy an
improved user experience, vendors will find their
products more highly regarded by users, the vol-
ume of calls to help desks will be reduced, and
residual calls should be more quickly resolved as
relevant diagnostics would be readily at hand.

REFERENCES
[1] “Come Over To My House,” Guardian Online, 23 Jan.,

2003; http://www.guardian.co.uk/online/
[2] OSGi, http://www.osgi.org
[3] OSGi Service Platform, rel. 3, Mar. 2003, IOS Press.
[4] Jini, http://www.sun.com/jini
[5] UPnP, http://www.upnp.org
[6] Bluetooth, http://www.bluetooth.com
[7] HAVi, http://www.havi.org
[8] Home Electronic System Standards, ISO/IEC 15045-1, com-

mittee ISO/IEC JTC1 SC25 WG1; http://hes-standards.org
[9] C. Price, Computer-Based Diagnostic Systems, Springer

Verlag (Practitioner Series), 1999.
[10] W. Hamscher, L. Console, and J. de Kleer, Readings in

Model Based Diagnosis, Morgan Kaufmann, 1992.
[11] FIPA, http://www.fipa.org
[12] Gatespace’s Service Gateway Application Development

Kit, http://www.gatespace.com/
[13] FIPA-OS, http://fipa-os.sourceforge.net; http://www.

emorphia.com
[14] Sandia Nat’l. Labs, JESS, http://herzberg.ca.sandia.gov/jess/

BIOGRAPHIES
PETER UTTON (peter.utton@elec.qmul.ac.uk) holds degrees in
materials science, computer science, and telecommunica-
tions. He has spent a substantial part of his career working
at the main BT research laboratories at Adastral Park, Unit-
ed Kingdom. He currently lectures on a range of software
related subjects for the Electronic Engineering Department
at Queen Mary, University of London. The connected home
is his personal research interest.

ERIC SCHARF (e.m.scharf@elec.qmul.ac.uk) is a lecturer in
the Department of Electronic Engineering at Queen Mary,
University of London. Since 1989 he has participated in
many European Union funded projects on intelligent net-
works and risk assessment. In particular, he coordinated
the recent successful EU-funded TORRENT project on intelli-
gent residential access networks. His interests are in com-
munication networks and computing, and he has written
and co-authored several papers in these areas.

To maximize the

utility of a shared

diagnostic

infrastructure,

applications and

devices would need

to be able to register

models of their

expected behavior,

thus enabling

the diagnostic

mechanisms to be

applied as the

home network

is extended.

	footer1:

