
19CIT. Journal of Computing and Information Technology, Vol. 26, No. 1, March 2018, 19–28
doi: 10.20532/cit.2018.1004078

Gábor Lencse
Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, Hungary

Enabling Dns64perf++ for
Benchmarking the Caching
Performance of DNS64 Servers

The DNS64 benchmarking program dns64perf++ is
the world's first standard DNS64 benchmarking tool,
which complies with the compulsory requirements of
RFC 8219 on benchmarking methodology for IPv6
transition technologies including DNS64. The aim
of our current effort is to enable dns64perf++ for
benchmarking the caching performance of DNS64
servers. This feature was qualified as optional by the
RFC, but can be important in practice, and thus makes
dns64perf++ the world's first standard DNS64
benchmarking tool that provides all the features de-
scribed in the RFC. In this paper, we disclose our
goals, design considerations as well as implementa-
tion decisions. We also provide a simple case study to
demonstrate the operability of the new feature.

ACM CCS (2012) Classification: Software and its en-
gineering → Software creation and management →
Designing software → Software design engineering
Networks → Network services → Naming and ad-
dressing
Networks → Network performance evaluation →
Network performance analysis

Keywords: DNS64, Internet, IPv6 deployment, IPv6
transition solutions, performance analysis

1. Introduction

TDNS64 [1] and NAT64 [2] are important IPv6
transition technologies, which can be used by
network operators for enabling IPv6-only cli-
ents to communicate with IPv4-only servers.
Performance is an important factor when select-
ing the implementations to be used and there is
a new RFC on benchmarking methodology for
IPv6 transition technologies including DNS64

servers [3]. The compulsory requirements of
RFC 8219 for benchmarking DNS64 servers
were satisfied by the dns64perf++ measure-
ment program [4], but the optional feature of
being able to test the efficiency of the caching
performance of DNS64 servers was not in-
cluded [5].
As caching may significantly improve the per-
formance of a DNS64 server, their caching per-
formance is worth measuring. The aim of our
current effort is to extend dns64perf++ to be
able to measure the caching performance of
DNS64 servers and thus comply with all the fea-
tures of RFC 8219 and therefore be the world's
first standard fully featured DNS64 benchmark-
ing tool. In this paper, we disclose our goals,
design considerations and implementation deci-
sions for the extension of the test program.
We contend that dns64perf++ can be a useful
tool for several classes of people. Researchers
may use it to compare the performances of dif-
ferent DNS64 implementations, and investigate
how their performance scales up in the function
of the number of CPU cores (as it was done in
[6]). Developers of DNS64 servers may use it
to check how the performance of their product
improved. Network operators may compare the
performance of different DNS64 implementa-
tions in order to find out which suits their needs
the best.
The remainder of this paper is organized as
follows. Section 2 contains the requirements
for testing the caching performance of DNS64
servers based on RFC 8219. Section 3 recalls
the operation of the dns64perf++ program in

20 21G. Lencse Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers

a nutshell. Section 4 summarizes our goals and
restrictions for the possible modifications of the
program. Section 5 discloses our most impor-
tant design considerations. Section 6 presents
our implementation decisions. Section 7 con-
siders the limitations of the extended program.
Section 8 is a case study that demonstrates the
operability of the new feature. Section 9 gives
our conclusions.

2. Requirements for Testing Caching

2.1. Test and Traffic Setup

A detailed description of the test and traffic
setup of DNS64 performance measurements
was given in [5]. Therefore, now we give only
a short summary of it. Figure 1 shows three de-
vices: the client, the DNS64 server and the au-
thoritative DNS server. When neither a cache
hit occurs nor a AAAA record exists, then all
the following six messages are used.
1. Query for the AAAA record of a domain

name
2. Query for the AAAA record of the same

domain name
3. Empty AAAA record answer
4. Query for the A record of the same domain

name
5. Valid A record answer
6. Synthesized AAAA record answer [3]

When there is a cache hit at the DNS64 server,
then message 1 is followed by message 6 and
no other DNS messages are used [3].

2.2. Requirements for the Tester

RFC 8219 requires that first, different domain
names MUST1 be used and then measurements
MAY be done with domain names, 20%, 40%,
60%, 80% and 100% of which are cached. It is
noted in the RFC that "ensuring a record being
cached requires repeating it both late enough
after the first query to be already resolved and
be present in the cache and early enough to be
still present in the cache" [3].

3. Operation of Dns64perf++ in a
Nutshell

A detailed description of the operation of the
dns64perf++ program can be found in [5],
now we give a short summary2 of it including
only the parts relevant to our topic. The pro-
gram executes in two threads: one of them sends
queries for AAAA records of different domain
names at a specified rate and the other one re-
ceives the answers and decides about every
single answer if it has arrived in time (within
a given timeout) and if it contains a AAAA
record. If both conditions are met, then the pro-
gram qualifies the answer as "valid".
To be able to perform these tasks, the sending
thread stores a nanosecond precision timestamp
of the sending time of each query and, simi-
larly, the receiving thread stores a nanosecond
precision timestamp of the receiving time of the
answers. The program uses a special method for
matching the queries and the answers. It is done
so because DNS clients use the Transaction ID
to identify the reply3 of DNS server [8] and it is
enough for them, but during benchmarking of

prefix of all queries is the binary sequence of
0000101000 (encoding the decimal number 10
by the first 8 bits followed by two 0 bits) and
the counter may take the values from 0 up to
maximum 222 ‒ 1. (In practice, less elements
are used, their number is specified by the user.)
The counter is also used for indexing the ar-
ray of queries, where the sending and receiv-
ing timestamps and validation information are
stored. Later we will refer to it as counter.

4. Goals and Constraints

The aim of our current effort is to enable
dns64perf++ for benchmarking the caching
performance of DNS64 servers.
However, we have another, long term goal,
which results in several constraints for our
current design. It was shown in [5] that
dns64perf++ can be used for benchmarking
DNS64 servers up to 200,000 queries per sec-
ond. We aim to increase its performance about
one order of magnitude. We have set this goal
because we expect that this would be the per-
formance requirement of the Testers testing
high performance DNS64 servers. For exam-
ple, Google Public DNS server served 70 bil-
lion requests per day in 2012 [9], which is about
810,000 requests per second on average. This
number is likely growing, and RFC 8219 re-
quires about 220% query rate for the self-test
of the tester [3], thus our goal is to achieve a
few times a million requests per second. Since
dns64perf++ uses only two threads, one for
sending queries and another one for receiv-
ing the replies, we expect that this goal can be
achieved easily by using n thread pairs. (For
example, 10 thread pairs would achieve 10
times higher performance than that of a single
thread pair and would use the computing power
of 20 cores out of a 24-core CPU, leaving 4
cores free for the operating system.) According
to our planned high-level design, each thread
pair should work independently from the other
thread pairs so that our solution can scale up
well. Independence requires that the data struc-
tures are multiplied: each thread pair must have
their own array of queries to avoid locking is-
sues, as well as each thread pair must use their
own socket (bound to their own UDP port).
Therefore, the restriction is that all the changes
of the source code of dns64perf++ made for

DNS or DNS64 servers the query rates may be
so high that the same Transaction ID is repeated
within timeout time, as the Transaction ID is
only 16 bits long. Therefore, dns64perf++
uses a different solution for the identification of
the replies. To understand this method, we need
to dig somewhat deeper into the operation of
the program. It is designed to be able to use the
following potential name space:

 {000..255}-{000..255}-{000..255}
 -{000..255}.dns64perf.test.

Or with a different notation:

k-l-m-n.dns64perf.test.,

where k, l, m, n are in [000, 255].
This is an independent namespace, which is
resolved to IPv4 by a local authoritative DNS
server. During a particular execution of the test
program, the required part of this namespace
is identified by the specification of the corre-
sponding IPv4 address range (to which it is
mapped by the authoritative DNS server) using
the CIDR notation. For example, the 10.0.0.0/10
range means the range with 222 number of ele-
ments, which can also be described as:

 010 -{000..063}-{000..255}
 -{000..255}.dns64perf.test.

We note that it is not necessary to use all the
elements of the given range, the user must spec-
ify the number of requests to send, which must
be less than or equal to the size of the range.
The sent AAAA record requests, which refer to
all different domain names during the compul-
sory DNS64 test of RFC 8219, can be unambig-
uously identified by the first label of the con-
tained domain name. When a reply is received,
it contains the request in the "Question" section
(see [8]). The first label of the domain name is
read from it, and it is used to find the corre-
sponding query.
As for implementation details, during the gener-
ation of the queries, a counter is used: its value
is increased from 0 to the number of queries
to be sent, minus one. The bits of the counter
are appended to the common prefix of all the
queries. For example, if the before mentioned
range of 10.0.0.0/10 is used, then the common

1 In this document, the key words "MUST" and "MAY", are to be interpreted as described in [7].
2 The text of [5] is reused throughout the summary.
3 The words query and request, as well as reply and answer are used with the same meaning throughout the paper

Figure 1. Test and traffic setup for benchmarking DNS64 servers [5].

20 21G. Lencse Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers

a nutshell. Section 4 summarizes our goals and
restrictions for the possible modifications of the
program. Section 5 discloses our most impor-
tant design considerations. Section 6 presents
our implementation decisions. Section 7 con-
siders the limitations of the extended program.
Section 8 is a case study that demonstrates the
operability of the new feature. Section 9 gives
our conclusions.

2. Requirements for Testing Caching

2.1. Test and Traffic Setup

A detailed description of the test and traffic
setup of DNS64 performance measurements
was given in [5]. Therefore, now we give only
a short summary of it. Figure 1 shows three de-
vices: the client, the DNS64 server and the au-
thoritative DNS server. When neither a cache
hit occurs nor a AAAA record exists, then all
the following six messages are used.
1. Query for the AAAA record of a domain

name
2. Query for the AAAA record of the same

domain name
3. Empty AAAA record answer
4. Query for the A record of the same domain

name
5. Valid A record answer
6. Synthesized AAAA record answer [3]

When there is a cache hit at the DNS64 server,
then message 1 is followed by message 6 and
no other DNS messages are used [3].

2.2. Requirements for the Tester

RFC 8219 requires that first, different domain
names MUST1 be used and then measurements
MAY be done with domain names, 20%, 40%,
60%, 80% and 100% of which are cached. It is
noted in the RFC that "ensuring a record being
cached requires repeating it both late enough
after the first query to be already resolved and
be present in the cache and early enough to be
still present in the cache" [3].

3. Operation of Dns64perf++ in a
Nutshell

A detailed description of the operation of the
dns64perf++ program can be found in [5],
now we give a short summary2 of it including
only the parts relevant to our topic. The pro-
gram executes in two threads: one of them sends
queries for AAAA records of different domain
names at a specified rate and the other one re-
ceives the answers and decides about every
single answer if it has arrived in time (within
a given timeout) and if it contains a AAAA
record. If both conditions are met, then the pro-
gram qualifies the answer as "valid".
To be able to perform these tasks, the sending
thread stores a nanosecond precision timestamp
of the sending time of each query and, simi-
larly, the receiving thread stores a nanosecond
precision timestamp of the receiving time of the
answers. The program uses a special method for
matching the queries and the answers. It is done
so because DNS clients use the Transaction ID
to identify the reply3 of DNS server [8] and it is
enough for them, but during benchmarking of

prefix of all queries is the binary sequence of
0000101000 (encoding the decimal number 10
by the first 8 bits followed by two 0 bits) and
the counter may take the values from 0 up to
maximum 222 ‒ 1. (In practice, less elements
are used, their number is specified by the user.)
The counter is also used for indexing the ar-
ray of queries, where the sending and receiv-
ing timestamps and validation information are
stored. Later we will refer to it as counter.

4. Goals and Constraints

The aim of our current effort is to enable
dns64perf++ for benchmarking the caching
performance of DNS64 servers.
However, we have another, long term goal,
which results in several constraints for our
current design. It was shown in [5] that
dns64perf++ can be used for benchmarking
DNS64 servers up to 200,000 queries per sec-
ond. We aim to increase its performance about
one order of magnitude. We have set this goal
because we expect that this would be the per-
formance requirement of the Testers testing
high performance DNS64 servers. For exam-
ple, Google Public DNS server served 70 bil-
lion requests per day in 2012 [9], which is about
810,000 requests per second on average. This
number is likely growing, and RFC 8219 re-
quires about 220% query rate for the self-test
of the tester [3], thus our goal is to achieve a
few times a million requests per second. Since
dns64perf++ uses only two threads, one for
sending queries and another one for receiv-
ing the replies, we expect that this goal can be
achieved easily by using n thread pairs. (For
example, 10 thread pairs would achieve 10
times higher performance than that of a single
thread pair and would use the computing power
of 20 cores out of a 24-core CPU, leaving 4
cores free for the operating system.) According
to our planned high-level design, each thread
pair should work independently from the other
thread pairs so that our solution can scale up
well. Independence requires that the data struc-
tures are multiplied: each thread pair must have
their own array of queries to avoid locking is-
sues, as well as each thread pair must use their
own socket (bound to their own UDP port).
Therefore, the restriction is that all the changes
of the source code of dns64perf++ made for

DNS or DNS64 servers the query rates may be
so high that the same Transaction ID is repeated
within timeout time, as the Transaction ID is
only 16 bits long. Therefore, dns64perf++
uses a different solution for the identification of
the replies. To understand this method, we need
to dig somewhat deeper into the operation of
the program. It is designed to be able to use the
following potential name space:

 {000..255}-{000..255}-{000..255}
 -{000..255}.dns64perf.test.

Or with a different notation:

k-l-m-n.dns64perf.test.,

where k, l, m, n are in [000, 255].
This is an independent namespace, which is
resolved to IPv4 by a local authoritative DNS
server. During a particular execution of the test
program, the required part of this namespace
is identified by the specification of the corre-
sponding IPv4 address range (to which it is
mapped by the authoritative DNS server) using
the CIDR notation. For example, the 10.0.0.0/10
range means the range with 222 number of ele-
ments, which can also be described as:

 010 -{000..063}-{000..255}
 -{000..255}.dns64perf.test.

We note that it is not necessary to use all the
elements of the given range, the user must spec-
ify the number of requests to send, which must
be less than or equal to the size of the range.
The sent AAAA record requests, which refer to
all different domain names during the compul-
sory DNS64 test of RFC 8219, can be unambig-
uously identified by the first label of the con-
tained domain name. When a reply is received,
it contains the request in the "Question" section
(see [8]). The first label of the domain name is
read from it, and it is used to find the corre-
sponding query.
As for implementation details, during the gener-
ation of the queries, a counter is used: its value
is increased from 0 to the number of queries
to be sent, minus one. The bits of the counter
are appended to the common prefix of all the
queries. For example, if the before mentioned
range of 10.0.0.0/10 is used, then the common

1 In this document, the key words "MUST" and "MAY", are to be interpreted as described in [7].
2 The text of [5] is reused throughout the summary.
3 The words query and request, as well as reply and answer are used with the same meaning throughout the paper

Figure 1. Test and traffic setup for benchmarking DNS64 servers [5].

22 23G. Lencse Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers

the purpose of enabling it for benchmarking the
caching performance of DNS64 servers, should
be carefully examined, whether they hinder the
parallelization of the program or not. We also
plan to keep the original structure of the pro-
gram and limit the changes to as few files as
possible.
It is also one of our goals, that the test program
be fine tunable, e.g. it should be able to perform
measurements not only at the required levels of
0%, 20%, 40%, 60%, 80% and 100% cache hit
ratios, but e.g. at 10%, 90% or 99%, too.
Finally, the program must keep its high perfor-
mance, which is especially critical when it is
used at high cache hit rates (resulting in high
DNS64 performance).

5. Design Considerations

5.1. General Considerations

The actually achieved cache hit rate of a real
life DNS64 server depends on different factors
such as the repetition pattern of user requests,
the cache size and the cache control algorithm
of the DNS64 server. All these questions may
be important when one examines the gain of
caching, but they are out of scope from the
viewpoint of RFC 8219, which recommends
only the testing of the efficiency of caching at
given cache hit rates from 20% to 100%. There-
fore, the task of the benchmarking program is
to ensure the required cache hit rate regardless
of the internal parameters and/or behavior of
the tested DNS64 server (e.g. cache size, cache
control algorithm, etc.) handling the DUT as a
black box.

5.2. What and How to Repeat to Achieve
Cache Hits?

As RFC 8219 does not say anything about how
many different domain names have to be re-
peated, we decided to repeat only a single one.
This choice has two advantages:

 ● Simplicity. Both when the repeated que-
ries are generated and when they have to
be recognized. The latter will be very im-
portant is subsection 6.2.

 ● Ensures cache hits even if the cache size is
very small.

If a single domain name is repeated frequently
enough, then it will be still present in the cache
of the DNS64 server at any low but realistic
cache size, thus the "early enough" condition
can be easily satisfied. (The lowest non-zero
cache hit rate to be tested is 20%, which means
that every fifth domain name should be the
one that is being repeated.) To satisfy the "late
enough" condition, we decided to use a prelimi-
nary measurement step. It can be done by either
the standard host Linux command or by using
the dns64perf++ program for sending a sin-
gle request for the domain name intended to be
loaded into the cache of the DNS64 server.

5.3. How to Identify the Replies?

Repeating domain names in queries, which
is absolutely necessary to achieve cache hits,
destroys the operation of the original method
designed for the unambiguous identification
of requests and replies. The replies of queries
containing the same domain name can only be
distinguished by their Transaction IDs (when
they are different).
We decided to keep the original identification
method for the non-repeated domain names,
and "fall back" to the usage of Transaction IDs
for the repeated ones. Though it is not trivial,
the two methods for identification can be used
together. We present the details among the im-
plementation decisions (in subsection 6.2), be-
cause the knowledge of some implementation
details is needed for its understanding.

6. Implementation Decisions

6.1. Program Arguments and Generation
of the Queries

Several solutions are possible to inform the
test program about the required proportion of
the cached domain names, e.g. their proportion
can be given using an additional parameter. It
could be 0, 1, 2, 3, 4 and 5 to express 0%, 20%,
40%, 60%, 80% and 100% cache hit ratio, but
we aimed to be able to fine tune the testing. It

could also be a floating point value e.g. 0.2 for
20% and 0.99 for 99%, but we wanted to avoid
additional floating point operations in the send-
ing a receiving cycles. Instead, we chose to use
two parameters because we considered that this
solution better fits our goals. These are modulo
and threshold. If the value of threshold is
zero then no domain names are repeated. Oth-
erwise, if condition (1) is met, then instead of
the value of the counter, only the appropriate
number of zero bits are appended to the com-
mon prefix.

 counter % modulo < threshold (1)

See the code fragment containing the modifica-
tion in Figure 2.
We note that it is the responsibility of the user
to specify relative prime numbers e.g. 5 as mod-
ulo and 1 as threshold to achieve 20% cache
hit ratio (instead of using 100 and 20) in order
to achieve the best possible interleaving of the
cached and non-cached queries.

6.2. New Method for Matching the Replies

First, we introduce the operation of the iden-
tification method based on Transaction IDs.
For simplicity, let us consider the case when
100% of the domain names are cached, thus
this method can be used exclusively for all the
replies. Due to the method used for generating
the requests, the Transaction ID always takes
the low order 16 bits of the counter. Thus,
the Transaction ID could be used for indexing
the array of queries if we had no more than 64k
number of messages. However, the number of
messages is significantly larger than that.

We have considered the usage of multiple UDP
ports and sending maximum 65,535 queries per
port. This solution would require that multiple
ports be kept open simultaneously and the re-
ceiver should check them in a round robin man-
ner (using non-blocking receive function) until
all the replies are received or the timeout period
for the last request elapsed. (As we have men-
tioned before, the usage of multiple threads was
reserved for increasing the performance of the
benchmarking program, thus it is not an option
here to start a separate thread for each port.) We
have identified several potential issues of this
approach:
1. Opening of several sockets during the

measurements may take unknown time
and thus may cause undesirable delay be-
tween some consecutive queries.

2. Opening of all the sockets before the mea-
surements might result in undesirable lim-
itations regarding the maximum number of
queries sent. (The namespace allows max-
imum 232 number of queries, 216 number of
queries per socket can be sent, but the op-
erating system would not let open 216 num-
ber of sockets simultaneously. Although
the number of queries seems to be abun-
dant, significantly longer than 60 s tests at
high rates may require all of them.)

3. Let us estimate the magnitude of the num-
ber of concurrently active sockets, which
are to be polled by the receiver. Although
the practically used timeout value is 1 sec-
ond, the program should work with any
reasonable timeout value, e.g. 10 seconds.
If both the timeout value and the query
rate are high enough, it may happen that
a receiving thread of the benchmarking

uint32_t ip = ip_ | num_sent_; // old code: ip_ is the common prefix,
 // num_sent is the counter
// modification for testing caching begins here
if (threshold_ && ip % modulo_ < threshold_) { // threshold_ is the threshold
ip = ip_; // use the common prefix to achieve a cache hit
}
// modification for testing caching ends here
// old code: the first label is generated as follows.
snprintf(label, sizeof(label), dns64_addr_format_string, (ip >> 24) & 0xff, \
(ip >> 16) & 0xff, (ip >> 8) & 0xff, ip & 0xff);

Figure 2. Code fragment: the modification of the query generation in function DnsTester::test(),
source file: dnstester.cpp.

22 23G. Lencse Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers

the purpose of enabling it for benchmarking the
caching performance of DNS64 servers, should
be carefully examined, whether they hinder the
parallelization of the program or not. We also
plan to keep the original structure of the pro-
gram and limit the changes to as few files as
possible.
It is also one of our goals, that the test program
be fine tunable, e.g. it should be able to perform
measurements not only at the required levels of
0%, 20%, 40%, 60%, 80% and 100% cache hit
ratios, but e.g. at 10%, 90% or 99%, too.
Finally, the program must keep its high perfor-
mance, which is especially critical when it is
used at high cache hit rates (resulting in high
DNS64 performance).

5. Design Considerations

5.1. General Considerations

The actually achieved cache hit rate of a real
life DNS64 server depends on different factors
such as the repetition pattern of user requests,
the cache size and the cache control algorithm
of the DNS64 server. All these questions may
be important when one examines the gain of
caching, but they are out of scope from the
viewpoint of RFC 8219, which recommends
only the testing of the efficiency of caching at
given cache hit rates from 20% to 100%. There-
fore, the task of the benchmarking program is
to ensure the required cache hit rate regardless
of the internal parameters and/or behavior of
the tested DNS64 server (e.g. cache size, cache
control algorithm, etc.) handling the DUT as a
black box.

5.2. What and How to Repeat to Achieve
Cache Hits?

As RFC 8219 does not say anything about how
many different domain names have to be re-
peated, we decided to repeat only a single one.
This choice has two advantages:

 ● Simplicity. Both when the repeated que-
ries are generated and when they have to
be recognized. The latter will be very im-
portant is subsection 6.2.

 ● Ensures cache hits even if the cache size is
very small.

If a single domain name is repeated frequently
enough, then it will be still present in the cache
of the DNS64 server at any low but realistic
cache size, thus the "early enough" condition
can be easily satisfied. (The lowest non-zero
cache hit rate to be tested is 20%, which means
that every fifth domain name should be the
one that is being repeated.) To satisfy the "late
enough" condition, we decided to use a prelimi-
nary measurement step. It can be done by either
the standard host Linux command or by using
the dns64perf++ program for sending a sin-
gle request for the domain name intended to be
loaded into the cache of the DNS64 server.

5.3. How to Identify the Replies?

Repeating domain names in queries, which
is absolutely necessary to achieve cache hits,
destroys the operation of the original method
designed for the unambiguous identification
of requests and replies. The replies of queries
containing the same domain name can only be
distinguished by their Transaction IDs (when
they are different).
We decided to keep the original identification
method for the non-repeated domain names,
and "fall back" to the usage of Transaction IDs
for the repeated ones. Though it is not trivial,
the two methods for identification can be used
together. We present the details among the im-
plementation decisions (in subsection 6.2), be-
cause the knowledge of some implementation
details is needed for its understanding.

6. Implementation Decisions

6.1. Program Arguments and Generation
of the Queries

Several solutions are possible to inform the
test program about the required proportion of
the cached domain names, e.g. their proportion
can be given using an additional parameter. It
could be 0, 1, 2, 3, 4 and 5 to express 0%, 20%,
40%, 60%, 80% and 100% cache hit ratio, but
we aimed to be able to fine tune the testing. It

could also be a floating point value e.g. 0.2 for
20% and 0.99 for 99%, but we wanted to avoid
additional floating point operations in the send-
ing a receiving cycles. Instead, we chose to use
two parameters because we considered that this
solution better fits our goals. These are modulo
and threshold. If the value of threshold is
zero then no domain names are repeated. Oth-
erwise, if condition (1) is met, then instead of
the value of the counter, only the appropriate
number of zero bits are appended to the com-
mon prefix.

 counter % modulo < threshold (1)

See the code fragment containing the modifica-
tion in Figure 2.
We note that it is the responsibility of the user
to specify relative prime numbers e.g. 5 as mod-
ulo and 1 as threshold to achieve 20% cache
hit ratio (instead of using 100 and 20) in order
to achieve the best possible interleaving of the
cached and non-cached queries.

6.2. New Method for Matching the Replies

First, we introduce the operation of the iden-
tification method based on Transaction IDs.
For simplicity, let us consider the case when
100% of the domain names are cached, thus
this method can be used exclusively for all the
replies. Due to the method used for generating
the requests, the Transaction ID always takes
the low order 16 bits of the counter. Thus,
the Transaction ID could be used for indexing
the array of queries if we had no more than 64k
number of messages. However, the number of
messages is significantly larger than that.

We have considered the usage of multiple UDP
ports and sending maximum 65,535 queries per
port. This solution would require that multiple
ports be kept open simultaneously and the re-
ceiver should check them in a round robin man-
ner (using non-blocking receive function) until
all the replies are received or the timeout period
for the last request elapsed. (As we have men-
tioned before, the usage of multiple threads was
reserved for increasing the performance of the
benchmarking program, thus it is not an option
here to start a separate thread for each port.) We
have identified several potential issues of this
approach:
1. Opening of several sockets during the

measurements may take unknown time
and thus may cause undesirable delay be-
tween some consecutive queries.

2. Opening of all the sockets before the mea-
surements might result in undesirable lim-
itations regarding the maximum number of
queries sent. (The namespace allows max-
imum 232 number of queries, 216 number of
queries per socket can be sent, but the op-
erating system would not let open 216 num-
ber of sockets simultaneously. Although
the number of queries seems to be abun-
dant, significantly longer than 60 s tests at
high rates may require all of them.)

3. Let us estimate the magnitude of the num-
ber of concurrently active sockets, which
are to be polled by the receiver. Although
the practically used timeout value is 1 sec-
ond, the program should work with any
reasonable timeout value, e.g. 10 seconds.
If both the timeout value and the query
rate are high enough, it may happen that
a receiving thread of the benchmarking

uint32_t ip = ip_ | num_sent_; // old code: ip_ is the common prefix,
 // num_sent is the counter
// modification for testing caching begins here
if (threshold_ && ip % modulo_ < threshold_) { // threshold_ is the threshold
ip = ip_; // use the common prefix to achieve a cache hit
}
// modification for testing caching ends here
// old code: the first label is generated as follows.
snprintf(label, sizeof(label), dns64_addr_format_string, (ip >> 24) & 0xff, \
(ip >> 16) & 0xff, (ip >> 8) & 0xff, ip & 0xff);

Figure 2. Code fragment: the modification of the query generation in function DnsTester::test(),
source file: dnstester.cpp.

24 25G. Lencse Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers

program has to test hundreds of sockets, of
which the majority is not receiving packets
(sockets only still open due to large time-
out value). Therefore, the implementation
of the receiver may come inefficient.

In addition to the above, our final argument
against this approach (and any other dif-
ferent solutions) is that the operation of the
dns64perf++ program is based on the array
of queries. We contend that this data structure is
fundamental for keeping the high performance
of the test program, because it facilitates that
only very little work has to be done during the
test. Only the sending and receiving timestamps
plus two flags signaling whether there was a re-
ply and if it contained a valid answer are stored
during the test. All the processing and reporting
functions are performed after the test. There-
fore, we decided to keep the concept of the
program. Conforming to our before mentioned
constraints, we intended to make only as little
changes in the source code as it was possible.
To address the 64k problem, we have intro-
duced the array of counters (containing 64k
number of elements), which is initialized in the
way that the value of its i-th element is set to i.
The value of the i-th element of the counters
array is used to find the position in the array of
queries, where the timestamps belonging to the
cached domain name with the Transaction ID i
are stored. Whenever an element of the count-
ers array is used, its value is increased by 64k,
thus it is ready for the next usage.
If the proportion of the cached domain names
is less than 100% but higher than 0%, then both
identification methods must be used. How can
we decide, which of them is to be used for a
given reply? When a reply is received, the do-
main name is read from the question section of
the reply. If it is not the cached domain name,
then the appropriate part of the corresponding IP
address is used for indexing the array of queries
as it was done in the original program. If it is the
cached domain name, then the Transaction ID
is extracted from the reply. When a position in
the array of queries is determined by the above
described method using the Transaction ID and
the array of counters, then it must be checked
that according to condition (1) the given posi-
tion is used for storing a query with the cached
or with a non-cached domain name. In the first

case we have found it, thus the receiving times-
tamp and validation information are stored and
the used element of the array of counters is
increased by 64k. However, in the second case
the given position of the array of queries stores
the timestamps for a non-cached domain name
having the same Transaction ID as the currently
received query has. Therefore, the next position
of the array of queries with the same Transac-
tion ID should be checked, which is located at
64k farther position. This search must be con-
tinued until condition (1) is satisfied. Then the
receiving timestamp and validation information
are stored and the used element of the counters
array is set for the position of the next candi-
date with the same Transaction ID (that is the
current position +64k). See the most relevant
changes to the source code in Figure 3.

7. Discussion of the Limitations of our
Solution

7.1. Correctness

The original method can unambiguously iden-
tify the replies of the DNS64 server, distin-
guishing them by the unique domain names
included in the "Question" section. Testing
caching inherently eliminates this solution. As
Transaction IDs are only 16 bits long, they are
repeated within timeout time (1 second), if the
tested rate is higher than 65,536 queries per sec-
ond, which may happen if a fast enough DNS64
server is being tested. Thus, it may happen that a
DNS64 server does not answer a query with the
cached domain name due to overload and the
test program mistakenly accepts the answer of
a later query for the cached domain name with
the same Transaction ID arriving within time-
out time. Although the reply will be falsely ac-
counted in this case, the reply of the later query
will be missing, thus the test will fail. The other
kind of slip is also possible: if a query with the
cached domain name is answered after time-
out, the late reply may be accepted as a valid
reply of a later query for the cached domain
name having the same Transaction ID. The test
will still fail because the earlier query was not
answered in time. Therefore, we can conclude
that although some messages may be accounted

mistakenly, which is the consequence of the
fact that some messages are indistinguishable,
the final decision will still be correct.

7.2. Performance

As for query generation, we have chosen the
computationally inexpensive modulo operation
for making a decision whether the cached do-
main name is to be used for the current query,
thus the query sending performance of the pro-
gram is expected to remain high.
As for receiving the queries, there is an addi-
tional string comparison of short (15 character
long) strings, and a variable number of modulo
and integer operations. Their number may be
high, if the ratio of the required cache hits is
very low, e.g. 1% or even less. As the smallest
positive cache hit ratio recommended by RFC
8219 is 20%, in that case the modulo value is 5
and therefore no more than 5 executions of test
(1) per reply is necessary, thus we forecast no
performance problems.

We note that non-standard low cache hit rates
(e.g. 10% and below) cause only small perfor-
mance increase and thus are very likely out of
interests. (Please refer to our measurement re-
sults at 0% and 20% cache hit rates in Table
1.) The testing of non-standard high cache hit
rates (e.g. 90% and above) will not cause per-
formance problems and they may be worth test-
ing: the results at 80% and 100% cache hit rates
are significantly different. Someone may wish
to test the performance of a DNS64 implemen-
tation e.g. at 90%, 95% or 99% cache hit rates.

8. Case Study: Demonstration of
the Benchmarking of Caching
Performance of DNS64 Servers

Although RFC 8219 follows the traditional
benchmarking setup, which uses only two
devices, the Tester and the DUT, it was elab-
orated in the relevant paper about benchmark-
ing methodology for DNS64 servers [10] that

// the following line is added to the variable declarations:
char cachedlabel[64]; // for testing caching: the first label of the query which is cached
// then the cached label is produced from the common prefix (= base IP address):
snprintf(cachedlabel, sizeof(cachedlabel), dns64_addr_format_string, \
 (ip_ >> 24) & 0xff, (ip_ >> 16) & 0xff, (ip_ >> 8) & 0xff, ip_ & 0xff);
//
// several lines of the old code are unquoted here
//
// Due to testing caching, it is a bit more complicated to find the query in the array
// The old code was the following simple line:
// DnsQuery& query = tests_[(ip & (((uint64_t) 1 << (32-netmask_))-1))];
// new code begins here:
uint64_t index;
if (!threshold_ || strcmp(label,cachedlabel)) {
 // we are not testing caching OR NOT the critical label is found
 index = (ip & (((uint64_t) 1 << (32-netmask_))-1)); // index is from the label
}
else { // we are testing caching AND the critical label is found
 // index should be prepared from Transaction ID and receving history
 uint16_t transactionID=answer.header_->id(); // called 'DNS Query identifier'
 // in "dns.h"
 index = counters_[transactionID];
 while (index % modulo_ >= threshold_) {
 // this is NOT a place of a query which is cached
 index += 65536 ; // try 64k further
 }
 counters_[transactionID] = index + 65536; // point to the next one
}
DnsQuery& query = tests_[index]; // this is the query
// this is the end of the new code

Figure 3. Code fragments: the most significant modifications of the processing of received queries in function
DnsTester::start(), source file: dnstester.cpp.

24 25G. Lencse Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers

program has to test hundreds of sockets, of
which the majority is not receiving packets
(sockets only still open due to large time-
out value). Therefore, the implementation
of the receiver may come inefficient.

In addition to the above, our final argument
against this approach (and any other dif-
ferent solutions) is that the operation of the
dns64perf++ program is based on the array
of queries. We contend that this data structure is
fundamental for keeping the high performance
of the test program, because it facilitates that
only very little work has to be done during the
test. Only the sending and receiving timestamps
plus two flags signaling whether there was a re-
ply and if it contained a valid answer are stored
during the test. All the processing and reporting
functions are performed after the test. There-
fore, we decided to keep the concept of the
program. Conforming to our before mentioned
constraints, we intended to make only as little
changes in the source code as it was possible.
To address the 64k problem, we have intro-
duced the array of counters (containing 64k
number of elements), which is initialized in the
way that the value of its i-th element is set to i.
The value of the i-th element of the counters
array is used to find the position in the array of
queries, where the timestamps belonging to the
cached domain name with the Transaction ID i
are stored. Whenever an element of the count-
ers array is used, its value is increased by 64k,
thus it is ready for the next usage.
If the proportion of the cached domain names
is less than 100% but higher than 0%, then both
identification methods must be used. How can
we decide, which of them is to be used for a
given reply? When a reply is received, the do-
main name is read from the question section of
the reply. If it is not the cached domain name,
then the appropriate part of the corresponding IP
address is used for indexing the array of queries
as it was done in the original program. If it is the
cached domain name, then the Transaction ID
is extracted from the reply. When a position in
the array of queries is determined by the above
described method using the Transaction ID and
the array of counters, then it must be checked
that according to condition (1) the given posi-
tion is used for storing a query with the cached
or with a non-cached domain name. In the first

case we have found it, thus the receiving times-
tamp and validation information are stored and
the used element of the array of counters is
increased by 64k. However, in the second case
the given position of the array of queries stores
the timestamps for a non-cached domain name
having the same Transaction ID as the currently
received query has. Therefore, the next position
of the array of queries with the same Transac-
tion ID should be checked, which is located at
64k farther position. This search must be con-
tinued until condition (1) is satisfied. Then the
receiving timestamp and validation information
are stored and the used element of the counters
array is set for the position of the next candi-
date with the same Transaction ID (that is the
current position +64k). See the most relevant
changes to the source code in Figure 3.

7. Discussion of the Limitations of our
Solution

7.1. Correctness

The original method can unambiguously iden-
tify the replies of the DNS64 server, distin-
guishing them by the unique domain names
included in the "Question" section. Testing
caching inherently eliminates this solution. As
Transaction IDs are only 16 bits long, they are
repeated within timeout time (1 second), if the
tested rate is higher than 65,536 queries per sec-
ond, which may happen if a fast enough DNS64
server is being tested. Thus, it may happen that a
DNS64 server does not answer a query with the
cached domain name due to overload and the
test program mistakenly accepts the answer of
a later query for the cached domain name with
the same Transaction ID arriving within time-
out time. Although the reply will be falsely ac-
counted in this case, the reply of the later query
will be missing, thus the test will fail. The other
kind of slip is also possible: if a query with the
cached domain name is answered after time-
out, the late reply may be accepted as a valid
reply of a later query for the cached domain
name having the same Transaction ID. The test
will still fail because the earlier query was not
answered in time. Therefore, we can conclude
that although some messages may be accounted

mistakenly, which is the consequence of the
fact that some messages are indistinguishable,
the final decision will still be correct.

7.2. Performance

As for query generation, we have chosen the
computationally inexpensive modulo operation
for making a decision whether the cached do-
main name is to be used for the current query,
thus the query sending performance of the pro-
gram is expected to remain high.
As for receiving the queries, there is an addi-
tional string comparison of short (15 character
long) strings, and a variable number of modulo
and integer operations. Their number may be
high, if the ratio of the required cache hits is
very low, e.g. 1% or even less. As the smallest
positive cache hit ratio recommended by RFC
8219 is 20%, in that case the modulo value is 5
and therefore no more than 5 executions of test
(1) per reply is necessary, thus we forecast no
performance problems.

We note that non-standard low cache hit rates
(e.g. 10% and below) cause only small perfor-
mance increase and thus are very likely out of
interests. (Please refer to our measurement re-
sults at 0% and 20% cache hit rates in Table
1.) The testing of non-standard high cache hit
rates (e.g. 90% and above) will not cause per-
formance problems and they may be worth test-
ing: the results at 80% and 100% cache hit rates
are significantly different. Someone may wish
to test the performance of a DNS64 implemen-
tation e.g. at 90%, 95% or 99% cache hit rates.

8. Case Study: Demonstration of
the Benchmarking of Caching
Performance of DNS64 Servers

Although RFC 8219 follows the traditional
benchmarking setup, which uses only two
devices, the Tester and the DUT, it was elab-
orated in the relevant paper about benchmark-
ing methodology for DNS64 servers [10] that

// the following line is added to the variable declarations:
char cachedlabel[64]; // for testing caching: the first label of the query which is cached
// then the cached label is produced from the common prefix (= base IP address):
snprintf(cachedlabel, sizeof(cachedlabel), dns64_addr_format_string, \
 (ip_ >> 24) & 0xff, (ip_ >> 16) & 0xff, (ip_ >> 8) & 0xff, ip_ & 0xff);
//
// several lines of the old code are unquoted here
//
// Due to testing caching, it is a bit more complicated to find the query in the array
// The old code was the following simple line:
// DnsQuery& query = tests_[(ip & (((uint64_t) 1 << (32-netmask_))-1))];
// new code begins here:
uint64_t index;
if (!threshold_ || strcmp(label,cachedlabel)) {
 // we are not testing caching OR NOT the critical label is found
 index = (ip & (((uint64_t) 1 << (32-netmask_))-1)); // index is from the label
}
else { // we are testing caching AND the critical label is found
 // index should be prepared from Transaction ID and receving history
 uint16_t transactionID=answer.header_->id(); // called 'DNS Query identifier'
 // in "dns.h"
 index = counters_[transactionID];
 while (index % modulo_ >= threshold_) {
 // this is NOT a place of a query which is cached
 index += 65536 ; // try 64k further
 }
 counters_[transactionID] = index + 65536; // point to the next one
}
DnsQuery& query = tests_[index]; // this is the query
// this is the end of the new code

Figure 3. Code fragments: the most significant modifications of the processing of received queries in function
DnsTester::start(), source file: dnstester.cpp.

26 27G. Lencse Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers

the two functions of the Tester (Measurer and
AuthDNS) may be implemented by two sepa-
rate devices. This approach was followed in the
setup of the test system. Its topology is shown
in Figure 4, which also contains the CPU pa-
rameters of the computers to reflect their ap-
proximate performances. We note that the
Huawei FusionServer E9000 resides in a differ-
ent building than the two other computers and
its compute nodes are available only through
the CX310 internal switch module, the 10GBa-
seT port of which had to be connected to the
two other computers having 1000BaseT ports,
thus we had to use another element, which was
actually a router used as a switch.
For the repeatability of our measurements, we
briefly summarize the most important parame-
ters of the computers.
Tester/Measurer: Dell Precision Workstation
490 with two dual-core Intel Xeon 5160 3GHz
CPUs, 4x1GB 533MHz DDR2 SDRAM (ac-

cessed quad-channel), Intel PT Quad 1000 type
four port Gigabit Ethernet controller (PCI Ex-
press). Debian 8.6 GNU/Linux operating sys-
tem with 3.16.0-4-amd64 kernel.
Tester/AuthDNS: SunFire X4150 server with
two quad-core Intel Xeon E5440 2.83GHz
CPUs, 4x2GB 667MHz DDR2 SDRAM, four
integrated Intel 82571EB Gigabit Ethernet
controllers. Debian 8.6 GNU/Linux operating
system with 3.16.0-4-amd64 kernel and BIND
9.9.5-9+deb8u7-Debian as authoritative DNS
server.
DUT: Huawei FusionServer E9000, CH140 V3
compute node with two 12-core Intel Xeon E5-
2670 v3 2.30GHz CPUs, 8x16GB 2133MHz
DDR4 SDRAM, Two Intel Corporation 82599
10 Gigabit Dual Port Backplane Connection
(rev 01). Ubuntu 16.04.2 LTS GNU/Linux op-
erating system with 4.4.0-45-generic x86_64
kernel and PowerDNS 4.0.0-alpha2 as DNS64
server.
We used PowerDNS as DNS64 server program,
because earlier experiments showed that Pow-
erDNS scaled up better than BIND [6]. We
present the changes made to its default configu-
ration file named recursor.conf in Figure 5.
The number of threads was limited to 4 in order
to make the DUT the performance bottleneck
and to avoid that the Authoritative DNS server
becomes a performance bottleneck. The oper-
ation of the DNS64 function was described in
the dns64.lua file, as shown in Figure 6.
At the authoritative DNS server, a zone file
was generated to resolve the queries for the
10.0.0.0/8 range. We included the generator
script called gen-zonefile-A.sh in the
directory of the modified source code of the
dns64perf++ program [11].
We note that an inaccuracy of the original tim-
ing algorithm of the dns64perf++ program
was discovered. The correction is only a single
change (in line 49 of source file timer.cpp)
as documented in [12]. We used the corrected
version for our measurements.
We have tested all six cache hit rates recom-
mended by RFC 8219. The duration of the
measurements was 60 seconds and the timeout
value was 1 second. The maximum number of
processed DNS queries per second was deter-
mined by using binary search. The binary search

script was executed 20 times for each cache hit
rate, to receive reliable results. For the detailed
explanation of the measurement method, please
refer to [10]. These steps were performed by the
measure.sh bash shell script, which is also
included in [11].
The median, as well as the minimum and max-
imum values were determined and they can be
found in Table 1. Row 1 shows the cache hit
ratio, whereas rows 2, 3 and 4 show the median,
minimum and maximum values of the number
of successfully serviced AAAA record requests
per second (calculated from the 20 repetitions
of the experiments for each cache hit ratio). The
results show similar tendency to that shown in
Table 7 of [10], but now they are significantly
higher due to several factors including the us-
age of a different DNS64 server program,
higher number of working threads, faster CPU

and faster memory. We plan to analyze how
these factors influence the results, but this anal-
ysis is beyond the scope of our current paper.
Now, our aim was to demonstrate that the mod-
ified test program works properly at higher than
65,536 qps rates, in which we were successful.

9. Conclusions

We conclude that our efforts were success-
ful in making the existing dns64perf++
DNS64 benchmarking tool, the world's first
fully functional DNS64 tester that provides all
the features described in RFC 8219 including
the testing of caching performance. We have
demonstrated the operability of the new feature
in a case study.

allow-from=::/0, 0.0.0.0/0
forward-zones=dns64perf.test=198.19.0.2
local-address=127.0.0.1,::1,2001:2::1
lua-dns-script=/etc/powerdns/dns64.lua
threads=4

Figure 5. Changes made to the recursor.conf configuration file of PowerDNS.

prefix = "2001:db8:ffff:ffff:ffff:ffff::"

function nodata (dq)
 if dq.qtype ~= pdns.AAAA then
 return false
 end -- only AAAA records

 dq.followupFunction = "getFakeAAAARecords"
 dq.followupPrefix = prefix
 dq.followupName = dq.qname
 return true
end

Figure 6. The contents of the dns64.lua file.

Table 1. Caching performance of the PowerDNS DNS64 server as a function of cache hit rate, executed by
a Huawei CH140 v3 compute node in 4 threads.

Cache hit rate (%) 0 20 40 60 80 100

Number of requests
per second

median 14166 17445 22218 29997 45714 88090
minimum 13807 17103 21759 27647 42991 87035
maximum 14593 17689 22657 30913 49153 88677

Figure 4. Topology of the test network for
benchmarking the caching performance of the

PowerDNS DNS64 server.

26 27G. Lencse Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers

the two functions of the Tester (Measurer and
AuthDNS) may be implemented by two sepa-
rate devices. This approach was followed in the
setup of the test system. Its topology is shown
in Figure 4, which also contains the CPU pa-
rameters of the computers to reflect their ap-
proximate performances. We note that the
Huawei FusionServer E9000 resides in a differ-
ent building than the two other computers and
its compute nodes are available only through
the CX310 internal switch module, the 10GBa-
seT port of which had to be connected to the
two other computers having 1000BaseT ports,
thus we had to use another element, which was
actually a router used as a switch.
For the repeatability of our measurements, we
briefly summarize the most important parame-
ters of the computers.
Tester/Measurer: Dell Precision Workstation
490 with two dual-core Intel Xeon 5160 3GHz
CPUs, 4x1GB 533MHz DDR2 SDRAM (ac-

cessed quad-channel), Intel PT Quad 1000 type
four port Gigabit Ethernet controller (PCI Ex-
press). Debian 8.6 GNU/Linux operating sys-
tem with 3.16.0-4-amd64 kernel.
Tester/AuthDNS: SunFire X4150 server with
two quad-core Intel Xeon E5440 2.83GHz
CPUs, 4x2GB 667MHz DDR2 SDRAM, four
integrated Intel 82571EB Gigabit Ethernet
controllers. Debian 8.6 GNU/Linux operating
system with 3.16.0-4-amd64 kernel and BIND
9.9.5-9+deb8u7-Debian as authoritative DNS
server.
DUT: Huawei FusionServer E9000, CH140 V3
compute node with two 12-core Intel Xeon E5-
2670 v3 2.30GHz CPUs, 8x16GB 2133MHz
DDR4 SDRAM, Two Intel Corporation 82599
10 Gigabit Dual Port Backplane Connection
(rev 01). Ubuntu 16.04.2 LTS GNU/Linux op-
erating system with 4.4.0-45-generic x86_64
kernel and PowerDNS 4.0.0-alpha2 as DNS64
server.
We used PowerDNS as DNS64 server program,
because earlier experiments showed that Pow-
erDNS scaled up better than BIND [6]. We
present the changes made to its default configu-
ration file named recursor.conf in Figure 5.
The number of threads was limited to 4 in order
to make the DUT the performance bottleneck
and to avoid that the Authoritative DNS server
becomes a performance bottleneck. The oper-
ation of the DNS64 function was described in
the dns64.lua file, as shown in Figure 6.
At the authoritative DNS server, a zone file
was generated to resolve the queries for the
10.0.0.0/8 range. We included the generator
script called gen-zonefile-A.sh in the
directory of the modified source code of the
dns64perf++ program [11].
We note that an inaccuracy of the original tim-
ing algorithm of the dns64perf++ program
was discovered. The correction is only a single
change (in line 49 of source file timer.cpp)
as documented in [12]. We used the corrected
version for our measurements.
We have tested all six cache hit rates recom-
mended by RFC 8219. The duration of the
measurements was 60 seconds and the timeout
value was 1 second. The maximum number of
processed DNS queries per second was deter-
mined by using binary search. The binary search

script was executed 20 times for each cache hit
rate, to receive reliable results. For the detailed
explanation of the measurement method, please
refer to [10]. These steps were performed by the
measure.sh bash shell script, which is also
included in [11].
The median, as well as the minimum and max-
imum values were determined and they can be
found in Table 1. Row 1 shows the cache hit
ratio, whereas rows 2, 3 and 4 show the median,
minimum and maximum values of the number
of successfully serviced AAAA record requests
per second (calculated from the 20 repetitions
of the experiments for each cache hit ratio). The
results show similar tendency to that shown in
Table 7 of [10], but now they are significantly
higher due to several factors including the us-
age of a different DNS64 server program,
higher number of working threads, faster CPU

and faster memory. We plan to analyze how
these factors influence the results, but this anal-
ysis is beyond the scope of our current paper.
Now, our aim was to demonstrate that the mod-
ified test program works properly at higher than
65,536 qps rates, in which we were successful.

9. Conclusions

We conclude that our efforts were success-
ful in making the existing dns64perf++
DNS64 benchmarking tool, the world's first
fully functional DNS64 tester that provides all
the features described in RFC 8219 including
the testing of caching performance. We have
demonstrated the operability of the new feature
in a case study.

allow-from=::/0, 0.0.0.0/0
forward-zones=dns64perf.test=198.19.0.2
local-address=127.0.0.1,::1,2001:2::1
lua-dns-script=/etc/powerdns/dns64.lua
threads=4

Figure 5. Changes made to the recursor.conf configuration file of PowerDNS.

prefix = "2001:db8:ffff:ffff:ffff:ffff::"

function nodata (dq)
 if dq.qtype ~= pdns.AAAA then
 return false
 end -- only AAAA records

 dq.followupFunction = "getFakeAAAARecords"
 dq.followupPrefix = prefix
 dq.followupName = dq.qname
 return true
end

Figure 6. The contents of the dns64.lua file.

Table 1. Caching performance of the PowerDNS DNS64 server as a function of cache hit rate, executed by
a Huawei CH140 v3 compute node in 4 threads.

Cache hit rate (%) 0 20 40 60 80 100

Number of requests
per second

median 14166 17445 22218 29997 45714 88090
minimum 13807 17103 21759 27647 42991 87035
maximum 14593 17689 22657 30913 49153 88677

Figure 4. Topology of the test network for
benchmarking the caching performance of the

PowerDNS DNS64 server.

28 G. Lencse

References

[1] M. Bagnulo et al., "DNS64: DNS Extensions for
Network Address Translation from IPv6 Clients
to IPv4 Servers", IETF RFC 6147, 2011.
https://doi.org/10.17487/RFC6147

[2] M. Bagnulo et al., "Stateful NAT64: Network Ad-
dress and Protocol Translation from IPv6 Clients
to IPv4 Servers", IETF RFC 6146, 2011.
https://doi.org/10.17487/RFC6146

[3] M. Georgescu et al., "Benchmarking Method-
ology for IPv6 Transition Technologies", IETF
RFC 8219.
https://doi.org/10.17487/RFC8219

[4] D. Bakai, "A C++11 DNS64 Performance Tester",
source code.
https://github.com/bakaid/dns64perfpp/

[5] G. Lencse and D. Bakai, "Design and Imple-
mentation of a Test Program for Benchmarking
DNS64 Servers", IEICE Transactions on Com-
munications, vol. E100-B, no. 6. pp. 948‒954,
2017.
https://doi.org/10.1587/transcom.2016EBN0007

[6] G. Lencse and S. Répás, "Performance Analysis
and Comparison of Four DNS64 Implementa-
tions under Different free Operating Systems",
Telecommunication Systems, vol. 63, no. 4, pp.
557‒577.
https://doi.org/10.1007/s11235-016-0142-x

[7] S. Bradner, "Key Words for Use in RFCs to In-
dicate Requirement Levels", IETF RFC 2119,
March 1997.
https://doi.org/10.17487/RFC2119

[8] P. Mockapetris, "Domain Names – Implementa-
tion and Specification", IETF RFC 1035, 1987.
https://doi.org/10.17487/RFC1035

[9] J. K. Chen, "Google Public DNS: 70 Billion Re-
quests a Day and Counting", Google Official
Blog.
https://googleblog.blogspot.hu/2012/02/google-
public-dns-70-billion-requests.html

[10] G. Lencse et al., "Benchmarking Methodology
for DNS64 Servers", Computer Communications,
vol. 109, no. 1, pp. 162‒175, 2017.
https://doi.org/10.1016/j.comcom.2017.06.004

[11] G. Lencse, "Modified Source Code of the
dns64perf++ program, available:
http://www.hit.bme.hu/~lencse/dns64perfppc/

[12] G. Lencse and A. Pivoda, "Checking and Increas-
ing the Accuracy of the dns64perf++ Measure-
ment Tool for Benchmarking DNS64 Servers",
International Journal of Advances in Telecommu-
nications, Electrotechnics, Signals and Systems,
vol. 7. no. 1. pp. 10‒16.
https://doi.org/10.11601/ijates.v7i1.255

Received: March 2018
Accepted: June 2018

Contact address:
Gábor Lencse

Department of Networked Systems and Services
Budapest University of Technology and Economics

2 Magyar tudósok körútja
H-1117 Budapest

Hungary
e-mail: lencse@hit.bme.hu

Gábor Lencse received his MSc and PhD degrees in computer science
from the Budapest University of Technology and Economics, Buda-
pest, Hungary in 1994 and 2001, respectively. Since 1997 he has been
working at the Department of Telecommunications, Széchenyi István
University, Győr, Hungary, where he is presently an Associate Profes-
sor. Since 2005 he has also been a part time Senior Research Fellow at
the Department of Networked Systems and Services, Budapest Univer-
sity of Technology and Economics. His research interests include per-
formance analysis of communication systems, parallel discrete event
simulation methodology and IPv6 transition methods.

https://doi.org/10.17487/RFC6147
https://doi.org/10.17487/RFC6146
https://doi.org/10.17487/RFC8219
https://github.com/bakaid/dns64perfpp/
https://doi.org/10.1587/transcom.2016EBN0007
https://doi.org/10.1007/s11235-016-0142-x
https://doi.org/10.17487/RFC2119
https://doi.org/10.17487/RFC1035
https://googleblog.blogspot.hu/2012/02/google-public-dns-70-billion-requests.html
https://googleblog.blogspot.hu/2012/02/google-public-dns-70-billion-requests.html
https://doi.org/10.1016/j.comcom.2017.06.004
http://www.hit.bme.hu/~lencse/dns64perfppc/
https://doi.org/10.11601/ijates.v7i1.255

 HistoryItem_V1
 Shuffle

 Create a new document
 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 D:20180709141648

 1
 1
 1
 1 1
 712
 278
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1

 HistoryList_V1
 qi2base

