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Abstract    
In this paper, the viability of the throughput and frame loss rate 

benchmarking procedures of RFC 8219 is tested by executing 

them to examine the performance of three free software SIIT 

(also called stateless NAT64) implementations: Jool, TAYGA, 

and map646. An important methodological problem of the two 

tested benchmarking procedures is pointed out: they use 

improper timeout setting. A solution of individually checking 

the timeout for each frame is proposed to get more reasonable 

results, and its feasibility is demonstrated. The unreliability of 

the results caused by the lack of requirement for repeated tests 

is also pointed out, and the need for relevant number of tests is 

demonstrated. The possibility of an optional non-zero frame 

loss acceptance criterion for throughput measurement is also 

discussed. The benchmarking measurements are performed 

using two different computer hardware, and all relevant results 

are disclosed and compared. The performance of the kernel 

based Jool was found to scale up well with the number of active 

CPU cores and Jool also significantly outperformed the two 

other SIIT implementations, which work in the user space. 

 

Keywords  Benchmarking · IPv6 deployment · IPv6 transition 

solutions · SIIT · Stateless NAT64 · Performance analysis 

 

1  Introduction 

Stateless IP/ICMP translation (SIIT) [1] (also referred to as 

stateless NAT64) plays an important role in the current phase of 

transitioning from IPv4 to IPv6 as it is used in several contexts. 

For example, it is a part of the well-known stateful NAT64 [2], 

which is used together with DNS64 [3] to enable IPv6-only 

clients communicating with IPv4-only servers. It works in the 

CLAT devices of 464XLAT [4], too.  SIIT can also be applied 

to provide IPv4 access to IPv6-only data centers or services. 

One of its earliest such application is documented in [5]. 

Several free software [6] SIIT implementations exist and 

some of them support stateful NAT64, too. When network 

operators select the best fitting one for their purposes, they are 

interested in the performance of the different implementations. 

For carrying out performance measurements, one needs a 
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well-defined methodology, measurement tools (hardware or 

software), a suitable testbed, benchmarking expertise, and a lot 

of time. As for methodology, RFC 8219 [7] defined a 

benchmarking methodology for IPv6 transition technologies. It 

classified the high number of IPv6 transition technologies [8] 

into a small number of categories, and it defined the 

benchmarking methods per categories. Both SIIT and stateful 

NAT64 fell into the category of single translation solutions, 

thus basically, they have the same benchmarking tests, plus 

some additional tests were defined for stateful IPv6 transition 

technologies (for the details, please refer to Section 8 of RFC 

8219). 

The aim of this paper is twofold: 

 to test the viability of the benchmarking methodology 

defined in RFC 8219 concerning SIIT implementa-

tions, and also to amend it, where it proves to be 

necessary, 

 to measure the performance of a few SIIT 

implementations and thus provide network operators 

with ready to use benchmarking results. 

We note that we are not aware of anyone else benchmarking 

SIIT implementations in an RFC 8219 compliant way. One of 

its causes is the lack of compliant testers. We know about a 

single publication only, which reports the design and 

implementations of such tester [9]. However, it has never been 

publicly released due to its insufficient performance. Rather, it 

was re-implemented using DPDK (Intel Data Plane 

Development Kit [10]) by its author, Péter Bálint, a PhD 

student at the Széchenyi István University, Győr, Hungary 

under the supervison of the first author of this paper. 

Unfortunately, our tests showed that this program failed to 

work correctly, and we have found fundamental prolems in it 

during a systematic code review. We have rewritten its most 

important parts, namely the receiving and sending functions 

and their syncronization. Thus, the program became usable, but 

we plan to reimplement it from scratch in C++ using a proper 

object oriented design and plan to make it publicly available 

from GitHub. 

Right before our current effort, we have examined the 

possibility of benchmarking stateless NAT64 implementations 

using legacy RFC 2544 [11] / RFC 5180 [12] compliant 

Testers. We have reported our results in [13]. 

The remainder of this paper is organized as follows. In 

section 2, we give a short introduction to the benchmarking 

method for single translation solutions defined in RFC 8219. In 

section 3, first, we design the test and traffic setup, next, we 
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give a very brief summary of the DPDK based NAT64 Tester, 

then we describe our measurements, after that, we disclose and 

discuss our results, and finally, we point out some problems 

with the existing benchmarking methodology. In section 4, we 

describe a different measurement method, which can 

complement our previous measurements and demonstrates the 

feasibility of our proposed solution for the methodology 

problem, then we present and discuss our results. In section 5, 

we make three recommendations to update the two 

benchmarking procedures of RFC 8219 (RFC 2544) and 

disclose our plans for future research. Section 6 concludes our 

paper. 

2  Benchmarking Tests for SIIT Gateways 

RFC 8219 addresses single translation technologies in 

general, but now we focus on SIIT. We note that stateful 

NAT64 tests are basically the same with the exception that 

communication may be initiated only from the IPv6 side and 

there are some further tests for examining the stateful behavior. 

The recommended test setup is very simple: it consists of the 

Tester and the DUT (Device Under Test), see Fig. 1. Although 

the arrows are unidirectional, the traffic may be bidirectional. 

RFC 8219 requires testing with bidirectional traffic and makes 

testing with unidirectional traffic optional. 

The recommended measurement procedures usually came 

from RFC 2455. The following ones are kept unchanged: 

throughput, frame loss rate, back-to-back frames, and system 

recovery. The measurement procedure for latency has been 

redefined to achieve higher accuracy, and further measurement 

procedures for packet delay variation, inter packet delay 

variation, and reset have been added. For more details, please 

refer to Section 7 of RFC 8219.  

It also means that the strict absolutely zero packet loss 

criterion of the throughput measurement was kept: the 

throughput is the highest rate, at which the number of frames 

transmitted by the Tester is equal with the number of frames 

received by the Tester, during an at least 60 seconds long test. 

(In practice, the highest such rate is determined by a binary 

search, where the initial upper limit of the interval is the 

maximum frame rate of the media.) 

As for the recommended frames sizes, they have been mainly 

kept, but somewhat amended. They are: 64, 128, 256, 512, 768, 

1024, 1280, and 1518 bytes. And it is also mentioned that 64 

should be replaced by 84 in the IPv6 to IPv4 direction due to 

minimum frame size issue. The RFC does not mention, but it is 

deliberate that 1518 should also be replaced by 1498 in the IPv4 

to IPv6 direction due to maximum frame size issue. However, 

all other frame sizes are also changed by the translator and it is 

not mentioned, whether the other values (128, 256, 512, 768, 

1024, 1280) are meant to be IPv4 or IPv6 frame sizes. As RFC 

8219 also has tests, where translated and native IPv6 traffic is to 

be mixed, we suggest that the listed frame sizes should be used 

for IPv6. Thus, we interpret that the frame sizes for IPv6 are: 

84, 128, 256, 512, 768, 1024, 1280, 1518, and frame sizes for 

IPv4 are 64, 108, 236, 492, 748, 1004, 1260, 1498. 

As for the before mentioned mixed traffic, the SIIT gateway 

should act as a router for the native IPv6 traffic, and 100%, 

90%, 50% and 10% are recommended for the proportion of the 

translated traffic, where the rest should be native IPv6 traffic.  

As for timeout time, RFC 8219 mentions it only concerning 

DNS64 testing, but it makes no explicit recommendation for an 

appropriate timeout time in the case of any other types of 

measurements. According to our interpretation, timeout is 

defined implicitly as follows. As we have already mentioned, 

several measurement procedures defined in RFC 2544 were 

kept unchanged. Section 23 of RFC 2544 contains a general 

trial description. It says that after running a particular test trial, 

one should “wait for two seconds for any residual frames to be 

received”. We follow this approach in Section 3, and then 

seriously challenge it in Section 3.8. 

Section 12 of RFC 2544 also mentions that the tests should 

be performed first with a single flow (using a single source 

address and a single destination address) and then they should 

be repeated with 256 flows, where the destination addresses are 

randomly chosen from 256 different networks. 

There is one more thing, in which we have found a gap in the 

methodology of RFC 8219. It is the number of repetitions of the 

tests. RFC 8219 mentions at four different places that the tests 

must be repeated at least 20 times. They are the benchmarking 

procedures for: 

 latency (Section 7.2) 

 packet delay variation (Section 7.3.1) 

 inter packet delay variation (Section 7.3.2) 

 DNS64 performance (Section 9.2). 

As for DNS64 benchmarking measurements, we have 

explained the need for at least 20 repetitions in [14] as follows. 

“There may be random events, which influence the results. 

Consequently, the tests should be repeated multiple times and 

the final result should be calculated by using a particular 

summarizing function.” The test was performed at least 20 

times and we used the median value to summarize the results. 

To account for the variation of the results across the 20 

repetitions, the 1st and 99th percentiles were used. It is also 

explained, that median was preferred over average because 

median is less sensitive to outliers than average. 

In our case, the benchmarked SIIT implementations are 

software components executed by computers, thus we contend 

that the same conditions apply. Therefore, in this paper, we 

follow the same approach and we believe that this is the true 

spirit of RFC 8219, even if its literal wording does not say 

anything about the repetitions of the throughput and frame loss 

rate measurements. RFC 2544 writes in its Section 4 that: 

“Furthermore, selection of the tests to be run and evaluation of 

the test data must be done with an understanding of generally 

              +--------------------+ 
              |                    | 
 +------------|IPvX   Tester   IPvY|<-------------+ 
 |            |                    |              | 
 |            +--------------------+              | 
 |                                                | 
 |            +--------------------+              | 
 |            |                    |              | 
 +----------->|IPvX     DUT    IPvY|--------------+ 
              |                    | 
              +--------------------+ 

 

Fig. 1  Single DUT test setup [7] 
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accepted testing practices regarding repeatability, variance and 

statistical significance of small numbers of trials.” As for 

repeatability, RFC 2330 [15] says that “A methodology for a 

metric should have the property that it is repeatable: if the 

methodology is used multiple times under identical conditions, 

the same measurements should result in the same 

measurements.”  It was true, when most of the switching 

devices were simple hardware based devices, where we can 

define some upper limit for packet processing.  However, we 

use software based switching recently, and it sometimes has 

more variance in performance.  Therefore, we need to find 

some appropriate method to understand the representative 

performance of such devices. 

3  Benchmarking Measurements with a Stateless 

NAT64 Tester 

3.1  Test and Traffic Setup 

Following the requirements of RFC 8219, we have designed 

the test and traffic setup for benchmarking stateless SIIT 

gateways using EAM (Explicit Address Mapping) [16]. The 

traffic to be translated is shown in Fig. 2. Only IPv6 addresses 

are assigned to the left side network interfaces of both the 

Tester and the DUT, and similarly, their network interfaces on 

their right side have only IPv4 addresses. The addresses typeset 

in italic font are not assigned to the interfaces, they are written 

there to help the reader to follow the operation of the system. 

They are used to refer to the given interfaces in the other 

address space (IPv4 or IPv6). DUT translates the addresses 

according to its static mapping table shown below the DUT. 

We call the traffic from the IPv6 interface of the Tester flowing 

through DUT and arriving to the IPv4 interface of the Tester as 

“forward” direction traffic, and we call the other direction as 

“reverse” direction, because RFC 8219 requires the use of 

native IPv6 traffic, too, thus in that case the terms of “IPv6 

side” and “IPv4 side” would have been questionable. The 

native IPv6 traffic, which we call as “background” traffic is 

shown in Fig. 3. Concerning this traffic, the DUT acts as a 

router.  

3.2  NAT64 Tester in a Nutshell 

We give a very brief summary of the functional design of the 

DPDK based NAT64 tester (called nat64tester).  

Following the high level design of Dániel Bakai’s excellent 

DNS64 tester called dns64perf++ [17], nat64tester 

performs only one test, and the binary search, as well as the 

further repetitions are executed by a bash shell script. The 

functionality of nat64tester is rather limited, as it can only 

be used for the two most important tests, namely throughput 

and packet loss. A further limitation is that it can only perform a 

single flow test. (We overcome this limitation in Section 4 by 

using dns64perf++, which is able to use up to 64,000 

different source ports.) 

When the test is finished, nat64tester reports the 

number of sent and received frames in each direction, and the 

shell script evaluates the results. 

 If a throughput measurement is done, the shell script 

checks if the number of received frames is equal with 

the number of frames had to be sent by the tester at the 

required rate during the required testing time and 

makes the decision for the binary search.  

 If a frame loss measurement is done, the shell script 

determines the frame loss using the number of frames 

received and the calculated number of frames had to 

198.19.0.1/24
not  assigned: 2001:2:0:1::1

2001:2::2/64
not assigned: 198.18.0.2

IPv4 – IPv6 static mapping: 
198.18.0.1 – 2001:2::1
198.18.0.2 – 2001:2::2
198.19.0.1 – 2001:2:0:1::1
198.19.0.2 – 2001:2:0:1::2

2001:2::1/64
not assigned: 198.18.0.1

Tester

198.19.0.2/24
not  assigned: 2001:2:0:1::2

DUT 

“forward”  traffic from Tester: 
2001:2::2 --> 2001:2:0:1::2

“forward” traffic through DUT: 
198.18.0.2 --> 198.19.0.2“reverse” traffic through DUT: 

2001:2:0:1::2 --> 2001:2::2

“reverse” traffic from Tester: 
198.19.0.2 --> 198.18.0.2

(stateless NAT64 
gateway)

(executing 
nat64tester)

 
 

Fig. 2  Traffic for benchmarking stateless NAT64 gateways 

 

2001:2::2/64

Concerning the background traffic, the 
stateless NAT64 gateway acts as a router.

2001:2::1/64

Tester

2001:2:0:8000::2/64

2001:2:0:8000::1/64

DUT 

“forward"  traffic from Tester: 
2001:2::2 --> 2001:2:0:8000::2

“forward" traffic through DUT: 
2001:2::2 --> 2001:2:0:8000::2“reverse" traffic through DUT: 

2001:2:0:8000::2 --> 2001:2::2

“reverse" traffic from Tester: 
2001:2:0:8000::2 --> 2001:2::2

(stateless NAT64 
gateway)

(executing 
nat64tester)

 
 

Fig. 3  Background traffic for benchmarking stateless NAT64 gateways 
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be sent. 

The script does not use the reported value of the number of 

frames sent, but it is logged to help error debugging. 

Unfortunately, nat64tester is not able to reply to ARP 

or ND requests, thus it requires direct cable connections 

between the Tester and the DUT, and static ARP/ND table 

entries has to be set manually. 

3.3  Measurement Environment 

Measurements were carried out using the resources of the 

NICT StarBED, Japan. Two different types of servers (N nodes 

and P nodes) were used. 

 The N nodes are Dell PowerEdge C6220 servers with 

two 2GHz Intel Xeon E5-2650 CPUs having 8 cores 

each, 128GB 1333MHz DDR3 RAM and Intel 10G dual 

port X520 network adapters. 

 The P nodes are Dell PowerEdge R430 servers with two 

2.1GHz Intel Xeon E5-2683 v4 CPUs having 16 cores 

each, 384GB 2400MHz DDR4 RAM and Intel 10G dual 

port X540 network adapters. 

We have used two very similar tests systems with somewhat 

different goals. In Test System 1 (see Fig. 4), we switched off 

hyper-threading in both computers and set the clock frequency 

of the DUT to 2GHz (fixed), because we knew from our 

previous benchmarking experience [18] that they could cause 

scattered measurement results. (We mean under scattered 

measurement results that the results of the 20 measurements are 

significantly different.) Our aim with Test System 1 (see Fig. 4) 

was to eliminate all circumstances that could cause scattered 

measurement results. However, Turbo Mode was enabled on 

the Tester to give some extra performance. (In such case, the 

power budget is a limit for the clock frequency of the cores. We 

have checked that the clock frequency could reach 2.8GHz, 

when no more than 4 cores were used, and nat64tester 

uses 4 cores for bidirectional tests and 2 cores for unidirectional 

tests.) 

In the Tester (n017), we have reserved cores 4-7 to execute 

nat64tester, using the isolcpus=4,5,6,7 kernel 

parameter. (It means that no other user tasks could be scheduled 

on these cores.) 

In the DUT (n018), we have limited the online CPU cores to 

cores 0-7, using the maxcpus=8 kernel parameter to avoid 

possible NUMA issues. (It was done so, because all the I/O 

devices, as well as cores 0-7 belonged to NUMA node 0. 

Scheduling sometimes the SIIT implementation on one of the 

cores 8-15, which belonged to NUMA node 1, could have 

resulted in a decreased performance and thus scattered 

measurement results, which we wanted to avoid.) 

Our aim with Test System 2 (see Fig. 5) was to test the same 

implementations on a more modern CPU, the clock frequency 

of which may not be set to a fixed value. In addition to that, 

CPU cores 0, 2, 4, …, and 30 belonged to NUMA node 0, and 

cores 1, 3, 5, …, and 31 belonged to NUMA node 1. All NICs 

and disks belonged to NUMA node 0. 

We have disabled hyper-threading in both computers. Plus, 

in the Tester (p094), we have reserved cores 2, 4, 6, and 8 to 

execute nat64tester, using the isolcpus=2,4,6,8 

kernel parameter. The CPU clock frequency of both computers 

could vary from 1.2GHz to 3GHz, which is the maximum turbo 

frequency of the CPU. We have changed the “powersave” CPU 

frequency scaling governor (cpufrequtils)  to 

“performance” in both computers. 

Besides the different node and interface names, the reader 

may notice a small but significant difference between Fig. 4 

and Fig. 5. The last octet of the IPv4 address of the tester was 

DUT
Dell PowerEdge C6620
(running SIIT gateway) 

Tester
Dell PowerEdge C6620 
(running nat64perf) 

eno2: DHCP

eno2: DHCP

Test System 1

enp3s0f0:
2001:2::2/64

enp3s0f1:
198.19.0.2/24
2001:2:0:8000::2/64

enp3s0f1:
198.19.0.1/24
2001:2:0:8000::1/64

enp3s0f0:
2001:2::1/64

2x 10G Ethernet
with direct cables  

n017

n018

 

Fig. 4  Test System 1 built up by N nodes, with a fixed 2GHz CPU clock 

frequency DUT 

 

DUT
Dell PowerEdge C6620
(running SIIT gateway) 

Tester
Dell PowerEdge C6620 
(running nat64perf) 

eno1: DHCP

eno1: DHCP

Test System 2

enp5s0f0:
2001:2::2/64

enp5s0f1:
198.19.0.3/24
2001:2:0:8000::2/64

enp5s0f1:
198.19.0.1/24
2001:2:0:8000::1/64

enp5s0f0:
2001:2::1/64

2x 10G Ethernet
with direct cables  

p094

p095

 
 

Fig. 5  Test System 2 built up by P nodes, with a variable (1.2-3GHz) CPU 

clock frequency DUT 

Table 1  The Building Elements of the Test Systems for Basic Tests 

Test 

System 

Tester 

node 

Tester 

speed 

DUT 

node 

DUT 

speed 

DUT 

active cores 

TS1 n017 2-2.8GHz n018 2GHz 0-7 

TS2 p094 1.2-3GHz p095 1.2-3GHz 0-31 
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set to 3 in the latter. We explain its reason, when disclosing the 

results of the throughput test in Section 3.5.1. 

The Debian Linux operating system was updated to 9.9. (the 

latest version at the time of testing) and the kernel version was  

4.9.0-4-amd64 and 4.9.0-8-amd64 on the N nodes and on the P 

nodes, respectively. The DPDK version was 

16.11.8-1+deb9u1. 

3.4  SIIT Implementations to be Benchmarked 

We deal only with free software [6] SIIT implementations 

for the same reason we presented in [19]. We have made a 

survey of papers on NAT64 performance measurements and 

existing free software stateless NAT64 implementations in 

[13]. Now, we decided to benchmark the same implementations 

using both different DUTs and a different tester. This situation 

gives us both a basis for comparison and an opportunity to dig 

deeper into the behavior of the tested implementations. 

The implementations and software versions for our current 

benchmarking test are: 

 TAYGA 0.9.2 (released on June 10, 2011) [20], 

Debian package version: 0.9.2-6+b1 

 Jool 4.0.1 (released on April 26, 2019) [21] 

 map646 (GitHub latest commit cd93431 on Mar 31, 

2016) [22] 

We note that in our previous paper [13], we tested Jool 3.5.7. 

Now, we have also checked its performance during our 

preliminary test on the N node (its DKMS build failed on the P 

node), but having seen no major differences, we have omitted 

the old version. The versions of the two other SIIT 

implementations were the same as now. As for the rationale for 

choosing these three SIIT implementations, first of all, we 

could not find any other free software SIIT implementations 

under Linux (only stateful NAT64). We note that Jool is still 

actively developed, TAYGA is no more developed but it is a 

part of the Debian Linux distribution, and it seems to be still in 

use, because we have found several posts from the last three 

years about how to configure TAYGA. Map646 was created by 

the second author of this paper, and we were interested in its 

performance, because it is still in use as the NAT46 gateway for 

the WIDE project [5]. 

To make our tests repeatable, we give the most important 

information, how we set the different SIIT implementations. 

3.4.1  TAYGA 

Tayga is a part of the Debian Linux distribution, and its 

installation also prepares the necessary nat64 pseudo network 

interface. We have made the following changes to its 

/etc/tayga.conf configuration file: 

ipv4-addr 198.19.0.9 
ipv6-addr 2001:2::9 
map 198.18.0.1 2001:2::1 
map 198.18.0.2 2001:2::2 
map 198.19.0.1 2001:2:0:1::1 
map 198.19.0.2 2001:2:0:1::2 

As we wanted to use the same configuration for all 

implementations, the last line for p095 was as follows: 
map 198.19.0.3 2001:2:0:1::3 

In addition to that, we had to change two settings in the 

/etc/default/tayga file as follows: 

RUN="yes" 

CONFIGURE_NAT44="no" 

After that, we could start it by the standard way under Debian 

Linux: 

/etc/init.d/tayga start 

3.4.2  Jool 

Unfortunately, Jool is not yet a part of the Debian Linux 

distribution.  Its compilation and installation is described in 

detail in its documentation [21], which we followed. Jool does 

not have a configuration file, its parameters were set by its user 

interface program, and the packets were redirected to Jool by 

iptables rules. We used the following commands: 

/sbin/modprobe jool_siit 
jool_siit instance add "benchmarking" --iptables 
jool_siit -i "benchmarking" eamt \ 
  add 2001:2::/120 198.18.0.0/24 
jool_siit -i "benchmarking" eamt \ 
  add 2001:2:0:1::/120 198.19.0.0/24 
ip6tables -t mangle -A PREROUTING -s 2001:2::/120 \ 
  -d 2001:2:0:1::/120 -j JOOL_SIIT \ 
  --instance "benchmarking" 
iptables -t mangle -A PREROUTING -s 198.19.0.0/24 \ 
  -d 198.18.0.0/24 -j JOOL_SIIT \ 
  --instance "benchmarking" 
jool_siit -i "benchmarking" eamt display 

3.4.3  Map646 

Map646 was downloaded from [22]. It needed a minor 

update, because some changes were made to the library 

structure of the include files for JSON. (It means that the json 

library no more exists in /usr/include, but there are two 

different libraries for C and C++.) 

We used the following settings in its /etc/map646.conf 

configuration file: 
mapping-prefix 64:ff9b:: 
map-static 198.18.0.1 2001:2::1 
map-static 198.18.0.2 2001:2::2 

 
 

Fig. 6  Throughput results of Jool, TS1 
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It also means that map646 could only be tested with 

unidirectional traffic in the IPv4 to IPv6 direction. (We have 

disclosed its root causes in [13].) 

3.4.4  Manual Static ARP and ND Settings 

The static ARP and ND table entries were set manually in the 

DUTs. The settings of n018 were as follows: 

ip neighbor add 2001:2::2 lladdr a0:36:9f:13:fe:28 \ 
  dev enp3s0f0 nud permanent 
ip neigh add 198.19.0.2 lladdr a0:36:9f:13:fe:2a \ 
  dev enp3s0f1 nud permanent 
ip neighbor add 2001:2:0:8000::2 lladdr \ 
  a0:36:9f:13:fe:2a dev enp3s0f1 nud permanent 

The settings of p095 were as follows: 
ip neighbor add 2001:2::2 lladdr a0:36:9f:c5:fa:1c \ 
  dev enp5s0f0 nud permanent 
ip neigh add 198.19.0.3 lladdr a0:36:9f:c5:fa:1e \ 
  dev enp5s0f1 nud permanent 
ip neighbor add 2001:2:0:8000::2 lladdr \ 
  a0:36:9f:c5:fa:1e dev enp5s0f1 nud permanent 

3.5  Throughput Test Results 

First, we disclose and analyze the throughput test results of 

each implementation individually, and then we compare them 

and discuss our most important findings. 

As we wrote in Section 2, we have executed all the 

measurements 20 times and calculated the median as well as the 

1st and 99th percentiles. (Of course, the latter two are also the 

minimum and maximum, as the number of measurements is 

less than 100.) 

All the results are presented in the same format: bar charts 

are used for displaying the median values, and error bars show 

the 1st and 99th percentile values. 

3.5.1  Jool 

The throughput results of Jool produced by TS1 (Test 

System 1) are shown in Fig. 6. The error bars are hardly visible, 

because the 1st percentile and 99th percentile values are very 

close to the median. Thus we were definitely successful in the 

elimination of all possible factors that could cause scattered 

results. The throughput values are nearly constant, they show 

only a very slight decreasing tendency with the increase of the 

frame size. This observation is in a complete agreement with 

our previous results [13], and it can be explained by the fact that 

the bottleneck is the processing power of the CPU and not the 

transmission capacity of the 10Gbps Ethernet link. (The 

amount of work needed for header processing does not depend 

on the frame size and the transmission through the PCI Express 

bus is also very fast.) 

Let us examine the exact figures for a given frame size, for 

example 128 bytes, which actually means 128 bytes long 

Ethernet frames carrying IPv6 datagrams and 108 bytes long 

Ethernet frames carrying IPv4 datagrams. The median 

throughput values of the forward (form IPv6 to IPv4), reverse 

(from IPv4 to IPv6) and bidirectional traffic are 296,972fps 

(frames per second) 290,234fps, and 547,848fps, respectively. 

The observation that the bidirectional throughput is 5.62% less 

than the double of the minimum of the unidirectional 

throughput (580,468fps) can be explained by the fact that 

although Ethernet is full duplex and the packets in the two 

directions are handled by two separate CPU cores, some other 

resources (e.g. the memory and the PCI express bus) are shared. 

The throughput results of Jool produced by TS2 (Test 

System 2) are shown in Fig. 7. The error bars are usually well 

 
 

Fig. 7  Throughput results of Jool, TS2 

 

 
 

Fig. 8  Throughput results of TAYGA, TS1 

 

 
 

Fig. 9  Throughput results of TAYGA, TS2 
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visible, indicating that the 1st percentiles are significantly 

lower than the 99th percentiles. We attribute this scattered 

nature of the results to the varying clock frequency of the CPU, 

because during the preliminary tests, we have observed that 

always the same CPU cores were loaded3, thus differences in 

the NUMA situation can be excluded as potential causes of the 

differences.  

We note that originally we used TS2 with the same IP 

addresses as TS1. In that case, the two flows of the bidirectional 

tests were served by the same CPU core, and thus the 

throughput results were lower. However, in a real system, 

usually a lot of different  IP addresses are used, thus this clash is 

not a typical behavior, therefore, we have eliminated it by 

changing the IP addresses. 

Otherwise, the results are very similar to that of the 

measurements with the N nodes, but of course, the values are 

higher, due to the higher CPU frequency. 

3.5.2 TAYGA 

The throughput results of TAYGA produced by TS1 are 

shown in Fig. 8. There are visible problems at 84bytes and 

128bytes frame sizes: the throughput is visibly lower than it is 

at 256 bytes, and the error bars of the IPv4 to IPv6 traffic are 

very high, indicating significantly scattered measurement 

results. (For example, the 1st percentile is 96,777fps and the 

99th percentile is 138,183fps at 84bytes frame size.) Behind 

this phenomenon, we surmise some stability problems of 

TAYGA, and we show it in Section 3.6.2, when discussing its 

frame loss rate results. However, from the viewpoint of the 

theory of benchmarking it is much more important that this 

situation demonstrates the need for multiple tests. 

Otherwise, the results from 256bytes to 1518bytes frame 

sizes are nearly constant, showing very small degradation with 

the increase of the frame size. (Considering that TAYGA works 

is user-space, we easily could accept even higher degradation 

than that.) 

The throughput results of TAYGA produced by TS2 are 

shown in Fig. 9. Similarly to Jool, the P node results are more 

scattered than the N node results (the error bars are well visible) 

as expected. However, the problem observed in the N nodes 

results at 84bytes and 128bytes frame sizes is hardly noticeable. 

(Only the bidirectional throughput shows some deviation: the 

median value at 84bytes is visibly less, than is should be and the 

error bar at 128bytes is higher than at any other places). We 

consider this phenomenon to be a good example, why it is 

worth repeating benchmarking tests using different types of 

hardware: not only the measured performance may be different, 

but different anomalies may be pointed out, which may remain 

hidden on other systems. 

3.5.3 Map646 

The throughput results of map646 produced by TS1 are 

shown in Fig. 10. Similarly to TAYGA, there are visible 

problems at 84bytes and 128bytes frame sizes: the throughput 

 
3 In fact, we could observe only the load caused by software interrupts, as 

Jool works in the Linux kernel. 

is visibly lower than at 256bytes, and the error bars are very 

high, indicating significantly scattered measurement results. 

The throughput result at 1518bytes is missing due to the 

same reason discussed in [13]. 

Otherwise, the results from 256bytes to 1280bytes frame 

sizes are nearly constant, showing only a small degradation 

with the increase of the frame size. 

The throughput results of map646 produced by TS2 are 

 
 

Fig. 10  Throughput results of map646, TS1 

 

 
 

Fig. 11  Throughput results of map646, TS2 
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shown in Fig. 11. Unlike with TS1, here the median throughput 

at 84bytes and 128bytes frame sizes is very similar to the 

throughput at other frame sizes, only the somewhat higher error 

bar at 84bytes reminds us the problem observed on TS1.  

3.4.5 Comparison and Discussion 

To be able to compare all three implementations, we 

considered the IPv4 to IPv6 throughput and within that, we 

have chosen the throughput values measured with 256bytes 

long frames to exclude the effect of the strange behavior of 

TAYGA and map646 at the two shortest frame sizes. 

The results are shown in Fig. 12. Jool has significantly 

outperformed both TAYGA and map646, which was exactly 

what we expected, because Jool works in the kernel space and 

the other two implementations work in the user space. 

We note that the choice of the throughput results with 

256bytes frame size was in favor of TAYGA and map646 over 

Jool. 

3.6  Frame Loss Rate Tests 

According to RFC 2544, frame loss rate tests should be 

performed for all frame sizes, which means very high number 

of measurements to perform and results to evaluate. Knowing 

that throughput has shown only a very slight decrease with the 

increase of the frame size, we considered performing all 

possible measurements as pointless. Therefore, we have chosen 

two frame sizes, 128bytes and 1280bytes for testing. (Frame 

size 128 falls into the range, where TAYGA and map646 

showed strange behavior, whereas 1280 is the largest frame 

size that can be tested with all three implementations, and it is 

exactly 10 times 128.) To have comparable results, we 

performed the frame loss tests in the IPv4 to IPv6 direction for 

all three implementations.  

As for the measurement procedure described in RFC2544, 

frame loss test should be performed for different frame rates 

starting from the maximum frame rate of the media, decreased 

in not more than 10% steps until two consecutive 

measurements show zero frame loss. However, in our case the 

maximum frame rate of the 10Gbps Ethernet with 128bytes 

frame size is 8,445,945fps, which is more than an order of 

magnitude higher than any of the tested implementations could 

achieve, thus such results would be meaningless. We have 

chosen more realistic ranges, which ensured us meaningful 

results for all three tested implementations. They are: from 

50,000fps to 500,000fps using 50,000fps steps. 

3.6.1 Jool 

The frame loss rate results of Jool measured on TS1 are 

shown in Fig. 13. In agreement with Fig. 6, no frame loss 

occurred from 50kfps to 250kfps. From 300kfps rate, an 

increasing frame loss rate can be observed. For any given frame 

rate, the frame loss rate with 1280bytes frames were higher than 

with 128byte frames, which also complies with the results 

shown in Fig. 6: the throughput expressed as frames per second 

had a slightly decreasing tendency with the growth of the frame 

size. And, what is not shown directly on the graph, but we could 

see from the raw data: from 300kfps, the number of frames 

transmitted during the 60s long tests were approximately 

constant, about 17.5 million and 15.9 million with 128bytes and 

1280bytes frames, respectively. (The low measure of the 

deviations can be seen from the tiny sizes of the error bars.) 

Thus, we can lay down that Jool has shown a very stable 

behavior even under serious overload conditions. 

3.6.2 TAYGA 

The frame loss rate results of TAYGA measured on TS1 are 

shown in Fig. 14. Whereas the median values roughly comply 

with what could be expected on the basis of the previous results 

 
 

Fig. 13  Frame loss rate results of Jool, TS1 

 

 
 

Fig. 14  Frame loss rate results of TAYGA, TS1 
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(frame loss appears from 150,000fps, its tendency is increasing, 

and the frame loss is higher for the longer frames), the most 

conspicuous thing is the appearance of the high error bars from 

200kfps to 400kfps caused by some outliers. This result is in a 

complete agreement with the high fluctuation of the throughput 

results of TAYGA in the IPv4 to IPv6 direction at 128bytes 

shown in Fig. 8. However, the throughput results on the same 

figure are very stable at 1280bytes. Yet the frame loss rate (and 

thus also the throughput) shows high fluctuations under serious 

overload conditions with 1280bytes long frames. 

3.6.3 Map646 

The frame loss rate results of map646 measured on TS1 are 

shown in Fig. 15. They are very similar to that of TAYGA with 

an exception that here a high error bar appears also at 500kfps 

rate with 1280bytes. 

3.7. Tests with Mixed Traffic 

Similarly to the frame loss rate tests, we have also used two 

selected frame sizes, 128 and 1280 bytes. 

RFC 8219 requires the usage of 100%, 90%, 50%, and 10% 

translated traffic and the remainder should be native IPv6 

traffic. In addition to that, we found that it was worth using also 

75% and 25% as translated traffic, as well as native IPv6 traffic 

as reference. 

3.7.1 Jool 

The throughput results of Jool using mixed traffic measured 

on TS1 are shown in Fig. 16. It can be observed that the 

throughput with 25% and 10% translated traffic is higher than 

the throughput of IPv6 routing with 0% translated traffic. The 

explanation is very simple: the translated and the native IPv6 

traffic made two different flows, and thus they were processed 

by two distinct CPU cores. To set up a simple model for the 

throughput of the mixed traffic, let us use the following 

notations: 

 Tt: throughput of the translated traffic 

 Tn: throughput of the native IPv6 traffic 

 Tm: throughput of the mixed traffic 

 α: proportion of the translated traffic, where 𝛼 ∈ [0, 1], 
and the proportion of the native IPv6 traffic is 1-α. 

Then the mixed throughput can be expressed as follows: 

𝑇𝑚(𝛼) = min
 

(
𝑇𝑡

𝛼
,

𝑇𝑛

1−𝛼
)      (1) 

The dispersion of the results is low, and the throughput with 

1280bytes long frames is somewhat lower than with 128bytes 

frames. 

3.7.2 TAYGA 

The throughput results of TAYGA using mixed traffic 

measured on TS1 are shown in Fig. 17. Here only the 

throughput of the 1280bytes long frames with 10% translated 

traffic is higher than the throughput of the native IPv6 traffic, 

which can be easily explained by Eqn. (1) and the actual values 

of Tt and Tn. As for the high error bar here, we have checked the 

raw results and found their distribution to be bimodal: 12 of the 

20 results were higher than 650kfps, and 7 of them were below 

460kfps. 

3.7.3 Map646 

The throughput results of map646 using mixed traffic 

measured on TS1 are shown in Fig. 18. The high error bars at 

10% translated traffic show that even 10% translated traffic 

may significantly influence the overall results of a 

measurement. It was possible because the loss of even a single 

frame results in the failure of the complete test. 

 
 

Fig. 16 Throughput results of Jool with mixed traffic (the rest is native IPv6), 

TS1 

 

 
 

Fig. 17  Throughput results of TAYGA with mixed traffic (the rest is native 

IPv6), TS1 

 

 
 

Fig. 18  Throughput results of map646 with mixed traffic (the rest is native 

IPv6), TS1 
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3.7.4 Comparison and Discussion 

Although the three figures look somewhat different (Jool 

showed its maximum throughput value at 25% translated 

traffic, whereas the other two implementations did it at 10%) 

they all followed the same rule shown in Eqn. (1). We note that 

this behavior is the consequence of the conditions that we used 

a single translated flow and a single background flow and 

multiple CPU cores. Using only a single CPU core or high 

number of flows, the throughput of the mixed traffic would 

follow the rule shown in Eqn. (2), that is, the mixed throughput 

would be the weighted harmonic mean of the throughput of the 

translated traffic and the throughput of the native IPv6 traffic. 

𝑇𝑚(𝛼) =
1

𝛼

𝑇𝑡
+

1−𝛼

𝑇𝑛

        (2) 

3.8. Challenging the Throughput Test of RFC 2544 

The throughput results obtained by RFC 2544 testers do not 

necessarily accord with the experiences of the users. On the one 

hand, the absolutely zero loss criterion may be too strict, as 

some low packet loss rates (e.g. 10-4 or 10-5) do not prevent 

communication. Indeed, some benchmarking professionals use 

99.999% throughput (or 0.001% loss) as their “zero loss” 

criterion [23]. However, on the other hand, we contend that the 

RFC 2544 benchmarking procedure is way too lax. Frames are 

sent for 60 seconds and received for 62 seconds. We 

understand, that the additional 2 seconds timeout was probably 

set to surely receive also the very last frames. However, it also 

means that the very first frame has theoretically 62 seconds 

timeout. This is completely unacceptable from the user point of 

view. Both TCP and real-time UDP applications will time out 

much-much earlier than that! In order to assess the throughput 

experienced by the users, one should use per packet timeout. 

We are aware that RFC 2544 was published in 1999 and its 

procedures could rely on the then available technologies only. 

In 2008, RFC 5180 updated some of the technology dependent 

parts, for example, it defined the maximum frame rate for 

10Gbps Ethernet, however, it left the measurement procedures 

unchanged. In 2017, RFC 8219 defined benchmarking 

methodology for IPv6 transition technologies. It has redefined 

the procedure for measuring latency to achieve more accurate 

results, and added procedures for measuring packet delay 

variation and inter packet delay variation, but the throughput 

and frame loss measurement procedures were still kept 

unchanged. 

We strongly argue that in 2019, the available technology 

makes it possible to use per packet timeout and we highly 

recommend it. We demonstrate its feasibility in Section 4. 

Similarly, we also believe that our results presented above 

have sufficiently demonstrated that RFC 2544 throughput and 

frame loss rate tests must be updated regarding the number of 

repetitions, the summarizing function and the way of 

expressing the dispersion of the results.  

4  Benchmarking Measurements with 

Dns64perf++ 

In this section, we do further tests with the following aims: 

 to demonstrate the feasibility of the measurements using 

per packet timeout, 

 to perform tests using high number of flows (which is 

unfortunately not supported by nat64tester), 

 to benchmark map646 using bidirectional traffic. 

First, we give a short introduction to the benchmarking tool, 

then we disclose the test setup, next continue on with various 

self-tests, and then start testing the SIIT implementations. 

4.1  The Applied Testing Tool 

The dns64perf++ testing tool was designed for 

benchmarking DNS64 servers [17]. Originally, it used only two 

threads, one for sending the queries and one for receiving the 

replies. Its performance was about 250,000 queries per second. 

Later it was enabled to use n times two threads (n threads for 

sending queries and n threads for receiving replies) and thus we 

could use it up to 3.3Mqps (3.3 million queries per second) rate 

for benchmarking authoritative DNS servers [24]. It has two 

significant advantages over nat64tester: 

 It can individually identify every single DNS reply and 

check, if it arrived within the predefined timeout time 

after the corresponding query was sent. 

 It can use a high number of different source port 

numbers for the queries and thus facilitate two very 

important things: 

o the distribution of the interrupts caused by the 

incoming packets to all the CPU cores, which is a 

precondition for receiving several million packets 

enp3s0f0: 198.18.0.2/24
not assigned: 2001:2::2/64

DUT
(running SIIT 

gateway)

Tester/AuthDNS
(running NSD as 

authoritative DNS 
server) 

enp3s0f0:  2001:2:0:1::2
not assigned: 198.19.0.2/24 

enp3s0f1: 198.18.0.1
not assigned: 2001:2::1

enp3s0f1: 2001:2:0:1::1
not assigned: 198.19.0.1/24

Tester/Measurer
(running dns64perf++) 

enp3s0f1:
2001:2:0:2::2/64
198.18.2.2/24

enp3s0f0:
2001:2:0:2::1/64
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Fig. 19  Test System 3 built up by N nodes, with a fixed 2GHz CPU clock 

frequency DUT 
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per second [25] and which we can use for testing 

with multiple flows, 

o the distribution of the queries among multiple 

threads or processes of the DNS server, if it uses 

the so_reuseport socket option, thus 

providing us with a high speed responder for our 

tests. 

From the SIIT gateway point of view, the DNS queries and 

replies are UDP packets, which can be translated as any other 

packets. The dns64perf++ program is used as a Tester, 

which sends and receives packets, the content of which is 

redundant from the DUT’s point of view. Of course, it has some 

limitations, too. One of them is the fixed size of the queries and 

their replies. In general, this could be a serious limitation, but in 

our case, this limitation is not at all a significant one, as our 

previous tests showed no significant difference in the achieved 

frame rates for different frame sizes. The limitation caused by 

the usage of the authoritative DNS server is twofold: its 

maximum reply rate limits the maximum frame rate of the SIIT 

measurements, and the time necessary for the DNS server to 

produce a reply reduces the accuracy of the SIIT measurement 

concerning timeout. 

4.2  Measurement Environment 

We used some of the N nodes of StarBED, but actually 

different ones then before to enable concurrent testing. 

In our paper about the benchmarking methodology for 

DNS64 benchmarking [14], we have elaborated that the two 

subsystems of the Tester may be implemented by two physical 

computers, when high performance is needed. We have 

followed this approach during building Test System 3 shown in 

Fig. 19. The DUT can be found in the middle of the system: 

n015 was used to execute the tested SIIT implementations. 

The dns64perf++ program was executed by n014 using its 

CPU cores 0-7 for executing the 8 sending threads and cores 

8-15 for executing the 8 receiving threads. Based on our 

previous results [24], the NSD authoritative DNS server was 

installed on the n016 node to provide authoritative DNS 

service. It was set to use all 16 cores of the computer. 

In accordance with our previous measurements, this system 

was set to be protected from any possible disturbance that could 

cause scattered measurement results. The CPU clock 

frequencies of both n015 and n016 were set to fixed 2GHz, 

the computers were interconnected by direct cables, and only 

cores 0-7 of n015 were online (to avoid NUMA issues). 

Although turbo mode was enabled on n014, the power budget 

allowed to raise its CPU clock frequency up to 2.4GHz only, 

when all its cores were used. We have summarized the most 

important building elements of Test System 3 in Table 2. 

The IP addresses were set according to Fig. 19. The network 

traffic through the SIIT gateway was now initiated from the 

IPv4 side, so that map646 could also be tested with 

bidirectional traffic. 

The direct connection between the two subsystems of the 

Tester served the purposes of the self-test of the Tester [14]. In 

short, it was used to check, up to what query rates the Tester 

could be used. We have performed these tests using both IPv4 

and IPv6 for carrying the DNS requests and replies, as we knew 

from our earlier experience that the achievable query per 

second rate was significantly lower with IPv6. 

In addition to that, we have also performed routing tests, 

when the DUTs were used as IPv4 or IPv6 routers. The routing 

tests had three purposes: 

 to check and demonstrate that the paths for the SIIT 

measurements are working properly and having no 

bottleneck, 

 to assess their maximum performances in IPv4 and IPv6 

packet forwarding, 

 to test and demonstrate, how the number of flows 

influence the performance of the system. 

For the routing tests, all the IP addresses shown in Fig. 19 

(including those typeset in italic) were assigned to the NICs. All 

the tests (including self-test, routing tests and the SIIT 

measurements) were performed using 64,000 different source 

ports by dns64perf++ (8000 ports per thread by 8 sending 

threads). 

To distribute the interrupts evenly among the CPU cores, the 

following commands were used: 
ethtool -N interface rx-flow-hash udp4 sdfn 

ethtool -N interface rx-flow-hash udp6 sdfn 

(The interfaces were enp3s0f0 and enp3s0f1.) 

Static IPv4 and IPv6 routes were set in the computers acting 

as the two subsystems of the Tester. 

The settings of the three tested SIIT implementations were 

only slightly different than in Section 3, thus we do not repeat 

them. 

First, we performed the routing tests with excluding the 

source ports from the rx-flow-hash (by using sd instead of 

sdfn), thus there were only two flows (due to the bidirectional 

traffic). 

We note that dns64perf++ measures the number of 

successfully resolved queries per second, and we used this unit 

during the calibration of the test system, and we switched over 

to frames per second, when benchmarking the different SIIT 

implementations in order to have our results comparable with 

the previous ones. The conversion is very simple: each resolved 

query means two frames: the first one carried the query and the 

second one carried the answer for the query. 

4.3  Self-test Measurements 

Similarly to the self-test measurements of the DNS64 

benchmarking tests [14], the aim of these measurements was to 

Table 2  The Building Elements of Test System 3 

Test Tester/Measurer Tester/AuthDNS DUT (Device Under Test) Connection of  

System node speed active cores node speed active cores node speed active cores the elements 

TS3 n014 2-2.4GHz 0-15 n016 2GHz 0-15 n015 2GHz 0-7 Direct cables 
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determine the performance of the Tester, in order to ensure that 

the DUT be the bottleneck during all further measurements. 

However, now we did not have a predefined timeout value, 

rather we had to select a suitable one, which was high enough to 

ensure as high as possible query rates on the one hand, 

however, on the other hand, it had to be low enough for 

performing meaningful SIIT measurements. The only hint we 

had from our previous experience [24] was that 100ms was 

likely workable from the authoritative DNS server point of 

view. 

We have performed self-test measurement using 200ms, 

100ms, 50ms, and 25ms timeout values and both IPv4 and IPv6 

as transport protocol for carrying the DNS messages. The 

results are shown in Fig 20. (The upper limit of the binary 

search was set to 1,600,000qps and 1,000,000qps for IPv4 and 

IPv6, respectively, thus they did not limit the results.) To avoid 

that the unsatisfactory performance of the AuthDNS subsystem 

impact the measurement results, the 1st percentiles (that is the 

minimum values) must be taken into consideration as a limiting 

factor for the further tests. Considering also the results of our 

preliminary routing tests, we had to choose the 100ms timeout 

for the routing tests to ensure the necessary performance for 

demonstrating multi-flow operation. It means that our test 

system is surely usable up to 1,100,000qps and 900,000qps, 

when it is used with IPv4 and IPv6 as transport protocol for the 

queries. 

4.4  Routing Tests 

For the routing tests, we used the 100ms timeout chosen 

before, not adding any value to compensate the latency of the 

IPv4 or IPv6 router, which was involved in both directions. The 

results of the routing tests are shown in Fig. 21. We note that 

the single flow results reflect the IPv4 and IPv6 routing 

performance of nodes, however, the multiple flow results were 

limited by the setting of the upper limit of the binary search 

(1,100,000qps and 900,000qps for IPv4 and for IPv6, 

respectively). The multiple flow results are presented to 

demonstrate that the test systems able to provide higher 

performance, when multiple flows are used. By this test, we 

have also checked that our test system can be used up to 

1,100,000 queries per second with IPv4, which will be enough 

for the later tests. 

The conclusion of these tests for our current effort is that 

both measurement systems can be used up to high enough rates 

for testing the different SIIT implementations. 

The conclusion of these tests in general is that benchmarking 

of a router is now possible with using individual timeout for 

every single frame. If it can be done up to such rates using 

dns64perf++, which uses TCP/IP socket interface, then it 

can be done up to significantly higher rates using a DPDK 

based Tester. 

4.5  Choice of Timeout Value and Parameter Study 

We expect that 50ms should be more than enough timeout 

for a SIIT gateway. Calculating with 50ms in each directions, 

we consider that 2*50ms + 100ms = 200ms timeout must be 

surely high enough for the SIIT tests. 

First, we tested Jool, and received an unexpectedly low 

result, namely 3,177qps, which is 6354fps. We observed that all 

20 measurements produced the very same results and several 

binary search steps failed due to a very low rate loss (less than 

0.01%). We have performed the test also with 400ms timeout, 

but the results did not change. We have received similarly low 

results with the two other SIIT implementations. We 

 
 

Fig. 21  Bidirectional throughput of Jool with different acceptance criteria 

(measured by TS3 and TS4 using DNS traffic) 

 

 
 

Fig. 22  Bidirectional throughput of TAYGA with different acceptance criteria 

(measured by TS3 and TS4 using DNS traffic) 

 

 
 

Fig. 23  Bidirectional throughput of map646 with different acceptance criteria 

(measured by TS3 and TS4 using DNS traffic) (NOT READY YET!) 
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Fig. 20  Self-test results as a function of timeout time 

 

 
 

Fig. 21  Results of the routing tests (beware that the unit is qps and not fps) 

 

 
 

Fig. 22  Bidirectional throughput of Jool with different acceptance criteria 

using DNS traffic and 200ms individual timeout 

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

200 100 50 25

D
N

S 
p

er
fo

rm
an

ce
 (

q
p

s)

Timeout (ms)

Authoritative DNS performance of NSD

IPv4 IPv6

0

200000

400000

600000

800000

1000000

1200000

single flow multiple flows

R
o

u
ti

n
g 

p
er

fo
rm

an
ce

 (
q

p
s)

Single or multiple flows

Routing Tests with Single and Multiple Flows

IPv4 IPv6

0

100000

200000

300000

400000

500000

600000

99.999% 99.99% 99.9%

Th
ro

u
gh

p
u

t (
fr

a
m

e
s/

s)

Acceptance criterion

Bidirectional throughput of Jool



Review version for the Elsevier Computer Communications journal 

 

13 

considered that they were completely unsuitable for the 

comparison of performance of the three SIIT implementations. 

Then we used a different method, which allowed some low 

lost rate as acceptance criterion. It means if at least 99.999% of 

the queries were replied within timeout time, then the test was 

considered as successful, otherwise it was considered as failed. 

Also 99.99% and 99.9% values were used as acceptance 

criterion. (The previously chosen 200ms timeout was used for 

these and all further tests.) The results of Jool are shown in 

Fig. 22. (From now on, we use fps unit for easier comparison 

with the results in Section 3. Although we note that the 

comparability is only approximate due several reasons, e.g. 

different frame sizes, different timeout, different hardware 

instances 4 , etc.) Whereas the 99.999% acceptance criterion 

resulted in very low rate the 99.99% acceptance criterion 

resulted in rates similar to that measured with the RFC 8219 

compliant method, and 99.9% resulted in no further increase. 

We have performed the tests also with TAYGA and map646 

and found that their throughput did not increase significantly 

using 99.9% as acceptance criterion compared to 99.99%. 

Therefore, we have chosen 99.99% as acceptance criterion for 

our further investigations. By doing so, we do not want to 

propose it as a general acceptance criterion, we have done so 

only to facilitate the performance comparison of the 

implementations. 

4.6  Performance Comparison with Bidirectional 

Traffic using Single and Multiple Flows 

We use the 99.99% acceptance criterion results of the three 

SIIT implementations for comparison, as shown in Fig. 23. On 

the left side of the figure, the “single flow” results are to be 

interpreted as “single flow per direction”, the two directions 

mean two flows, of course. Although these results are not fully 

comparable with the single directional RFC 8219 compliant 

ones on Fig. 12 (for the reasons mentioned before), it is 

deliberate that Jool benefited from the fact that it could use two 

different cores for processing the packets of the two directions, 

whereas the others could not. As expected, its bidirectional 

result with 200ms per frame timeout are visibly lower than the 

double of its unidirectional one shown in Fig.12 with a global 

2s timeout, similarly to the two other implementations, the 

throughput of which are not doubled. 

The results of the multi-flow measurements are shown on the 

right side of Fig. 23. They were measured with the same 

settings as the single flow ones, the only difference was that we 

enabled the source and destination ports in the “rx-flow-hash” 

on the DUT. (To facilitate easy visual comparison, we plotted 

them together.) Due to using a high number of flows, the 

performance of Jool increased radically. Interestingly, both 

 
4 In [18], we have pointed out significant performance differences in the 

authoritative DNS performances of the test systems built up of different N 

nodes. (For example, the median, minimum and maximum values were 

168,623qps, 167,935qps and 168,961qps for one test system and 163,904qps, 
163,447qps and 164,361qps for another test system, when NSD was executed 

by a single CPU core. Please note that these intervals are non-overlapping.) 

This was the reason why we did not parallelize the testing of different DNS64 
implementations using different nodes. Since then, we always benchmark all 

tested implementations by using the very same nodes for each of them. 

TAYGA and map646 benefited to some extent from the high 

number of flows. We presume that the performance increase 

was caused by the distribution of interrupts of the incoming 

packets to all the active CPU cores, because we have checked 

that the CPU utilization of TAYGA and map646 did not exceed 

100%, the performance of a single CPU core. 

From general point of view, our most important result is that 

we could benchmark the selected SIIT implementations with 

bidirectional traffic with both single and multiple flows using 

the dns64perf++ tool. 

4.7  The Scale Up of Jool 

We have examined, how the performance of Jool scales up 

with the number of active CPU cores. To keep the number of 

measurements relatively low, the number of CPU cores were 

always doubled compared to the previous case starting from 1. 

 
 

Fig. 23  Throughput comparison with bidirectional DNS traffic, using 200ms 

timeout and 99.99% acceptance criterion 

 

 
 

Fig. 24  The throughput of Jool as a function of the number of CPU cores using 

a high number of flows 

 

Table 3  The throughput of Jool as a function of the number of CPU cores 

using a high number of flows 

Num. CPU cores 1 2 4 8 

Median (fps) 319980 508506 956322 1886325 
Increase of median - 1.59 1.88 1.97 

1st percentile (fps) 309238 504744 949472 1872762 
99th percentile (fps) 321592 509848 958336 1890758 
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The results are shown in Fig. 24. (Beware, we used logarithmic 

scale!) To facilitate a more precise analysis, we have included 

the results also in Table 3, which we have completed with an 

additional row: “the increase of the median”.  It expresses the 

ratio of the current throughput and the throughput with half as 

many cores. It shows that the scale up from a single core to two 

cores is far from linear (the increase is only 59%), which we 

attribute to the cost of multi-core operation, but after that Jool 

scaled up very well (by an increase of 88% and then 97%). 

Unfortunately, the performance of TS3 was not enough to 

perform a measurement using all 16 cores of the DUT, but as 

far as we could test, Jool scaled up very well. Thus, we 

recommend its usage in high performance systems with 

multi-core computers as gateways. 

5  Discussion and Plans for Future Research 

According to our understanding, the aim of benchmarking is 

to “accurately measure some standardized performance 

characteristics in order to obtain reasonable and comparable 

results” [26]. As for network interconnect devices, RFC 2544 

compliant commercial testers have been serving this purpose 

for two decades. As for IPv6 transition technologies, RFC 8219 

defined several benchmarking procedures, and we could test 

the viability of only a fraction of them, namely throughput and 

frame loss rate. RFC 8219 has taken both of them from RFC 

2544 without changes. Being aware that they are matured and 

widely used, yet we believe that the time has come, when it is 

worth considering their update. We have pointed out several 

possibilities to improve them. Our recommendations for 

consideration are: 

1. Checking the timeout individually for each frame. 

2. The requirement of multiple repetitions of the tests. 

3. An optional non-zero frame loss acceptance criterion. 

As for the first one, we have shown that checking the timeout 

individually for every single frame is reasonable (and the 

results are more useful than those with a “global timeout”, 

which can actually be anything form 2 seconds to 62 seconds 

concerning a given frame), and we have demonstrated its 

feasibility using a TCP/IP socket interface based tester. We are 

intending to develop a DPDK-based tester, which complies 

with the requirements of RFC 8219, and can optionally use 

individual timestamps.  

As for the second one, we have shown, that high deviations 

are possible both in throughput and in frame loss results, thus 

the repetition of the tests is a must. No new measurement 

procedure is necessary, only the requirements should be 

changed. We are aware that this change may drastically 

increase the time of testing. Therefore, we do not recommend 

always 20 repetitions, but rather a kind of adaptive method, 

which can stop after a few tests, if the results are consistent, but 

performs more tests if they are scattered. We plan to develop an 

algorithm, which can be easily implemented (e.g. in a shell 

script) and can determine on the fly, when testing may be 

finished. As for summarizing function, we recommend median, 

whereas 1st and 99th percentiles can be used to account the 

variation of the results. 

As for the third one, we see contradicting arguments and 

interests. We are aware that the market of network interconnect 

devices has several stakeholders with different interests. For 

example, some high-end devices can operate at full line speed 

without frame loss, whereas others cannot [27]. As researchers, 

we have our own special interests. On the one hand, we need 

devices (e.g. switches, NICs) that comply with the absolute 

zero loss criterion, to be able to perform benchmarking tests. 

However, on the other hand, we have experienced that in some 

cases, the absolute zero loss criterion may prevent us from 

achieving practically usable results. (Our above experience 

with the SIIT implementations in Section 4 is only one 

example. We had the same experience in some cases in [18] and 

[24], and the non-zero loss acceptance criterion is used in the 

practice of benchmarking professionals for a long time [23].) 

Our recommendation is to keep the absolutely zero loss 

criterion as the compulsory test and make the higher than zero 

loss acceptance criterion test as a recognized optional 

throughput test. Standardizing its reporting format would make 

its results more transparent (by the compulsory indication of the 

allowed frame loss rate of the acceptance criterion). 

As we have mentioned in the introduction, we are planning 

to re-implement the DPDK based tester in C++ using a proper 

object oriented design, which will also facilitate its easy 

extention with new functions. The handling of individual 

timestamps for each frame required by the newly recommended 

throughput and frame loss rate tests, may also be used for the 

packet delay variation and  inter packet delay variation tests 

recommended by RFC 8219, thus a proper design may make 

the coding work more economic. 

We plan to retest the three examined SIIT implementations 

with the new tester to be able to compare the results of the 

newly recommended tests with the results of the original ones. 

Another interesting direction of research is to examine the 

issue of the scattered results of TAYGA and map646 with small 

frame size. Perhaps the analysis of the kernel level packet 

processing overhead may help us to find its root cause. 

6  Conclusion 

We have performed the throughput and frame loss rate 

benchmarking tests required by RFC 8219 to analyze the 

performance of Jool, TAYGA and map646 and found that the 

performance of Jool scaled up well with the number of active 

CPU cores, and also significantly outperformed TAYGA and 

map646. 

We have pointed out that the “global timeout” defined 

originally by RFC 2544 is improper, and recommended the 

individual checking of the timeout for every single frame. We 

have also demonstrated its feasibility. 

We have also pointed out the need for multiple tests, and 

recommended an adaptive algorithm, which is yet to be 

developed. 

We have also shown that sometimes it is worth using a 

non-zero frame loss acceptance criterion, which we 

recommended to be a recognized optional test. 
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