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 

Abstract—RFC 8219 defined benchmarking methodology for 

IPv6 transition technologies, including DNS64, which is used 

together with NAT64 to enable IPv6-only clients to communicate 

with IPv4-only servers. This paper investigates the performances 

of the most important DNS64 implementations, BIND, PowerDNS, 

and Unbound as a function of the number of CPU cores using the 

compulsory tests of RFC 8219. High differences are pointed out 

both in their single core DNS64 performances and in their scale-

up from 1 to 16 CPU cores: whereas Unbound shows the highest 

single core performance, PowerDNS scales up the best. A serious 

issue is reported regarding BIND: its DNS64 performance does not 

increase from 4 to 16 CPU cores at all. A measurement 

complementary to RFC 8219 is introduced which proves to be 

useful in the investigation of the issues identified during testing. 

For the optional tests of RFC 8219, the requirements for the tester 

are clarified, which enabled us to carry out the tests at the given 

rates. Finally, a complementary performance metric, computing 

power relative DNS64 performance is introduced, which may 

provide further information to network operators  to support their 

selection of the DNS64 implementation, which suits the best for 

their needs. 

 
Index Terms—Benchmarking, DNS64, IPv6 transition, NAT64 

 

I. INTRODUCTION 

FC 8200 [1] raised IPv6, the new version of the Internet 

 Protocol to “Internet Standard” state. Unfortunately, the 

deployment of IPv6 was rather slow until the latest few years 

because of several reasons [2], and the public IPv4 address pool 

was depleted in 2011, before IPv6 could have replaced IPv4. 

Thus, on the one hand, network operators can not provide 

public IPv4 addresses to their new customers, but on the other 

hand, a high number of servers are still available only over 

IPv4. We contend that the DNS64+NAT64 protocol suite [3] is 

an adequate solution for this problem. Ref. [4] concludes that 

“The only actual address sharing mechanism that really pushes 

forward the transition to IPv6 is Stateful NAT64 (Class 4). All 

other (classes of) mechanisms are more tolerant to IPv4.” As 

this citation illustrates, DNS64 [5] is often overlooked and only 

NAT64 [6] is mentioned and focused on even by researchers. 

However, the reliable and trustworthy operation of DNS64 is 

essential, and “the poor performance of the DNS64 server 

directly influences the users’ quality of experience (QoE)” [7]. 
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RFC 8219 [8] defines a benchmarking methodology for IPv6 

transition technologies, including DNS64. In Ref [9], we have 

discussed the details of the benchmarking methodology for 

DNS64 servers and disclosed our consideration behind the 

methodology described in Section 9 of RFC 8219. 

In this paper we examine the performance of three DNS64 

implementations. Our aim is twofold. 

1. We provide network operators with ready to use 

benchmarking results to support their selection of a 

DNS64 implementation, which suits the best for their 

needs.  

2. We advance the theory of benchmarking DNS64 servers 

by three contributions: 

a. We clarify the requirements for the Tester for 

the optional tests. 

b. We demonstrate that DNS64 benchmarking 

procedure in Section 9 of RFC 8219, can be 

complemented by a slightly different procedure 

using non zero percent loss ratio as acceptance 

criterion, which may be useful in practical point 

of view (see Section V.B.2 for more details). 

c. We propose another complementary metric, 

namely computing power relative DNS64 

performance of DNS64 implementations. 

The remainder of this paper is organized as follows. Section 

II surveys the available DNS64 performance analysis results 

and benchmarking tools. Section III gives an introduction to the 

methodology for benchmarking DNS64 implementations and 

also clarifies the requirements for the Tester for the optional 

tests, what is not covered by RFC 8219. Section IV describes 

the most important details of our measurements including 

benchmarking environment, DNS64 implementation selection 

and setup, the most important types of tests performed and also 

a few hypotheses are set up. Section V presents and evaluates 

the results, as well as discusses the unexpected results and 

investigates their possible causes. Section VI proposes 

measurement procedure and reporting format for the results of 

the computing power relative DNS64 performance 

measurements. Section VII is a short case study investigating a 

specific issue. Section VIII is a brief discussion of our results 

and disclosure of our future plans. Section IX concludes our 

paper. 
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II. RELATED WORK 

In our earlier paper on the performance analysis and 

comparison of different DNS64 implementations [10], we have 

pointed out that in all other papers than ours, the performance 

of a DNS64 server and that of a NAT64 gateway were measured 

together: 

“The performance of the TAYGA NAT64 implementation 

(and implicitly of the TOTD DNS64 implementation) is 

compared to the performance of NAT44 in [11]. The 

performance of the Ecdysis NAT64 implementation (that has 

its own DNS64 implementation) is compared to the 

performance of the authors’ own HTTP ALG in [12]. The 

performance of the Ecdysis NAT64 implementation (and 

implicitly the performance of its DNS64 implementation) is 

compared to the performance of both the NAT-PT and an HTTP 

ALG in [13].” [10] 

We have also shown that the performances of the DNS64 

server and the NAT64 gateway should be measured separately 

[10]. Although we have compared the performance of four 

DNS64 implementations BIND [14], TOTD [15], Unbound 

[16] and PowerDNS [17] in [10], the usability of our results is 

rather limited for two reasons: 

1. The measurements were executed using only old 

and/or low performance devices up to 4 CPU cores as 

DUT (Device Under Test), in order to be able to 

overload them with our then available load generating 

solutions. However, modern server computers have 

more CPU cores. 

2. The testing method was only suitable for performance 

comparison and stability analysis, but not for 

benchmarking as defined in RFC 8219. (Please see [9] 

for more details of the difference between the two.) 

As for measurement tools, neither Nominum’s dnsperf 

[18], nor our earlier dns64perf [19] complies with RFC 

8219. As far as we know, the only RFC 8219 compliant DNS64 

tester is Dániel Bakai’s dns64per++ [20], which implements 

the compulsory tests of RFC 8219. We have enabled it for 

measuring caching performance of DNS64 servers [21] and 

made a correction in its timing algorithm [22]. 

We have done some RFC 8219 compliant benchmarking in a 

few papers but their aim was always something different then 

the exhaustive benchmarking of DNS64 implementations. We 

aimed to demonstrate the operation and the expectable quality 

 
1 We do so because we believe that it is easier to follow and understand its 

operation in this way, and also because we follow his approach in our 

of the results of our benchmarking methodology [9]. We have 

demonstrated that mtd64-ng, our new tiny DNS64 proxy 

outperforms BIND, but the measurements were performed 

using a SBC (Single Board Computer) with four cores as DUT 

[23]. We demonstrated the operation of the DNS64 caching 

performance testing [21], and the improved quality of the 

results using the corrected timing algorithm [22]. 

Unfortunately, we cannot report any RFC 8219 compliant 

DNS64 benchmarking paper other than ours, which can be 

explained by the fact that RFC 8219 was published in August 

2017.  

Therefore, we contend that there is a need for RFC 8219 

compliant DNS64 benchmarking tests, where the major DNS64 

implementations are tested using contemporary servers with 

higher number of CPU cores. 

III. BENCHMARKING METHODOLOGY FOR DNS64 SERVERS 

A. Summary of the Methodology 

In this section, we give a short summary of the benchmarking 

methodology for DNS64 servers mainly on the basis of RFC 

8219, but we also adjust its presentation to our current needs: 

whereas RFC 8219 follows the traditional two devices setup of 

RFC 2544 [24], where the two devices are the Tester and the 

DUT (Device Under Test), now we use two separate devices for 

the two logical functions of the Tester.1 (We found the usage of 

two physical devices necessary during the measurements for 

performance considerations.) 

The test and traffic setup for benchmarking DNS64 servers 

is shown in Fig. 1. The message flow of six messages complies 

with the “worst case” scenario of a domain name resolution 

using DNS64, where the six messages are: 

1. Query for the AAAA record of a domain name 

2. Query for the AAAA record of the same domain name 

3. Empty AAAA record answer 

4. Query for the A record of the same domain name 

5. Valid A record answer 

6. Synthesized AAAA record answer. 

To comply with RFC 8219, which requires the usages of all 

six messages, Tester/Measurer should send requests for all 

different domain names to prevent DUT from having a cache 

hit, as well as Tester/AuthDNS should be configured so that it 

reply with empty AAAA record and return exactly one A record 

for all the domain names used for testing. 

The measurement procedure requires that Tester/Measurer 

measurement setup for performance reasons, and thus the two parts of the paper 
are synoptic. 

Authoritative 
DNS server 

DNS64 server

DUT Tester/AuthDNS

Client 
dns64perf++

Tester/Measurer

2: AAAA query

3: empty AAAA 

4: A query

5: valid A 

1: AAAA query

6: synthesized AAAA

 
 

Fig. 1.  Test and traffic setup for benchmarking DNS64 servers. [20] 
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sends DNS queries to the DUT at a constant rate for at least 60s, 

and checks the replies. The test is passed if and only if all the 

replies arrive within 1s timeout time from the sending of the 

corresponding queries and all the replies contain a AAAA 

record. Now we quote our arguments for this “strict” criterion 

of 0% loss, because it has serious consequences, which are 

demonstrated in Section V.B of our current paper. Our 

arguments were: 

“We note that using a higher rate than the one measured with 

the above procedure might result in more successfully 

processed DNS record requests per second (and also non zero 

unanswered queries). However, we prudentially defined the 

performance metric with the above procedure for at least three 

reasons: 

1. Our goal is a well-defined performance metric, which 

can be measured simply and efficiently. Allowing any 

packet loss would result in a need for scanning/trying 

a large range of rates to discover the highest rate of 

successfully processed DNS queries. 

2. Even if users may tolerate a low loss rate (please note 

the DNS uses UDP with no guarantee for delivery), it 

cannot be arbitrarily high, thus, we could not avoid 

defining a limit. However, any other limits than zero 

percent would be hardly defendable. 

3. Other benchmarking procedures use the same criteria 

of zero packet loss (possibly for the above two 

considerations).” [9] 

We still consider these arguments valid from theoretical 

point of view, but on the basis of our measurement results of 

three important DNS64 implementations, we contend that, from 

practical point of view, there are some complementary 

performance metrics, which may be useful, when certain issues 

of DNS64 implementations are investigated and also in practice 

for a given class of users or under special circumstances. 

(Please refer to Section V.B for more details.) 

In practice, binary search is used to find the highest rate at 

which the DUT can pass the test. 

As there can be random events during the tests, which may 

influence the measurement, the binary search should be 

executed at least 20 times. Median should be used as 

summarizing function, plus 1 and 99 percentiles as indices of 

dispersion, which correspond to the minimum and maximum 

values if we have no more than 100 results. (Please refer to [9] 

for our considerations behind the choice of the summarizing 

function.) 

Besides the compulsory “worst case” test, there are also 

optional tests. 

If a domain name has a AAAA record then it is returned in 

message 3, messages 4 and 5 are omitted, no IPv4-embedded 

IPv6 address [25] synthesis is needed, but the AAAA record 

from message 3 is returned in message 6. Optional tests may be 

performed using domain names, 20%, 40%, 60%, 80%, and 

100% of which have a AAAA record. We consider that the 

results of this test will become more and more realistic in the 

upcoming phases of IPv6 transition. 

When there is a cache hit, message 1 is followed by message 

6, which contains the AAAA record from the cache of the 

DNS64 server. Optional tests may be executed, when domain 

names are 20%, 40%, 60%, 80%, and 100% cached. We 

consider that the performance of a DNS64 server at given cache 

hit rates may be a useful factor in the evaluation of its 

performance, but we do not claim the direct usability of these 

numbers, as it is not a simple task to predict the actual cache hit 

rate of a DNS or DNS64 server. 

RFC 8219 requires that a self-test of the Tester is performed 

to ensure that not the Tester but the DUT is the bottleneck 

during the measurements. For performing a self-test, the Tester 

is looped back, that is its Measurer subsystem is directly 

connected to its AuthDNS subsystem leaving out the DUT. A 

Tester (including its Measurer and AuthDNS subsystems) can 

be used for testing up to rate r with timeout t, if it passes a self-

test at rate s with timeout 0.25t, where s is defined by (1) and δ 

is at least 0.1. 

)1(2  rs  (1) 

Its rationale is that the resolution of an AAAA record request 

by the DNS64 server may require the resolution of two requests 

(one for a AAAA record and one for an A record) by the 

authoritative DNS server, thus if 0.25t is used for each 

resolution, then 0.5t remains for all the other work, and δ 

ensures a performance reserve.  

From practical viewpoint, if the performance of a Tester was 

measured and it was found that the highest rate it could pass the 

self-test was s1, then the Tester can be used up to r1 rate for 

DNS64 testing:  

)1(2

1
1




s
r  (2) 

We note that if higher than r1 measurement results are 

produced, they still prove that the DUT passed that test, but 

leave the question open what the maximum performance of the 

DUT is.  

B. Clarification of the Self-Test Rules for Optional Tests 

We have formulated the above described self-test rule 

focusing on the “worst case” test. Of course, it would be too 

strict to apply it literally for the optional tests. Therefore, now 

we clarify the self-test requirement for the optional tests. 

First, we consider the case, when there are some AAAA 

records exist. Let α denote their proportion, where 0 < α ≤ 1. If 

a AAAA record exists for a domain name then the authoritative 

DNS server needs to answer only one query, otherwise two. 

Thus, in this case s4A rate defined by (3) is enough instead of s 

defined by (1). 

  )1)(2()1()1(214   rrrs A
 (3) 

Now, let us see that, depending on the proportion of the 

domain names with AAAA record, up to what r1 rates we can 

use a Tester that passed a self-test at a given s1 rate. Substituting 

s1 for s4A in (3), we obtain for r1 as shown in (4). 

)1)(2(

1
1

 


s
r  (4) 

Let us see a numeric example. If we would like to test up to 

r=50,000qps, and δ=0.1 then the required self-test rate for the 

“worst-case” tests is 110,000qps. In the case when a AAAA 

record exist for 100% of the domain names, the Tester that 
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passed the 110,000qps test, can be used up to 100,000qps 

instead of 50,000qps. 

Now, we examine the case when some of the domain names 

are cached. Let β denote the cache hit rate, where 0 < β ≤ 1. If 

a domain name is cached then its resolution by the DNS64 

server does not require any effort from the authoritative DNS 

server. Thus, considering only the AuthDNS subsystem, the 

necessary sC rate can be calculated according to (5). 

)1()1(2,   rs AuthDNSC
 (5) 

However, Measurer subsystem has to be able to send requests 

and receive replies at 10% higher rates then it is actually used. 

)1(,  rs MeasurerC
 (6) 

The Tester must comply with both (5) and (6), that is, with 

(7). 

  )1()1(2,1   rMaxsC
 (7) 

Equation (7) may be rewritten as (8). 










5.0)1(

5.0)1()1(2





ifr

ifr
sC

 (8) 

Now, let us see that, depending on the cache hit rate, up to 

what r1 rates we can use a Tester that passed a self-test at a given 

s1 rate.  


















5.0
)1(

5.0
)1)(1(2

1

1

1







if
s

if
s

r
 (9) 

Finally, the existence of AAAA records and non-zero cache 

hit rate can be examined together. In this case, the non-cached 

domain names require one query if they have a AAAA record, 

or two queries if they do not have a AAAA record. Thus, the 

required s4A&C rate can be calculated according to (10). 

  )1()1)(2(,1&4   rMaxs CA
 (10) 

And let us also see that, depending on both the AAAA record 

rate and the cache hit rate, up to what r1 rates we can use a 

Tester that passed a self-test at a given s1 rate. 


















1)1)(2(
)1(

1>)1)(2(
)1)(1)(2(

1

1

1







if
s

if
s

r
 (11) 

C. Very Short Summary of Dns64perf++ 

The dns64perf++ program is a command-line tool for 

benchmarking DNS64 servers [20]. It sends queries for AAAA 

records at a specified rate and receives the replies until the end 

of the specified sending time interval plus timeout time. It prints 

out the number of sent queries, received replies, and valid 

replies, which is to be understood as a reply arrived within 

timeout time from its corresponding query and also containing 

a AAAA record. As it is a program running under Linux using 

TCP/IP socket interface API for packet sending and receiving, 

its accuracy is limited. For more details, please refer to our 

(open access) paper [20]. 

We have extended dns64perf++ with the feature of 

testing different cache hit rates [21]. Please refer to [9], how the 

cache hit rates recommended in RFC 8219 can be easily ensured 

without the knowledge of the cache size and/or cache control 

algorithm of the DNS64 implementations. 

When using dns64perf++ at higher than 50,000 queries 

per second rates, we have found an inaccuracy in its self-

correcting timing algorithm and corrected it in [22], where we 

have also disclosed its estimated accuracy. We used 

dns64perf++ with the corrected timing algorithm in all the 

measurements for this paper. 

IV. MEASUREMENTS 

A. Measurement Environment 

The measurements were carried out in the Hokuriku 

StarBED Technology Center of NICT, Japan. The N nodes 

were used, which are Dell PowerEdge C6620 servers. We 

needed three computers for DNS64 measurements but reserved 

more computers to be able to speed up experimentation. As we 

have pointed out performance differences during the self-test 

phase, we performed the same kinds of tests of each examined 

DNS64 implementation using the very same computers and 

used the different three tuples of computers for different kinds 

of tests. Fig. 2 shows the topology of our measurement setup. It 

is to be understood in the way that Test System 1 contained 

nodes n020, n021, and n022, which were interconnected by 

VLANs 3220, 3221, and 3222. Test System 2 and Test System 3 

were built up in the same way containing the elements 

mentioned in parentheses in the first and second positions, 

respectively. The roles of the computers were the same as we 

have introduced in Fig. 1, namely: Tester/Measurer, DUT, and 

Tester/AuthDNS. The two subsystems of the Tester were also 

interconnected to facilitate self-test. As each connection used 

enp3s0f0: 2001:2::2/64

DUT
(running DNS64 server)

Tester/AuthDNS
(running authoritative 

DNS server) 

enp3s0f0:  198.18.0.2/24

eno1: 2001:2::1/64

eno1: 198.18.0.1/24

Tester/Measurer
(running dns64perf++) 

eno1:
2001:2:0:1::2/64
198.18.1.2/24

enp3s0f0:
2001:2:0:1::1/64
198.18.1.1/24

n020 (n023, n026)

n021 (n024, n027)

n022 (n025, n028)

eno2: DHCP

eno2: DHCP

eno2: DHCP

VLAN3222
(3225, 3228)

VLAN3220 
(3223, 3226)

VLAN3221 
(3224, 3227)

Test System 1 (2, 3)

 
Fig. 2.  Measurement setup for all types of measurements. 
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its own VLAN, we could use the same IP addresses in all three 

Test Systems. As for the IP address family, IPv6 had to be used 

between Tester/Measurer and DUT, as DNS64 offers a service 

to IPv6-only clients. Any IP version may be used between DUT 

and Tester/AuthDNS. Following the practice of [9] and [10], 

we used IPv4 for the measurements, but performed the self-test 

of the Tester using both IP versions, and the higher performance 

with IPv4 justified our practice. The IP addresses of the 

interfaces were set up according to Fig. 2. As all the links 

interconnected one 10Gbps interface and one 1Gbps interface, 

thus the speed of the connections was always 1Gbps, which was 

enough for our tests. 

For the repeatability of our measurements, we disclose the 

hardware and software of the measurement environment in the 

appendix. 

B. DNS64 Implementation Selection 

As for DNS64 implementations to be tested, we have 

considered only free software [26] (also called open source 

[27]) for the same reasons given in [10]. 

We have tested the following DNS64 implementations: 

 BIND 9.10.3-P4-Debian [14] 

 PowerDNS Recursor 4.0.4 [17] 

 Unbound 1.6.0 [16] 

 mtd64-ng 1.1.0 [23] (for the calibration of the test 

system only) 

The selection of the first three ones was not a question, as 

they are commonly used DNS servers, which support DNS64. 

We have also considered TOTD 1.5.3 [28], which we included 

in both [9] and [10], however, it is single-threaded, no more 

developed, and it always crashed after a few 60s long tests 

during our preliminary measurements, therefore we omitted it. 

For testing the accuracy of the test system only, we have 

included mtd64-ng [23], which is an experimental DNS64 

implementation and not yet ready for deployment. It produced 

very good quality results in our earlier tests in the sense that the 

difference between the minimum and maximum value of the 

results of the required 20 tests was very small compared to the 

median [9], therefore, now we also used it as a kind of result 

quality reference for the other implementations. 

Although we were looking for, we did not find any other 

DNS64 implementations worth testing. We have also checked 

the Ecdysis [29] NAT64 implementation, which has its own 

DNS64 implementation, but it is either a patch for other DNS 

servers (BIND and Unbound), or its standalone version is a 

perl script [30], the performance of which was not worth 

measuring. 

We did not intend to optimize the tested DNS64 

implementations, because it is a nearly endless game, and 

several settings can be debated. Rather, we have used them as 

they are distributed in Debian (the first three) or downloadable 

from GitHub (mtd64-ng). The only setting beyond the 

configuration of DNS64 was, that we set the number of threads 

for the implementations that needed it. 

As the configuration settings may influence the performance 

of the DNS64 servers, we disclose them for the repeatability of 

the measurements in the appendix. 

C. Main Types of Tests 

The four main types of tests follow the requirements of RFC 

8219. Besides them, we performed some complimentary tests, 

which we found useful during the evaluation of the results: they 

will be described there. 

1) Self-test of the Tester 

As described in Section III.A, the aim of these tests was to 

determine, up to what rates the Tester can be used. As YADIFA 

[31] outperformed BIND [14], we do not include the details of 

the latter. 

For self-tests, YADIFA 2.2.3 was used to serve AAAA 

records for all the domain names. We tested whether the version 

of the IP protocol used for carrying the DNS messages has an 

influence to the performance. (Although dns64perf++ 

inputs the IPv6 address of the server to be tested, it did not 

prevent us from testing over IPv4: we used the IPv4 mapped 

IPv6 address of the authoritative DNS server, that is, 

::ffff:198.18.1.1, which caused the Linux kernel to send out 

IPv4 packets to the 198.18.1.1 destination address.)  

We have performed the self-test measurements for all three 

Test Systems, and found non-negligible differences among 

their DNS resolution performances. 

We have completed this “official” self-test with a practical 

test, where mtd64-ng was benchmarked in all there test systems. 

Our preliminary tests showed that mtd64-ng achieved its best 

performance when 8 CPU cores were used, and its performance 

degraded on 16 CPU cores. (We did not do a detailed analysis 

of the performance results of mtd64-ng, because it is not ready 

for deployment yet, and it has several problems, to mention 

only one, which prevents mtd64-ng form scaling up better: it 

uses only a single listener, which becomes a bottleneck.) 

Later, we added another self-test performed with NSD [32] 

as authoritative DNS server to serve as further result quality 

reference. 

2) Compulsory DNS64 Tests with Scale-up Test 

As the ongoing development in the hardware sector favors an 

increasing number of processing units over an increasing speed 

of a single unit [33], we consider it important to measure how 

the performances of the examined DNS64 implementations 

scale up with the number of CPU cores. Therefore, we have 

performed the “worst case” DNS64 test of the examined 

DNS64 implementations using the DUT with 1, 2, 4, 8, and 16 

CPU cores online. (Technically, we performed the on/off 

switching of the i-th CPU core by writing 1/0 values into the 

/sys/devices/system/cpu/cpu$i/online file.)  

3) AAAA Record Rate Examinations 

We examined the effect of the AAAA record rate to the 

performance of PowerDNS, Unbound and BIND. 

4) Cache Hit Rate Examinations 

We examined the effect of the cache hit rate to the 

performance of PowerDNS, Unbound and BIND. 

D. Hypotheses 

On the basis of our previous experience with DNS64 testing, 

we set up a few hypotheses, which express our expectations. 

Hypothesis 1. Mtd64-ng will show good quality, non-

scattered results [9].  
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Hypothesis 2. The different implementations will scale up 

differently [10].  

Hypothesis 3. PowerDNS will scale up better than BIND 

[10]. 

Hypothesis 4. Unbound will show high performance when 

using a single CPU core [10]. 

V. RESULTS AND EVALUATION 

A. Self-test 

The Self-test results of YADIFA for IPv4 and IPv6 transport 

protocols are shown in Table I and Table II, respectively. Our 

most important observation is that the results are rather 

scattered in the majority of the test cases (Test System 2 using 

IPv4 is an exception). At this point, we cannot tell the reason, 

why: as it can be caused by several elements of the system, 

including YADIFA, dns64perf++, Linux, or even the 

hardware (the computers or the network). We do not go into 

deeper details, but return to the issue of the quality of the results 

at mtd64-ng, and answer the question at NSD. 

As we use the system for measurements, we contend that not 

the median, but the minimum values are to be considered, 

because the unsatisfactory performance of the Tester should not 

make a negative impact for our measurements. Thus using the 

authoritative DNS server with IPv4, its at least 162,000qps 

performance enables us to perform DNS64 tests up to 

73,000qps rate in all three test systems. 

We note that it would have been enough to execute 

dns64perf++ with a constant rate of 162,000qps (20 times) 

by all three test systems to satisfy the self-test requirement of 

RFC 8219, however we wanted to explore and disclose the 

performance of the three test systems. 

As we mentioned before, mtd64-ng was used to check and 

demonstrate the accuracy of the result produced by the three test 

systems. The results are shown in Table III. We have added a 

row, which reflects the quality of the results: it is characterized 

by the dispersion of the results which is the proportion of the 

range of the results and the median, expressed in percentage, as 

defined by (12). 

 %100
minmax





median

dispersion  (12) 

Our most important observation is that the dispersion was 

about 3-4%, which we interpret that all three test systems are 

able to produce meaningful results and thus may be used (and 

Hypothesis 1 is confirmed). 

We also note that the difference between the minimum 

(63,003qps) and maximum (63,303qps) of the medians of the 

results produced by the three test systems is 300qps, that is, less 

than 0.5% of any of them. 

Before presenting some further self-test results, we would 

like to mention that, in parallel with the DNS64 measurements, 

we have also benchmarked several authoritative DNS server 

implementations using another set of computers. (We could not 

wait for the results of those tests before starting the DNS64 

tests, as our time was limited.) We have found that NSD showed 

high and very stable results when executed using only a single 

core. Therefore, we have performed an additional self-test on 

all three tests systems using NSD with only a single online CPU 

core as authoritative DNS server. The results produced by the 

three test systems are shown in Table IV. Our most important 

finding is that the dispersion is always under 1%, thus the 

scattered nature of the results in Table I and Table II are to be 

attributed to the YADIFA tests using all 16 CPU cores. Another 

observation is that the difference between the highest median 

(168,623qps) and the lowest median (163,904qps) is 5,019, 

which is about 3%, thus it justifies our cautiousness that the 

benchmarking tests for comparison of the performances of 

different DNS64 implementations were always executed by the 

same test system.  

B. Scale-up Tests 

1) General Overview and Problem Identification 

The DNS64 performance of PowerDNS, Unbound, and 

BIND using different number of CPU cores (and the same 

number of threads) are shown in Tables V, VI, and VII 

respectively. Our most important observations are: 

 PowerDNS showed relatively low performance at a 

single CPU core (3,077qps), and it scaled up well 

up to 16 cores (26,620qps).  

 Unbound performed excellently at a single CPU 

core (8,708qps), thus hypothesis 4 is confirmed, and 

it scaled up well up to 8 cores (31,502qps). 

 The performance of Unbound degraded by more 

than 45% at 16 cores (17,131qps) compared to its 

performance 8 cores (31,502qps), which is a severe 

problem.  

 The high dispersion of the results of Unbound from 

2 to 16 CPU cores is another serious issue.  

 BIND showed low performance at a single CPU 

TABLE I 

AUTHORITATIVE DNS PERFORMANCE OF YADIFA OVER IPV4 

Test System 1 2 3 

Median (queries per second) 180140 163641 180200 
Minimum (queries per second) 163839 162303 176127 

Maximum (queries per second) 182915 164641 185345 

 

TABLE II 

AUTHORITATIVE DNS PERFORMANCE OF YADIFA OVER IPV6 

Test System 1 2 3 

Median (queries per second) 162129 160003 159546 
Minimum (queries per second) 147391 155133 157055 

Maximum (queries per second) 166017 164357 163857 

 

TABLE III 
DNS64 PERFORMANCE OF MTD64-NG USING 8 CPU CORES 

Test System 1 2 3 

Median (queries per second) 63303 63093 63003 

Minimum (queries per second) 62271 62343 61951 

Maximum (queries per second) 64121 64001 64531 

Dispersion (%) 2.92 2.63 4.10 

 

TABLE IV 

AUTHORITATIVE DNS PERFORMANCE OF NSD, SINGLE CPU CORE, IPV4 

Test System 1 2 3 

Median (queries per second) 168623 163904 167137 
Minimum (queries per second) 167935 163447 165887 

Maximum (queries per second) 168961 164361 167489 

Dispersion (%) 0.61 0.56 0.96 
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core (2,425qps) and nearly doubled its performance 

at 2 CPU cores (4,788qps) but it showed a constant 

performance of 6,659qps from 4 to 8 cores and a 

very close fixed value of 6,661qps at 16 cores, 

which suggests a fundamental problem. 

We note that hypotheses 2 and 3 are also confirmed, but the 

constant performance of BIND was surprising for us, which we 

had to investigate, as well as the two other issues. 

2) Identifying the Causes 

Looking for the reasons of these three issues, we have noticed 

in the measurement log files that all three problems implied that 

the rate of the valid answers was very often higher that 99% but 

somewhat less than 100%. Therefore, we have re-executed all 

the experiments with an acceptance criterion of 99% valid 

answers, which does not comply with RFC 8219, but can help 

revealing the reason of the three issues. The results are shown 

in Tables VIII, IX, and X. As for Unbound, its results are now 

not at all scattered and the dispersion is always under 10%. 

From 4 to 16 cores, its performance values are now significantly 

higher, but its performance still shows degradation form 8 to 16 

cores. As for BIND, its performance now scales up well from 1 

to 8 cores (from 2,448qps to 17,508qps) but shows somewhat 

degradation at 16 cores (15,748qps). 

Another important observation is, that the single core (and 

therefore single thread) performances of all three DNS64 

implementations showed only a negligible increase due to the 

change of the acceptance criterion. Therefore, we contend that 

the root cause of all three issues is the imperfect cooperation 

among the threads: whereas the vast majority of the requests are 

replied in time, a small fraction of them are not. This 

phenomenon can be observed with all three DNS64 

implementations at a certain extent, but their measure is rather 

different. As for PowerDNS, there is practically no difference 

between the results of the two measurement series from 1 to 4 

threads, and the difference is relatively moderate even at 16 

threads (26,620qps vs. 30,954qps). As for Unbound, the 

problem of high dispersion starts from 2 threads, although here 

the performance difference is not high (15,623qps vs. 

16,624qps), but high performance differences can be observed 

from 4 to 16 cores. As for BIND, the problems is so serious 

from 4 cores that its performance is limited to a constant value 

in the RFC 8219 compliant tests. 

As for the benchmarking methodology of DNS64 servers, we 

would like to emphasize that we do not mean to introduce any 

other percentage than 0% as the acceptance criterion for 

benchmarking tests, defined by RFC 8219. We have used 99% 

as a random value, which suited for our purposes to find the 

explanation of various issues. 

3) Performance Model 

To summarize our findings in a high level model of the 

multicore performance of DNS64 implementations, we can say 

that it depends on two factors: the single core performance and 

 

TABLE V 

DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND 

THREADS, POWERDNS 

Num. CPU cores 1 2 4 8 16 

Median (qps) 3077 5498 10030 17290 26620 

Minimum (qps) 3061 5439 9855 16603 24447 

Maximum (qps) 3105 5633 10153 18563 27665 
Dispersion (%) 1.43 3.53 2.97 11.34 12.09 

 

 

TABLE VI 
DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND 

THREADS, UNBOUND (SCATTERED RESULTS) 

Num. CPU cores 1 2 4 8 16 

Median (qps) 8708 15623 19993 31502 17131 

Minimum (qps) 8511 11121 16223 24575 11955 
Maximum (qps) 8865 16897 25665 32753 22017 

Dispersion (%) 4.07 36.97 47.23 25.96 58.74 

 

 

TABLE VII 
DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND 

THREADS, BIND 

Num. CPU cores 1 2 4 8 16 

Median (qps) 2425 4788 6659 6659 6661 
Minimum (qps) 2303 4731 6659 6659 6661 

Maximum (qps) 2441 4897 6659 6659 6661 

Dispersion (%) 5.69 3.47 0 0 0 

 

 

TABLE VIII 

DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND 

THREADS, POWERDNS 

ACCEPTANCE CRITERION: 99%, NOT RFC 8219 COMPLIANT! 

Num. CPU cores 1 2 4 8 16 

Median (qps) 3092 5527 10146 19541 30954 

Minimum (qps) 3071 5481 9949 17887 30393 

Maximum (qps) 3121 5633 10321 20485 31793 
Dispersion (%) 1.62 2.75 3.67 13.30 4.52 

 

TABLE IX 

DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND 

THREADS, UNBOUND 

ACCEPTANCE CRITERION: 99%, NOT RFC 8219 COMPLIANT! 

Num. CPU cores 1 2 4 8 16 

Median (qps) 8710 16624 33852 66552 43790 

Minimum (qps) 8447 16379 32767 65407 40959 
Maximum (qps) 8793 16949 34305 67585 45089 

Dispersion (%) 3.97 3.43 4.54 3.27 9.43 

 

TABLE X 

DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND 

THREADS, BIND, 

ACCEPTANCE CRITERION: 99%, NOT RFC 8219 COMPLIANT! 

Num. CPU cores 1 2 4 8 16 

Median (qps) 2448 4852 9467 17508 15748 
Minimum (qps) 2367 4727 9403 17135 15577 

Maximum (qps) 2477 4993 9601 17731 16385 

Dispersion (%) 4.49 5.48 2.09 3.40 5.13 

 

TABLE XI 
DNS64 PERFORMANCE USING 4 CORES FROM EACH CPU, POWERDNS 

Num. CPU cores 4+4 

Median (qps) 16771 

Minimum (qps) 16095 

Maximum (qps) 18529 
Dispersion (%) 14.51 

 

TABLE XII 

DNS64 PERFORMANCE USING 4 CORES FROM EACH CPU, UNBOUND 

ACCEPTANCE CRITERION: 99%, NOT RFC 8219 COMPLIANT! 

Num. CPU cores 4+4 

Median (qps) 59832 

Minimum (qps) 58879 

Maximum (qps) 60681 
Dispersion (%) 3.01 
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the proper thread cooperation. Whereas for the optimization of 

the first one, program profiling is a matured method, which is 

also supported by modern tools such as CPU flame graphs [34], 

the optimization of the latter is a much harder task, although 

profiling might also help (e.g. checking the time while the 

threads are waiting on locks/mutexes), but even if one finds a 

bottleneck, its mitigation may be a more difficult problem then 

the optimization of a sequential program code. 

4) Not All CPU Cores are Equal 

Until now, we have mentioned only the number of the online 

CPU cores. However, cores 0-7 and cores 8-15 reside in two 

different CPUs. Using cores from two different CPUs for the 

execution of the threads of the same task may result in: 

 performance degradation due to communication 

bottleneck between threads being executed by cores 

in different CPUs, or due to NUMA (Non-Uniform 

Memory Access) issues [36], 

 performance gain due to better cache coverage. 

To investigate the case, we have executed the 8-core tests, 

which used earlier cores 0-7, also using cores 0-3 and cores 8-

11.  

The results of PowerDNS are shown in Table XI. Comparing 

them with the 8-core results in Table V, it is visible that the 

median value decreased only in a small extent from 17,290qps 

to 16,771qps, where the difference is only about 3%. The 

increase of the dispersion is also relatively small (from 11.34% 

to 14.51%). 

As for Unbound, we used the 99% acceptance criterion to get 

non-scattered results (for comparability). Therefore the results 

of Unbound in Table XII are to be compared with 8-core results 

in Table IX. Here the median decreased from 66,552qps to 

59,832qps, which is about 10%. (We dedicate a separate case 

study to the investigation, whether this decrease is caused by 

NUMA issues, see Section VII.) Taking 59,832qps as a base, 

the 43,790qps performance at 16 cores is still a significant 

decrease (26,8%). 

As for BIND, we did not see any point in testing it using 4+4 

cores since its performance reached its fixed maximum value at 

4 cores (and we did not want to increase the number of non-

RFC 8219 compliant measurements beyond necessity). 

5) Implementation Selection Guide 

As for practical support for network operators, Tables V, VI, 

and VII can help in the selection of the appropriate DNS64 

implementations depending on performance requirements. 

As Tables VIII, IX, and X contain non RFC 8219 compliant 

results, they are not recommended for general use. However, 

they can be useful under special circumstances. E.g. in the case 

of a metropolitan free WiFi operator, where the packet loss rate 

is over 1% in the access network, they may be used. Or when a 

DoS attack of 50,000 qps rate against the DNS system is 

anticipated, Unbound at 8 cores might be an acceptable solution 

according to Table IX. For other special cases, some other 

acceptance criteria, e.g. 0.1% or 0.01% loss, may be suitable. 

Although we believe that these kind of tests may be useful 

under special circumstances, but we insist on that the 0% loss 

criterion should be used for benchmarking DNS64 servers in 

general. 

C. Results of the AAAA Record Rate Examinations 

Although it was natural for us to use all 16 cores of the DUT 

for these tests, but as we have received scattered results both 

with PowerDNS and Unbound, thus we decided not to include 

them. Whereas the 99% acceptance criterion made the results 

non-scattered, we did not want to include more non-RFC 8219 

compliant results. Therefore, we decided to reduce the number 

of CPU cores to a value, which results in meaningful results. 

We used different number of CPU cores for each 

implementations, thus giving up performance comparison of 

the different DNS64 implementations in these tests: they were 

intended for the individual examinations of the given DNS64 

server implementations. 

As the tests with various AAAA record rates were executed 

by Test System 2, we have also performed 0% AAAA record 

rate tests to serve as a base for comparison, because they could 

be different from the results of the scale-up tests, which were 

executed by Test System 1. 

1) PowerDNS 

For PowerDNS, we used 4 CPU cores at the DUT. The 

DNS64 performance results of PowerDNS as a function of 

AAAA record rate is shown in Table XIII. The median value of 

its 0% AAAA record performance is 10,051qps, which is very 

close to 10,030qps, the 4-core performance of PowerDNS in the 

scale up tests. 

The dispersion of the results remained under 5% for all 

AAAA record rates. And the performance of PowerDNS 

showed an increase, which complies with our simple theoretical 

model and experimental results in [9]. 

2) Unbound 

For Unbound, we used only a single CPU core. The DNS64 

TABLE XIII 

DNS64 PERFORMANCE AS A FUNCTION OF AAAA RECORD RATE, 

POWERDNS, 4 CPU CORES, 4 THREADS 

AAAA 

record rate  

0% 20% 40% 60% 80% 100% 

Median (qps) 10051 10893 11992 13249 14842 18107 

Min. (qps) 9939 10751 11775 13051 14591 17775 

Max. (qps) 10177 11265 12105 13449 15057 18561 
Disp. (%) 2.37 4.72 2.75 3.00 3.14 4.34 

 
TABLE XIV 

DNS64 PERFORMANCE AS A FUNCTION OF AAAA RECORD RATE, UNBOUND, 

1 CPU CORE, 1 THREAD 

AAAA 
record rate  

0% 20% 40% 60% 80% 100% 

Median (qps) 8725 9495 10506 11837 13567 16459 

Min. (qps) 8447 9151 10231 11263 13179 15735 
Max. (qps) 8801 9729 10753 11993 13825 16897 

Disp. (%) 4.06 6.09 4.97 6.17 4.76 7.06 

 

TABLE XV 

DNS64 PERFORMANCE AS A FUNCTION OF AAAA RECORD RATE, BIND, 
2 CPU CORES, 2 THREADS 

AAAA 

record rate  

0% 20% 40% 60% 80% 100% 

Median (qps) 4796 5203 5709 6277 6659 6659 

Min. (qps) 4701 5119 5119 6143 6659 6659 
Max. (qps) 4881 5281 5761 6345 6661 6721 

Disp. (%) 3.75 3.11 11.25 3.22 0.03 0.93 
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performance results of Unbound as a function of AAAA record 

rate is shown in Table XIV. 

The dispersion of the results varies around 4-7%, which is 

still acceptable, and the performance of Unbound increases as 

expected. 

3) BIND 

In parallel with the scale-up tests, we have tested BIND using 

16 CPU cores. Regardless of the AAAA record percent, the 

results were always 6,661qps. This result reveals that the fixed 

performance issue is likely not caused by a bottleneck in the 

communication of BIND with the authoritative DNS server or 

a bottleneck in the IPv4-embedded IPv6 address synthesis code 

of BIND as the results did not improve with the more frequent 

occurrences of the AAAA records. To present some more 

meaningful results, we selected two cores, which still enables 

us to reveal what happens when the strange performance limit 

of BIND is reached. The DNS64 performance results of BIND 

as a function of AAAA record rate is shown in Table XV. The 

strange performance limit is reached at 80% AAAA record rate. 

There happened a single occurrence of the 6721qps result at 

100% AAAA record rate, which we attribute to a very rare 

random event, a kind of coincidence, which was favorable to 

the performance of BIND. Please recall that this has never 

happened among the 6*20=120 measurements performed at 16 

cores for different AAAA record rates. 

D. Results of the Cache Hit Rate Examinations 

We used the same number of CPU cores for the cache hit rate 

examinations as with the AAAA record rate examinations. 

As the tests with various cache hit record rates were executed 

by Test System 3, we have also performed 0% cache hit rate 

tests to serve as a base for comparison. 

1) PowerDNS 

The DNS64 performance results of PowerDNS as a function 

of cache hit rate is shown in Table XVI. The median value of 

its 0% cache hit rate performance is 10,055qps, which is very 

close to 10,030qps, the 4-core performance of PowerDNS in the 

scale up tests. The dispersion of the results remained under 10% 

for all cache hit rates from 0% to 80%, but it was high at 100% 

cache hit rate (21.98%). This high dispersion was caused by the 

smallest result of 80,831qps, which occurred only ones, and the 

next smallest result was 85,453qps, which was also far from the 

median. 

The performance of PowerDNS showed an increase, which 

complies with our simple theoretical model and experimental 

results in [9]. The large difference between the 80% and 100% 

cache hit rate results might suggest that other rates (e.g. 90%, 

95%, or 99%), would have been worth testing, but although 

they might be interesting from theoretic point of view, we do 

not think that higher than 80% cache hit rate would be relevant 

in practice. 

We note that the 100,816qps DNS64 resolution rate achieved 

at 100% cache hit rate is higher than 73,000qps, thus it should 

have been invalidated without our clarification to the 

requirements for the tester in Section III.B.  

2) Unbound 

The DNS64 performance results of PowerDNS as a function 

of cache hit rate is shown in Table XVII. The dispersion of the 

results is very high at 100% cache hit rate (49.04%) but it 

remained under 7% for all other tested cache hit rates. The very 

high dispersion is caused by the 65,535 values, which occurred 

9 times among the 20 results. As the [0, 131,072] initial range 

was used for the binary search, this value was produced in a 

way that the first test of the binary search at 65,536qps rate 

failed, and then all other tests were successful. We contend that 

in case of a single failure it could be debated whether it was 

caused by a random event inside or outside Unbound, but the 9 

failures have to be attributed to Unbound and not a random 

event in the test system outside Unbound, as they did not occur 

during the testing of PowerDNS although the measurement 

results were in the same order of magnitude.  

3) BIND 

The DNS64 performance results of BIND as a function of 

cache hit rate is shown in Table XVIII. In this case the DNS64 

performance of BIND is not limited by a constant value, and it 

complies with our simple theoretical model and experimental 

results in [9]. 

E. Where is the DNS64 Performance Bottleneck of BIND? 

First, let us collect our observations. The DNS64 

performance of BIND increases with the number of CPU cores 

up to 4 cores, where it reaches a fixed upper bound. Although 

this upper bound seems to be sharp, much higher rates can be 

achieved if some loss is allowed. Thus it is probably not a 

classic performance bottleneck but perhaps some inter-thread 

cooperation issue. The 100% AAAA record rate, which halves 

the number of messages between the DNS64 server and the 

authoritative DNS server and eliminates the need for IPv4-

embedded IPv6 addresses synthesis, does not help at all. But the 

strange limit can be crossed, when there is a cache hit. 

Before presenting our hypothesis about a possible cause of 

the DNS64 performance bottleneck of BIND, we need to give 

TABLE XVI 
DNS64 PERFORMANCE AS A FUNCTION OF CACHE HIT RATE, POWERDNS, 

4 CPU CORES, 4 THREADS 

cache hit rate  0% 20% 40% 60% 80% 100% 

Median (qps) 10055 12147 14731 19179 29242 100816 

Min. (qps) 9975 11759 14463 18927 28671 80831 
Max. (qps) 10197 12423 15873 19361 29715 102993 

Disp. (%) 2.21 5.47 9.57 2.26 3.57 21.98 

 

TABLE XVII 

DNS64 PERFORMANCE AS A FUNCTION OF CACHE HIT RATE, UNBOUND, 
1 CPU CORE, 1 THREAD 

cache hit rate  0% 20% 40% 60% 80% 100% 

Median (qps) 8680 10261 12975 17760 29677 102395 

Min. (qps) 8415 10077 12543 17335 28953 65535 

Max. (qps) 8961 10513 13145 18241 30273 115745 
Disp. (%) 6.29 4.25 4.64 5.10 4.45 49.04 

 

TABLE XVIII 

DNS64 PERFORMANCE AS A FUNCTION OF CACHE HIT RATE, BIND, 
2 CPU CORES, 2 THREADS 

cache hit rate  0% 20% 40% 60% 80% 100% 

Median (qps) 4791 5817 7383 8996 15898 25819 

Min. (qps) 4695 5743 7255 8571 12287 24575 

Max. (qps) 4873 5953 7465 9473 16193 26641 
Disp. (%) 3.72 3.61 2.84 10.03 24.57 8.00 
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a short introduction to the cache poisoning [35] threat and its 

countermeasures.  

1) Very Basic Introduction to Cache Poisoning and its 

Countermeasures 

The basic idea of cache poisoning is that the attacker sends a 

request for a given domain name to the attacked recursive DNS 

server, and if the given domain name is not yet cached, the 

recursive DNS server sends out a DNS query for the same 

domain name to an authoritative DNS server, whereas the 

attacker sends a forged answer to this query to the recursive 

DNS server, spoofing the authoritative DNS server, before the 

reply of the authoritative DNS server arrives. The recursive 

DNS server accepts an answer only in the case if it comes from 

the right IP address and port number to the right IP address and 

port number, and the Transaction ID as well as the query 

matches. The attacker performs blind spoofing, that is the 

attacker has to guess the source port number and transaction ID 

of the query sent by the recursive DNS server to the 

authoritative DNS server. To be successful, the attacker has to 

send a high number of forged replies with different port number 

and Transaction ID combinations in a short time window of 

about 100ms. The protection against cache poisoning must 

include Transaction ID and source port randomization using 

cryptographically secure random numbers as well as refraining 

from sending equivalent queries (with identical QNAME, 

QTYPE, and QCLASS fields) concurrently, which could lead 

to a birthday paradox based attack, thus efficiently reducing the 

number of messages necessary for a successful attack [37]. 

2) Our Hypothesis for a Possible Cause of the Low DNS64 

Performance of BIND 

In our understanding, recursive DNS servers have to account 

the currently outstanding queries to avoid sending out multiple 

equivalent queries concurrently. Regardless of its 

implementation, we call it outstanding query database. We 

contend that the improper organization of the locking (for write 

access) of this database by multiple threads might be a possible 

cause of the low DNS64 performance of BIND.  When there is 

a cache hit, there is no need to access the database thus no 

problem occurs. Regardless of the probability of the existence 

of the AAAA records, the queries have to be inserted to and 

deleted from the database. And due to improper organization, 

the access to the database is denied at a high enough rate in a 

small proportion of the cases, which results in the failure of the 

RFC 8219 tests, but enables much higher rate for a more 

permissive test, e.g. the one which tolerates 1% loss. 

We cannot prove this hypothesis, we only contend that it can 

be an explanation to the symptoms we experienced. We have 

reported the issue to the developers of BIND. 

VI. COMPUTING POWER EFFICIENCY OF DNS64 SERVERS 

A. Definition 

The energy efficiency of the Internet infrastructure is an 

important concern for several years [38]. We intend to 

contribute to this field by defining and measuring the 

computing power efficiency of DNS64 servers. We are aware 

that there is no linear relationship between the computing power 

and the energy consumption, but we intend to define a metric, 

which is easy to measure and is definitely relevant to the 

operators of DNS64 servers. We are also aware that these 

results are dependent from the computer used for 

benchmarking, and therefore we propose it only as a 

complementary metric, but we contend that it can be a useful 

additional factor to the network operators for decision making. 

We define the computing power relative DNS64 performance 

as the number of processed queries per second divided by the 

CPU utilization of the computer. For clarity, we count the full 

utilization of a single CPU as 1. (Linux reports the CPU 

utilization in percentage, e.g. the maximum CPU utilization of 

a 16-core system is reported as 1600%, and we count it as 16.) 

B. Development of the Measurement Method 

During benchmarking DNS64 servers, DUT is handled as a 

“black box”. The CPU utilization measurements could 

influence the performance of the DNS64 implementations, thus 

it has to be done separately. Designing these tests, we have 

identified two challenges: 

1. In the beginning of a test, there may be an initial 

transient of unknown length, during which the CPU 

utilization of the DNS64 implementations differ from 

its steady state value. 

2. The ratio of the query rate and the CPU utilization is 

not necessarily constant, but may depend on the load 

conditions. 

Therefore, we had to check these phenomena. 

1) Examining the Length of the Initial Transient 

We have tested how the CPU utilization changes over time 

during the benchmarking of the three tested implementations. 

Our goal was to determine the length of the initial transient, 

which have to be left out from the evaluation, when determining 

the computing power consumption of the different DNS64 

implementations. 

The measurements were performed at different rates, using 

180s long tests. The CPU utilization of the DNS64 

implementations was measured with the top command using it 

in batch mode and printing out the CPU utilization values in 1s 

resolution. The relevant part of the measurement script was: 
 

top –b –n 180 –d 1 –p $(pidof $DNS64server) 
 

We have examined several DNS64 implementation, CPU 

core number and query rate combinations, and selected some 

meaningful ones for Fig. 3. Whereas the initial transient is very 

short (2-3s) for Unbound, it is about 10-15s for BIND and about 

40-50s for PowerDNS. We have chosen 60s as a common upper 

bound for the length of the initial transient for all three 

implementations. And we also decided to use 180s long tests, 

thus we have 120 results after the deletion of the first 60 ones. 

(We recommend this relatively high number of results because 

of the fluctuations observed in the CPU utilization of 

PowerDNS. Otherwise, a smaller value, e.g. 30 could do.) 

The significant oscillation of the CPU utilization of 

PowerDNS at 25,000qps rate is another interesting observation. 

2) Testing the Query Rate and CPU Utilization Ratio 

To examine how the computing power relative performances 
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of the three tested DNS64 implementations depend on the load 

conditions, we have measured their CPU utilization at several 

rates using as large intervals as possible, and calculated their 

computing power relative performances. Fig. 4 shows the 

results. Whereas the computing power relative performance of 

PowerDNS is close to constant, that of Unbound and BIND 

show somewhat increasing tendency with the load. Because of 

the slightly increasing tendency, we propose two methods. The 

fine grain one determines the computing power relative 

performance of the DNS64 servers at 3 working points, namely, 

when the query rate is the 25%, 50%, and 75% of the maximum 

DNS64 performance, whereas the coarse one does it only at a 

query rate of 50% of the maximum DNS64 performance. 

C. Measurement and Results 

Using our DNS64 benchmarking results, namely the median 

values for PoweDNS, Unbound, and BIND from Table V, 

Table VI, and Table VII, respectively, we have performed the 

measurements for their fine grain characterization. The 

computing power relative DNS64 performance results for 

PowerDNS, Unbound, and BIND are displayed in Table XIX, 

Table XX, and Table XXI, respectively. In the last lines of the 

tables, we have also included the CPU utilization values 

measured at full load, as they may give further insight into the 

behavior of the given DNS64 implementations. (We took no 

care if the tests failed or passed: they could fail due to the extra 

load generated by the CPU utilization measurement.) 

As for the computing power relative DNS64 performance 

results of PowerDNS, there are some fluctuations, but there is 

no significant degradation at 16 CPU cores compared to 8 or 

any other number of CPU cores. In contrast, the computing 

power relative DNS64 performance results of both Unbound 

shows significant decrease, when using 16 CPU cores. 

Considering the 50% load results and comparing the computing 

power relative DNS64 performance results at 8 and 16 cores, 

they decrease from 7,141qps to 5,671qps. We seek the reasons 

in a separate case study in Section VII. 

Comparing the computing power relative DNS64 

performance results at different load levels, we cannot observe 

significant tendencies: they sometimes grow (e.g. Unbound, 4 

cores), sometimes decrease (PowerDNS 16 cores) with the 

increase of the load. As the results at 25% or 75% load usually 

do not significantly differ from the results at 50% load, we 

consider that in the case of the three tested DNS64 

implementations it is enough to disclose only the computing 

power relative DNS64 performance results measured at 50% of 

the maximum DNS64 performance. However, the situation may 

be different in the case of other DNS64 implementations, 

therefore we recommend to perform the measurement in all 

three working points. And as for the presentation of the results, 

it is always imperative to disclose the query rate and CPU core 

numbers, as well as CPU type used for testing to avoid the 

 
 

Fig. 3.  Study of the initial transient of the CPU utilization. 

 
 

Fig. 4.  Computing power relative performances of PowerDNS, Unbound 

and BIND under different load conditions. 
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TABLE XIX 

COMPUTING POWER RELATIVE DNS64 PERFORMANCE (CPRDP) UNDER 

DIFFERENT LOAD CONDITIONS, POWERDNS 

Num. CPU cores 1 2 4 8 16 

Full rate (qps) 3077 5498 10030 17290 26620 

CPRDP @25% 2960 2855 2938 2973 2932 

CPRDP @50% 2947 2830 2806 2831 2808 

CPRDP @75% 2932 2751 2780 2717 2655 

CPU util. @100% 99.3% 196.6% 360.7% 617.1% 974.6% 

 
TABLE XX 

COMPUTING POWER RELATIVE DNS64 PERFORMANCE (CPRDP) UNDER 

DIFFERENT LOAD CONDITIONS, UNBOUND 

Num. CPU cores 1 2 4 8 16 

Full rate (qps) 8708 15623 19993 31502 17131 

CPRDP @25% 7735 7524 7598 6855 5369 

CPRDP @50% 7735 7273 7793 7141 5667 

CPRDP @75% 7749 7786 7805 7517 5847 

CPU util. @100% 98.8% 188.2% 247.5% 407.8% 291.3% 

 
TABLE XXI 

COMPUTING POWER RELATIVE DNS64 PERFORMANCE (CPRDP) UNDER 

DIFFERENT LOAD CONDITIONS, BIND 

Num. CPU cores 1 2 4 8 16 

Full rate (qps) 2425 4788 6659 6659 6661 

CPRDP @25% 1861 1735 1785 1786 1538 
CPRDP @50% 1980 1929 1826 1645 1550 

CPRDP @75% 2062 2452 2005 1696 1333 

CPU util. @100% 99.3% 196.6% 312.8% 387.6% 565.9% 
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possibility of gaming. 

VII. CASE STUDY: NUMA INSIGHTS 

Modern multiprocessor systems use NUMA (Non-Uniform 

Memory Access) instead of SMP (Symmetric Multiprocessing) 

for scalability considerations. 

We have examined, whether the performance degradation of 

Unbound at 8 cores, when the cores reside in two physical 

CPUs, might be caused by NUMA issues. 

We have measured the NUMA hits and misses for both 

PowerDNS and Unbound using 8 cores first as cores 0-7, which 

all reside in the first CPU (node0 in NUMA terminology) and 

then as cores 0-3 (in node0) plus cores 8-11 (in node1).  

For the measurements, we used the numastat Linux 

command without arguments, as in this way it displays the 

number of memory requests, whereas it gives MBs, if any 

arguments are specified. Thus we could not filter to the memory 

requests of the DNS64 implementations (because it would have 

needed an argument), but all the memory requests in the Linux 

system were included. Therefore, we performed the 

measurements 20 times and calculated the median values to 

filter out the effect of possible random events (outside the 

DNS64 implementations), and also included the minimum and 

maximum values to reflect the dispersion of the results. (As 

numastat displays the cumulative values, we have queried 

the counters before and after each tests and calculated the 

differences.) 

The NUMA results of PowerDNS are shown in Table XXII. 

The miss values are negligible in both cases as expected. An 

interesting observation is that the memory requests are not 

distributed evenly between the two CPUs even though 8 threads 

were used. This uneven distribution of the work did not turn out 

from the CPU load measurements, as then the cumulative load 

of all CPU cores was measured. 

The NUMA results of Unbound are shown in Table XXIII. 

As the number of NUMA miss count are negligible in both 

cases, we can conclude that the performance degradation of 

Unbound is not caused by NUMA issues. Our result is in a good 

agreement with the fact that our Linux kernel version (4.9.0-4-

amd64) is higher than any of the ones mentioned in [36] as 

having scheduler issues and thus resulting in significant 

performance loss on NUMA architectures. 

Another interesting observation is, that Unbound had 

significantly lower number of memory requests then 

PowerDNS. 

VIII. DISCUSSION AND FUTURE WORK 

On the one hand, both the highest single core performance 

(8,708qps) and the highest overall DNS64 performance 

(31,502qps) results were produced by Unbound (at 8 cores). It 

was also Unbound that showed the best computing power 

relative performance. Therefore, Unbound seems to be the best 

choice for a DNS64 implementation at the moment. 

On the other hand, although PowerDNS showed only a 

moderate single core performance (3,077qps) and its highest 

performance is only (26,620qps), but is scaled up well and it 

outperformed Unbound at 16 cores, which showed a serious 

performance degradation at 16 cores (17,131qps). We surmise 

that an average DNS64 server administrator will not even think 

of switching off 8 cores of a 16-core server to increase its 

performance, thus we believe that the 17,131qps value is to be 

primarily considered as the DNS64 performance of Unbound at 

16 cores. And the development of the CPUs has not stopped. 

For example, the Intel Xeon Phi 7200 processor [39] has 64 

cores. Thus, we contend that scalability of DNS64 

implementations has utmost importance. 

We plan to examine the performance of PowerDNS and 

Unbound using a server with higher number of CPU cores as 

DUT. The expected new version of mtd64-ng is also a 

candidate. BIND definitely needs a bugfix to be included. 

Suggestions for testing further DNS64 implementations are also 

welcome. 

IX. CONCLUSION 

For the optional DNS64 tests of RFC 8219, we have clarified 

the requirements for the Tester, which are thus less demanding 

then the literal application of the requirements formulated for 

the compulsory tests.  

By carefully examining the DNS64 performances of BIND, 

PowerDNS and Unbound using 1, 2, 4, 8, and 16 CPU cores, 

TABLE XXII 
NUMASTAT RESULTS OF POWERDNS USING 8 CORES AND 8 THREADS, TEST RATE: 1500QPS 

  node0 hit node1 hit all hit node0 miss node1 miss all miss 

 

using cores 0-7 

median 282114 0 282114 0 16 16 

minimum 271221 0 271221 0 2 2 

maximum 300544 0 300544 0 29 29 

 
using cores 0-3 and 8-11 

median 173514 115177 288363 2 7 9 
minimum 162120 101598 274902 0 0 0 

maximum 187409 128805 310166 9 22 24 

 

TABLE XXIII 
NUMASTAT RESULTS OF UNBOUND USING 8 CORES AND 8 THREADS, TEST RATE: 1500QPS 

  node0 hit node1 hit all hit node0 miss node1 miss all miss 

 

using cores 0-7 

median 111166 0 111166 0 16 16 

minimum 90326 0 90326 0 1 1 

maximum 115258 0 115258 0 30 30 

 
using cores 0-3 and 8-11 

median 51608 23349 74488 6 3 11 
minimum 42668 13819 62445 0 0 2 

maximum 60379 29118 86297 23 15 27 
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we came to the conclusion that on the one hand, currently 

Unbound provides the highest single core DNS64 performance 

(8,708qps), the highest overall DNS64 performance 

(31,502qps, at eight CPU cores) and the highest computing 

power relative DNS64 performance (about 5,300qps/core - 

7,700qps/core depending on the load and the number of CPU 

cores used). But on the other hand, PowerDNS is the only one 

that scaled up well, which has utmost importance due to the 

current trends in CPU development. BIND showed the lowest 

single core DNS64 performance (2,425qps) an also the lowest 

overall DNS64 performance: it achieved about 6,660qps rate at 

four CPU cores and its performance did not increase using 8 or 

16 cores, which is a fundamental problem. 

By defining and measuring the computing power relative 

performance of DNS64 servers, we provided energy efficiency 

aware DNS64 server administrators with another important 

factor for DNS64 implementation selection. 
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X. APPENDIX 

A. Parameters of the Measurement Environment 

For the repeatability of our measurements, we specify the 

most important parameters of the computers. Each Dell 

PowerEdge C6620 computer contained two Intel Xeon E5-2650 

2GHz CPUs, having 8 cores each, 16x8GB 1333MHz DDR3 

RAM, two Intel I350 Gigabit Ethernet NICs, two Intel 10G 2P 

X520 Adapters, but only one of them contained a 10G interface 

module, 500GB HDD, and also SSDs, but they were not used.  

On the basis of our previous experience, we disabled hyper-

threading and set the CPU frequency of the computers to fixed 

2GHz, in order to prevent scattered measurement results [9]. 

The applied BIOS settings were: 

1. Advanced / CPU Configuration / 

Hyper-Threading Technology: Disabled 

2. Server / ACPI SPMI Table: Disabled  

3. Advanced / Power Management / Power 
Management: Maximum performance  

4. Advanced / CPU Configuration / Turbo 
Mode: Disabled 

However, Turbo Mode was enabled on nodes n020, n023, 

and n026 to ensure high enough performance for the Measurer 

subsystem. 

Debian GNU/Linux 9.2 operating system with kernel version 

4.9.0-4-amd64 was installed to all the computers. 

As for authoritative DNS server, YADIFA 2.2.3-6237 was 

used, because this is the version included in the Debian 9.2 

distribution. 

B. Configuration Settings 

1) BIND DNS64 Settings 

The DNS64 function of BIND was enabled and set up in the 

/etc/bind/named.conf.options file as follows: 
 

options { 
 directory "/var/cache/bind"; 
 forwarders { 198.18.0.1; }; 
 dns64 2001:db8:abba::/96 { }; 
 dnssec-validation no; 
 auth-nxdomain no;    # conform to RFC1035 
 listen-on-v6 { any; }; 
}; 

 

We did not change other configuration options of BIND, e.g. 

the number of working threads, because BIND automatically 

starts the number of working threads equal to the number of 

CPU cores available. It also starts multiple listeners since 

version 9.9.0 [40]. 

2) PowerDNS Settings 

We have made the following relevant modifications to the 

/etc/powerdns/recursor.conf file: 
 

allow-from=::/0, 0.0.0.0/0 
forward-zones=dns64perf.test=198.18.0.1 
local-address=2001:2::1, ::1, 127.0.0.1 
lua-dns-script=/etc/powerdns/dns64.lua 
threads=(varied from 1 to 16) 

 

The number of threads was set to be equal with the number 

of active CPU cores. 

For enabling DNS64, we placed the following lines into the 

/etc/powerdns/dns64.lua file: 
 

prefix = "2001:db8:edda::" 
function nodata ( dq ) 
  if dq.qtype ~= pdns.AAAA then 
    return false 
  end -- only AAAA records 
 
  dq.followupFunction = "getFakeAAAARecords" 
  dq.followupPrefix = prefix 
  dq.followupName = dq.qname 
  return true 
end 

 

3) Unbound Settings 

To the /etc/unbound/unbound.conf file, we have 

added the following lines: 
 

access-control: ::/0 allow 
module-config: "dns64 iterator" 
dns64-prefix: 2001:db8:bd::/96 
forward-zone: 
  name: dns64perf.test. 
  forward-addr: 198.18.0.1 
server: 
  interface: 2001:2::1 
  interface: ::1 
  interface: 127.0.0.1 
  num-threads: (varied from 1 to 16) 

 

The number of threads was set to be equal with the number 

of active CPU cores. 
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4) Mtd64-ng Settings 

The /etc/mtd64-ng.conf file had the following relevant 

settings: 
 

nameserver 198.18.0.1 
dns64-prefix 2001:db8:d64::/96 
debugging no 
timeout-time  0.5  
resend-attempts   0 
response-maxlength  512 
num-threads 30 # default setting  

 

5) Authoritative DNS Server Configuration 

As for authoritative DNS server, we used YADIFA 2.2.3-

6237, because it outperformed BIND 9.10.3-P4-Debian, which 

we also tested in the role of the authoritative DNS server. 

The relevant settings of the YADIFA authoritative DNS 

server in the /etc/yadifa/yadifad.conf file were: 
 

        listen          0.0.0.0, :: 
<zone> 
        type            master 
        domain          dns64perf.test 
        file            db.dns64perf.test 
</zone> 

 

The content of the db.dns64perf.test zone file was 

generated by a script. The zone file contained 224 number of 

different entries for the 010-{0..255}-{0..255}-

{0..255}.dns64perf.test namespace, see [20] for the details. For 

self-tests, these domain names had AAAA records, because 

dns64perf++ can send queries for AAAA records only. For 

general DNS64 tests and caching tests, they were mapped to A 

records only. For tests examining the effect of the existence of 

AAAA records, they occurred in 20%, 40%, 60%, 80%, or 

100%. For the details of the solution, please refer to [9].  

We have also used NSD 4.1.14 as authoritative DNS server 

in a special self-test. 
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