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Abstract—We propose a novel roadside unit (RSU) cloud, a
vehicular cloud, as the operational backbone of the vehicle grid
in the Internet of Vehicles (IoV). The architecture of the proposed
RSU cloud consists of traditional and specialized RSUs employ-
ing software-defined networking (SDN) to dynamically instantiate,
replicate, and/or migrate services. We leverage the deep pro-
grammability of SDN to dynamically reconfigure the services
hosted in the network and their data forwarding information to
efficiently serve the underlying demand from the vehicle grid.
We then present a detailed reconfiguration overhead analysis to
reduce reconfigurations, which are costly for service providers.
We use the reconfiguration cost analysis to design and formulate
an integer linear programming (ILP) problem to model our novel
RSU cloud resource management (CRM). We begin by solving
for the Pareto optimal frontier (POF) of nondominated solutions,
such that each solution is a configuration that minimizes either
the number of service instances or the RSU cloud infrastructure
delay, for a given average demand. Then, we design an efficient
heuristic to minimize the reconfiguration costs. A fundamental
contribution of our heuristic approach is the use of reinforcement
learning to select configurations that minimize reconfiguration
costs in the network over the long term. We perform reconfigura-
tion cost analysis and compare the results of our CRM formulation
and heuristic. We also show the reduction in reconfiguration costs
when using reinforcement learning in comparison to a myopic
approach. We show significant improvement in the reconfigura-
tions costs and infrastructure delay when compared to purist
service installations.

Index Terms—Cloud resource management (CRM), intelligent
transportation systems (ITS), Internet of Vehicles (IoV), roadside
unit (RSU) cloud, software-defined networking (SDN), vehicular
ad hoc networks (VANETs).

I. INTRODUCTION

A DVANCES in microelectromechanical systems (MEMS)
technology have enabled the development of smart sen-

sors to be dispersed in our environment. These can vary in
form factor, but essentially sense data, process, and communi-
cate it to other sensors, base stations, and/or Internet gateways.
They are deployed for various applications, ranging from track-
ing and environmental monitoring in military applications, to
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control and actuation in manufacturing plants, to mundane
consumer products such as wrist watches. The large-scale pro-
duction of sensors makes it cost-effective to feature in home
appliances, such as smart refrigerators and stoves, and use
in automobiles for collision avoidance and climate control.
Inter-networking of these sensors, base stations, and Internet
gateways makes them an ideal candidate for the Internet of
Things (IoT) [1] in general. In this paper, we focus on the
Internet of Vehicles (IoV) [2].

In the IoV, the integration of sensors and microcontrollers
in the vehicles and fixed roadside infrastructure form an intel-
ligent vehicle grid [3] to cooperatively increase traffic flow
and road safety. The vehicular cloud [3]–[5] is the fundamen-
tal environment that provides the communication protocols,
computational infrastructure, and services and applications for
the efficiency of the vehicle grid [3]. The vehicular cloud
resides on top of the vehicle grid and is the backbone for its
operations. The vehicle grid is essentially a vehicular ad hoc
network (VANET) of on-board units (OBUs) in vehicles and
roadside units (RSUs) in the fixed road infrastructure. Vehicle
OBUs comprise localization systems (e.g., global position-
ing system and inertial measurement unit), processing units,
sensors, and radio transceivers mounted in and around the
vehicle. RSUs are sensors and microcontrollers installed along-
side and in the road, e.g., cameras in traffic lights and road
signs and pressure sensors and traffic light actuators on the
road. The IEEE standards and protocols for wireless access in
vehicular environments (WAVE) define the inter-networking for
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications.

The vehicular cloud can contribute in many different ways
to the vehicle grid. Some aim to interconnect vehicle resources
into a cloud for cooperative sensory, storage, and computing
tasks [5]; whereas, Mershad and Artail [6] propose a cloud of
OBUs and still some propose RSUs acting as gateways to tra-
ditional clouds. It is important to note that all these variants of
vehicular clouds can be subsets or generalizations of each other
[4]. However, vehicular clouds will be primarily host safety-
and nonsafety-related services and applications for the vehicle
grid. User interest in infotainment and convenience applica-
tions and services, such as video on-demand, online multiplayer
gaming, on-the-go Internet, voice over IP, remote vehicle diag-
nostic, and road traffic management notifications, will be the
driving force for IoV market penetration and mass deployment
of infrastructure [7]. However, commercialization of IoV is
dependent upon its profitability to service providers who will
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rent cloud resources to host services and the quality of service
(QoS) of the applications and services for users in the vehicle
grid who will subscribe to these services.

In this paper, we propose a novel vehicular cloud architec-
ture called RSU cloud, which consists of traditional RSUs and
specialized microscale datacenters. The RSU cloud hosts ser-
vices to meet frequently changing demands from the vehicle
grid. The novelty of our RSU cloud architecture lies in ben-
efiting from the flexibility and deep programmability offered
in software-defined networking (SDN). In SDN, there are
two communication planes, the physical data plane and an
abstracted control plane. This decoupling of control and data
planes enables the flexibility and programmability of the SDN.
In the RSU clouds, virtualization via virtual machines (VMs)
and SDN is employed to dynamically instantiate, migrate,
and/or replicate services and dynamically reconfigure data for-
warding rules in the network to meet the frequently changing
service demands.

Despite the underlying benefits of the programmability of
RSU clouds, service providers will incur costs pertaining to ser-
vice instantiation, migrations, replications, and network recon-
figuration [8], [9], in light of changing demands. Network
reconfiguration induces network traffic and could potentially
lead to congestion in the data and control planes. We design
a novel RSU cloud resource manager (CRM) that contributes
to the vehicular cloud by increasing its profitability for service
providers and QoS for users in the vehicle grid. Specifically,
the CRM aims to achieve minimization in three aspects:
1) minimize the RSU cloud infrastructure delay; 2) mini-
mize operational costs by minimizing the number of service
instances (replications); and 3) minimize network reconfigura-
tions, which consume limited bandwidth resources and could
potentially lead to deteriorating network performance and QoS.

The scope of this paper and our contributions are as follows:
1) provide the architecture for the RSU cloud and its micro-

datacenters;
2) present the network reconfiguration overhead analysis by

emulating an OpenFlow [10]-enabled SDN in Mininet
[11];

3) define the RSU cloud resource management (CRM) mul-
tiobjective Integer Linear Programming (ILP) model and
systematically solve it to achieve a Pareto optimal frontier
(POF) of solutions;

4) design an efficient heuristic for RSU CRM;
5) use the Markov decision process (MDP) and reinforce-

ment learning to select a Pareto optimal solution, which
minimizes the costly service migrations over the long
term.

This paper is organized as follows. In Section II, we delin-
eate the architecture of RSU clouds and RSU microdatacenter
and emulate SDN in Mininet and analyze its inherent reconfig-
uration overhead, respectively. We discuss work related to RSU
clouds and RSU CRM in Section III. In Section IV, we present a
mathematical model for the RSU CRM problem. In Section V,
we design an efficient heuristic for the RSU CRM problem and
use reinforcement learning with the MDP to select a configu-
ration that reduces the VM migration overhead over the long

Fig. 1. RSU cloud architecture.

term. In Section VI, we present results and compare our joint
optimization and heuristic with purist resource management
and show significant improvement in the number of VM migra-
tions, while achieving orders of magnitude improvement in
the infrastructure delay and minimizing the number of service
hosts. We conclude with a summary of the RSU cloud, our
novel approach to solve the inherent RSU CRM problem, and
give future work and directions in Section VII.

II. RSU CLOUD ARCHITECTURE

In this section, we discuss the architecture of our RSU
cloud, implemented with the SDN. In SDN, there are two com-
munication planes, the physical data plane and an abstracted
control plane. This decoupling of control and forwarding planes
enables the deep programmability of SDN and allows it to
be dynamically reconfigured [8]. The de facto communica-
tion protocol for SDN is OpenFlow [10]. SDN consists of
OpenFlow-enabled switches and controllers, where a switch
contains data forwarding rules and the controller has dynamic
global network interconnection knowledge. Each switch main-
tains flows that pertain to data forwarding. Switches receive
flow rules, proactively or reactively, from controllers, via the
control plane.

Recall that in IoV, users can subscribe for services such
as traffic congestion avoidance, remote vehicle diagnostics,
on-the-go Internet, online gaming, multimedia streaming, and
voice over IP to increase in-vehicle productivity. As illustrated
in Fig. 1, RSU clouds include traditional RSUs and microdat-
acenters that host the services to meet the demand from the
underlying OBUs in the mobile vehicles. Traditional RSUs are
fixed roadside infrastructure that can perform V2I) and V2V
communication using WAVE. A fundamental component of the
RSU clouds is the RSU microdatacenter.

An RSU microdatacenter, illustrated in Fig. 2, is a traditional
RSU with additional hardware and software components that
can offer virtualization and communication capabilities using
SDN. The microdatacenter hardware consists of a small form
factor computing device and an OpenFlow switch. The soft-
ware components on the computing device include the host
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Fig. 2. RSU microdatacenter architecture.

operating system and a hypervisor. A hypervisor is a low-
level middleware that enables virtualization [9] of the physical
resources. This allows abstraction of various VMs on a single
device. It is a technique widely employed in traditional data-
centers that improves resource utilization, portability, and fault
tolerance [9]. In this manner, VMs can host services by effi-
ciently sharing resources. VMs also enable service migrations
and replications onto other VMs on disparate physical devices.
Optionally, one or more of the microdatacenters will have addi-
tional software components, namely, OpenFlow controller(s),
cloud controller(s) and RSU CRM(s). Our novel RSU CRM
will communicate with OpenFlow and cloud controllers, via the
data plane, to disseminate information regarding service host-
ing, service migration, and/or data flow changes, as illustrated
in Fig. 1. In the data plane, cloud controllers will govern service
migration and hypervisors to instantiate new VMs hosting ser-
vices. Consequentially, OpenFlow controllers will update their
network knowledge and simultaneously update switch flow
rules via the control plane.

The dynamic service demands from the vehicle grid may
require increasing or decreasing the number of microdata-
centers hosting the services or physically migrating the VMs
hosting the services from one microdatacenter to another via
the data plane. Without loss of generality, we interchange-
ably use VM migration and service migration. Though, we
can reprogram the RSU clouds to dynamically update ser-
vice hosting and data forwarding information, it is costly and
could potentially deteriorate the network performance [8], [9].
VM migration in the data plane, constrains the limited band-
width in the RSU cloud, and increases network link latency;
whereas, updating data forwarding information increases the
control plane overhead [12]. Moreover, service providers incur
the cost of service migration, and/or replications, and service
users’ experience deterioration in QoS. Naïve approaches to
hosting services across all microdatacenters are too costly, since
service providers rent cloud resources from cloud infrastructure
providers. Our major contribution is the novel offline CRM,

Fig. 3. Reconfiguration overhead in Mininet for our RSU cloud topology.

which is responsible for making the decisions regarding the
service location, service replications, and data forwarding in the
RSU cloud.

A. Reconfiguration Overhead Analysis in Mininet

In this section, we discuss how we emulate an RSU cloud
with SDN in Mininet [11], to perform real-world network
reconfiguration overhead analysis. SDN switches maintain data
forwarding rules in flow tables. A flow table rule is a two
tuple with a prefix and an action. A prefix contains, among
other things, an ingress port, packet source, and destination
information. A typical action specifies the egress port for the
incoming packet at the switch. When a packet arrives at a
switch, it searches the prefixes in the flow tables and performs
the action associated with the first matched prefix. To imple-
ment an RSU cloud with SDN in Mininet, we designed and
implemented RSU clouds with an RSU microdatacenter as a
VM host connected to an OpenFlow switch, with a zero delay,
as illustrated in [13]. Our RSU cloud topology is inspired by
Florida Department of Transportation (FDOT) deployment of
RSUs [14].

It is evident from our topology, illustrated in Fig. 3, that to
enable real-world reconfiguration overhead analysis, we will
have to support multipath. Therefore, we implemented stochas-
tic switching for multipath in an OpenFlow-enabled SDN.
OpenFlow offers multipath through group tables, which enable
data to be forwarded across multiple egress ports. In this case, a
flow table rule action points to a group table identification num-
ber. A group table rule contains a list of buckets for egress ports
for the same ingress port and source-destination pair. We con-
trol the data forwarding through these buckets by defining the
group type. We use the select group type to stochastically select
the buckets. The bucket weights are specified so that the traffic
between the buckets is split according to the load on multiple
paths between the source and the destination.

We used Open vSwitch (OvS) 2.1 [15] that supports group
tables and more specifically the optional select group type.
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However, OvS 2.1 implements the select group type by
randomly selecting a group bucket; whereas, we want to
select buckets stochastically. Therefore, we updated xlate_
select_group and group_best_live_bucket functions on OvS 2.1
to support stochastic switching in accordance with group bucket
weights. The Python scripts used for implementing the topol-
ogy in Mininet and establishing the data forwarding rules,
with detailed instructions, are made available online for public
access [13].

To perform reconfiguration overhead analysis, we imple-
mented an SDN where each host has demands for a single
service and there are a fixed number of service hosts. Fig. 3
depicts two SDNs over the same topology but employing dif-
ferent configurations. We define a configuration as a snapshot
of hosts of services and the data forwarding rules in effect. In
our analysis, the SDNs are catering to an average demand of 70
and 90 Mb/s, at time t and t+ 1, respectively. We designed a
joint optimization model to find the optimal configuration that
can meet the demand, while minimizing the number of service
hosts and cloud infrastructure delay. Fig. 3 illustrates the con-
figurations highlighting the switches with flow table rules and
flow and group table rules for multipath and service hosts. Our
reconfiguration overhead heuristic counts the changes in the
data forwarding rules and the number of service migrations. In
our reconfiguration overhead analysis, removing a service from
a host does not induce network traffic and therefore does not
count as overhead.

It is important to note that VM migrations induce network
traffic in the data plane; whereas, flow and group table mod-
ifications make up the control plane overhead. In the control
plane, there is a cost associated with adding and deleting flow
or group table rules. A flow table and group table rule modifi-
cation is counted doubly, a deletion of the old rule, followed by
an addition of a new rule.

Based on our reconfiguration overhead analysis, we can
formally define the configuration and reconfiguration over-
heads. A configuration is a network snapshot that records
the service hosts and the data forwarding rules in the
network. Data forwarding rules consist of flow rules and
group rules. A configuration is defined as a three tuple
〈X,Y, Z〉, where X={x1, x2, . . . , x|X|} is the set of service
hosts, Y = {y1, y2, . . . , y|Y |} is the set of flow rules, and
Z ={z1, z2, . . . , z|Z|} is the set of group rules.

Reconfiguration overhead consists of two components, num-
ber of VM migrations and control plane modifications. For
simplicity, we assume that all services are hosted on VMs of the
same size and count the VM migrations. This can be extended
to different size VMs. Furthermore, tearing down a VM does
not induce network traffic and does not add to the reconfigu-
ration overhead. Therefore, given sets of service hosts X and
X ′ for time t and t+ 1, respectively, the VM migrations are
equivalent to |X −X ′|. On the other hand, all control plane
modifications add to the reconfiguration overhead. Therefore,
given sets of flow rules Y and Y ′ for time t and t+ 1,
respectively, and group rules Z and Z ′ for time t and t+ 1,
respectively, the control plane overhead is calculated as in (1).
Intuitively, the control plane overhead is the sum of flow rules
to be deleted and added, group rules to be deleted and added,

flow rules changed to group rules, and group rules changed to
flow rules

Control plane overhead = |Y − Y ′|+ |Y ′ − Y |+ |Z − Z ′|
+ |Z ′ − Z|+ |Y ∩ Z ′|+ |Z ∩ Y ′|.

(1)

III. BACKGROUND

Preceding IoV, intelligent transportation systems (ITSs)
encompassed the communication and services in VANETs.
Taxonomy and classification of ITS services and their require-
ments have been presented in [4] and [5], and it is evident from
these classifications that ITS safety applications are dependent
on direct V2V communication; whereas, ITS nonsafety applica-
tions reply on resource-constrained RSUs. Therefore, strength-
ening the RSUs with microdatacenters enable them to provide
nonsafety services. We propose an RSU cloud to capitalize
on the proximity of RSUs to the end-users and the reliability
of fixed infrastructure to deploy a deeply programmable net-
work that can cater to dynamic service demands. Proponents of
cloudlets instigate the benefits of moving services to the edges
of the network to enhance users’ experience.

Strengthening the vehicles in the VANET with a cloud access
not only enables myriad computational capabilities that are
underutilized by safety applications alone [4], [16], but also
overcomes the unreliable V2V communication [17]. Some aim
to interconnect OBU and RSU resources into a cloud for coop-
erative sensory, storage, and computing tasks [5], while others
[4], [6] propose that RSUs act as gateways to traditional clouds
or design a cloud of OBUs. Vehicular cloud networking (VCN)
[5] is being proposed as a revolution to modernize the tradi-
tional VANET, which integrates information centric networking
and cloud computing with VANETs. In VCN, vehicles and
resource-constrained RSUs share their resources in one virtual
platform. This is in contrast to our proposed RSU cloud, which
only includes RSUs. Among the RSUs in the RSU cloud, some
are specialized RSUs that contain microdatacenters with SDN
capabilities to dynamically host services and reconfigure data
flows. Our RSU cloud can easily coexist with earlier VANET
clouds or within the revolutionizing VCN as a vehicular cloud
for the vehicle grid in the IoV.

Current techniques to ensure efficient and effective realiza-
tion of RSU cloud services include rich connectivity at the
edge of the network and dynamic routing protocols to balance
traffic load [18] and reduce routing delay. Presently, capac-
ity planning tools such as VMWare Capacity Planner, IBM
Websphere Cloudburst, and Novell PlateSpin Recon decide the
VM placement locations [18]. However, they lack in load bal-
ancing at the VM level and result in highly imbalanced traffic
distribution [18]. Various researchers [19]–[23] have proposed
solutions for low latency cloud service deployment, either
independent of cost of service location or jointly. However,
like Wu et al. [19], we will also jointly minimize cloud
service deployment cost and routing delay for the Pareto fron-
tier. In contrast to this work, we leverage the list of Pareto
optimal solutions for selecting the one deployment and net-
work configuration, with the least effect on existing service
and routing configurations, while [19], using Nash bargaining
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techniques, balances optimality with fairness. Our significant
contribution lays in the wake of the fact that VM migrations are
costly [9].

IV. RSU CRM

Our RSU cloud consists of RSU microdatacenters that can
host services to meet the demands from the vehicles. A con-
figuration takes a snapshot of service hosts and data forward-
ing rules. Over time, the change in demands requires costly
reconfigurations to service hosting, service migration, and/or
replications and data forwarding rules. These reconfigurations
increase service latency and deteriorate users’ experience [8],
[9]. We can identify patterns of average demand in the network
and classify them according to the time of the day. Therefore,
our scheme can be run offline utilizing these traffic patterns.
Thus, it is beyond the scope of this paper to analyze the overall
complexity of the scheme.

The CRM main concern is the selection of a configuration
that minimizes reconfiguration overhead. In this section, we
present the problem statement and the CRM model.

A. Problem Statement

Assume that we have a network graph G = (V,E), a
set of services S, and a set of average demands D = {dt1 ,
dt2 , . . . , dt|T |} over time period T = {t1, t2, . . . , t|T |} with an
initial configuration ψt1 = 〈Xt1 , Y t1 , Zt1〉 for demand dt1
at time t1. The set V represents the RSU microdatacenters
interconnected by the edges in E, each with bandwidth
capacity Ce ∀ e ∈ E. At time ti ∈ T , there is a demand
bn,k for service k, k ∈ S at node n, n ∈ V and the average
demand in the network is dti . Find a Pareto optimal config-
uration from a set of POF of configurations Ψti to minimize
the number of VM migrations 〈ψti

j |min(Xti
j −Xti−1), ∀

ψti
j =< Xti

j , Y
ti
j , Z

ti
j >,ψti

j ∈ Ψti〉. Each ψti
j ∈ Ψti opti-

mally hosts services within a threshold φk ∀k ∈ S to meet
service demands at ti, while achieving a load-balanced net-
work, and minimizing infrastructure delay with QoS threshold
ωk ∀k ∈ S.

B. Delay Model

In this section, we discuss how we compute the cloud infras-
tructure delay. The delay is based on a lookup table (LUT) with
interval ϕ, which controls the granularity. The granularity of the
LUT is a tradeoff to performance. We compute the delay on a
path as a summation of the delays on the edges in the path. The
delay on an edge is the summation of processing (Tp), queuing
(Tq), transmission (Tr), and propagation (Tg) delays. Without
loss of generality and similar to [24] and [25], we currently use
a G/G/1 queuing system to model the delay on an edge, making
it feasible for single-hop and multihop transmissions.

In practice, the LUT table will be built over time, from exper-
imental data. For modeling this, we assume a Poisson process
for packet interarrival times λ and processing times μ, with
mean and standard deviation ta, σa and ts, σs, respectively.

This assumption generally enables the problem formulation to
be generic, suitable, and adaptable to various different types of
scenarios, including multimedia and network studies [24], [25].
The coefficients of variation in interarrival times and packet
processing times are ca = σa/ta and cs = σs/ts, respectively.
These are used in Kingsman formula [26] to approximate the
queuing delay in (2). In our LUT, ca = 0.7 and cs = 0.7,

Tq =
c2a + c2s

2
· λ/μ

μ− λ
. (2)

The transmission delay on the edge is based on the distance
between the RSUs as in (3). The length of the edge is based on
the distance between the RSU nodes. Recall, our topology is
inspired by FDOT RSU deployment [14]. We use iTouchMaps
[27] to estimate the latitude and longitude of the FDOT RSU
locations and coordinate distance calculator [28], to compute
the distances between the RSU nodes. We use a processing
delay of Tp = 10µs and the propagation delay in (4), for a
packet size of 800 bytes,

Tr =

(
length

2
3×speed of light

)
(3)

Tg =

(
packet size

Ce

)
. (4)

C. Multiobjective ILP Formulation

We model the RSU CRM problem as a multiobjective ILP
problem and systematically solve it to obtain a Pareto fron-
tier. Below, we define and describe the input and output of the
formulation.

Input:
S Number of services
N |V |, the number of RSUs
bn,k Demand at RSU n for service k,

∀ 1 ≤ n ≤ N, 1 ≤ k ≤ S

tn,k

⎧⎨
⎩

1, if there is a demand for service k on RSUn
∀1 ≤ n ≤ N, 1 ≤ k ≤ S

0, otherwise
km,n Number of paths from RSU m to RSU n,

∀1 ≤ m,n ≤ N

pm,n,x
e

⎧⎪⎪⎨
⎪⎪⎩

1, if RSUsm,n use pathxwith edge e
∀1 ≤ m,n ≤ N, 1 ≤ x ≤ km,n,
1 ≤ e ≤ |E|

0, otherwise
Ce Bandwidth capacity of edge e
φk Threshold on number of service hosts for service k,

1 ≤ k ≤ S
ωk Threshold on infrastructure delay for service k

1 ≤ k ≤ S
ϕ 1 ≤ ϕ < min{Ce ∀1 ≤ e ≤ |E|}, used to control the

granularity of the LUT for edge e
qi,e Delay for load i on edge e,

∀0 ≤ i ≤ Ce, 1 ≤ e ≤ |E|

zm,k

⎧⎨
⎩

1 if service kwas previously hosted on RSUm
∀1 ≤ m ≤ N, 1 ≤ k ≤ S

0, otherwise
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ym,n,x
k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if there was a control plane rule for
pathx between RSUsm,n for service k
∀ 1 ≤ m, n ≤ N, 1 ≤ x ≤ km,n,
1 ≤ k ≤ S

0, otherwise
B A large constant

Output:

hm,k

⎧⎨
⎩

1, if service k is hosted on RSUm,
∀1 ≤ m ≤ N, 1 ≤ k ≤ S

0, otherwise
rm,n,x
k Load carried on path x between RSUs m, n for

service k, ∀1 ≤ m,n ≤ N, 1 ≤ x ≤ km,n,
1 ≤ k ≤ S,
0 ≤ rm,n,x

k ≤ min {Ce ∀1 ≤ e ≤ |E| , ∃pm,n,x
e = 1}

am,n,x
k

⎧⎪⎪⎨
⎪⎪⎩

1, if there is a control plane rule for pathx
between RSUsm,n for service k,
∀1 ≤ m, n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S

0, otherwise
le Load on edge e, 1 ≤ e ≤ |E|
de Delay on edge e, 1 ≤ e ≤ |E|
ve Maps the load on edge e to a multiple of ϕ

fe,i

⎧⎨
⎩

1, if load on edge e is equal to
i× ϕ∀0 ≤ i ≤ Ce, 1 ≤ e ≤ |E|

0, otherwise
gm,n,x Delay on path x between RSUs m, n

∀1 ≤ m, n ≤ N, 1 ≤ x ≤ km,n,
0 ≤ gm,n,x ≤ jm,n,x

wm,n,x
k Ancillary variable for nonlinear products of

continuous variable gm,n,x with binary variable
hm,k, ∀1 ≤ m, n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S

αm,k

{
1, hm,k − zm,k > 0∀1 ≤ m ≤ N, 1 ≤ k ≤ S
0, otherwise

βm,n,x
k

⎧⎨
⎩

1, am,n,x
k − ym,n,x

k > 0∀1 ≤ m,n ≤ N,
1 ≤ x ≤ km,n, 1 ≤ k ≤ S

0, otherwise

γm,n,x
k

⎧⎨
⎩

1, ym,n,x
k − am,n,x

k > 0∀1 ≤ m,n ≤ N,
1 ≤ x ≤ km,n, 1 ≤ k ≤ S

0, otherwise.

Our multiobjective formulation is to minimize the recon-
figuration overhead, pertaining to VM migration, control
plane modifications, number of service installations, and cloud
infrastructure delays. The minimization in the reconfiguration
overhead is the sum of VM migrations and control plane mod-
ifications as in (5). We use weight 0 ≤ ρ ≤ 1 to control the
priority of reconfiguration overheads, such that for ρ> 0.5,
minimizing VM migration takes priority over minimizing con-
trol plane modifications.

In this way, we minimize moving VMs hosting ser-
vices, i.e., min (hm,k − zm,k|1 ≤ m ≤ N, 1 ≤ k ≤ S), where
zm,k is VM m hosting service k from previous config-
uration and hm,k is VM m hosting service k in cur-
rent configuration. For example, consider a demand at time
t met by z3,1 = 1, i.e., RSU 3 hosting service 1. Then
for a new demand at time t+ 1, the model will benefit
by choosing h3,1 = 1, thus minimizing the VM migration

overhead. Control plane overhead entails reducing flow and
group rule modifications, i.e., addition and deletion of rules
in βm,n,x

k and γm,n,x
k ∀1 ≤ m, n ≤ N, 1 ≤ x ≤ km,n, 1 ≤

k ≤ S, respectively,

min

⎧⎪⎪⎨
⎪⎪⎩

N∑
m=1

S∑
k=1

ρ · αm,k +

N∑
m=1

N∑
n=1

km,n∑
x=1

S∑
k=1

(1− ρ) · (βm,n,x
k + γm,n,x

k )

⎫⎪⎪⎬
⎪⎪⎭
. (5)

Simultaneously, we aim to minimize the number of ser-
vice hosts and achieve a load-balanced network with (6).
Mathematically, to model an objective function with disparate
units, the delay on an edge de ∀1 ≤ e ≤ |E| and the number
of service host hm,k ∀1 ≤ m ≤ N, 1 ≤ k ≤ S, we normalize
delay and make the objective unitless [29]. We use weighted
sum approach with weight P for this multiobjective opti-
mization. This model pushes the load across multiple paths
to minimize the infrastructure delay across all the edges and
controls the delay from rising drastically with load

min

⎧⎨
⎩

N∑
m=1

S∑
k=1

P · hm,k +

|E|∑
e=0

(1− P ) · de
qCe,e

⎫⎬
⎭ . (6)

The minimization in infrastructure delay competes with the
minimization of service hosts. Trivially, the services could be
installed across all RSUs so that every demand is met by
services hosted locally. However, this naïve approach would
neither be efficient for “resource-constrained” RSU clouds nor
cost-effective for service providers. Therefore, there is a direct
tradeoff between the number of service hosts and the infras-
tructure delay. Furthermore, every reconfiguration incurs VM
migrations and control plane modifications to the network.
Therefore, we have to ensure that we are not superfluous with
service hosts. The VM migrations are counted in constraints (7)
and (8)

B · αm,k ≥ hm,k − zm,k ∀1 ≤ m ≤ N, 1 ≤ k ≤ S (7)

hm,k − zm,k + (1− αm,k) ·B ≥ 0

∀1 ≤ m ≤ N, 1 ≤ k ≤ S. (8)

The control plane overhead is counted as the addition βm,n,x
k

and deletion γm,n,x
k of control plane rules counted as in con-

straints (9) through (14)

rm,n,x
k ≤ B · am,n,x

k ∀1 ≤ m,n,m 
= n ≤ N

1 ≤ x ≤ km,n, 1 ≤ k ≤ S (9)

rm,n,x
k ≥ am,n,x

k ∀1 ≤ m,n, m 
= n ≤ N

1 ≤ x ≤ km,n, 1 ≤ k ≤ S (10)

B · βm,n,x
k ≥ am,n,x

k − ym,n,x
k

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S (11)

am,n,x
k − ym,n,x

k + (1− βm,n,x
k ) ·B ≥ 0

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S (12)
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B · γm,n,x
k ≥ ym,n,x

k − am,n,x
k

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S (13)

ym,n,x
k − am,n,x

k + (1− γm,n,x
k ) ·B ≥ 0

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S. (14)

The minimization objective in (6) is subject to the following
constraints. The demand should be met or exceeded by the RSU
service providers as in constraints (15). Constraints (16) and
(17) ensure that only those paths carry network load that are
between RSU service providers and consumers. Note that RSU
service providers can meet their demands locally

∑
m,x

rm,n,x
k ≥ bn,k ∀1 ≤ n ≤ N, 1 ≤ k ≤ S (15)

B.hm,k.tn,k ≥
∑
x

rm,n,x
k

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ k ≤ S (16)

hm,k.tn,k ≤
∑
x

rm,n,x
k

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ k ≤ S. (17)

The delay on a path is the sum of delays on its edges. The
delay on an edge corresponds to the load on the edge and
is looked up in the LUT, using indexing. The load and edge
must match the enumeration in the LUT. This is in constraints
(18)–(22),

le =
∑

m,n,x,k

pm,n,x
e · rm,n,x

k ∀1 ≤ e ≤ |E| (18)

le = ϕ · ve ∀1 ≤ e ≤ |E| (19)

ve =

Ce/ϕ∑
i=0

i.fe,i ∀1 ≤ e ≤ |E| (20)

Ce/ϕ∑
i=0

fe,i = 1 ∀1 ≤ e ≤ |E| (21)

de =

Ce/ϕ∑
i=0

fe,i.qi,e ∀1 ≤ e ≤ |E| . (22)

The delay on a path gm,n,x is bounded by infrastructure delay
threshold ωk for service k in constraints (23)–(27),

gm,n,x =

|E|∑
e=0

pm,n,x
e . de

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ x ≤ km,n (23)

wm,n,x
k .tn,k ≤ ωk

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S (24)

wm,n,x
k ≤ jm,n,x · hm,k

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S (25)

wm,n,x
k ≤ gm,n,x

∀1 ≤ m,n,m 
= n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S (26)

wm,n,x
k ≥ gm,n,x − jm,n,x. (1− hm,k)

∀1 ≤ m,n, m 
= n ≤ N, 1 ≤ x ≤ km,n, 1 ≤ k ≤ S.
(27)

In constraints (28) and (29), we bound the number of service
hosts and ensure that every service is hosted

N∑
m=1

hm,k ≥ 1 ∀k (28)

N∑
m=1

hm,k ≤ φk ∀k. (29)

We assume that all RSUs have demands for all services k
and are equally equipped to host any service k. Further, we
assume that all RSUs have unlimited resources to meet any ser-
vice demand. Therefore, we assume that the number of service
hosts is directly proportional to the financial cost of the service
hosting. This removes subjectivity from our results.

Recall, at time ti∀ti ∈ T , the average network demand is
dti ∈ D, so for every service k, we generate demand at every
RSU n, i.e., normally distributed with mean dti and standard
deviation σ=0.05× dti and record it in bn,k. As previously
described, we used the topology in Fig. 3 and the LUT is
generated for the corresponding edges.

There are various techniques for solving multiobjective lin-
ear and ILP problems. One common approach is the weighted
sum, where weights are used to control the priority of one
objective with respect to another. Due to the intrinsically
ordered nature of our problem, we are able to solve the multi-
objective RSU CRM problem by decomposing it into a smaller
dual objective ILP (6). We systematically solve (6) to build a
POF of configurations.

In our systematic approach, we first use the lp_solve [30]
linear programming engine to solve our objective, by mini-
mizing the number of service hosts and infrastructure delay∑N

m=1

∑S
k=1 P · hm,k +

∑|E|
e=0 (1− P ) de

qCe,e
, subject to con-

straints (15) through (29), with P = 0. For a given number of
service host threshold φk, the optimization yields an optimal
solution in the POF. Next, we populate the POF Ψti by adding
an optimal solution ψti

j for each φk, such that 1 ≤ φk ≤ N and
φk ∈ Z

+. We start at φk = N and continue until there is no
infeasible solution. At the end, we will have ψti

j ∈ Ψti ∀j, φk,
at time ti and average network demand is dti .

Initially, we assume a fresh network; therefore, no previous
configurations exist, and thus we select a Pareto optimal with
the minimum number of service hosts, as the initial configu-
ration at t0 for demand dt0 . However, ∀ ti > t0 there will be
reconfigurations costs between Ψti and Ψti−1 . We select the
Pareto optimal

{
ψti
j |min

(
Xti

j −Xti−1
) ∀j, ψti

j ∈ Ψti
}

,
such that first it minimizes the difference in VM
migrations, followed by the control plane overhead,{
ψti
j |min

(
Y ti
j − Y ti−1

) ∀j, ψti
j ∈ Ψti

}
, by controlling

the weights in (5).
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Fig. 4. Pseudocode for CRM heuristic.

V. RSU CRM HEURISTIC

We design and implement a novel heuristic for the RSU CRM
problem, delineated in Fig. 4. We show that our heuristic effi-
ciently yields near optimal results, by always operating on the
POF of nondominated solutions. Our heuristic can be decom-
posed into two components: 1) generate POF and 2) prune
POF to find the configuration that minimizes VM migrations,
followed by the control plane overhead. It is important to
note that for a given average demand dti , we use the same
demand (bn,k) for each RSU as in the ILP. This ensures accu-
rate comparison of the results from ILP optimization and our
heuristic.

To generate the POF, for each service k ∈ S, we begin by
randomly selecting �N/2� nodes to be the RSUs hosting ser-
vices and meet their demands locally. For all the remaining
RSUs, we randomly select an RSU n ∈ V and satisfy its
demand by iteratively selecting a service host for its demand,
such that a fixed percent of demand receives the current best
infrastructure delay. This uniquely enables us to distribute the
load across the paths in the networks and achieve a load-
balanced network. We repeat this, until all the RSUs demands
have been satisfied. At the end, we have a configuration. We
repeat this to generate n2 configurations and select the config-
uration ψti

j ∈ Ψti that minimizes the infrastructure delay to be
included in the POF.

Next, we iteratively select each of the n2 configurations,
and randomly select

⌈∣∣Xti
j

∣∣ /2⌉ number of service hosts,
and repeat the process of meeting demands in the network
until the POF Ψti has been filled with all the valid con-
figurations for the average demand dti at ti. Now, we can
generate Ψti for dti ∀ti ∈ T and select the configuration
that minimizes the number of VM migrations 〈ψti

j |min(
Xti

j −Xti−1
) ∀ψti

j =< Xti
j , Y

ti
j , Z

ti
j >, ψti

j ∈ Ψti〉. We
break a tie between configurations, by selecting the configura-
tion with minimum VM migrations, followed by control plane
modifications.

A. Analysis

Given a network G = (V, E), where V is a set of vertices
andE is the set of edges, with all |V | = n nodes requesting ser-
vices. Consider log n levels with a setCi = {Ci

1, C
i
2, . . . , C

i
n2}

of configurations at each level i, such that
∣∣Ci

∣∣ = n2 ∀Ci
j ∈ Ci

is a set of providers that meet consumer demands and
∣∣Ci

j

∣∣ =⌈
n
2i

⌉ ∀1 ≤ j ≤ n2. In level i+ 1, a set Ci+1 of configuration,
such that

∣∣Ci+1
∣∣ = n2 holds and

∣∣Ci+1
j

∣∣ = ⌈
n

2i+1

⌉ ∀1 ≤ j ≤
n2 and Ci+1

j ⊆ Ci
j . The subset relationship ensures that we get

nondominated configurations across levels.
Let Xi

j be a random variable, which is an event of selecting
configuration Ci

j and E
[
Xi

j

]
= pij , which is the probability of

loss in configuration. The loss in configuration is dependent on
the selection of this configuration, which eliminates other con-
figurations that may yield better delay. Then X =

∑
i

∑
j X

i
j

is the loss in configurations. In the worst case, in level �log n �,
the expected loss in configurations μ = E[X] = 1

n2 log n. This
can be generalized to other levels. We use Chernoff bounds to
compute the deviation of X from μ,

Pr(X < μ− λ) = Pr

(
X <

(
1− λ

μ

)
μ

)

Let λ
μ = δ, then

Pr(X < (1− δ)μ) ≤ e

(
− δ2μ

2

)
≤ e

(
− δ2 log n

2n2

)
.

Claim: With high probability X ∈ μ±O
(

logn
n

)
.

Proof:

Let λ = O
(

logn
n

)
, δ = λ

μ =
O( log n

n )
1
n2 logn

= O(n), then

Pr(X < (1− δ)) ≤ e

(
− (O(n))2 log n

2n2

)

Pr (X < (1− δ)μ) ≤ e

(
− cn2 log n

2n2

)
≤ e(−c logn) ≤ −c log n

Pr(X < (1− δ)μ) ≤ 1

nc
.

Hence, with high probability, X ∈ μ±O
(

logn
n

)
.

However, there is a short-sightedness in this heuristic.
Though we minimize the reconfiguration overhead required to
meet the change in demand from ti−1 to ti, our heuristic applies
a myopic approach to configuration selection. Consequentially,
a configuration that minimizes the reconfiguration overhead
from ti−1 to ti may not be the best configuration over the long
term for the network. To overcome this, we employ reinforce-
ment learning to select configurations that yield the optimal
number of reconfigurations over the long term.

B. MDP

Thus far, the heuristic we used to select a configuration sim-
ply minimizes the number of VM migrations. This heuristic is
shortsighted and seeks immediate gains, but lacks the long-term
knowledge to make an educated decision about the configura-
tion to be selected such that a long-term reduction in the number
of VM migrations can be achieved. The configuration selection
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Fig. 5. MDP for minimizing VM migrations.

decision problem lends itself perfectly to the MDP, where the
outcome is partially random and controlled by a decision maker.

The MDP is a discrete time stochastic process, defined by a
quad-tuple <S,A, P,R>, where S is the set of states and A
is the set of actions. The transition from state m to state n is
based on the action a, defined by the probability P (m,n, a),
with corresponding reward R(m,n, a). The goal of the MDP is
to find a “policy” that dictates the action to take in a state that
maximizes the expected reward.

We design the configuration selection process as an MDP in
the following manner. First, every configuration from the POF
ψti
j ∈ Ψti from the heuristic, across all dti for all ti ∈ T is enu-

merated as a list of states in the MDP. Next, a set of actions
are defined. In our scenario, the number of RSUs N = 10;
therefore the heuristic finds configurations for 5, 3, and 2 ser-
vice hosts. Then, the actions are defined as A = {a1, a2, a3}
where the configuration with 2, 3, and 5 installations is selected,
respectively. In MDP, we define state transitions using a proba-
bility matrix P, where we can only transition to a state, if it is a
configuration in the next time instance, i.e., P (m,n, a) ∀m ∈
Ψti−1 , n ∈ Ψti , a ∈ A.

Therefore, the configurations are chronologically ordered.
The reward matrix R is populated as the complement of
the VM migration costs. Therefore, the reward R (m,n, a)
is the difference between N , the maximum number of VM
migrations, and the number of VM migrations, (Xti

j −X
ti−1

k )

∀ψti
j =<Xti

j , Y
ti
j , Z

ti
j >, ψ

ti
j ∈ Ψti , ψ

ti−1

k = <X
ti−1

k , Y
ti−1

k ,

Z
ti−1

k >,ψ
ti−1

k ∈ Ψti−1 and when moving from configu-
ration m to n on a is R(m,n, a) = N − (Xti

j −X
ti−1

k ),

∀ψti
j = <Xti

j , Y
ti
j , Z

ti
j >,ψ

ti
j ∈ Ψti , ψ

ti−1

k = <X
ti−1

k , Y
ti−1

k ,

Z
ti−1

k >,ψ
ti−1

k ∈ Ψti−1 . This is illustrated in Fig. 5.
MDP can be solved using various techniques, such as

Q-learning, policy iteration, value iteration, and linear program-
ming. We are interested in policy iteration to get the optimal
policy. The optimal policy is one that has not changed in two
successive iterations and maximizes the reward. The policy dic-
tates the action to take in a state. For this purpose, we use the
MDP toolbox for MATLAB designed and developed by Chadès
et al. [31]. The toolbox contains various techniques for solving

MDP, including the policy iteration. We use this toolbox with its
policy iteration technique to generate a policy which maximizes
the reward. Recall that our reward is the complement of the
number of VM migrations; therefore, a policy that maximizes
the reward value will minimize the number of VM migrations in
the long term. This MDP-derived policy for configuration selec-
tion will ensure that we select configurations that minimize the
VM migrations over the long term, even though it may incur a
higher VM migration cost at a time ti, over the long run, it will
incur the optimally minimal number of VM migrations.

VI. RESULTS AND DISCUSSION

In this section, we present and discuss our results, with ser-
vices S = 1, and assume fast Ethernet connections between the
RSUs, such that Ce = 100Mb/s ∀e ∈ E and ϕ = 1, so that
we have a fine grain LUT. In practice, the LUT will be built over
time from experimental data. We run multiple iterations for the
same network, so for demand dti ∈ D, every service k, and in
every iteration, we generate demand at every RSU n, such that
it is normally distributed with mean dti and standard deviation
σ = 0.05× dti and record it in bn,k. We run five iterations to
get the confidence intervals. Recall, similar to [24] and [25], we
use a G/G/1 queuing system and assume a Poisson process for
packet interarrival times λ and processing times μ, with mean
and standard deviation, ta, σa, and ts, σs.

We compare our results with purist approach. In the given
problem, there are two possible purist approaches: 1) cost
optimization, which optimally hosts services to meet network
demands, as illustrated in Fig. 6, irrespective of the infras-
tructure delay incurred by the services, as illustrated in Fig. 7
and 2) delay optimization, which optimally hosts services to
minimize infrastructure delay, irrespective of cost of hosting
services. In CRM, we employ joint optimization that minimizes
both, the number of service hosts and infrastructure delay.
Trivially, delay optimization would maximally deploy hosts, so
that services are met locally, incurring no infrastructure delay.
Moreover, this would not be viable for RSU cloud service
providers. Therefore, we do not compare our joint optimization
approach to delay optimization.
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Fig. 6. CRM optimization and heuristic achieve near optimal cost optimization
in number of replications.

Fig. 7. CRM heuristic yields near optimal infrastructure delay. CRM heuristic
outperforms optimization with an increase in number of service replications.

The major benefits of our joint optimization are presented in
Fig. 7 with improvements in orders of magnitude in infrastruc-
ture delay when compared with cost optimization, with CRM
heuristic following optimization results closely. The reduction
in cumulative VM migrations in Fig. 8 and control plane over-
head (Fig. 9) is attributed to the fact that a purist approach,
trying to only minimize the number of service hosts, and is
oblivious to the effects of minimization of the number of hosts.
Our optimization model minimizes the number of service hosts
while meeting QoS bounds, and ensures minimal VM migra-
tions and control plane overhead. For example, in a purist
approach, installing in nodes m, n is the same as installing in
nodes i, j without regard to the infrastructure delay and recon-
figuration overhead; whereas, in our approach, installing on
nodes m,n is not the same as installing on nodes m,n, though
there is not a change in the number of service hosts, there will
be immediate consequences on network reconfiguration and
infrastructure delay.

The efficiency of the CRM heuristic, which essentially
selects the configuration that minimizes VM migrations, by
always operating on the POF, is illustrated in Fig. 10. Therefore,
the final configuration selected is also an optimal configu-
ration of the number of service hosts and the infrastructure
delay, such that each ψti

j ∈ Ψti is a Pareto optimal configu-
ration that minimizes the infrastructure delay and number of
service hosts.

Though Fig. 8 depicts the significant reduction in the num-
ber of VM migrations with heuristic and joint optimization,
(Fig. 9) illustrates that heuristic performs the worst with respect

Fig. 8. CRM heuristic and optimization outperform purist cost optimization.

Fig. 9. CRM heuristic incurs highest control plane modifications due to fine
grain load balancing.

Fig. 10. Every ψti
j ∈ Ψti is a Pareto optimal configuration w.r.t. number of

service hosts and infrastructure delay.

to control plane modifications. This is attributed to our load-
balancing technique employed in the heuristic that distributes
a fixed percentage of demand across multiple paths until the
demands are met. Each path accounts for numerous control
plane modifications, as seen, in the high cost of control plane
modifications. Our approach to increasing the utilization of the
number of paths between a provider and a consumer reduces
bottlenecks and potential starvation of other RSUs. This is in
contrast to the naïve approach of selecting the shortest path and
fully utilizing the capacity of a path(s).
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Fig. 11. VM migration comparison of CRM heuristic and CRM heuristic with
MDP, when starting with a two installation configuration.

Fig. 12. VM migration comparison of CRM heuristic and CRM heuristic with
MDP, when starting with a three installation configuration.

Fig. 13. VM migration comparison of CRM heuristic and CRM heuristic with
MDP, when starting with a five installation configuration.

A. Reinforcement Learning

In different scenarios of the same problem of configuration
selection, we see that the heuristic alone performs as well as
heuristic with reinforcement learning MDP, as illustrated in
Figs. 11 and 12 in selecting configurations that yield minimum
VM migrations in the long term. However, in Fig. 13, it is
evident that MDP can envision the long-term benefit of choos-
ing a higher VM migration cost at an average load 80 Mb/s
and incurs lower cumulative VM migrations over the long
run. This novel contribution of our work enables configuration
selections that minimize the VM migrations over the long term
for service providers hosting services on the RSU cloud. The

MDP-enforced heuristic overcomes the myopic shortcomings
of the CRM heuristic.

VII. CONCLUSION

In this paper, we proposed an RSU cloud as a vehicular
cloud for the computational and communication infrastructure
supporting vehicle grid in the IoV. They make an integral com-
ponent for vehicular clouds and its applications. RSU clouds
consist of traditional RSUs and specialized RSUs containing
microdatacenters. The RSU cloud is implemented using SDN,
which can host services to meet OBU demands. In the event
of the inherent dynamic demands, RSU clouds can be recon-
figured to optimally meet the service demands. We study the
effects of reconfiguration in SDN, by designing and imple-
menting RSU cloud in Mininet. For real-world reconfiguration
overhead analysis, we implemented stochastic switching for
multipath in OpenFlow-enabled SDN. We have made our con-
tribution for implementing stochastic switching in OvS avail-
able online [13]. We formally defined reconfiguration overhead,
VM migrations, and control plane modifications and instigate
the need for RSU CRM.

Our novel contribution is the architecture of RSU CRM and
RSU microdatacenter. We model the CRM as a multiobjective
optimization problem, for minimizing VM migrations, control
plane overhead, number of service hosts, and infrastructure
delay. We design a unique approach to solving the multiob-
jective, so that we are continually operating on the POF. We
selected an optimal configuration, such that the VM migra-
tions are minimized over time. We use reinforcement learning
to select the configuration that minimizes VM migrations over
the long run.

We illustrated how RSU CRM selects configurations that
improve the infrastructure delay in orders of magnitude with
optimal number of service hosts. Over time and in face of
dynamic loads, the configurations are selected as part of a POF,
of nondominated solutions. Any Pareto optimal configuration
is a candidate that can optimally minimize VM migrations with
respect to the infrastructure delay and the number of service
hosts. To select the final configuration, we use our heuristic and
reinforcement learning, to select configurations that may seem
to immediately yield higher VM migrations but over the long
term incur lower VM migrations.

Our future work includes minimizing control plane modi-
fications by improving the load-balancing technique. We will
extend this work to leverage the resources available in the
mobile OBUs. Furthermore, an experimental at-scale analysis
of CRM will be conducted on NSF Global Environment for
Network Innovations (GENI) [32] testbed.
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