
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—RFC 8219 defined benchmarking methodology for

IPv6 transition technologies, including DNS64, which is used

together with NAT64 to enable IPv6-only clients to communicate

with IPv4-only servers. This paper investigates the performances

of the most important DNS64 implementations, BIND, PowerDNS,

and Unbound as a function of the number of CPU cores using the

compulsory tests of RFC 8219. High differences are pointed out

both in their single core DNS64 performances and in their scale-

up from 1 to 16 CPU cores: whereas Unbound shows the highest

single core performance, PowerDNS scales up the best. A serious

issue is reported regarding BIND: its DNS64 performance does not

increase from 4 to 16 CPU cores at all. A measurement

complementary to RFC 8219 is introduced which proves to be

useful in the investigation of the issues identified during testing.

For the optional tests of RFC 8219, the requirements for the tester

are clarified, which enabled us to carry out the tests at the given

rates. Finally, a complementary performance metric, computing

power relative DNS64 performance is introduced, which may

provide further information to network operators to support their

selection of the DNS64 implementation, which suits the best for

their needs.

Index Terms—Benchmarking, DNS64, IPv6 transition, NAT64

I. INTRODUCTION

FC 8200 [1] raised IPv6, the new version of the Internet

 Protocol to “Internet Standard” state. Unfortunately, the

deployment of IPv6 was rather slow until the latest few years

because of several reasons [2], and the public IPv4 address pool

was depleted in 2011, before IPv6 could have replaced IPv4.

Thus, on the one hand, network operators can not provide

public IPv4 addresses to their new customers, but on the other

hand, a high number of servers are still available only over

IPv4. We contend that the DNS64+NAT64 protocol suite [3] is

an adequate solution for this problem. Ref. [4] concludes that

“The only actual address sharing mechanism that really pushes

forward the transition to IPv6 is Stateful NAT64 (Class 4). All

other (classes of) mechanisms are more tolerant to IPv4.” As

this citation illustrates, DNS64 [5] is often overlooked and only

NAT64 [6] is mentioned and focused on even by researchers.

However, the reliable and trustworthy operation of DNS64 is

essential, and “the poor performance of the DNS64 server

directly influences the users’ quality of experience (QoE)” [7].

Submitted: March 16, 2018.

G. Lencse is with the Department of Networked Systems and Services,

Budapest University of Technology and Economics, Magyar tudósok körútja 2,
H-1117 Budapest, Hungary (e-mail: lencse@hit.bme.hu).

RFC 8219 [8] defines a benchmarking methodology for IPv6

transition technologies, including DNS64. In Ref [9], we have

discussed the details of the benchmarking methodology for

DNS64 servers and disclosed our consideration behind the

methodology described in Section 9 of RFC 8219.

In this paper we examine the performance of three DNS64

implementations. Our aim is twofold.

1. We provide network operators with ready to use

benchmarking results to support their selection of a

DNS64 implementation, which suits the best for their

needs.

2. We advance the theory of benchmarking DNS64 servers

by three contributions:

a. We clarify the requirements for the Tester for

the optional tests.

b. We demonstrate that DNS64 benchmarking

procedure in Section 9 of RFC 8219, can be

complemented by a slightly different procedure

using non zero percent loss ratio as acceptance

criterion, which may be useful in practical point

of view (see Section V.B.2 for more details).

c. We propose another complementary metric,

namely computing power relative DNS64

performance of DNS64 implementations.

The remainder of this paper is organized as follows. Section

II surveys the available DNS64 performance analysis results

and benchmarking tools. Section III gives an introduction to the

methodology for benchmarking DNS64 implementations and

also clarifies the requirements for the Tester for the optional

tests, what is not covered by RFC 8219. Section IV describes

the most important details of our measurements including

benchmarking environment, DNS64 implementation selection

and setup, the most important types of tests performed and also

a few hypotheses are set up. Section V presents and evaluates

the results, as well as discusses the unexpected results and

investigates their possible causes. Section VI proposes

measurement procedure and reporting format for the results of

the computing power relative DNS64 performance

measurements. Section VII is a short case study investigating a

specific issue. Section VIII is a brief discussion of our results

and disclosure of our future plans. Section IX concludes our

paper.

Y. Kadobayashi, is with the Laboratory of Cyber Resilience, Nara Institute

of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.

(e-mail: youki-k@is.aist-nara.ac.jp).

Benchmarking DNS64 Implementations:

Theory and Practice

Gábor Lencse, and Youki Kadobayashi

R

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

II. RELATED WORK

In our earlier paper on the performance analysis and

comparison of different DNS64 implementations [10], we have

pointed out that in all other papers than ours, the performance

of a DNS64 server and that of a NAT64 gateway were measured

together:

“The performance of the TAYGA NAT64 implementation

(and implicitly of the TOTD DNS64 implementation) is

compared to the performance of NAT44 in [11]. The

performance of the Ecdysis NAT64 implementation (that has

its own DNS64 implementation) is compared to the

performance of the authors’ own HTTP ALG in [12]. The

performance of the Ecdysis NAT64 implementation (and

implicitly the performance of its DNS64 implementation) is

compared to the performance of both the NAT-PT and an HTTP

ALG in [13].” [10]

We have also shown that the performances of the DNS64

server and the NAT64 gateway should be measured separately

[10]. Although we have compared the performance of four

DNS64 implementations BIND [14], TOTD [15], Unbound

[16] and PowerDNS [17] in [10], the usability of our results is

rather limited for two reasons:

1. The measurements were executed using only old

and/or low performance devices up to 4 CPU cores as

DUT (Device Under Test), in order to be able to

overload them with our then available load generating

solutions. However, modern server computers have

more CPU cores.

2. The testing method was only suitable for performance

comparison and stability analysis, but not for

benchmarking as defined in RFC 8219. (Please see [9]

for more details of the difference between the two.)

As for measurement tools, neither Nominum’s dnsperf

[18], nor our earlier dns64perf [19] complies with RFC

8219. As far as we know, the only RFC 8219 compliant DNS64

tester is Dániel Bakai’s dns64per++ [20], which implements

the compulsory tests of RFC 8219. We have enabled it for

measuring caching performance of DNS64 servers [21] and

made a correction in its timing algorithm [22].

We have done some RFC 8219 compliant benchmarking in a

few papers but their aim was always something different then

the exhaustive benchmarking of DNS64 implementations. We

aimed to demonstrate the operation and the expectable quality

1 We do so because we believe that it is easier to follow and understand its

operation in this way, and also because we follow his approach in our

of the results of our benchmarking methodology [9]. We have

demonstrated that mtd64-ng, our new tiny DNS64 proxy

outperforms BIND, but the measurements were performed

using a SBC (Single Board Computer) with four cores as DUT

[23]. We demonstrated the operation of the DNS64 caching

performance testing [21], and the improved quality of the

results using the corrected timing algorithm [22].

Unfortunately, we cannot report any RFC 8219 compliant

DNS64 benchmarking paper other than ours, which can be

explained by the fact that RFC 8219 was published in August

2017.

Therefore, we contend that there is a need for RFC 8219

compliant DNS64 benchmarking tests, where the major DNS64

implementations are tested using contemporary servers with

higher number of CPU cores.

III. BENCHMARKING METHODOLOGY FOR DNS64 SERVERS

A. Summary of the Methodology

In this section, we give a short summary of the benchmarking

methodology for DNS64 servers mainly on the basis of RFC

8219, but we also adjust its presentation to our current needs:

whereas RFC 8219 follows the traditional two devices setup of

RFC 2544 [24], where the two devices are the Tester and the

DUT (Device Under Test), now we use two separate devices for

the two logical functions of the Tester.1 (We found the usage of

two physical devices necessary during the measurements for

performance considerations.)

The test and traffic setup for benchmarking DNS64 servers

is shown in Fig. 1. The message flow of six messages complies

with the “worst case” scenario of a domain name resolution

using DNS64, where the six messages are:

1. Query for the AAAA record of a domain name

2. Query for the AAAA record of the same domain name

3. Empty AAAA record answer

4. Query for the A record of the same domain name

5. Valid A record answer

6. Synthesized AAAA record answer.

To comply with RFC 8219, which requires the usages of all

six messages, Tester/Measurer should send requests for all

different domain names to prevent DUT from having a cache

hit, as well as Tester/AuthDNS should be configured so that it

reply with empty AAAA record and return exactly one A record

for all the domain names used for testing.

The measurement procedure requires that Tester/Measurer

measurement setup for performance reasons, and thus the two parts of the paper
are synoptic.

Authoritative
DNS server

DNS64 server

DUT Tester/AuthDNS

Client
dns64perf++

Tester/Measurer

2: AAAA query

3: empty AAAA

4: A query

5: valid A

1: AAAA query

6: synthesized AAAA

Fig. 1. Test and traffic setup for benchmarking DNS64 servers. [20]

Authoritative
DNS server

DNS64 server

DUT Tester/AuthDNS

Client
dns64perf++

Tester/Measurer

2: AAAA query

3: empty AAAA

4: A query

5: valid A

1: AAAA query

6: synthesized AAAA

Fig. 1. Test and traffic setup for benchmarking DNS64 servers. [20]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

sends DNS queries to the DUT at a constant rate for at least 60s,

and checks the replies. The test is passed if and only if all the

replies arrive within 1s timeout time from the sending of the

corresponding queries and all the replies contain a AAAA

record. Now we quote our arguments for this “strict” criterion

of 0% loss, because it has serious consequences, which are

demonstrated in Section V.B of our current paper. Our

arguments were:

“We note that using a higher rate than the one measured with

the above procedure might result in more successfully

processed DNS record requests per second (and also non zero

unanswered queries). However, we prudentially defined the

performance metric with the above procedure for at least three

reasons:

1. Our goal is a well-defined performance metric, which

can be measured simply and efficiently. Allowing any

packet loss would result in a need for scanning/trying

a large range of rates to discover the highest rate of

successfully processed DNS queries.

2. Even if users may tolerate a low loss rate (please note

the DNS uses UDP with no guarantee for delivery), it

cannot be arbitrarily high, thus, we could not avoid

defining a limit. However, any other limits than zero

percent would be hardly defendable.

3. Other benchmarking procedures use the same criteria

of zero packet loss (possibly for the above two

considerations).” [9]

We still consider these arguments valid from theoretical

point of view, but on the basis of our measurement results of

three important DNS64 implementations, we contend that, from

practical point of view, there are some complementary

performance metrics, which may be useful, when certain issues

of DNS64 implementations are investigated and also in practice

for a given class of users or under special circumstances.

(Please refer to Section V.B for more details.)

In practice, binary search is used to find the highest rate at

which the DUT can pass the test.

As there can be random events during the tests, which may

influence the measurement, the binary search should be

executed at least 20 times. Median should be used as

summarizing function, plus 1 and 99 percentiles as indices of

dispersion, which correspond to the minimum and maximum

values if we have no more than 100 results. (Please refer to [9]

for our considerations behind the choice of the summarizing

function.)

Besides the compulsory “worst case” test, there are also

optional tests.

If a domain name has a AAAA record then it is returned in

message 3, messages 4 and 5 are omitted, no IPv4-embedded

IPv6 address [25] synthesis is needed, but the AAAA record

from message 3 is returned in message 6. Optional tests may be

performed using domain names, 20%, 40%, 60%, 80%, and

100% of which have a AAAA record. We consider that the

results of this test will become more and more realistic in the

upcoming phases of IPv6 transition.

When there is a cache hit, message 1 is followed by message

6, which contains the AAAA record from the cache of the

DNS64 server. Optional tests may be executed, when domain

names are 20%, 40%, 60%, 80%, and 100% cached. We

consider that the performance of a DNS64 server at given cache

hit rates may be a useful factor in the evaluation of its

performance, but we do not claim the direct usability of these

numbers, as it is not a simple task to predict the actual cache hit

rate of a DNS or DNS64 server.

RFC 8219 requires that a self-test of the Tester is performed

to ensure that not the Tester but the DUT is the bottleneck

during the measurements. For performing a self-test, the Tester

is looped back, that is its Measurer subsystem is directly

connected to its AuthDNS subsystem leaving out the DUT. A

Tester (including its Measurer and AuthDNS subsystems) can

be used for testing up to rate r with timeout t, if it passes a self-

test at rate s with timeout 0.25t, where s is defined by (1) and δ

is at least 0.1.

)1(2  rs (1)

Its rationale is that the resolution of an AAAA record request

by the DNS64 server may require the resolution of two requests

(one for a AAAA record and one for an A record) by the

authoritative DNS server, thus if 0.25t is used for each

resolution, then 0.5t remains for all the other work, and δ

ensures a performance reserve.

From practical viewpoint, if the performance of a Tester was

measured and it was found that the highest rate it could pass the

self-test was s1, then the Tester can be used up to r1 rate for

DNS64 testing:

)1(2

1
1




s
r (2)

We note that if higher than r1 measurement results are

produced, they still prove that the DUT passed that test, but

leave the question open what the maximum performance of the

DUT is.

B. Clarification of the Self-Test Rules for Optional Tests

We have formulated the above described self-test rule

focusing on the “worst case” test. Of course, it would be too

strict to apply it literally for the optional tests. Therefore, now

we clarify the self-test requirement for the optional tests.

First, we consider the case, when there are some AAAA

records exist. Let α denote their proportion, where 0 < α ≤ 1. If

a AAAA record exists for a domain name then the authoritative

DNS server needs to answer only one query, otherwise two.

Thus, in this case s4A rate defined by (3) is enough instead of s

defined by (1).

 )1)(2()1()1(214   rrrs A
 (3)

Now, let us see that, depending on the proportion of the

domain names with AAAA record, up to what r1 rates we can

use a Tester that passed a self-test at a given s1 rate. Substituting

s1 for s4A in (3), we obtain for r1 as shown in (4).

)1)(2(

1
1

 


s
r (4)

Let us see a numeric example. If we would like to test up to

r=50,000qps, and δ=0.1 then the required self-test rate for the

“worst-case” tests is 110,000qps. In the case when a AAAA

record exist for 100% of the domain names, the Tester that

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

passed the 110,000qps test, can be used up to 100,000qps

instead of 50,000qps.

Now, we examine the case when some of the domain names

are cached. Let β denote the cache hit rate, where 0 < β ≤ 1. If

a domain name is cached then its resolution by the DNS64

server does not require any effort from the authoritative DNS

server. Thus, considering only the AuthDNS subsystem, the

necessary sC rate can be calculated according to (5).

)1()1(2,   rs AuthDNSC
 (5)

However, Measurer subsystem has to be able to send requests

and receive replies at 10% higher rates then it is actually used.

)1(,  rs MeasurerC
 (6)

The Tester must comply with both (5) and (6), that is, with

(7).

 )1()1(2,1   rMaxsC
 (7)

Equation (7) may be rewritten as (8).










5.0)1(

5.0)1()1(2





ifr

ifr
sC

 (8)

Now, let us see that, depending on the cache hit rate, up to

what r1 rates we can use a Tester that passed a self-test at a given

s1 rate.


















5.0
)1(

5.0
)1)(1(2

1

1

1







if
s

if
s

r
 (9)

Finally, the existence of AAAA records and non-zero cache

hit rate can be examined together. In this case, the non-cached

domain names require one query if they have a AAAA record,

or two queries if they do not have a AAAA record. Thus, the

required s4A&C rate can be calculated according to (10).

 )1()1)(2(,1&4   rMaxs CA
 (10)

And let us also see that, depending on both the AAAA record

rate and the cache hit rate, up to what r1 rates we can use a

Tester that passed a self-test at a given s1 rate.


















1)1)(2(
)1(

1>)1)(2(
)1)(1)(2(

1

1

1







if
s

if
s

r
 (11)

C. Very Short Summary of Dns64perf++

The dns64perf++ program is a command-line tool for

benchmarking DNS64 servers [20]. It sends queries for AAAA

records at a specified rate and receives the replies until the end

of the specified sending time interval plus timeout time. It prints

out the number of sent queries, received replies, and valid

replies, which is to be understood as a reply arrived within

timeout time from its corresponding query and also containing

a AAAA record. As it is a program running under Linux using

TCP/IP socket interface API for packet sending and receiving,

its accuracy is limited. For more details, please refer to our

(open access) paper [20].

We have extended dns64perf++ with the feature of

testing different cache hit rates [21]. Please refer to [9], how the

cache hit rates recommended in RFC 8219 can be easily ensured

without the knowledge of the cache size and/or cache control

algorithm of the DNS64 implementations.

When using dns64perf++ at higher than 50,000 queries

per second rates, we have found an inaccuracy in its self-

correcting timing algorithm and corrected it in [22], where we

have also disclosed its estimated accuracy. We used

dns64perf++ with the corrected timing algorithm in all the

measurements for this paper.

IV. MEASUREMENTS

A. Measurement Environment

The measurements were carried out in the Hokuriku

StarBED Technology Center of NICT, Japan. The N nodes

were used, which are Dell PowerEdge C6620 servers. We

needed three computers for DNS64 measurements but reserved

more computers to be able to speed up experimentation. As we

have pointed out performance differences during the self-test

phase, we performed the same kinds of tests of each examined

DNS64 implementation using the very same computers and

used the different three tuples of computers for different kinds

of tests. Fig. 2 shows the topology of our measurement setup. It

is to be understood in the way that Test System 1 contained

nodes n020, n021, and n022, which were interconnected by

VLANs 3220, 3221, and 3222. Test System 2 and Test System 3

were built up in the same way containing the elements

mentioned in parentheses in the first and second positions,

respectively. The roles of the computers were the same as we

have introduced in Fig. 1, namely: Tester/Measurer, DUT, and

Tester/AuthDNS. The two subsystems of the Tester were also

interconnected to facilitate self-test. As each connection used

enp3s0f0: 2001:2::2/64

DUT
(running DNS64 server)

Tester/AuthDNS
(running authoritative

DNS server)

enp3s0f0: 198.18.0.2/24

eno1: 2001:2::1/64

eno1: 198.18.0.1/24

Tester/Measurer
(running dns64perf++)

eno1:
2001:2:0:1::2/64
198.18.1.2/24

enp3s0f0:
2001:2:0:1::1/64
198.18.1.1/24

n020 (n023, n026)

n021 (n024, n027)

n022 (n025, n028)

eno2: DHCP

eno2: DHCP

eno2: DHCP

VLAN3222
(3225, 3228)

VLAN3220
(3223, 3226)

VLAN3221
(3224, 3227)

Test System 1 (2, 3)

Fig. 2. Measurement setup for all types of measurements.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

its own VLAN, we could use the same IP addresses in all three

Test Systems. As for the IP address family, IPv6 had to be used

between Tester/Measurer and DUT, as DNS64 offers a service

to IPv6-only clients. Any IP version may be used between DUT

and Tester/AuthDNS. Following the practice of [9] and [10],

we used IPv4 for the measurements, but performed the self-test

of the Tester using both IP versions, and the higher performance

with IPv4 justified our practice. The IP addresses of the

interfaces were set up according to Fig. 2. As all the links

interconnected one 10Gbps interface and one 1Gbps interface,

thus the speed of the connections was always 1Gbps, which was

enough for our tests.

For the repeatability of our measurements, we disclose the

hardware and software of the measurement environment in the

appendix.

B. DNS64 Implementation Selection

As for DNS64 implementations to be tested, we have

considered only free software [26] (also called open source

[27]) for the same reasons given in [10].

We have tested the following DNS64 implementations:

 BIND 9.10.3-P4-Debian [14]

 PowerDNS Recursor 4.0.4 [17]

 Unbound 1.6.0 [16]

 mtd64-ng 1.1.0 [23] (for the calibration of the test

system only)

The selection of the first three ones was not a question, as

they are commonly used DNS servers, which support DNS64.

We have also considered TOTD 1.5.3 [28], which we included

in both [9] and [10], however, it is single-threaded, no more

developed, and it always crashed after a few 60s long tests

during our preliminary measurements, therefore we omitted it.

For testing the accuracy of the test system only, we have

included mtd64-ng [23], which is an experimental DNS64

implementation and not yet ready for deployment. It produced

very good quality results in our earlier tests in the sense that the

difference between the minimum and maximum value of the

results of the required 20 tests was very small compared to the

median [9], therefore, now we also used it as a kind of result

quality reference for the other implementations.

Although we were looking for, we did not find any other

DNS64 implementations worth testing. We have also checked

the Ecdysis [29] NAT64 implementation, which has its own

DNS64 implementation, but it is either a patch for other DNS

servers (BIND and Unbound), or its standalone version is a

perl script [30], the performance of which was not worth

measuring.

We did not intend to optimize the tested DNS64

implementations, because it is a nearly endless game, and

several settings can be debated. Rather, we have used them as

they are distributed in Debian (the first three) or downloadable

from GitHub (mtd64-ng). The only setting beyond the

configuration of DNS64 was, that we set the number of threads

for the implementations that needed it.

As the configuration settings may influence the performance

of the DNS64 servers, we disclose them for the repeatability of

the measurements in the appendix.

C. Main Types of Tests

The four main types of tests follow the requirements of RFC

8219. Besides them, we performed some complimentary tests,

which we found useful during the evaluation of the results: they

will be described there.

1) Self-test of the Tester

As described in Section III.A, the aim of these tests was to

determine, up to what rates the Tester can be used. As YADIFA

[31] outperformed BIND [14], we do not include the details of

the latter.

For self-tests, YADIFA 2.2.3 was used to serve AAAA

records for all the domain names. We tested whether the version

of the IP protocol used for carrying the DNS messages has an

influence to the performance. (Although dns64perf++

inputs the IPv6 address of the server to be tested, it did not

prevent us from testing over IPv4: we used the IPv4 mapped

IPv6 address of the authoritative DNS server, that is,

::ffff:198.18.1.1, which caused the Linux kernel to send out

IPv4 packets to the 198.18.1.1 destination address.)

We have performed the self-test measurements for all three

Test Systems, and found non-negligible differences among

their DNS resolution performances.

We have completed this “official” self-test with a practical

test, where mtd64-ng was benchmarked in all there test systems.

Our preliminary tests showed that mtd64-ng achieved its best

performance when 8 CPU cores were used, and its performance

degraded on 16 CPU cores. (We did not do a detailed analysis

of the performance results of mtd64-ng, because it is not ready

for deployment yet, and it has several problems, to mention

only one, which prevents mtd64-ng form scaling up better: it

uses only a single listener, which becomes a bottleneck.)

Later, we added another self-test performed with NSD [32]

as authoritative DNS server to serve as further result quality

reference.

2) Compulsory DNS64 Tests with Scale-up Test

As the ongoing development in the hardware sector favors an

increasing number of processing units over an increasing speed

of a single unit [33], we consider it important to measure how

the performances of the examined DNS64 implementations

scale up with the number of CPU cores. Therefore, we have

performed the “worst case” DNS64 test of the examined

DNS64 implementations using the DUT with 1, 2, 4, 8, and 16

CPU cores online. (Technically, we performed the on/off

switching of the i-th CPU core by writing 1/0 values into the

/sys/devices/system/cpu/cpu$i/online file.)

3) AAAA Record Rate Examinations

We examined the effect of the AAAA record rate to the

performance of PowerDNS, Unbound and BIND.

4) Cache Hit Rate Examinations

We examined the effect of the cache hit rate to the

performance of PowerDNS, Unbound and BIND.

D. Hypotheses

On the basis of our previous experience with DNS64 testing,

we set up a few hypotheses, which express our expectations.

Hypothesis 1. Mtd64-ng will show good quality, non-

scattered results [9].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Hypothesis 2. The different implementations will scale up

differently [10].

Hypothesis 3. PowerDNS will scale up better than BIND

[10].

Hypothesis 4. Unbound will show high performance when

using a single CPU core [10].

V. RESULTS AND EVALUATION

A. Self-test

The Self-test results of YADIFA for IPv4 and IPv6 transport

protocols are shown in Table I and Table II, respectively. Our

most important observation is that the results are rather

scattered in the majority of the test cases (Test System 2 using

IPv4 is an exception). At this point, we cannot tell the reason,

why: as it can be caused by several elements of the system,

including YADIFA, dns64perf++, Linux, or even the

hardware (the computers or the network). We do not go into

deeper details, but return to the issue of the quality of the results

at mtd64-ng, and answer the question at NSD.

As we use the system for measurements, we contend that not

the median, but the minimum values are to be considered,

because the unsatisfactory performance of the Tester should not

make a negative impact for our measurements. Thus using the

authoritative DNS server with IPv4, its at least 162,000qps

performance enables us to perform DNS64 tests up to

73,000qps rate in all three test systems.

We note that it would have been enough to execute

dns64perf++ with a constant rate of 162,000qps (20 times)

by all three test systems to satisfy the self-test requirement of

RFC 8219, however we wanted to explore and disclose the

performance of the three test systems.

As we mentioned before, mtd64-ng was used to check and

demonstrate the accuracy of the result produced by the three test

systems. The results are shown in Table III. We have added a

row, which reflects the quality of the results: it is characterized

by the dispersion of the results which is the proportion of the

range of the results and the median, expressed in percentage, as

defined by (12).

 %100
minmax





median

dispersion (12)

Our most important observation is that the dispersion was

about 3-4%, which we interpret that all three test systems are

able to produce meaningful results and thus may be used (and

Hypothesis 1 is confirmed).

We also note that the difference between the minimum

(63,003qps) and maximum (63,303qps) of the medians of the

results produced by the three test systems is 300qps, that is, less

than 0.5% of any of them.

Before presenting some further self-test results, we would

like to mention that, in parallel with the DNS64 measurements,

we have also benchmarked several authoritative DNS server

implementations using another set of computers. (We could not

wait for the results of those tests before starting the DNS64

tests, as our time was limited.) We have found that NSD showed

high and very stable results when executed using only a single

core. Therefore, we have performed an additional self-test on

all three tests systems using NSD with only a single online CPU

core as authoritative DNS server. The results produced by the

three test systems are shown in Table IV. Our most important

finding is that the dispersion is always under 1%, thus the

scattered nature of the results in Table I and Table II are to be

attributed to the YADIFA tests using all 16 CPU cores. Another

observation is that the difference between the highest median

(168,623qps) and the lowest median (163,904qps) is 5,019,

which is about 3%, thus it justifies our cautiousness that the

benchmarking tests for comparison of the performances of

different DNS64 implementations were always executed by the

same test system.

B. Scale-up Tests

1) General Overview and Problem Identification

The DNS64 performance of PowerDNS, Unbound, and

BIND using different number of CPU cores (and the same

number of threads) are shown in Tables V, VI, and VII

respectively. Our most important observations are:

 PowerDNS showed relatively low performance at a

single CPU core (3,077qps), and it scaled up well

up to 16 cores (26,620qps).

 Unbound performed excellently at a single CPU

core (8,708qps), thus hypothesis 4 is confirmed, and

it scaled up well up to 8 cores (31,502qps).

 The performance of Unbound degraded by more

than 45% at 16 cores (17,131qps) compared to its

performance 8 cores (31,502qps), which is a severe

problem.

 The high dispersion of the results of Unbound from

2 to 16 CPU cores is another serious issue.

 BIND showed low performance at a single CPU

TABLE I

AUTHORITATIVE DNS PERFORMANCE OF YADIFA OVER IPV4

Test System 1 2 3

Median (queries per second) 180140 163641 180200
Minimum (queries per second) 163839 162303 176127

Maximum (queries per second) 182915 164641 185345

TABLE II

AUTHORITATIVE DNS PERFORMANCE OF YADIFA OVER IPV6

Test System 1 2 3

Median (queries per second) 162129 160003 159546
Minimum (queries per second) 147391 155133 157055

Maximum (queries per second) 166017 164357 163857

TABLE III
DNS64 PERFORMANCE OF MTD64-NG USING 8 CPU CORES

Test System 1 2 3

Median (queries per second) 63303 63093 63003

Minimum (queries per second) 62271 62343 61951

Maximum (queries per second) 64121 64001 64531

Dispersion (%) 2.92 2.63 4.10

TABLE IV

AUTHORITATIVE DNS PERFORMANCE OF NSD, SINGLE CPU CORE, IPV4

Test System 1 2 3

Median (queries per second) 168623 163904 167137
Minimum (queries per second) 167935 163447 165887

Maximum (queries per second) 168961 164361 167489

Dispersion (%) 0.61 0.56 0.96

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

core (2,425qps) and nearly doubled its performance

at 2 CPU cores (4,788qps) but it showed a constant

performance of 6,659qps from 4 to 8 cores and a

very close fixed value of 6,661qps at 16 cores,

which suggests a fundamental problem.

We note that hypotheses 2 and 3 are also confirmed, but the

constant performance of BIND was surprising for us, which we

had to investigate, as well as the two other issues.

2) Identifying the Causes

Looking for the reasons of these three issues, we have noticed

in the measurement log files that all three problems implied that

the rate of the valid answers was very often higher that 99% but

somewhat less than 100%. Therefore, we have re-executed all

the experiments with an acceptance criterion of 99% valid

answers, which does not comply with RFC 8219, but can help

revealing the reason of the three issues. The results are shown

in Tables VIII, IX, and X. As for Unbound, its results are now

not at all scattered and the dispersion is always under 10%.

From 4 to 16 cores, its performance values are now significantly

higher, but its performance still shows degradation form 8 to 16

cores. As for BIND, its performance now scales up well from 1

to 8 cores (from 2,448qps to 17,508qps) but shows somewhat

degradation at 16 cores (15,748qps).

Another important observation is, that the single core (and

therefore single thread) performances of all three DNS64

implementations showed only a negligible increase due to the

change of the acceptance criterion. Therefore, we contend that

the root cause of all three issues is the imperfect cooperation

among the threads: whereas the vast majority of the requests are

replied in time, a small fraction of them are not. This

phenomenon can be observed with all three DNS64

implementations at a certain extent, but their measure is rather

different. As for PowerDNS, there is practically no difference

between the results of the two measurement series from 1 to 4

threads, and the difference is relatively moderate even at 16

threads (26,620qps vs. 30,954qps). As for Unbound, the

problem of high dispersion starts from 2 threads, although here

the performance difference is not high (15,623qps vs.

16,624qps), but high performance differences can be observed

from 4 to 16 cores. As for BIND, the problems is so serious

from 4 cores that its performance is limited to a constant value

in the RFC 8219 compliant tests.

As for the benchmarking methodology of DNS64 servers, we

would like to emphasize that we do not mean to introduce any

other percentage than 0% as the acceptance criterion for

benchmarking tests, defined by RFC 8219. We have used 99%

as a random value, which suited for our purposes to find the

explanation of various issues.

3) Performance Model

To summarize our findings in a high level model of the

multicore performance of DNS64 implementations, we can say

that it depends on two factors: the single core performance and

TABLE V

DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND

THREADS, POWERDNS

Num. CPU cores 1 2 4 8 16

Median (qps) 3077 5498 10030 17290 26620

Minimum (qps) 3061 5439 9855 16603 24447

Maximum (qps) 3105 5633 10153 18563 27665
Dispersion (%) 1.43 3.53 2.97 11.34 12.09

TABLE VI
DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND

THREADS, UNBOUND (SCATTERED RESULTS)

Num. CPU cores 1 2 4 8 16

Median (qps) 8708 15623 19993 31502 17131

Minimum (qps) 8511 11121 16223 24575 11955
Maximum (qps) 8865 16897 25665 32753 22017

Dispersion (%) 4.07 36.97 47.23 25.96 58.74

TABLE VII
DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND

THREADS, BIND

Num. CPU cores 1 2 4 8 16

Median (qps) 2425 4788 6659 6659 6661
Minimum (qps) 2303 4731 6659 6659 6661

Maximum (qps) 2441 4897 6659 6659 6661

Dispersion (%) 5.69 3.47 0 0 0

TABLE VIII

DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND

THREADS, POWERDNS

ACCEPTANCE CRITERION: 99%, NOT RFC 8219 COMPLIANT!

Num. CPU cores 1 2 4 8 16

Median (qps) 3092 5527 10146 19541 30954

Minimum (qps) 3071 5481 9949 17887 30393

Maximum (qps) 3121 5633 10321 20485 31793
Dispersion (%) 1.62 2.75 3.67 13.30 4.52

TABLE IX

DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND

THREADS, UNBOUND

ACCEPTANCE CRITERION: 99%, NOT RFC 8219 COMPLIANT!

Num. CPU cores 1 2 4 8 16

Median (qps) 8710 16624 33852 66552 43790

Minimum (qps) 8447 16379 32767 65407 40959
Maximum (qps) 8793 16949 34305 67585 45089

Dispersion (%) 3.97 3.43 4.54 3.27 9.43

TABLE X

DNS64 PERFORMANCE AS A FUNCTION OF THE NUMBER OF CPU CORES AND

THREADS, BIND,

ACCEPTANCE CRITERION: 99%, NOT RFC 8219 COMPLIANT!

Num. CPU cores 1 2 4 8 16

Median (qps) 2448 4852 9467 17508 15748
Minimum (qps) 2367 4727 9403 17135 15577

Maximum (qps) 2477 4993 9601 17731 16385

Dispersion (%) 4.49 5.48 2.09 3.40 5.13

TABLE XI
DNS64 PERFORMANCE USING 4 CORES FROM EACH CPU, POWERDNS

Num. CPU cores 4+4

Median (qps) 16771

Minimum (qps) 16095

Maximum (qps) 18529
Dispersion (%) 14.51

TABLE XII

DNS64 PERFORMANCE USING 4 CORES FROM EACH CPU, UNBOUND

ACCEPTANCE CRITERION: 99%, NOT RFC 8219 COMPLIANT!

Num. CPU cores 4+4

Median (qps) 59832

Minimum (qps) 58879

Maximum (qps) 60681
Dispersion (%) 3.01

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

the proper thread cooperation. Whereas for the optimization of

the first one, program profiling is a matured method, which is

also supported by modern tools such as CPU flame graphs [34],

the optimization of the latter is a much harder task, although

profiling might also help (e.g. checking the time while the

threads are waiting on locks/mutexes), but even if one finds a

bottleneck, its mitigation may be a more difficult problem then

the optimization of a sequential program code.

4) Not All CPU Cores are Equal

Until now, we have mentioned only the number of the online

CPU cores. However, cores 0-7 and cores 8-15 reside in two

different CPUs. Using cores from two different CPUs for the

execution of the threads of the same task may result in:

 performance degradation due to communication

bottleneck between threads being executed by cores

in different CPUs, or due to NUMA (Non-Uniform

Memory Access) issues [36],

 performance gain due to better cache coverage.

To investigate the case, we have executed the 8-core tests,

which used earlier cores 0-7, also using cores 0-3 and cores 8-

11.

The results of PowerDNS are shown in Table XI. Comparing

them with the 8-core results in Table V, it is visible that the

median value decreased only in a small extent from 17,290qps

to 16,771qps, where the difference is only about 3%. The

increase of the dispersion is also relatively small (from 11.34%

to 14.51%).

As for Unbound, we used the 99% acceptance criterion to get

non-scattered results (for comparability). Therefore the results

of Unbound in Table XII are to be compared with 8-core results

in Table IX. Here the median decreased from 66,552qps to

59,832qps, which is about 10%. (We dedicate a separate case

study to the investigation, whether this decrease is caused by

NUMA issues, see Section VII.) Taking 59,832qps as a base,

the 43,790qps performance at 16 cores is still a significant

decrease (26,8%).

As for BIND, we did not see any point in testing it using 4+4

cores since its performance reached its fixed maximum value at

4 cores (and we did not want to increase the number of non-

RFC 8219 compliant measurements beyond necessity).

5) Implementation Selection Guide

As for practical support for network operators, Tables V, VI,

and VII can help in the selection of the appropriate DNS64

implementations depending on performance requirements.

As Tables VIII, IX, and X contain non RFC 8219 compliant

results, they are not recommended for general use. However,

they can be useful under special circumstances. E.g. in the case

of a metropolitan free WiFi operator, where the packet loss rate

is over 1% in the access network, they may be used. Or when a

DoS attack of 50,000 qps rate against the DNS system is

anticipated, Unbound at 8 cores might be an acceptable solution

according to Table IX. For other special cases, some other

acceptance criteria, e.g. 0.1% or 0.01% loss, may be suitable.

Although we believe that these kind of tests may be useful

under special circumstances, but we insist on that the 0% loss

criterion should be used for benchmarking DNS64 servers in

general.

C. Results of the AAAA Record Rate Examinations

Although it was natural for us to use all 16 cores of the DUT

for these tests, but as we have received scattered results both

with PowerDNS and Unbound, thus we decided not to include

them. Whereas the 99% acceptance criterion made the results

non-scattered, we did not want to include more non-RFC 8219

compliant results. Therefore, we decided to reduce the number

of CPU cores to a value, which results in meaningful results.

We used different number of CPU cores for each

implementations, thus giving up performance comparison of

the different DNS64 implementations in these tests: they were

intended for the individual examinations of the given DNS64

server implementations.

As the tests with various AAAA record rates were executed

by Test System 2, we have also performed 0% AAAA record

rate tests to serve as a base for comparison, because they could

be different from the results of the scale-up tests, which were

executed by Test System 1.

1) PowerDNS

For PowerDNS, we used 4 CPU cores at the DUT. The

DNS64 performance results of PowerDNS as a function of

AAAA record rate is shown in Table XIII. The median value of

its 0% AAAA record performance is 10,051qps, which is very

close to 10,030qps, the 4-core performance of PowerDNS in the

scale up tests.

The dispersion of the results remained under 5% for all

AAAA record rates. And the performance of PowerDNS

showed an increase, which complies with our simple theoretical

model and experimental results in [9].

2) Unbound

For Unbound, we used only a single CPU core. The DNS64

TABLE XIII

DNS64 PERFORMANCE AS A FUNCTION OF AAAA RECORD RATE,

POWERDNS, 4 CPU CORES, 4 THREADS

AAAA

record rate

0% 20% 40% 60% 80% 100%

Median (qps) 10051 10893 11992 13249 14842 18107

Min. (qps) 9939 10751 11775 13051 14591 17775

Max. (qps) 10177 11265 12105 13449 15057 18561
Disp. (%) 2.37 4.72 2.75 3.00 3.14 4.34

TABLE XIV

DNS64 PERFORMANCE AS A FUNCTION OF AAAA RECORD RATE, UNBOUND,

1 CPU CORE, 1 THREAD

AAAA
record rate

0% 20% 40% 60% 80% 100%

Median (qps) 8725 9495 10506 11837 13567 16459

Min. (qps) 8447 9151 10231 11263 13179 15735
Max. (qps) 8801 9729 10753 11993 13825 16897

Disp. (%) 4.06 6.09 4.97 6.17 4.76 7.06

TABLE XV

DNS64 PERFORMANCE AS A FUNCTION OF AAAA RECORD RATE, BIND,
2 CPU CORES, 2 THREADS

AAAA

record rate

0% 20% 40% 60% 80% 100%

Median (qps) 4796 5203 5709 6277 6659 6659

Min. (qps) 4701 5119 5119 6143 6659 6659
Max. (qps) 4881 5281 5761 6345 6661 6721

Disp. (%) 3.75 3.11 11.25 3.22 0.03 0.93

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

performance results of Unbound as a function of AAAA record

rate is shown in Table XIV.

The dispersion of the results varies around 4-7%, which is

still acceptable, and the performance of Unbound increases as

expected.

3) BIND

In parallel with the scale-up tests, we have tested BIND using

16 CPU cores. Regardless of the AAAA record percent, the

results were always 6,661qps. This result reveals that the fixed

performance issue is likely not caused by a bottleneck in the

communication of BIND with the authoritative DNS server or

a bottleneck in the IPv4-embedded IPv6 address synthesis code

of BIND as the results did not improve with the more frequent

occurrences of the AAAA records. To present some more

meaningful results, we selected two cores, which still enables

us to reveal what happens when the strange performance limit

of BIND is reached. The DNS64 performance results of BIND

as a function of AAAA record rate is shown in Table XV. The

strange performance limit is reached at 80% AAAA record rate.

There happened a single occurrence of the 6721qps result at

100% AAAA record rate, which we attribute to a very rare

random event, a kind of coincidence, which was favorable to

the performance of BIND. Please recall that this has never

happened among the 6*20=120 measurements performed at 16

cores for different AAAA record rates.

D. Results of the Cache Hit Rate Examinations

We used the same number of CPU cores for the cache hit rate

examinations as with the AAAA record rate examinations.

As the tests with various cache hit record rates were executed

by Test System 3, we have also performed 0% cache hit rate

tests to serve as a base for comparison.

1) PowerDNS

The DNS64 performance results of PowerDNS as a function

of cache hit rate is shown in Table XVI. The median value of

its 0% cache hit rate performance is 10,055qps, which is very

close to 10,030qps, the 4-core performance of PowerDNS in the

scale up tests. The dispersion of the results remained under 10%

for all cache hit rates from 0% to 80%, but it was high at 100%

cache hit rate (21.98%). This high dispersion was caused by the

smallest result of 80,831qps, which occurred only ones, and the

next smallest result was 85,453qps, which was also far from the

median.

The performance of PowerDNS showed an increase, which

complies with our simple theoretical model and experimental

results in [9]. The large difference between the 80% and 100%

cache hit rate results might suggest that other rates (e.g. 90%,

95%, or 99%), would have been worth testing, but although

they might be interesting from theoretic point of view, we do

not think that higher than 80% cache hit rate would be relevant

in practice.

We note that the 100,816qps DNS64 resolution rate achieved

at 100% cache hit rate is higher than 73,000qps, thus it should

have been invalidated without our clarification to the

requirements for the tester in Section III.B.

2) Unbound

The DNS64 performance results of PowerDNS as a function

of cache hit rate is shown in Table XVII. The dispersion of the

results is very high at 100% cache hit rate (49.04%) but it

remained under 7% for all other tested cache hit rates. The very

high dispersion is caused by the 65,535 values, which occurred

9 times among the 20 results. As the [0, 131,072] initial range

was used for the binary search, this value was produced in a

way that the first test of the binary search at 65,536qps rate

failed, and then all other tests were successful. We contend that

in case of a single failure it could be debated whether it was

caused by a random event inside or outside Unbound, but the 9

failures have to be attributed to Unbound and not a random

event in the test system outside Unbound, as they did not occur

during the testing of PowerDNS although the measurement

results were in the same order of magnitude.

3) BIND

The DNS64 performance results of BIND as a function of

cache hit rate is shown in Table XVIII. In this case the DNS64

performance of BIND is not limited by a constant value, and it

complies with our simple theoretical model and experimental

results in [9].

E. Where is the DNS64 Performance Bottleneck of BIND?

First, let us collect our observations. The DNS64

performance of BIND increases with the number of CPU cores

up to 4 cores, where it reaches a fixed upper bound. Although

this upper bound seems to be sharp, much higher rates can be

achieved if some loss is allowed. Thus it is probably not a

classic performance bottleneck but perhaps some inter-thread

cooperation issue. The 100% AAAA record rate, which halves

the number of messages between the DNS64 server and the

authoritative DNS server and eliminates the need for IPv4-

embedded IPv6 addresses synthesis, does not help at all. But the

strange limit can be crossed, when there is a cache hit.

Before presenting our hypothesis about a possible cause of

the DNS64 performance bottleneck of BIND, we need to give

TABLE XVI
DNS64 PERFORMANCE AS A FUNCTION OF CACHE HIT RATE, POWERDNS,

4 CPU CORES, 4 THREADS

cache hit rate 0% 20% 40% 60% 80% 100%

Median (qps) 10055 12147 14731 19179 29242 100816

Min. (qps) 9975 11759 14463 18927 28671 80831
Max. (qps) 10197 12423 15873 19361 29715 102993

Disp. (%) 2.21 5.47 9.57 2.26 3.57 21.98

TABLE XVII

DNS64 PERFORMANCE AS A FUNCTION OF CACHE HIT RATE, UNBOUND,
1 CPU CORE, 1 THREAD

cache hit rate 0% 20% 40% 60% 80% 100%

Median (qps) 8680 10261 12975 17760 29677 102395

Min. (qps) 8415 10077 12543 17335 28953 65535

Max. (qps) 8961 10513 13145 18241 30273 115745
Disp. (%) 6.29 4.25 4.64 5.10 4.45 49.04

TABLE XVIII

DNS64 PERFORMANCE AS A FUNCTION OF CACHE HIT RATE, BIND,
2 CPU CORES, 2 THREADS

cache hit rate 0% 20% 40% 60% 80% 100%

Median (qps) 4791 5817 7383 8996 15898 25819

Min. (qps) 4695 5743 7255 8571 12287 24575

Max. (qps) 4873 5953 7465 9473 16193 26641
Disp. (%) 3.72 3.61 2.84 10.03 24.57 8.00

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

a short introduction to the cache poisoning [35] threat and its

countermeasures.

1) Very Basic Introduction to Cache Poisoning and its

Countermeasures

The basic idea of cache poisoning is that the attacker sends a

request for a given domain name to the attacked recursive DNS

server, and if the given domain name is not yet cached, the

recursive DNS server sends out a DNS query for the same

domain name to an authoritative DNS server, whereas the

attacker sends a forged answer to this query to the recursive

DNS server, spoofing the authoritative DNS server, before the

reply of the authoritative DNS server arrives. The recursive

DNS server accepts an answer only in the case if it comes from

the right IP address and port number to the right IP address and

port number, and the Transaction ID as well as the query

matches. The attacker performs blind spoofing, that is the

attacker has to guess the source port number and transaction ID

of the query sent by the recursive DNS server to the

authoritative DNS server. To be successful, the attacker has to

send a high number of forged replies with different port number

and Transaction ID combinations in a short time window of

about 100ms. The protection against cache poisoning must

include Transaction ID and source port randomization using

cryptographically secure random numbers as well as refraining

from sending equivalent queries (with identical QNAME,

QTYPE, and QCLASS fields) concurrently, which could lead

to a birthday paradox based attack, thus efficiently reducing the

number of messages necessary for a successful attack [37].

2) Our Hypothesis for a Possible Cause of the Low DNS64

Performance of BIND

In our understanding, recursive DNS servers have to account

the currently outstanding queries to avoid sending out multiple

equivalent queries concurrently. Regardless of its

implementation, we call it outstanding query database. We

contend that the improper organization of the locking (for write

access) of this database by multiple threads might be a possible

cause of the low DNS64 performance of BIND. When there is

a cache hit, there is no need to access the database thus no

problem occurs. Regardless of the probability of the existence

of the AAAA records, the queries have to be inserted to and

deleted from the database. And due to improper organization,

the access to the database is denied at a high enough rate in a

small proportion of the cases, which results in the failure of the

RFC 8219 tests, but enables much higher rate for a more

permissive test, e.g. the one which tolerates 1% loss.

We cannot prove this hypothesis, we only contend that it can

be an explanation to the symptoms we experienced. We have

reported the issue to the developers of BIND.

VI. COMPUTING POWER EFFICIENCY OF DNS64 SERVERS

A. Definition

The energy efficiency of the Internet infrastructure is an

important concern for several years [38]. We intend to

contribute to this field by defining and measuring the

computing power efficiency of DNS64 servers. We are aware

that there is no linear relationship between the computing power

and the energy consumption, but we intend to define a metric,

which is easy to measure and is definitely relevant to the

operators of DNS64 servers. We are also aware that these

results are dependent from the computer used for

benchmarking, and therefore we propose it only as a

complementary metric, but we contend that it can be a useful

additional factor to the network operators for decision making.

We define the computing power relative DNS64 performance

as the number of processed queries per second divided by the

CPU utilization of the computer. For clarity, we count the full

utilization of a single CPU as 1. (Linux reports the CPU

utilization in percentage, e.g. the maximum CPU utilization of

a 16-core system is reported as 1600%, and we count it as 16.)

B. Development of the Measurement Method

During benchmarking DNS64 servers, DUT is handled as a

“black box”. The CPU utilization measurements could

influence the performance of the DNS64 implementations, thus

it has to be done separately. Designing these tests, we have

identified two challenges:

1. In the beginning of a test, there may be an initial

transient of unknown length, during which the CPU

utilization of the DNS64 implementations differ from

its steady state value.

2. The ratio of the query rate and the CPU utilization is

not necessarily constant, but may depend on the load

conditions.

Therefore, we had to check these phenomena.

1) Examining the Length of the Initial Transient

We have tested how the CPU utilization changes over time

during the benchmarking of the three tested implementations.

Our goal was to determine the length of the initial transient,

which have to be left out from the evaluation, when determining

the computing power consumption of the different DNS64

implementations.

The measurements were performed at different rates, using

180s long tests. The CPU utilization of the DNS64

implementations was measured with the top command using it

in batch mode and printing out the CPU utilization values in 1s

resolution. The relevant part of the measurement script was:

top –b –n 180 –d 1 –p $(pidof $DNS64server)

We have examined several DNS64 implementation, CPU

core number and query rate combinations, and selected some

meaningful ones for Fig. 3. Whereas the initial transient is very

short (2-3s) for Unbound, it is about 10-15s for BIND and about

40-50s for PowerDNS. We have chosen 60s as a common upper

bound for the length of the initial transient for all three

implementations. And we also decided to use 180s long tests,

thus we have 120 results after the deletion of the first 60 ones.

(We recommend this relatively high number of results because

of the fluctuations observed in the CPU utilization of

PowerDNS. Otherwise, a smaller value, e.g. 30 could do.)

The significant oscillation of the CPU utilization of

PowerDNS at 25,000qps rate is another interesting observation.

2) Testing the Query Rate and CPU Utilization Ratio

To examine how the computing power relative performances

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

of the three tested DNS64 implementations depend on the load

conditions, we have measured their CPU utilization at several

rates using as large intervals as possible, and calculated their

computing power relative performances. Fig. 4 shows the

results. Whereas the computing power relative performance of

PowerDNS is close to constant, that of Unbound and BIND

show somewhat increasing tendency with the load. Because of

the slightly increasing tendency, we propose two methods. The

fine grain one determines the computing power relative

performance of the DNS64 servers at 3 working points, namely,

when the query rate is the 25%, 50%, and 75% of the maximum

DNS64 performance, whereas the coarse one does it only at a

query rate of 50% of the maximum DNS64 performance.

C. Measurement and Results

Using our DNS64 benchmarking results, namely the median

values for PoweDNS, Unbound, and BIND from Table V,

Table VI, and Table VII, respectively, we have performed the

measurements for their fine grain characterization. The

computing power relative DNS64 performance results for

PowerDNS, Unbound, and BIND are displayed in Table XIX,

Table XX, and Table XXI, respectively. In the last lines of the

tables, we have also included the CPU utilization values

measured at full load, as they may give further insight into the

behavior of the given DNS64 implementations. (We took no

care if the tests failed or passed: they could fail due to the extra

load generated by the CPU utilization measurement.)

As for the computing power relative DNS64 performance

results of PowerDNS, there are some fluctuations, but there is

no significant degradation at 16 CPU cores compared to 8 or

any other number of CPU cores. In contrast, the computing

power relative DNS64 performance results of both Unbound

shows significant decrease, when using 16 CPU cores.

Considering the 50% load results and comparing the computing

power relative DNS64 performance results at 8 and 16 cores,

they decrease from 7,141qps to 5,671qps. We seek the reasons

in a separate case study in Section VII.

Comparing the computing power relative DNS64

performance results at different load levels, we cannot observe

significant tendencies: they sometimes grow (e.g. Unbound, 4

cores), sometimes decrease (PowerDNS 16 cores) with the

increase of the load. As the results at 25% or 75% load usually

do not significantly differ from the results at 50% load, we

consider that in the case of the three tested DNS64

implementations it is enough to disclose only the computing

power relative DNS64 performance results measured at 50% of

the maximum DNS64 performance. However, the situation may

be different in the case of other DNS64 implementations,

therefore we recommend to perform the measurement in all

three working points. And as for the presentation of the results,

it is always imperative to disclose the query rate and CPU core

numbers, as well as CPU type used for testing to avoid the

Fig. 3. Study of the initial transient of the CPU utilization.

Fig. 4. Computing power relative performances of PowerDNS, Unbound

and BIND under different load conditions.

0

200

400

600

800

1000

1200

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

C
P

U
 U

ti
liz

at
io

n
 (

%
)

Time (s)

CPU Utilization as a Function of Time

BIND, 2c, 4kqps BIND, 4c, 6kqps

PowerDNS, 4c, 10kqps PowerDNS, 16c, 25kqps

Unbound, 1c, 8kqps Unbound, 8c, 30kqps

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1
0

0
0

3
0

0
0

5
0

0
0

7
0

0
0

9
0

0
0

1
1

0
0

0

1
3

0
0

0

1
5

0
0

0

1
7

0
0

0

1
9

0
0

0

2
1

0
0

0

2
3

0
0

0

2
5

0
0

0

2
7

0
0

0

2
9

0
0

0

3
1

0
0

0

R
el

at
iv

e
P

er
fo

rm
an

ce

Load (qps)

Computing Power Relative DNS64 Performance

PowerDNS, 16 cores Unbound, 8 cores BIND, 4 cores

TABLE XIX

COMPUTING POWER RELATIVE DNS64 PERFORMANCE (CPRDP) UNDER

DIFFERENT LOAD CONDITIONS, POWERDNS

Num. CPU cores 1 2 4 8 16

Full rate (qps) 3077 5498 10030 17290 26620

CPRDP @25% 2960 2855 2938 2973 2932

CPRDP @50% 2947 2830 2806 2831 2808

CPRDP @75% 2932 2751 2780 2717 2655

CPU util. @100% 99.3% 196.6% 360.7% 617.1% 974.6%

TABLE XX

COMPUTING POWER RELATIVE DNS64 PERFORMANCE (CPRDP) UNDER

DIFFERENT LOAD CONDITIONS, UNBOUND

Num. CPU cores 1 2 4 8 16

Full rate (qps) 8708 15623 19993 31502 17131

CPRDP @25% 7735 7524 7598 6855 5369

CPRDP @50% 7735 7273 7793 7141 5667

CPRDP @75% 7749 7786 7805 7517 5847

CPU util. @100% 98.8% 188.2% 247.5% 407.8% 291.3%

TABLE XXI

COMPUTING POWER RELATIVE DNS64 PERFORMANCE (CPRDP) UNDER

DIFFERENT LOAD CONDITIONS, BIND

Num. CPU cores 1 2 4 8 16

Full rate (qps) 2425 4788 6659 6659 6661

CPRDP @25% 1861 1735 1785 1786 1538
CPRDP @50% 1980 1929 1826 1645 1550

CPRDP @75% 2062 2452 2005 1696 1333

CPU util. @100% 99.3% 196.6% 312.8% 387.6% 565.9%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

possibility of gaming.

VII. CASE STUDY: NUMA INSIGHTS

Modern multiprocessor systems use NUMA (Non-Uniform

Memory Access) instead of SMP (Symmetric Multiprocessing)

for scalability considerations.

We have examined, whether the performance degradation of

Unbound at 8 cores, when the cores reside in two physical

CPUs, might be caused by NUMA issues.

We have measured the NUMA hits and misses for both

PowerDNS and Unbound using 8 cores first as cores 0-7, which

all reside in the first CPU (node0 in NUMA terminology) and

then as cores 0-3 (in node0) plus cores 8-11 (in node1).

For the measurements, we used the numastat Linux

command without arguments, as in this way it displays the

number of memory requests, whereas it gives MBs, if any

arguments are specified. Thus we could not filter to the memory

requests of the DNS64 implementations (because it would have

needed an argument), but all the memory requests in the Linux

system were included. Therefore, we performed the

measurements 20 times and calculated the median values to

filter out the effect of possible random events (outside the

DNS64 implementations), and also included the minimum and

maximum values to reflect the dispersion of the results. (As

numastat displays the cumulative values, we have queried

the counters before and after each tests and calculated the

differences.)

The NUMA results of PowerDNS are shown in Table XXII.

The miss values are negligible in both cases as expected. An

interesting observation is that the memory requests are not

distributed evenly between the two CPUs even though 8 threads

were used. This uneven distribution of the work did not turn out

from the CPU load measurements, as then the cumulative load

of all CPU cores was measured.

The NUMA results of Unbound are shown in Table XXIII.

As the number of NUMA miss count are negligible in both

cases, we can conclude that the performance degradation of

Unbound is not caused by NUMA issues. Our result is in a good

agreement with the fact that our Linux kernel version (4.9.0-4-

amd64) is higher than any of the ones mentioned in [36] as

having scheduler issues and thus resulting in significant

performance loss on NUMA architectures.

Another interesting observation is, that Unbound had

significantly lower number of memory requests then

PowerDNS.

VIII. DISCUSSION AND FUTURE WORK

On the one hand, both the highest single core performance

(8,708qps) and the highest overall DNS64 performance

(31,502qps) results were produced by Unbound (at 8 cores). It

was also Unbound that showed the best computing power

relative performance. Therefore, Unbound seems to be the best

choice for a DNS64 implementation at the moment.

On the other hand, although PowerDNS showed only a

moderate single core performance (3,077qps) and its highest

performance is only (26,620qps), but is scaled up well and it

outperformed Unbound at 16 cores, which showed a serious

performance degradation at 16 cores (17,131qps). We surmise

that an average DNS64 server administrator will not even think

of switching off 8 cores of a 16-core server to increase its

performance, thus we believe that the 17,131qps value is to be

primarily considered as the DNS64 performance of Unbound at

16 cores. And the development of the CPUs has not stopped.

For example, the Intel Xeon Phi 7200 processor [39] has 64

cores. Thus, we contend that scalability of DNS64

implementations has utmost importance.

We plan to examine the performance of PowerDNS and

Unbound using a server with higher number of CPU cores as

DUT. The expected new version of mtd64-ng is also a

candidate. BIND definitely needs a bugfix to be included.

Suggestions for testing further DNS64 implementations are also

welcome.

IX. CONCLUSION

For the optional DNS64 tests of RFC 8219, we have clarified

the requirements for the Tester, which are thus less demanding

then the literal application of the requirements formulated for

the compulsory tests.

By carefully examining the DNS64 performances of BIND,

PowerDNS and Unbound using 1, 2, 4, 8, and 16 CPU cores,

TABLE XXII
NUMASTAT RESULTS OF POWERDNS USING 8 CORES AND 8 THREADS, TEST RATE: 1500QPS

 node0 hit node1 hit all hit node0 miss node1 miss all miss

using cores 0-7

median 282114 0 282114 0 16 16

minimum 271221 0 271221 0 2 2

maximum 300544 0 300544 0 29 29

using cores 0-3 and 8-11

median 173514 115177 288363 2 7 9
minimum 162120 101598 274902 0 0 0

maximum 187409 128805 310166 9 22 24

TABLE XXIII
NUMASTAT RESULTS OF UNBOUND USING 8 CORES AND 8 THREADS, TEST RATE: 1500QPS

 node0 hit node1 hit all hit node0 miss node1 miss all miss

using cores 0-7

median 111166 0 111166 0 16 16

minimum 90326 0 90326 0 1 1

maximum 115258 0 115258 0 30 30

using cores 0-3 and 8-11

median 51608 23349 74488 6 3 11
minimum 42668 13819 62445 0 0 2

maximum 60379 29118 86297 23 15 27

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

we came to the conclusion that on the one hand, currently

Unbound provides the highest single core DNS64 performance

(8,708qps), the highest overall DNS64 performance

(31,502qps, at eight CPU cores) and the highest computing

power relative DNS64 performance (about 5,300qps/core -

7,700qps/core depending on the load and the number of CPU

cores used). But on the other hand, PowerDNS is the only one

that scaled up well, which has utmost importance due to the

current trends in CPU development. BIND showed the lowest

single core DNS64 performance (2,425qps) an also the lowest

overall DNS64 performance: it achieved about 6,660qps rate at

four CPU cores and its performance did not increase using 8 or

16 cores, which is a fundamental problem.

By defining and measuring the computing power relative

performance of DNS64 servers, we provided energy efficiency

aware DNS64 server administrators with another important

factor for DNS64 implementation selection.

ACKNOWLEDGMENTS

This work was supported by the International Exchange

Program of the National Institute of Information and

Communications Technology (NICT), Japan.

The measurements were carried out by using the resources of

NICT StarBED, Japan.

The authors would like to thank Shuuhei Takimoto,

Masatoshi Enomoto, Yutaka Nomura, and Marius Georgescu

for their help and advice in NICT StarBED usage related issues.

X. APPENDIX

A. Parameters of the Measurement Environment

For the repeatability of our measurements, we specify the

most important parameters of the computers. Each Dell

PowerEdge C6620 computer contained two Intel Xeon E5-2650

2GHz CPUs, having 8 cores each, 16x8GB 1333MHz DDR3

RAM, two Intel I350 Gigabit Ethernet NICs, two Intel 10G 2P

X520 Adapters, but only one of them contained a 10G interface

module, 500GB HDD, and also SSDs, but they were not used.

On the basis of our previous experience, we disabled hyper-

threading and set the CPU frequency of the computers to fixed

2GHz, in order to prevent scattered measurement results [9].

The applied BIOS settings were:

1. Advanced / CPU Configuration /

Hyper-Threading Technology: Disabled

2. Server / ACPI SPMI Table: Disabled

3. Advanced / Power Management / Power
Management: Maximum performance

4. Advanced / CPU Configuration / Turbo
Mode: Disabled

However, Turbo Mode was enabled on nodes n020, n023,

and n026 to ensure high enough performance for the Measurer

subsystem.

Debian GNU/Linux 9.2 operating system with kernel version

4.9.0-4-amd64 was installed to all the computers.

As for authoritative DNS server, YADIFA 2.2.3-6237 was

used, because this is the version included in the Debian 9.2

distribution.

B. Configuration Settings

1) BIND DNS64 Settings

The DNS64 function of BIND was enabled and set up in the

/etc/bind/named.conf.options file as follows:

options {
 directory "/var/cache/bind";
 forwarders { 198.18.0.1; };
 dns64 2001:db8:abba::/96 { };
 dnssec-validation no;
 auth-nxdomain no; # conform to RFC1035
 listen-on-v6 { any; };
};

We did not change other configuration options of BIND, e.g.

the number of working threads, because BIND automatically

starts the number of working threads equal to the number of

CPU cores available. It also starts multiple listeners since

version 9.9.0 [40].

2) PowerDNS Settings

We have made the following relevant modifications to the

/etc/powerdns/recursor.conf file:

allow-from=::/0, 0.0.0.0/0
forward-zones=dns64perf.test=198.18.0.1
local-address=2001:2::1, ::1, 127.0.0.1
lua-dns-script=/etc/powerdns/dns64.lua
threads=(varied from 1 to 16)

The number of threads was set to be equal with the number

of active CPU cores.

For enabling DNS64, we placed the following lines into the

/etc/powerdns/dns64.lua file:

prefix = "2001:db8:edda::"
function nodata (dq)
 if dq.qtype ~= pdns.AAAA then
 return false
 end -- only AAAA records

 dq.followupFunction = "getFakeAAAARecords"
 dq.followupPrefix = prefix
 dq.followupName = dq.qname
 return true
end

3) Unbound Settings

To the /etc/unbound/unbound.conf file, we have

added the following lines:

access-control: ::/0 allow
module-config: "dns64 iterator"
dns64-prefix: 2001:db8:bd::/96
forward-zone:
 name: dns64perf.test.
 forward-addr: 198.18.0.1
server:
 interface: 2001:2::1
 interface: ::1
 interface: 127.0.0.1
 num-threads: (varied from 1 to 16)

The number of threads was set to be equal with the number

of active CPU cores.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

4) Mtd64-ng Settings

The /etc/mtd64-ng.conf file had the following relevant

settings:

nameserver 198.18.0.1
dns64-prefix 2001:db8:d64::/96
debugging no
timeout-time 0.5
resend-attempts 0
response-maxlength 512
num-threads 30 # default setting

5) Authoritative DNS Server Configuration

As for authoritative DNS server, we used YADIFA 2.2.3-

6237, because it outperformed BIND 9.10.3-P4-Debian, which

we also tested in the role of the authoritative DNS server.

The relevant settings of the YADIFA authoritative DNS

server in the /etc/yadifa/yadifad.conf file were:

 listen 0.0.0.0, ::
<zone>
 type master
 domain dns64perf.test
 file db.dns64perf.test
</zone>

The content of the db.dns64perf.test zone file was

generated by a script. The zone file contained 224 number of

different entries for the 010-{0..255}-{0..255}-

{0..255}.dns64perf.test namespace, see [20] for the details. For

self-tests, these domain names had AAAA records, because

dns64perf++ can send queries for AAAA records only. For

general DNS64 tests and caching tests, they were mapped to A

records only. For tests examining the effect of the existence of

AAAA records, they occurred in 20%, 40%, 60%, 80%, or

100%. For the details of the solution, please refer to [9].

We have also used NSD 4.1.14 as authoritative DNS server

in a special self-test.

REFERENCES

[1] S. Deering and R. Hinden, “Internet Protocol, version 6 (IPv6)

specification”, IETF RFC 8200 (STD: 86), Jul. 2017. DOI:

10.17487/RFC8200
[2] M. Nikkhah and R. Guérin, “Migrating the internet to IPv6: An

exploration of the when and why”, IEEE/ACM Transactions on

Networking, vol. 24, no 4, pp. 2291–2304, Aug. 2016, DOI:
10.1109/TNET.2015.2453338

[3] M. Bagnulo, A. Garcia-Martinez and I. Van Beijnum, “The

NAT64/DNS64 tool suite for IPv6 transition”, IEEE Commun. Magazine,

vol. 50, no. 7, pp. 177–183, Jul. 2012. DOI:

10.1109/MCOM.2012.6231295

[4] N. Skoberne, O. Maennel, I. Phillips, R. Bush, J. Zorz, M. Ciglaric, “IPv4
Address sharing mechanism classification and tradeoff analysis”,

IEEE/ACM Trans. Netw., vol. 22, no. 2, pp. 391–404, Apr. 2014, DOI:

10.1109/TNET.2013.2256147
[5] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS

extensions for network address translation from IPv6 clients to IPv4

servers”, IETF RFC 6147, 2011. DOI: 10.17487/RFC6147
[6] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network

address and protocol translation from IPv6 clients to IPv4 servers”, IETF

RFC 6146, 2011. DOI: 10.17487/RFC6146
[7] G. Lencse, Y. Kadobayashi, “Methodology for the identification of

potential security issues of different IPv6 transition technologies: Threat

analysis of DNS64 and stateful NAT64”, Computers & Security, vol. 77,
no. 1, pp. 397-411, September 1, 2018, DOI: 10.1016/j.cose.2018.04.012

[8] M. Georgescu, L. Pislaru and G. Lencse, “Benchmarking methodology

for IPv6 transition technologies”, IETF RFC 8219, Aug. 2017. DOI:
10.17487/RFC8219

[9] G. Lencse, M. Georgescu, and Y. Kadobayashi, “Benchmarking

methodology for DNS64 servers”, Computer Communications, vol. 109,
no. 1, pp. 162–175, 2017, DOI: 10.1016/j.comcom.2017.06.004

[10] G. Lencse and S. Répás, “Performance analysis and comparison of four

DNS64 implementations under different free operating systems”,
Telecommunication Systems, vol. 63, no. 4, pp. 557–577, Nov. 2016, DOI:

10.1007/s11235-016-0142-x

[11] K. J. O. Llanto, and W. E. S. Yu, Performance of NAT64 versus NAT44
in the context of IPv6 migration, in Proc. International MultiConference

of Engineers 2012 (IMECS 2012), Hong Kong, March 14-16, 2012, vol.

I., pp. 638–645.
[12] C. P. Monte, M. I. Robles, G. Mercado, C. Taffernaberry, M. Orbiscay,

S. Tobar, R. Moralejo, S. Pérez, “Implementation and evaluation of

protocols translating methods for IPv4 to IPv6 transition”, Journal of
Computer Science & Technology, vol. 12, no. 2, Aug. 2012, pp. 64–70.

[13] S. Yu, and B. E. Carpenter, “Measuring IPv4 – IPv6 translation

techniques”, Dept. of Computer Science, Univ. Auckland, Auckland,
New Zeeland, Technical Report 2012-001, Jan. 2012, [Online]. Available:

https://www.cs.auckland.ac.nz/~brian/IPv4-IPv6coexistenceTechnique-

TR.pdf
[14] Internet Systems Consortium, “BIND: Versatile, classic, complete name

server software”, [Online]. Available:

https://www.isc.org/downloads/bind
[15] The 6NET Consortium, “An IPv6 deployment guide”, Ed. Martin

Dunmore, Sept. 2005. [Online]. Available:
http://www.6net.org/book/deployment-guide.pdf

[16] NLnet Labs, Unbound, [Online]. Available: http://unbound.net

[17] Powerdns.com BV, “PowerDNS”, [Online]. Available:
http://www.powerdns.com

[18] Nominum: “Dnsperf: DNS performance tool manual”, [Online].

Available: https://github.com/Sinodun/dnsperf-
tcp/blob/master/doc/dnsperf.pdf

[19] G. Lencse, “Test program for the performance analysis of DNS64

servers”, International Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol. 4. no. 3. (2015.) pp 60-65. DOI:

10.11601/ijates.v4i3.121

[20] G. Lencse, D. Bakai, “Design and implementation of a test program for
benchmarking DNS64 servers”, IEICE Transactions on Communications,

vol. E100-B, no. 6. pp. 948-954, Jun. 2017. DOI:

10.1587/transcom.2016EBN0007
[21] G. Lencse, “Enabling dns64perf++ for benchmarking the caching

performance of DNS64 servers”, unpublished, review version is available

from: http://www.hit.bme.hu/~lencse/publications/
[22] G. Lencse and A. Pivoda, “Checking and increasing the accuracy of the

dns64perf++ measurement tool for benchmarking DNS64 servers”,

International Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol. 7. no. 1. pp. 10-16. DOI:

10.11601/ijates.v7i1.255

[23] G. Lencse and D. Bakai, “Design, implementation and performance
estimation of mtd64-ng, a new tiny DNS64 proxy”, Journal of Computing

and Information Technology vol. 25, no, 2, pp. 91-102, June 2017, DOI:

10.20532/cit.2017.1003419
[24] S. Bradner, J. McQuaid, “Benchmarking methodology for network

interconnect devices”, IETF RFC 2544, 1999. DOI: 10.17487/RFC2544

[25] C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6

addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010. DOI:

10.17487/RFC6052

[26] Free Software Foundation, “The free software definition”, [Online].
Available: http://www.gnu.org/philosophy/free-sw.en.html

[27] Open Source Initiative, “The open source definition”, [Online]. Available:

http://opensource.org/docs/osd
[28] G. Lencse and S. Répás, “Improving the performance and security of the

TOTD DNS64 implementation”, Journal of Computer Science and

Technology, vol. 14, no 1, pp. 9-15, Apr., 2014.
[29] S. Perreault, J.-P. Dionne, and M. Blanchet, “Ecdysis: Open-source

DNS64 and NAT64”, AsiaBSDCon, 2010, [Online]. Available:

http://viagenie.ca/publications/2010-03-13-asiabsdcon-nat64.pdf
[30] Ecdysis project, “Ecdysis: open-source implementation of a NAT64

gateway”, download page, [Online]. Available:

https://ecdysis.viagenie.ca/download.html
[31] EURid, “YADIFA”, [Online]. Available: https://www.yadifa.eu

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

[32] NLnetLabs, “NSD: Name Server Daemon”, [Online]. Available:

https://www.nlnetlabs.nl/projects/nsd/
[33] G. Kunz, “Parallel discrete event simulation”, In Modeling and Tools for

Network Simulation, K. Wehrle, M. Günes and J. Gross (Eds.). Springer-

Verlag, Berlin, 2010. ISBN 978-3-642-12330-6
[34] B. Gregg, “The flame graph”, Communications of the ACM, vol. 59, no.

6, Jun. 2016, pp. 48-57, DOI: 10.1145/2909476

[35] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache
poisoning”, in Proc. Security and Privacy in Communication Networks -

6th Iternational ICST Conference (SecureComm 2010), Singapore, Sept.

7-9, 2010, pp. 466–483, DOI: 10.1007/978-3-642-16161-2_27
[36] J-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, A. Fedorova, “The

Linux scheduler: A decade of wasted cores”, Proc. Eleventh European

Conference on Computer Systems (EuroSys 2016), London, UK, April 18-
21, 2016. DOI: 10.1145/2901318.2901326

[37] A. Hubert, R. van Mook, “Measures for making DNS more resilient

against forged answers”, IETF RFC 5452, Jan. 2009. DOI:
10.17487/rfc5452

[38] R. Bolla, R. Bruschi, F. Davoli, F. Cucchietti, “Energy efficiency in the

future Internet: A survey of existing approaches and trends in energy-
aware fixed network infrastructures", IEEE Communication Surveys &

Tutorials, vol. 13, no. 2, pp. 223-244, Jul. 2010, DOI:

10.1109/SURV.2011.071410.00073
[39] Intel Xeon Phi Processor 7210, product specification, [Online]. Available:

https://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-

16GB-1_30-GHz-64-core
[40] Michael Graff, “Performance: Multi-threaded I/O”, ISC Knowledge Base,

Reference Number: AA-00629, Created: 2012-02-24 18:17, Last
Updated: 2017-08-01 20:08, [Online]. Available:

https://kb.isc.org/article/AA-00629/0/Performance%3A-Multi-threaded-

I-O.html

Gábor Lencse received his MSc and

PhD in computer science from the

Budapest University of Technology

and Economics, Budapest, Hungary in

1994 and 2001, respectively.

 He has been working full time for

the Department of Telecommunica-

tions, Széchenyi István University,

Győr, Hungary since 1997. Now, he is

an Associate Professor. He has been

working part time for the Department

of Networked Systems and Services,

Budapest University of Technology and Economics, Budapest,

Hungary as a Senior Research Fellow since 2005. He was a

Guest Researcher at the Laboratory for Cyber Resilience, Nara

Institute of Science and Technology, Japan from June 15 to

December 15, 2017, where his research area was the security

analysis of IPv6 transition technologies.

 Dr. Lencse is a member of IEICE (Institute of Electronics,

Information and Communication Engineers, Japan).

Youki Kadobayashi received his

Ph.D. degree in computer science

from Osaka University, Japan, in

1997.

 He is currently a Professor in the

Graduate School of Information

Science, Nara Institute of Science

and Technology, Japan. Since

2013, he has also been working as

the Rapporteur of ITU-T Q.4/17 for

cybersecurity standardization. His

research interests include

cybersecurity, web security, and distributed systems.

 Prof. Kadobayashi is a member of IEEE Communications

society.

