



Abstract—Siitperf is the World’s first free software RFC

8219 compliant SIIT (also called stateless NAT64) tester

written in C++ using DPDK, which is also suitable for

benchmarking IPv4 / IPv6 network interconnect devices in

RFC 2544 / RFC 5180 compliant ways. Originally, siitperf

followed RFC 2544 Appendix C.2.6.4 test frame format

resulting in “hard coded” source and destination UDP port

numbers. RFC 4814 Section 4.5 recommended random,

uniformly distributed source and destination port numbers,

which can make a very significant difference, when the DUT

(Device Under Test) has multiple CPU cores, what is very

common today. Therefore, adding this feature to siitperf is

essential to be able to produce meaningful benchmarking

results. In this paper, we disclose the design, implementation

and performance estimation of this extension of siitperf.

Keywords—benchmarking, frame loss rate, latency, packet

delay variation, port number, SIIT, throughput.

I. INTRODUCTION

RFC 8219 [1] has defined a comprehensive benchmarking

methodology for IPv6 transition technologies [2] by

classifying the high number of IPv6 transition technologies

into a small number of categories and defining measurement

procedures for each category. For example, SIIT [3] (also

called stateless NAT64) belongs to the category of single

translation technologies. We have shown that legacy RFC

2455 [4] / RFC 5180 [5] compliant network performance

testers can be used to perform RFC 8219 compliant

throughput and frame loss rate tests of SIIT gateways with

some tricks [6]. However, the applicability of legacy testers

is limited, because the latency measurement procedure has

been redefined in RFC 8219 (to use at least 500 timestamps

instead of a single one) and RFC 8219 introduced PDV

(Packet Delay Variation) tests. Therefore, new, RFC 8219

compliant testers are needed. As far as we know, our

siitperf [7] is the World’s first free software RFC 8219

compliant SIIT tester. It is available under GPLv3 license

from GitHub [8]. We have implemented it in C++ using

Intel’s DPDK (Data Plane Development Kit [9]) to achieve

high enough performance. During its design, we have made

several generalizations to make our tester flexible, for

example, the IP versions of the two sides may be set

Manuscript received September 12, 2020, revised November 19, 2020.

G. Lencse is with the Department of Networked System and Services,

Budapest University of Technology and Economics, Magyar tudósok

körútja 2, H-1117 Budapest, Hungary. (e-mail: lencse@hit.bme.hu).

independently from each other, thus siitperf can also be

used for benchmarking IPv4 / IPv6 network interconnect

devices (e.g. routers) in RFC 2544 / RFC 5180 compliant

ways. However, being not aware of RFC 4814 [10], we have

closely followed the test frame format originally defined in

Appendix C.2.6.4 of RFC 2544 and implicitly reused in RFC

5180 and RFC 8219, which has defined “hard coded” source

and destination UDP port numbers.

On the one hand, the usage of fixed port numbers

(together with fixed IP addresses) allows the reuse of the

very same test frames, which can be a performance

advantage for software testers. However, on the other hand,

our SIIT benchmarking experience showed that the usage of

fixed test frames resulted in a situation, were only two CPU

cores were used1 (one core for each direction) from the

several cores of a the two CPUs of the computer used as the

DUT (currently: SIIT gateway) [11]. We believe that the

results of such measurements do not reflect the real life

performance of a multi-core DUT well enough, because a

high number of different IP addresses and different port

numbers occur in a real life traffic, thus the interrupts are

hashed more or less equally to all CPU cores. Therefore, we

were planning to use a non-standard solution of increasing

the source port numbers one by one, which we have

successfully used with the new version of dns64perf++

[12], when it was necessary for benchmarking high

performance authoritative DNS servers [13].

Alfred C. Morton, co-chair of the IETF Benchmarking

Working Group (BMWG), has advised us about RFC 4814

in his reply to the BMWG mailing list [14]. Section 4.5 of

RFC 4814 recommends pseudorandom and uniformly

distributed values for both source and destination port

numbers. Our current effort aims to extend siitperf with

an RFC 4814 compliant random port feature.

The remainder of this paper is organized as follows. In

Section II, we give a very brief overview of siitperf. In

Section III, we disclose our design considerations and most

important implementation decisions. In Section IV, we

present various performance tests and their results. In

Section V, we provide a short discussion of what our results

really mean concerning the method, how to use varying port

numbers and we also give some directions of future research.

Section VI concludes our paper.

1 In fact, we could observe only the interrupts. When the interrupts fully

utilized the capacity of the given CPU core, then the CPU core became a

bottleneck.

Adding RFC 4814 Random Port Feature to

Siitperf: Design, Implementation and

Performance Estimation

G. Lencse

doi: 10.11601/ijates.v9i3.291

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 3 (2020)

18

II. OVERVIEW OF SIITPERF IN A NUTSHELL

We give only a very brief introduction to siitperf

focusing on the information that is necessary to understand

the rest of this paper, because all the details are available in

our open access paper [7], the text of which we reused in

this section. For even more details, the commented source

code of siitperf is also available from GitHub [8].

The test and traffic setup of siitperf follows the single

DUT setup of RFC 8219 shown in Fig. 1. The IP versions of

the left side and right side interfaces of the Tester and of the

DUT are IPvX and IPvY, respectively, where X,Y∈{4,6}.

According to RFC 8219, X≠Y, however siitperf allows

X=Y, too. Thus, besides SIIT gateways, siitperf can also

be used for benchmarking IPv4 or IPv6 network

interconnect devices (e.g. routers). Although the arrows of

Fig. 1 would imply unidirectional traffic, testing with

bidirectional traffic is required by RFC 8219 and testing

with unidirectional traffic is optional. As for naming the

directions, we called the direction following the arrows as

forward direction and the opposite one as reverse direction.

RFC 8219 requires to use the mixture of translated traffic

plus non-translated, native IPv6 traffic (a few different

proportions are required). We called the translated traffic as

foreground traffic and we named the non-translated IPv6

traffic as background traffic.

As for the scope of measurements, siitperf supports

the throughput, frame loss rate, latency and PDV (Packet

Delay Variation) tests.

Following the requirement inherited from RFC 2544,

siitperf supports testing with a single source and

destination address pair as well as the case, when the

destination addresses are random and uniformly distributed

over a range of 256 networks. However, the UDP source and

destination port numbers are always fixed values following

the test frame format defined in Appendix C.2.6.4 of RFC

2544.

As for the design and implementation of siitperf, we

have implemented the core of the measurements in C++

using Intel’s DPDK (Data Plane Development Kit [9]). A

single execution performs one elementary measurement with

some well-defined parameters, and bash shell scripts are

used to perform the tests with different parameters. The

parameters were divided into two groups: those that do not

change during the consecutive executions of siitperf,

are put into the siitperf.conf configuration file, and

those that may be changed, are supplied by the bash shell

scripts as command line parameters.

As for implementation, siitperf is manifested as three

similar, but slightly different programs:

 siitperf-tp can be used for throughput and

frame loss rate measurements (with two different

bash shell scripts),

 siitperf-lat is for latency measurements,

 siitperf-pdv can be used for PDV

measurements and also for a special kind of

throughput measurements using individual frame

timeout, the rationale of which we have shown in

[15].

The three programs share the same code base and their

operation is also very similar. Our original object oriented

design concept is very simple: the Througput class is

responsible for the majority of the tasks (reading and storing

the parameters, controlling and executing the measurement,

as well as evaluating its results), and the Latency and Pdv

classes extend it with some special functions.

The control structure of the programs is also very simple:

first, the parameters are read from the configuration file and

from the command line, then the hardware of the Tester is

initialized, and finally, the measure() member function of

the proper class is called. In the general case, measure()

starts four threads: one sender and one receiver for each

direction. (Unidirectional tests require only a single sender

and receiver pair.) The sender and receiver threads are

executed by their own CPU cores, which are excluded from

the scheduler of the Linux kernel using the isolcpus

kernel parameter.

During the implementation of siitperf, we have

encountered the following inconvenient feature of DPDK:

the rte_eal_remote_launch() function, which we

used to start the sender and receiver functions on the

appropriate cores, does not allow the execution of non-static

member functions. Therefore, the sender and receiver

functions are not member functions of the above mentioned

three classes but they are standalone functions, and their

input parameters are packed into proper data structures.

To achieve as high performance as possible, we used

several optimizations:

 Throughput tests send the same pre-generated

foreground or background frames. (If multiple

destination networks are used, then the frames are

pre-generated for all possible destinations.)

 All the special (tagged and numbered) frames for

latency measurements are also pre-generated.

 As all the test frames for PDV measurements have

unique 64-bit IDs, the pre-generated test frames are

modified and their pre-computed UDP checksums

are adjusted.

Regarding the modification of the test frames, we have

faced with a very strange phenomenon. The official

description of rte_eth_tx_burst() function says that:

“The rte_eth_tx_burst() function returns the number

of packets it actually sent.” However, its detailed description

says that:

“For each packet to send, the rte_eth_tx_burst()

function performs the following operations:

 Pick up the next available descriptor in the transmit

ring.

+--------------------+
| |

+--------|IPvX Tester IPvY|<-------+
| | | |
| +--------------------+ |
| |
| +--------------------+ |
| | | |
+------->|IPvX DUT IPvY|--------+

| |
+--------------------+

Fig. 1 Single DUT test setup [1].

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 3 (2020)

19

 Free the network buffer previously sent with that

descriptor, if any.

 Initialize the transmit descriptor with the information

provided in the *rte_mbuf data structure.” [16]

We have found that in fact the rte_eth_tx_burst()

function does not wait until the frames are sent, but it reports

the frames as sent, when they are still in the transmit buffer.

It also means that if we rewrite a frame right after its

sending, we may overwrite it before its actual transmission

occurs. Therefore, we used N number of copies of each pre-

generated frame that we had to modify, and we always used

the next copy in a round robin manner.

III. DESIGN AND IMPLEMENTATION

A. Requirements of RFC 4814 and our Design Decisions

Section 4.5 of RFC 4814 says: “unless known port numbers

are specifically required for a test, it is recommended to use

pseudorandom and uniformly distributed values for both

source and destination port numbers”.

To make siitperf flexible, we decided to enable the

user to make a decision about fixed or varying nature of the

source and destination port numbers independently, and to

do so for the forward and reverse directions independently,

too.

Besides the recommended pseudorandom port numbers,

we also opened up the possibility of one by one increasing

and decreasing port numbers. Increasing port numbers were

chosen as a computationally cheaper alternative to the

generation of pseudorandom port numbers and it may also

be interesting to scan a given port range. (Decreasing ones

were added as an also easy to implement alternative of the

increasing ones. For example, the commercial Spirent SPT-

N4U Tester also implements them.)

We have chosen a simple encoding of the four possible

choices about the port numbers: 0: fixed, 1: increasing, 2:

decreasing, 3: pseudorandom. Thus, we added the following

new options to the siitperf.conf configuration file:
Fwd-var-sport 0 # forward source ports: fixed

Fwd-var-dport 1 # fwd. dest. ports: incr.

Rev-var-sport 2 # reverse sports: decreasing

Rev-var-dport 3 # rev. dest. ports: random

To keep the default behavior of siitperf compatible

with the original one, their default values are 0.

As for the ranges of source port numbers and destination

port numbers, section 4.5 of RFC 4814 recommends the

ranges of [1024, 65535] and [1, 49151], respectively.

Whereas these ranges seem to be logical for the first UDP

datagram (or the SYN segment of TCP), source and

destination ports change their roles in the reply, therefore, in

our opinion, forwarding devices (e.g. routers, SIIT gateways,

etc.) should be able to handle source and destination ports in

the full [1, 65535] (or even [0, 65535]) range. Therefore, we

decided to let the user set any values in the range of [0,

65535].

In our sample configuration file, we set the values

recommended by RFC 4814 as follows:
Fwd-sport-min 1024

Fwd-sport-max 65535

Fwd-dport-min 1

Fwd-dport-max 49151

Rev-sport-min 1024

Rev-sport-max 65535

Rev-dport-min 1

Rev-dport-max 49151

As for performance requirements, it was crucial to keep

the high performance of siitperf, because the usage of

varying port numbers results in significant increase of the

performance of multi core DUTs.

B. Implementation Details

We tried to keep as much as possible from our original

performance optimized code. Therefore, we used the same

trick as originally with PDV: we pre-generate N copies of

test frames (to mitigate the rewrite after send problem),

compute their (un-complemented) UDP checksums, and

modify the pre-generated test frames and their checksums as

necessary due to the changing port numbers. We note that

the special (tagged and numbered) frames for latency

measurements are exceptions: as they are not reused, they

exist only in a single instance (and not in N copies). We also

kept the original code for the case, when the user requires

fixed port numbers. It gives us a good basis for comparison

of the performance of our new code.

For pseudorandom port number generation, we have

chosen the same 64-bit Mersenne Twister pseudorandom

number generator (std::mt19937_64), which we

already used before for generating random destination

networks. Of course, we used a separate instance for every

single purpose.

We consider it important, how the modification of the pre-

generated frames happens. The type of the frame to be

modified can be: an IPv4 or IPv6 foreground frame, a

background frame (always IPv6), or an IPv4 or IPv6 latency

frame (in the case of latency measurement). The program

sets working pointers to the fields to be modified, and the

modification is done at a single point independently from the

type of frame, which is an important advantage from the

viewpoint of testing and maintenance of the source code.

Currently, our new source code is available as the

“varport” branch of siitperf on GitHub [8]. On the long

run, we plan to merge it into the master branch.

IV. VARIOUS TESTS AND THEIR RESULTS

A. Measurement Environment

The aims of our measurements were the following ones:

1. To perform the most important benchmarking tests

and to examine the effect of the random ports on

the benchmarking measurements.

2. To measure the “performance cost” of the varying

port numbers, that is, how the maximum achievable

frame rate of siitperf decreases, when random

or increasing port numbers are used.

3. To test if there is a benefit in extending the source

and destination port number rages to [0, 65535].

To achieve these goals, we needed a test system, where

there are no “disturbing factors” like scattered results due to

hyper-threading or CPU frequency scaling, performance

deviations due to CPU power budget limitations or NUMA

(Non-Uniform Memory Access) issues, etc.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 3 (2020)

20

Based on our previous benchmarking experience, we

selected three identical Dell PowerEdge C6220 servers in

the NICT StarBED, Japan. They were equipped with two

2GHz Intel Xeon E5-2650 CPUs having 8 cores each,

128GB 1333MHz DDR3 RAM and Intel 10G dual port

X520 Ethernet network adapters.

The Debian Linux operating system was updated to

version 9.13 on all computers. The Linux kernel version

was: 4.9.0-4-amd64. The DPDK version was 16.11.11-

1+deb9u2.

To be able to achieve higher frame rates, we benchmarked

IPv4 kernel routing (and not SIIT), because our aim was to

check and demonstrate the behavior of siitperf at

demanding frame rates. The topology of the test system is

shown in Fig. 2. The Tester and the DUT were

interconnected by two 10GbE direct cable links. “Turbo

Mode” was enabled on the Tester (n017) to have some

performance reserve (later it proved to be unnecessary).

Turbo Mode was disabled on the DUT (n018), the clock

frequency of which was set to fixed 2GHz. All cores of the

second CPU of the DUT were switched off using the

maxcpus=8 kernel parameter to avoid NUMA issues. (In

these computers, cores 0-7 belong to NUMA node 0 and

cores 8-15 belong to NUMA node 1.)

We have built another test system for determining the

performance limits of siitperf. Its topology was very

simple as shown in Fig. 3. The two 10GbE interfaces of the

Tester were interconnected by a direct cable. Thus, the

performance of the looped back Tester was limited by the

performance of siitperf itself. The clock frequency of

n019 was set to fixed 2GHz.

Naturally, hyper-threading has been disabled on all three

computers.

Both Testers used the isolcpus=4,5,6,7 kernel

parameter to reserve the appropriate cores for the four

working threads of siitperf.

The IP addresses of the interfaces of n017 and n018 were

set according to Fig. 2 for the tests, when only a single

destination network (per direction) was used. When 256

destination networks (per direction) were used, the 256

destination networks were created that the underlined zeros

in the IP addresses in Fig. 2, were randomly replaced by one

of the numbers from 0 to 255. For these tests, the

appropriate IP addresses from each network were assigned

to the DUT by a script. As siitperf currently does not

support ARP, the appropriate static ARP entries were set

manually in the DUT (using a script).

Multi-queue receiving (also called Receive-Side Scaling

[17]) considers only the source and destination IP addresses

in the hash function to distribute the incoming packets into

the queues by default, that is, to assign them (including the

processing of the interrupts) to the CPU cores. Therefore, we

used the following settings on the DUT to include also the

source and destination UDP port numbers into the hash

function:
ethtool -N enp3s0f0 rx-flow-hash udp4 sdfn

ethtool -N enp3s0f1 rx-flow-hash udp4 sdfn

We note that they were not used on the Tester computers

(n017 and n019), because DPDK uses a poll mode driver,

and thus no interrupts are used, when packets are received.

B. Benchmarking IPv4 Kernel Routing

RFC 8219 recommends different frame sizes for testing, and

the smallest frame size for IPv4 is 64 bytes. We used only

this one, as higher frame sizes require lower frame rates to

saturate the 10 Gigabit Ethernet.

1) Throughput Tests

We performed the throughput test also with fixed port

numbers as a basis for comparison, and then with

pseudorandom source and destination port numbers in the

full ranges recommended by RFC 4814. In addition to that,

we have also performed some additional, non-standards tests

for comparison. All tests were executed 20 times, then

median, first percentile and 99-th percentile were calculated.

(Of course, the latter two are the same as minimum and

maximum, as the number of tests are less than 100.) In

addition that, we have also calculated dispersion defined as:

%100
median

percentile1percentile99
dispersion

stth




 (1)

The bidirectional throughout test results of IPv4 Linux

kernel routing using a single destination network per

direction are shown in Table I. We note that the same frame

rates were applied in both directions and thus a commercial

Tester would report the double of it, that is, the number of

all frames per second forwarded by the DUT. But we kept

ourselves to the numbers reported by our bash shell script as

throughput and did not double it, that is, our results show the

number of frames per second per direction. (We followed

enp3s0f0:
198.18.0.2/24

enp3s0f0:
198.18.0.1/24

Tester

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

DUT

performing
IPv4 kernel

routing

running
siitperfn017

n018

10GbE w/ direct cables

Fig. 2 Test system for benchmarking IPv4 kernel routing.

enp3s0f0:
198.18.0.2/24

Tester

enp3s0f1:
198.19.0.2/24

running
siitperfn019

10GbE w/ direct cable

Fig. 3 Test system for determining the performance limits of siitperf.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 3 (2020)

21

this approach also in [7], and its rationale is that when the

maximum frame rate for the media may be a limiting factor

for the throughput, then it is more meaningful to see the

frame rate per direction and not the double of it.)

The median throughput measured using random port

numbers (3,402,271fps) is about 3.83 times higher than the

median throughput measured using fixed port numbers

(887,771fps). We are satisfied with this results, because the

speed up was nearly linear, when the traffic was distributed

among all 8 CPU cores using random port numbers, which is

4 times higher than the 2 CPU cores, which were in use with

fixed port numbers. However, we were surprised by the

results of the test, when only the source port numbers were

varying and the destination port numbers were fixed. How

can they be higher than the results of the tests, when all ports

are random? Perhaps, the answer is that random port

numbers result in only a roughly but not smoothly uniform

distribution of the frames among the CPU cores. This

statement is also supported by the fact that the median

throughput using increasing source port numbers

(3,485,627fps) is somewhat higher than the median

throughput using random source port numbers

(3,469,891fps). The difference is even more salient, when

the source port numbers are fixed, and only the destination

port numbers are varying: the median throughput using

increasing destination port numbers (3,447,165fps) is well

visibly higher than the median throughput using random

destination port numbers (3,400,966fps).

The fact that varying source port numbers result in higher

throughput than varying destination port numbers could be

attributed to the fact that the [1024, 65535] source port

range is wider than the [1, 49151] destination port range.

Therefore, the explanation could be that varying source port

numbers from a larger range have greater chance to result in

a more smoothly uniform distribution of the frames among

the CPU cores, than varying destination port numbers from a

smaller range. However, currently it is just a hypothesis,

which we check in Section IV.D.

As for the dispersion of the results, increasing source port

numbers (dispersion is only 0.29%) helped to achieve the

most consistent measurement results, which also seems to

support that they provide more uniform distribution of the

traffic among the CPU cores, than random source port

numbers.

The bidirectional throughout test results of IPv4 Linux

kernel routing using 256 destination networks per direction

are shown in Table II. It is interesting to compare the

throughput results using fixed port numbers (in the first

column of Table II) with the first two columns of Table I.

On the one hand, the median throughput result with 256

destination networks per direction (3,000,693fps) is about

3.38 times higher than the throughput result with a single

destination network per direction (887,771fps), because the

256 networks helped to distribute the traffic among the 8

CPU cores. On the other hand, it (3,000,693fps) is less than

the median throughput result with a single destination

network per direction with random ports (3,402,271fps),

because the routing among the twice 256 networks requires

more computation than the routing between two networks.

The significant dispersion (15.48%) of the throughput

result with 256 destination networks per direction using

fixed port numbers could be explained by the fact that the 8-

bit field used to express 256 different destination networks

was not enough to achieve a smoothly uniform distribution

of the traffic among the 8 CPU cores. This explanation is

partially supported by the fact that the dispersion is only

5.98% in the next column, where random ports are used.

However, in the same time, the median value is decreased to

2,850,648fps. Thus, perhaps higher number of random bits

help repeatability, but they still do not guarantee smoothly

uniform distribution of the traffic among the CPU cores.

2) Frame Loss Rate Tests

As the same siitperf-tp program can be used for frame

loss rate tests (but with a different bash shell script), we did

not do any frame loss rate measurements.

3) Latency Tests

RFC 8219 requires to perform throughput tests at the frame

rate determined by the throughput test, that is, the median

value. The fact that the first percentiles in Table I and

Table II are lower than the median values, indicates that

some of the measurements produced frame loss at the

median rates. It also means that frame loss may happen

during the latency measurements, and even the latency

frames (special tagged frames for latency measurements)

may be lost. If a latency frame is lost, then siitperf

reports the highest possible latency value (please refer to our

original paper [7] for more information). To mitigate the

effect of this phenomenon to the worst case latency results,

we used 50,000 latency frames instead of the at least 500

one required by RFC 8219. (Thus, if only a few latency

TABLE I

BIDIRECTIONAL THROUGHPUT TEST RESULTS OF IPV4 LINUX KERNEL ROUTING: SINGLE DESTINATION NETWORK (PER DIRECTION)

Throughput (per direction)
fixed ports

(for reference)

random ports

(both src & dst)

random

src ports

increasing

src ports

random

dst ports

increasing

dst ports

median (fps) 887,771 3,402,271 3,469,891 3,485,627 3,400,966 3,447,165

1st percentile (fps) 881,834 3,390,562 3,453,124 3,481,931 3,388,670 3,440,778

99th percentile (fps) 891,175 3,406,345 3,476,563 3,492,188 3,406,254 3,456,056

dispersion (%) 1.05 0.46 0.68 0.29 0.52 0.44

TABLE II

BIDIRECTIONAL THROUGHPUT TEST RESULTS OF IPV4 LINUX KERNEL

ROUTING: 256 DESTINATION NETWORKS (PER DIRECTION)

Throughput (per direction)
fixed ports

(for reference)

random ports

(both src & dst)

median (fps) 3,000,693 2,850,648

1st percentile (fps) 2,807,493 2,774,585

99th percentile (fps) 3,272,018 2,945,068

dispersion (%) 15.48 5.98

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 3 (2020)

22

frames are lost, then their extreme latency values may be

omitted, when calculating the worst case latency as 99.9th

percentile, see Section 7.2 of RFC 8219.) The duration of

the tests was 120s, the sending of the latency frames started

at 60s and they were distributed evenly in the second 60s

long interval. The tests were executed 20 times.

The results of the latency measurements with a single

destination network per direction are shown in Table III.

Explanation: TL means typical latency and WCL means

worst case latency. They are given both for the Forward

(Fwd) and for the Reverse (Rev) directions, too. The latency

results measured at 887,771fps rate using fixed port numbers

are given as a basis for comparison. Of course, the latency

results measured at 3,402,271fps rate using random port

numbers are not directly comparable with them, but the

tendency is well visible: all the latency values became

higher, yet they are still very low. The increased latency at a

3.83 times higher rate can be explained by the fact that the

higher number of frames had to go through the same

network interfaces.

The results of the latency measurements with 256

destination networks per direction are shown in Table IV.

We do not go into deeper analysis, the results are presented

only to demonstrate the operation of the latency

measurements with 256 destination networks using random

port numbers.

4) PDV Tests

Packet Delay Variation tests were also performed at the rates

determined by the throughput tests. Their duration was 60s

and they were executed 20 times.

The results of the PDV measurements with a single

destination network per direction are shown in Table V. As

expected, the values using random ports at the more than

3.4Mfps rate are also higher, but still low.

The results of the PDV measurements with 256

destination networks per direction are shown only for

completeness in Table VI.

C. Checking the Performance of Siitperf

Now, we examine the performance cost of the new features.

We can be sure that the bottleneck is always the sender

function and not the receiver, because we experienced it so

before adding the varying port feature, which increased the

tasks of sending function and left the receiver untouched.

Following the approach of the previous sections of the

paper, we used IPv4 traffic for measuring the performance

of siitperf. We note that the generation of IPv6 traffic

does not require more computing power from siitperf,

than the generation of IPv4 traffic, because the frames are

always pre-generated, and the modification of the pre-

generated IPv4 or IPv6 frames in order to use varying port

numbers is the same (performed by the very same code

lines).

We have performed the self-test of the Tester on n019.

The duration of the throughput tests was 60s and the

measurements were executed 20 times.

The maximum frame rate achieved by siitperf-tp

with a single destination network per direction is shown in

Table VII. The parameters of the six columns are the same

as in the case of Table I. It is important that the CPU clock

frequency of n019 was set to fixed 2GHz. (Now it is visible

that the performance of siitperf would have been

enough to determine the throughput of IPv4 kernel routing

without enabling Turbo Mode on n017). As expected, the

performance decrease caused by using random port numbers

TABLE III

LATENCY TEST RESULTS OF IPV4 LINUX KERNEL ROUTING: SINGLE DESTINATION NETWORK (PER DIRECTION)

using fixed ports (for reference), at 887,771fps rate using random ports (both src & dst) at 3,402,271fps rate

 Fwd TL Fwd WCL Rev TL Rev WCL Fwd TL Fwd WCL Rev TL Rev WCL

median (ms) 0.0148 0.0567 0.0144 0.0573 0.0490 0.2228 0.0491 0.2210

1st percentile (ms) 0.0145 0.0495 0.0138 0.0479 0.0479 0.2065 0.0477 0.2022

99th percentile (ms) 0.0173 0.0868 0.0159 0.0709 0.0503 0.2645 0.0503 0.2481

TABLE IV

LATENCY TEST RESULTS OF IPV4 LINUX KERNEL ROUTING: 256 DESTINATION NETWORKS (PER DIRECTION)

using fixed ports (for reference), at 3,000,693fps rate using random ports (both src & dst) at 2,850,648fps rate

 Fwd TL Fwd WCL Rev TL Rev WCL Fwd TL Fwd WCL Rev TL Rev WCL

median (ms) 0.0322 0.1039 0.0323 0.1042 0.0356 0.1319 0.0357 0.1314

1st percentile (ms) 0.0320 0.1020 0.0322 0.1000 0.0353 0.1265 0.0355 0.1265

99th percentile (ms) 0.0324 0.1091 0.0325 0.1075 0.0359 0.1371 0.0360 0.1388

TABLE V

PDV TEST RESULTS OF IPV4 LINUX KERNEL ROUTING:

SINGLE DESTINATION NETWORK (PER DIRECTION)

using fixed ports

at 887,771fps rate

using random ports

at 3,402,271fps rate

 Fwd PDV Rev PDV Fwd PDV Rev PDV

median (ms) 0.0731 0.0918 0.3273 0.3273

1st perc. (ms) 0.0426 0.0458 0.2962 0.2915

99th perc. (ms) 0.0850 1.1987 0.4856 0.8735

TABLE VI

PDV TEST RESULTS OF IPV4 LINUX KERNEL ROUTING:

256 DESTINATION NETWORKS (PER DIRECTION)

using fixed ports

at 3,000,693fps rate

using random ports

at 2,850,648fps rate

 Fwd PDV Rev PDV Fwd PDV Rev PDV

median (ms) 0.1086 0.1081 0.1930 0.2011

1st perc. (ms) 0.1019 0.1016 0.1534 0.1522

99th perc. (ms) 0.1156 0.1142 0.2309 0.2294

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 3 (2020)

23

(both source and destination) is significant compared to the

case, when fixed port numbers are used. If only one of the

port numbers is random and the other one is fixed, it requires

less computing power. And the application of increasing port

numbers causes the least performance loss. Interestingly, it

seems that the performance penalty of the varying (random

or increasing) destination port numbers is somewhat less

than that of the varying source port numbers.

The maximum frame rate achieved by siitperf-tp

with 256 destination networks per direction is shown in

Table VIII. Not surprisingly, the achieved frame rates are

always lower than in the corresponding fields of the previous

table.

As for latency tests, we did not perform any performance

tests, because the low number of latency frames do not really

influence the performance of siitperf-lat. (It is so for

two reasons: the proportion of the latency frames is

negligible, and the very same code performs the

modification of the latency frames as that of the normal test

frames.)

PDV tests require the most manipulations of the fields of

the test frames, and we have tested their performance too. As

siitperf-pdv can be used for a special throughput

measurement, which we consider important, we used that

scenario for testing. The value of the individual frame

timeout was set to 10ms. The duration of the tests was 60s,

and the measurements were executed 20 times.

The maximum frame rates achieved by siitperf-pdv

with a single destination network per direction is shown in

Table IX. As we expected, the usage of two random port

numbers has its performance “costs”, yet the performance of

the Tester still remained high enough.

The maximum frame rate achieved by siitperf-pdv

with 256 destination networks per direction is shown in

Table X. Here the performance of the Tester further

decreased, when two random port numbers were used, but it

still high enough. (It would have been still enough for

benchmarking IPv4 Linux kernel routing even if a fixed

2GHz clock signal had been used at the Tester.)

Therefore, we can lay down that implementing varying

(random or increasing) port numbers has its performance

costs, but the performance of siitperf is still enough for

benchmarking even IPv4 kernel routing. We note that the

achievable rates of IPv6 kernel routing are lower than that of

IPv4 kernel routing, and the performance of SIIT

implementations is even less.

D. The Effect of Extending the Port Number Ranges

We repeated the bidirectional throughout test of IPv4 Linux

kernel routing using a single destination network per

direction (the results of which are shown in Table I) in a way

that source and destination port number ranges for both

directions were set to [0, 65535]. (This time, we omitted the

test with fixed port numbers.)

Our aim was twofold:

 to check if extending the source and destination port

number ranges to [0, 65535] results in higher

throughput or not,

 to test our hypothesis in Section III.B.1 that varying

source port numbers resulted in higher throughput

than varying destination port numbers, because

their range was wider.

TABLE VII

MAXIMUM FRAME RATE ACHIEVED BY SIITPERF-TP IN IPV4 TEST FRAME GENERATION: SINGLE DESTINATION NETWORK (PER DIRECTION)

Throughput (per direction)
fixed ports

(for reference)

random ports

(both src & dst)

random

src ports

increasing

src ports

random

dst ports

increasing

dst ports

median (fps) 7,077,704 6,327,653 6,649,018 6,894,070 6,694,193 6,921,322

1st percentile (fps) 6,945,860 6,324,217 6,648,428 6,893,232 6,693,327 6,920,804

99th percentile (fps) 7,150,879 6,327,881 6,649,203 6,894,318 6,694,410 6,921,753

dispersion (%) 2.90 0.06 0.01 0.02 0.02 0.01

TABLE VIII

MAXIMUM FRAME RATE ACHIEVED BY SIITPERF-TP IN IPV4 TEST FRAME GENERATION: 256 DESTINATION NETWORKS (PER DIRECTION)

Throughput (per direction)
fixed ports

(for reference)

random ports

(both src & dst)

random

src ports

increasing

src ports

random

dst ports

increasing

dst ports

median (fps) 7,002,871 5,278,075 6,379,851 6,585,938 6,380,259 6,588,070

1st percentile (fps) 6,966,302 5,276,365 6,378,905 6,585,443 6,378,905 6,587,689

99th percentile (fps) 7,183,714 5,278,870 6,380,401 6,586,487 6,380,861 6,588,470

dispersion (%) 3.10 0.05 0.02 0.02 0.03 0.01

TABLE IX

MAXIMUM FRAME RATE ACHIEVED BY SIITPERF-PDV IN SPECIAL

THROUGHPUT TESTS: SINGLE DESTINATION NETWORK (PER DIRECTION)

Throughput (per direction)
fixed ports

(for reference)

random ports

(both src & dst)

median (fps) 6,811,965 5,317,263

1st percentile (fps) 6,749,999 5,316,389

99th percentile (fps) 6,820,343 5,318,360

dispersion (%) 1.03 0.04

TABLE X

MAXIMUM FRAME RATE ACHIEVED BY SIITPERF-PDV IN SPECIAL

THROUGHPUT TESTS: 256 DESTINATION NETWORKS (PER DIRECTION)

Throughput (per direction)
fixed ports

(for reference)

random ports

(both src & dst)

median (fps) 6,614,810 4,743,239

1st percentile (fps) 6,614,810 4,742,155

99th percentile (fps) 6,615,634 4,743,652

dispersion (%) 0.01 0.03

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 3 (2020)

24

The results are shown in Table XI. On the one hand, the

increase of the port number ranges to [0, 65535] resulted in

higher throughput in all five measurements compared to the

results, when the port numbers ranges recommended by RFC

4814 were used (please refer to Table 1), although the actual

increase was marginal, e.g. 0.45% (from 3,402,271fps to

3,417,509fps), when all ports were random. However, on the

other hand, the throughput is still higher in the case, when

only the source port number is varying then in the case,

when only the destination port number is varying, thus our

hypothesis in Section III.B.1 is refuted. Even using the same

[0, 65535] ranges for source and destination port numbers,

the throughput (3,488,126fps) is about 2% higher, if the

source ports are random and the destination ports are fixed,

than it is (3,418,800 fps) in the case, when the destination

port numbers are random and the source numbers are fixed.

Finding the root cause of the difference is beyond the scope

of our paper, we surmise that perhaps the usage of the source

port number and of the destination port number in the hash

function is not completely symmetrical.

E. Benchmarking IPv6 Kernel Routing

Finally, we have also performed throughput tests of IPv6

kernel routing using both fixed port numbers and RFC 4814

random port numbers. As for the settings, we used IPv6

addresses instead of IPv4 addresses, and we also used udp6

in the ethtool command line to set the rx-flow-hash.

The throughput results of IPv6 kernel routing are shown

in Table XII. The fact that they are significantly lower than

the throughput results of IPv4 kernel routing in Table I,

deliberately justifies our decision to use IPv4 kernel routing

to test and demonstrate the abilities of siitperf at as high

as possible frame rates.

V. DISCUSSION OF THE RESULTS AND FUTURE WORK

Let us compare the method to use random source and

destination port numbers as recommended by RFC 4814 and

our original idea to use simply increasing source port

numbers. It would be tempting to say that our original idea

was better, as it could ensure more smoothly uniform

distribution of the traffic among the CPU cores (and thus

higher throughput), and it also caused less performance

decrease of the Tester. However, this conclusion would be

incorrect for at least two reasons:

1. Such a generalization regarding the higher

throughput from a single particular case is

deliberately unfounded.

2. The aim of benchmarking is not to produce as high

as possible results, but to provide realistic

performance characteristics.

As for source port numbers in real life traffic, they are

very likely better modelled by random port numbers than by

one-by-one increasing port numbers. Therefore, source port

numbers should be random, even if pseudorandom number

generation involves higher computational cost.

As for destination port numbers, we contend that one-by-

one increasing destination port numbers are definitely very

far from what can be seen in real life traffic. But, we

consider uniformly distributed random destination port

numbers in the [1, 49151] range also a bad model of reality,

because there are a few extremely popular applications like

http (port 80) and https (port 443), etc. However, we do not

state that it is worth refining the model of the destination

port numbers, because of what we mentioned about the

exchanging of the roles of source and destination port

numbers in Section III.A. This is why siitperf makes no

restriction on the ranges of source and destination port

numbers and lets the user to set anything in the [0, 65535]

range.

It is beyond the scope of our current paper, but it would

be interesting to examine the computational cost of random

number generation versus that of rewriting the different

fields of the frame.

We consider the performance analysis of stateful NAT64

very important and we plan to create a stateful NAT64

Tester reusing the code base of siitperf.

VI. CONCLUSION

We have disclosed our design considerations and

implementation decisions of enabling siitperf for using

varying port numbers. Our design was flexible enough for

supporting both RFC 4814 compliant pseudorandom source

and destination port numbers in the ranges specified by the

user and different computationally cheaper solutions

including that only one of the port numbers is varying and

the other one is fixed, as well as one-by-one increasing or

decreasing port numbers.

We have examined and demonstrated the how the above

mentioned different solutions influence the benchmarking

TABLE XI

BIDIRECTIONAL THROUGHPUT TEST RESULTS OF IPV4 LINUX KERNEL ROUTING: SINGLE DESTINATION NETWORK (PER DIRECTION),

SOURCE AND DESTINATION PORT NUMBERS ARE FROM THE FULL [0, 65535] RANGE

Throughput (per direction)
random ports

(both src & dst)

random

src ports

increasing

src ports

random

dst ports

increasing

dst ports

median (fps) 3,417,509 3,488,126 3,502,828 3,418,800 3,467,227

1st percentile (fps) 3,405,760 3,483,397 3,497,003 3,414,055 3,460,797

99th percentile (fps) 3,425,783 3,496,105 3,515,626 3,425,785 3,472,657

dispersion (%) 0.59 0.36 0.53 0.34 0.34

TABLE XII

BIDIRECTIONAL THROUGHPUT TEST RESULTS OF IPV6 LINUX KERNEL

ROUTING: SINGLE DESTINATION NETWORK (PER DIRECTION)

Throughput (per direction)
fixed ports

(for reference)

random ports

(both src & dst)

median (fps) 597,561 1,901,943

1st percentile (fps) 592,756 1,895,963

99th percentile (fps) 598,267 1,904,449

dispersion (%) 0.92 0.45

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 3 (2020)

25

results. We have also measured, to what extent the different

solutions decrease the performance of siitperf.

We conclude that we were successful in implementing the

varying port number feature of siitperf, while keeping

its high performance.

ACKNOWLEDGMENTS

The development of siitperf and the measurements were

carried out by remotely using the resources of NICT

StarBED, 2-12 Asahidai, Nomi-City, Ishikawa 923-1211,

Japan. The author would like to thank Shuuhei Takimoto for

the possibility to use StarBED, as well as to Satoru Gonno

and Miku Takuma for their help and advice in StarBED

usage related issues.

The author thanks Alfred C. Morton for his advice about

RFC 4814 and for recommending the setting of the different

parameters independently.

The author thanks István Pilisi, National Media and

Telecommunications Authority (NMHH), Hungary for the

information about the varying port feature of the Spirent

SPT-N4U Tester.

The author thanks Keiichi Shima and Tamás Budai for

reading and commenting the manuscript.

REFERENCES

[1] M. Georgescu, L. Pislaru L, and G. Lencse, “Benchmarking
methodology for IPv6 transition technologies, IETF RFC 8219, 2017.
DOI: 10.17487/RFC8219

[2] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6
transition technologies: A subjective classification for security
analysis”, IEICE Transactions on Communications, vol. E102-B, no.
10, pp. 2021–2035, DOI:10.1587/transcom.2018EBR0002

[3] C. Bao, X. Li, F. Baker, T. Anderson, and F. Gont, “IP/ICMP
translation algorithm”, IETF RFC 7915, 2016. DOI:
10.17487/RFC7915

[4] S. Bradner and J. McQuaid, “Benchmarking methodology for
network interconnect devices”, IETF RFC 2544, 1999. DOI:
10.17487/RFC2544

[5] C. Popoviciu, A. Hamza, G. Van de Velde, and D. Dugatkin, “IPv6
benchmarking methodology for network interconnect devices”, IETF
RFC 5180, 2008. DOI: 10.17487/RFC5180

[6] G. Lencse, “Benchmarking stateless NAT64 implementations with a
standard tester”, Telecommunication Systems, DOI: 10.1007/s11235-
020-00681-x

[7] G. Lencse, “Design and implementation of a software tester for
benchmarking stateless NAT64 gateways”, IEICE Transactions on
Communications, DOI: 10.1587/transcom.2019EBN0010

[8] G. Lencse, “Siitperf: An RFC 8219 compliant SIIT (stateless NAT64)
tester”, free sofware under GPLv3 license, [Online]. Available:
https://github.com/lencsegabor/siitperf

[9] D. Scholz, “A look at Intel’s dataplane development kit”, Proc.

Seminars Future Internet (FI) and Innovative Internet Technologies

and Mobile Communications (IITM), Munich, Germany, Aug. 2014,

pp. 115–122, DOI: 10.2313/NET-2014-08-1_15
[10] D. Newman, T. Player, “Hash and stuffing: Overlooked factors in

network device benchmarking”, IETF RFC 4814, 2008. DOI:
10.17487/RFC4814

[11] G. Lencse, K. Shima, “Performance analysis of SIIT implementations:
Testing and improving the methodology”, Computer
Communications, vol. 156, no. 1, pp. 54-67, April 15, 2020, DOI:
10.1016/j.comcom.2020.03.034

[12] G. Lencse and D. Bakai, “Design and implementation of a test
program for benchmarking DNS64 servers”, IEICE Transactions on
Communications, vol. E100-B, no. 6. pp. 948–954, Jun. 2017.
DOI:10.1587/transcom.2016EBN0007

[13] G. Lencse, “Benchmarking authoritative DNS servers”, IEEE Access,
vol. 8. pp. 130224–130238, Jul. 2020. DOI:
10.1109/ACCESS.2020.3009141

[14] A. C. Morton, “Re: [bmwg] An Upgrade to Benchmarking
Methodology for Network Interconnect Devices -- Fwd: New Version
Notification for draft-lencse-bmwg-rfc2544-bis-00.txt”, May 22,
2020, IETF BMWG mailing list archive, [Online]. Available:
https://mailarchive.ietf.org/arch/msg/bmwg/xEhrqdP59PAphKJES9vi
KM8Tt_E/

[15] G. Lencse, Á. Kovács, K. Shima, “Gaming with the Throughput and
the Latency Benchmarking Measurement Procedures of RFC 2544”,
International Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol 9, no 2, pp. 10-17, 2020,
DOI: 10.11601/ijates.v9i2.288

[16] DPDK Documentation, “rte_eth_tx_burst()”, [Online]. Available:
https://doc.dpdk.org/api/rte__ethdev_8h.html#a83e56cabbd31637efd
648e3fc010392b

[17] T. Herbert, W. de Bruijn, “Scaling in the Linux Networking Stack”
[Online]. Available:
https://www.kernel.org/doc/Documentation/networking/scaling.txt

Gábor Lencse received his MSc and PhD

in computer science from the Budapest

University of Technology and Economics,

Budapest, Hungary in 1994 and 2001,

respectively.

 He has been working full time for the

Department of Telecommunications,

Széchenyi István University, Győr,

Hungary since 1997. Now, he is a

Professor. He has been working part time

for the Department of Networked Systems

and Services, Budapest University of

Technology and Economics as a Senior

Research Fellow since 2005. His research

interests include the performance and security analysis of IPv6 transition

technologies. He is a co-author of RFC 8219.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 3 (2020)

26

https://github.com/lencsegabor/siitperf
https://mailarchive.ietf.org/arch/msg/bmwg/xEhrqdP59PAphKJES9viKM8Tt_E/
https://mailarchive.ietf.org/arch/msg/bmwg/xEhrqdP59PAphKJES9viKM8Tt_E/
https://doc.dpdk.org/api/rte__ethdev_8h.html#a83e56cabbd31637efd648e3fc010392b
https://doc.dpdk.org/api/rte__ethdev_8h.html#a83e56cabbd31637efd648e3fc010392b
https://www.kernel.org/doc/Documentation/networking/scaling.txt

