
Review version for the Elsevier Computer Communications journal

1

Abstract
In this paper, the viability of the throughput and frame loss rate

benchmarking procedures of RFC 8219 is tested by executing

them to examine the performance of three free software SIIT

(also called stateless NAT64) implementations: Jool, TAYGA,

and map646. An important methodological problem of the two

tested benchmarking procedures is pointed out: they use

improper timeout setting. A solution of individually checking

the timeout for each frame is proposed to get more reasonable

results, and its feasibility is demonstrated. The unreliability of

the results caused by the lack of requirement for repeated tests

is also pointed out, and the need for relevant number of tests is

demonstrated. The possibility of an optional non-zero frame

loss acceptance criterion for throughput measurement is also

discussed. The benchmarking measurements are performed

using two different computer hardware, and all relevant results

are disclosed and compared. The performance of the kernel

based Jool was found to scale up well with the number of active

CPU cores and Jool also significantly outperformed the two

other SIIT implementations, which work in the user space.

Keywords Benchmarking · IPv6 deployment · IPv6 transition

solutions · SIIT · Stateless NAT64 · Performance analysis

1 Introduction

Stateless IP/ICMP translation (SIIT) [1] (also referred to as

stateless NAT64) plays an important role in the current phase of

transitioning from IPv4 to IPv6 as it is used in several contexts.

For example, it is a part of the well-known stateful NAT64 [2],

which is used together with DNS64 [3] to enable IPv6-only

clients communicating with IPv4-only servers. It works in the

CLAT devices of 464XLAT [4], too. SIIT can also be applied

to provide IPv4 access to IPv6-only data centers or services.

One of its earliest such application is documented in [5].

Several free software [6] SIIT implementations exist and

some of them support stateful NAT64, too. When network

operators select the best fitting one for their purposes, they are

interested in the performance of the different implementations.

For carrying out performance measurements, one needs a

1 Department of Networked Systems and Services, Budapest University of

Technology and Economics, 2 Magyar Tudósok körútja, H-1117 Budapest,

Hungary, E-mail: lencse@hit.bme.hu
2 IIJ Innovation Institute Inc., Iidabashi Grand Bloom, 2-10-2 Fujimi,

Chiyoda-ku, Tokyo 102-0071, Japan, E-mail: keiichi@iijlab.net

Submitted: September 11, 2019.

well-defined methodology, measurement tools (hardware or

software), a suitable testbed, benchmarking expertise, and a lot

of time. As for methodology, RFC 8219 [7] defined a

benchmarking methodology for IPv6 transition technologies. It

classified the high number of IPv6 transition technologies [8]

into a small number of categories, and it defined the

benchmarking methods per categories. Both SIIT and stateful

NAT64 fell into the category of single translation solutions,

thus basically, they have the same benchmarking tests, plus

some additional tests were defined for stateful IPv6 transition

technologies (for the details, please refer to Section 8 of RFC

8219).

The aim of this paper is twofold:

 to test the viability of the benchmarking methodology

defined in RFC 8219 concerning SIIT implementa-

tions, and also to amend it, where it proves to be

necessary,

 to measure the performance of a few SIIT

implementations and thus provide network operators

with ready to use benchmarking results.

We note that we are not aware of anyone else benchmarking

SIIT implementations in an RFC 8219 compliant way. One of

its causes is the lack of compliant testers. We know about a

single publication only, which reports the design and

implementations of such tester [9]. However, it has never been

publicly released due to its insufficient performance. Rather, it

was re-implemented using DPDK (Intel Data Plane

Development Kit [10]) by its author, Péter Bálint, a PhD

student at the Széchenyi István University, Győr, Hungary

under the supervison of the first author of this paper.

Unfortunately, our tests showed that this program failed to

work correctly, and we have found fundamental prolems in it

during a systematic code review. We have rewritten its most

important parts, namely the receiving and sending functions

and their syncronization. Thus, the program became usable, but

we plan to reimplement it from scratch in C++ using a proper

object oriented design and plan to make it publicly available

from GitHub.

Right before our current effort, we have examined the

possibility of benchmarking stateless NAT64 implementations

using legacy RFC 2544 [11] / RFC 5180 [12] compliant

Testers. We have reported our results in [13].

The remainder of this paper is organized as follows. In

section 2, we give a short introduction to the benchmarking

method for single translation solutions defined in RFC 8219. In

section 3, first, we design the test and traffic setup, next, we

Performance Analysis of SIIT Implementations: Testing and

Improving the Methodology

G. Lencse1 · K. Shima2

Review version for the Elsevier Computer Communications journal

2

give a very brief summary of the DPDK based NAT64 Tester,

then we describe our measurements, after that, we disclose and

discuss our results, and finally, we point out some problems

with the existing benchmarking methodology. In section 4, we

describe a different measurement method, which can

complement our previous measurements and demonstrates the

feasibility of our proposed solution for the methodology

problem, then we present and discuss our results. In section 5,

we make three recommendations to update the two

benchmarking procedures of RFC 8219 (RFC 2544) and

disclose our plans for future research. Section 6 concludes our

paper.

2 Benchmarking Tests for SIIT Gateways

RFC 8219 addresses single translation technologies in

general, but now we focus on SIIT. We note that stateful

NAT64 tests are basically the same with the exception that

communication may be initiated only from the IPv6 side and

there are some further tests for examining the stateful behavior.

The recommended test setup is very simple: it consists of the

Tester and the DUT (Device Under Test), see Fig. 1. Although

the arrows are unidirectional, the traffic may be bidirectional.

RFC 8219 requires testing with bidirectional traffic and makes

testing with unidirectional traffic optional.

The recommended measurement procedures usually came

from RFC 2455. The following ones are kept unchanged:

throughput, frame loss rate, back-to-back frames, and system

recovery. The measurement procedure for latency has been

redefined to achieve higher accuracy, and further measurement

procedures for packet delay variation, inter packet delay

variation, and reset have been added. For more details, please

refer to Section 7 of RFC 8219.

It also means that the strict absolutely zero packet loss

criterion of the throughput measurement was kept: the

throughput is the highest rate, at which the number of frames

transmitted by the Tester is equal with the number of frames

received by the Tester, during an at least 60 seconds long test.

(In practice, the highest such rate is determined by a binary

search, where the initial upper limit of the interval is the

maximum frame rate of the media.)

As for the recommended frames sizes, they have been mainly

kept, but somewhat amended. They are: 64, 128, 256, 512, 768,

1024, 1280, and 1518 bytes. And it is also mentioned that 64

should be replaced by 84 in the IPv6 to IPv4 direction due to

minimum frame size issue. The RFC does not mention, but it is

deliberate that 1518 should also be replaced by 1498 in the IPv4

to IPv6 direction due to maximum frame size issue. However,

all other frame sizes are also changed by the translator and it is

not mentioned, whether the other values (128, 256, 512, 768,

1024, 1280) are meant to be IPv4 or IPv6 frame sizes. As RFC

8219 also has tests, where translated and native IPv6 traffic is to

be mixed, we suggest that the listed frame sizes should be used

for IPv6. Thus, we interpret that the frame sizes for IPv6 are:

84, 128, 256, 512, 768, 1024, 1280, 1518, and frame sizes for

IPv4 are 64, 108, 236, 492, 748, 1004, 1260, 1498.

As for the before mentioned mixed traffic, the SIIT gateway

should act as a router for the native IPv6 traffic, and 100%,

90%, 50% and 10% are recommended for the proportion of the

translated traffic, where the rest should be native IPv6 traffic.

As for timeout time, RFC 8219 mentions it only concerning

DNS64 testing, but it makes no explicit recommendation for an

appropriate timeout time in the case of any other types of

measurements. According to our interpretation, timeout is

defined implicitly as follows. As we have already mentioned,

several measurement procedures defined in RFC 2544 were

kept unchanged. Section 23 of RFC 2544 contains a general

trial description. It says that after running a particular test trial,

one should “wait for two seconds for any residual frames to be

received”. We follow this approach in Section 3, and then

seriously challenge it in Section 3.8.

Section 12 of RFC 2544 also mentions that the tests should

be performed first with a single flow (using a single source

address and a single destination address) and then they should

be repeated with 256 flows, where the destination addresses are

randomly chosen from 256 different networks.

There is one more thing, in which we have found a gap in the

methodology of RFC 8219. It is the number of repetitions of the

tests. RFC 8219 mentions at four different places that the tests

must be repeated at least 20 times. They are the benchmarking

procedures for:

 latency (Section 7.2)

 packet delay variation (Section 7.3.1)

 inter packet delay variation (Section 7.3.2)

 DNS64 performance (Section 9.2).

As for DNS64 benchmarking measurements, we have

explained the need for at least 20 repetitions in [14] as follows.

“There may be random events, which influence the results.

Consequently, the tests should be repeated multiple times and

the final result should be calculated by using a particular

summarizing function.” The test was performed at least 20

times and we used the median value to summarize the results.

To account for the variation of the results across the 20

repetitions, the 1st and 99th percentiles were used. It is also

explained, that median was preferred over average because

median is less sensitive to outliers than average.

In our case, the benchmarked SIIT implementations are

software components executed by computers, thus we contend

that the same conditions apply. Therefore, in this paper, we

follow the same approach and we believe that this is the true

spirit of RFC 8219, even if its literal wording does not say

anything about the repetitions of the throughput and frame loss

rate measurements. RFC 2544 writes in its Section 4 that:

“Furthermore, selection of the tests to be run and evaluation of

the test data must be done with an understanding of generally

 +--------------------+
 | |
 +------------|IPvX Tester IPvY|<-------------+
 | | | |
 | +--------------------+ |
 | |
 | +--------------------+ |
 | | | |
 +----------->|IPvX DUT IPvY|--------------+
 | |
 +--------------------+

Fig. 1 Single DUT test setup [7]

Review version for the Elsevier Computer Communications journal

3

accepted testing practices regarding repeatability, variance and

statistical significance of small numbers of trials.” As for

repeatability, RFC 2330 [15] says that “A methodology for a

metric should have the property that it is repeatable: if the

methodology is used multiple times under identical conditions,

the same measurements should result in the same

measurements.” It was true, when most of the switching

devices were simple hardware based devices, where we can

define some upper limit for packet processing. However, we

use software based switching recently, and it sometimes has

more variance in performance. Therefore, we need to find

some appropriate method to understand the representative

performance of such devices.

3 Benchmarking Measurements with a Stateless

NAT64 Tester

3.1 Test and Traffic Setup

Following the requirements of RFC 8219, we have designed

the test and traffic setup for benchmarking stateless SIIT

gateways using EAM (Explicit Address Mapping) [16]. The

traffic to be translated is shown in Fig. 2. Only IPv6 addresses

are assigned to the left side network interfaces of both the

Tester and the DUT, and similarly, their network interfaces on

their right side have only IPv4 addresses. The addresses typeset

in italic font are not assigned to the interfaces, they are written

there to help the reader to follow the operation of the system.

They are used to refer to the given interfaces in the other

address space (IPv4 or IPv6). DUT translates the addresses

according to its static mapping table shown below the DUT.

We call the traffic from the IPv6 interface of the Tester flowing

through DUT and arriving to the IPv4 interface of the Tester as

“forward” direction traffic, and we call the other direction as

“reverse” direction, because RFC 8219 requires the use of

native IPv6 traffic, too, thus in that case the terms of “IPv6

side” and “IPv4 side” would have been questionable. The

native IPv6 traffic, which we call as “background” traffic is

shown in Fig. 3. Concerning this traffic, the DUT acts as a

router.

3.2 NAT64 Tester in a Nutshell

We give a very brief summary of the functional design of the

DPDK based NAT64 tester (called nat64tester).

Following the high level design of Dániel Bakai’s excellent

DNS64 tester called dns64perf++ [17], nat64tester

performs only one test, and the binary search, as well as the

further repetitions are executed by a bash shell script. The

functionality of nat64tester is rather limited, as it can only

be used for the two most important tests, namely throughput

and packet loss. A further limitation is that it can only perform a

single flow test. (We overcome this limitation in Section 4 by

using dns64perf++, which is able to use up to 64,000

different source ports.)

When the test is finished, nat64tester reports the

number of sent and received frames in each direction, and the

shell script evaluates the results.

 If a throughput measurement is done, the shell script

checks if the number of received frames is equal with

the number of frames had to be sent by the tester at the

required rate during the required testing time and

makes the decision for the binary search.

 If a frame loss measurement is done, the shell script

determines the frame loss using the number of frames

received and the calculated number of frames had to

198.19.0.1/24
not assigned: 2001:2:0:1::1

2001:2::2/64
not assigned: 198.18.0.2

IPv4 – IPv6 static mapping:
198.18.0.1 – 2001:2::1
198.18.0.2 – 2001:2::2
198.19.0.1 – 2001:2:0:1::1
198.19.0.2 – 2001:2:0:1::2

2001:2::1/64
not assigned: 198.18.0.1

Tester

198.19.0.2/24
not assigned: 2001:2:0:1::2

DUT

“forward” traffic from Tester:
2001:2::2 --> 2001:2:0:1::2

“forward” traffic through DUT:
198.18.0.2 --> 198.19.0.2“reverse” traffic through DUT:

2001:2:0:1::2 --> 2001:2::2

“reverse” traffic from Tester:
198.19.0.2 --> 198.18.0.2

(stateless NAT64
gateway)

(executing
nat64tester)

Fig. 2 Traffic for benchmarking stateless NAT64 gateways

2001:2::2/64

Concerning the background traffic, the
stateless NAT64 gateway acts as a router.

2001:2::1/64

Tester

2001:2:0:8000::2/64

2001:2:0:8000::1/64

DUT

“forward" traffic from Tester:
2001:2::2 --> 2001:2:0:8000::2

“forward" traffic through DUT:
2001:2::2 --> 2001:2:0:8000::2“reverse" traffic through DUT:

2001:2:0:8000::2 --> 2001:2::2

“reverse" traffic from Tester:
2001:2:0:8000::2 --> 2001:2::2

(stateless NAT64
gateway)

(executing
nat64tester)

Fig. 3 Background traffic for benchmarking stateless NAT64 gateways

Review version for the Elsevier Computer Communications journal

4

be sent.

The script does not use the reported value of the number of

frames sent, but it is logged to help error debugging.

Unfortunately, nat64tester is not able to reply to ARP

or ND requests, thus it requires direct cable connections

between the Tester and the DUT, and static ARP/ND table

entries has to be set manually.

3.3 Measurement Environment

Measurements were carried out using the resources of the

NICT StarBED, Japan. Two different types of servers (N nodes

and P nodes) were used.

 The N nodes are Dell PowerEdge C6220 servers with

two 2GHz Intel Xeon E5-2650 CPUs having 8 cores

each, 128GB 1333MHz DDR3 RAM and Intel 10G dual

port X520 network adapters.

 The P nodes are Dell PowerEdge R430 servers with two

2.1GHz Intel Xeon E5-2683 v4 CPUs having 16 cores

each, 384GB 2400MHz DDR4 RAM and Intel 10G dual

port X540 network adapters.

We have used two very similar tests systems with somewhat

different goals. In Test System 1 (see Fig. 4), we switched off

hyper-threading in both computers and set the clock frequency

of the DUT to 2GHz (fixed), because we knew from our

previous benchmarking experience [18] that they could cause

scattered measurement results. (We mean under scattered

measurement results that the results of the 20 measurements are

significantly different.) Our aim with Test System 1 (see Fig. 4)

was to eliminate all circumstances that could cause scattered

measurement results. However, Turbo Mode was enabled on

the Tester to give some extra performance. (In such case, the

power budget is a limit for the clock frequency of the cores. We

have checked that the clock frequency could reach 2.8GHz,

when no more than 4 cores were used, and nat64tester

uses 4 cores for bidirectional tests and 2 cores for unidirectional

tests.)

In the Tester (n017), we have reserved cores 4-7 to execute

nat64tester, using the isolcpus=4,5,6,7 kernel

parameter. (It means that no other user tasks could be scheduled

on these cores.)

In the DUT (n018), we have limited the online CPU cores to

cores 0-7, using the maxcpus=8 kernel parameter to avoid

possible NUMA issues. (It was done so, because all the I/O

devices, as well as cores 0-7 belonged to NUMA node 0.

Scheduling sometimes the SIIT implementation on one of the

cores 8-15, which belonged to NUMA node 1, could have

resulted in a decreased performance and thus scattered

measurement results, which we wanted to avoid.)

Our aim with Test System 2 (see Fig. 5) was to test the same

implementations on a more modern CPU, the clock frequency

of which may not be set to a fixed value. In addition to that,

CPU cores 0, 2, 4, …, and 30 belonged to NUMA node 0, and

cores 1, 3, 5, …, and 31 belonged to NUMA node 1. All NICs

and disks belonged to NUMA node 0.

We have disabled hyper-threading in both computers. Plus,

in the Tester (p094), we have reserved cores 2, 4, 6, and 8 to

execute nat64tester, using the isolcpus=2,4,6,8

kernel parameter. The CPU clock frequency of both computers

could vary from 1.2GHz to 3GHz, which is the maximum turbo

frequency of the CPU. We have changed the “powersave” CPU

frequency scaling governor (cpufrequtils) to

“performance” in both computers.

Besides the different node and interface names, the reader

may notice a small but significant difference between Fig. 4

and Fig. 5. The last octet of the IPv4 address of the tester was

DUT
Dell PowerEdge C6620
(running SIIT gateway)

Tester
Dell PowerEdge C6620
(running nat64perf)

eno2: DHCP

eno2: DHCP

Test System 1

enp3s0f0:
2001:2::2/64

enp3s0f1:
198.19.0.2/24
2001:2:0:8000::2/64

enp3s0f1:
198.19.0.1/24
2001:2:0:8000::1/64

enp3s0f0:
2001:2::1/64

2x 10G Ethernet
with direct cables

n017

n018

Fig. 4 Test System 1 built up by N nodes, with a fixed 2GHz CPU clock

frequency DUT

DUT
Dell PowerEdge C6620
(running SIIT gateway)

Tester
Dell PowerEdge C6620
(running nat64perf)

eno1: DHCP

eno1: DHCP

Test System 2

enp5s0f0:
2001:2::2/64

enp5s0f1:
198.19.0.3/24
2001:2:0:8000::2/64

enp5s0f1:
198.19.0.1/24
2001:2:0:8000::1/64

enp5s0f0:
2001:2::1/64

2x 10G Ethernet
with direct cables

p094

p095

Fig. 5 Test System 2 built up by P nodes, with a variable (1.2-3GHz) CPU

clock frequency DUT

Table 1 The Building Elements of the Test Systems for Basic Tests

Test

System

Tester

node

Tester

speed

DUT

node

DUT

speed

DUT

active cores

TS1 n017 2-2.8GHz n018 2GHz 0-7

TS2 p094 1.2-3GHz p095 1.2-3GHz 0-31

Review version for the Elsevier Computer Communications journal

5

set to 3 in the latter. We explain its reason, when disclosing the

results of the throughput test in Section 3.5.1.

The Debian Linux operating system was updated to 9.9. (the

latest version at the time of testing) and the kernel version was

4.9.0-4-amd64 and 4.9.0-8-amd64 on the N nodes and on the P

nodes, respectively. The DPDK version was

16.11.8-1+deb9u1.

3.4 SIIT Implementations to be Benchmarked

We deal only with free software [6] SIIT implementations

for the same reason we presented in [19]. We have made a

survey of papers on NAT64 performance measurements and

existing free software stateless NAT64 implementations in

[13]. Now, we decided to benchmark the same implementations

using both different DUTs and a different tester. This situation

gives us both a basis for comparison and an opportunity to dig

deeper into the behavior of the tested implementations.

The implementations and software versions for our current

benchmarking test are:

 TAYGA 0.9.2 (released on June 10, 2011) [20],

Debian package version: 0.9.2-6+b1

 Jool 4.0.1 (released on April 26, 2019) [21]

 map646 (GitHub latest commit cd93431 on Mar 31,

2016) [22]

We note that in our previous paper [13], we tested Jool 3.5.7.

Now, we have also checked its performance during our

preliminary test on the N node (its DKMS build failed on the P

node), but having seen no major differences, we have omitted

the old version. The versions of the two other SIIT

implementations were the same as now. As for the rationale for

choosing these three SIIT implementations, first of all, we

could not find any other free software SIIT implementations

under Linux (only stateful NAT64). We note that Jool is still

actively developed, TAYGA is no more developed but it is a

part of the Debian Linux distribution, and it seems to be still in

use, because we have found several posts from the last three

years about how to configure TAYGA. Map646 was created by

the second author of this paper, and we were interested in its

performance, because it is still in use as the NAT46 gateway for

the WIDE project [5].

To make our tests repeatable, we give the most important

information, how we set the different SIIT implementations.

3.4.1 TAYGA

Tayga is a part of the Debian Linux distribution, and its

installation also prepares the necessary nat64 pseudo network

interface. We have made the following changes to its

/etc/tayga.conf configuration file:

ipv4-addr 198.19.0.9
ipv6-addr 2001:2::9
map 198.18.0.1 2001:2::1
map 198.18.0.2 2001:2::2
map 198.19.0.1 2001:2:0:1::1
map 198.19.0.2 2001:2:0:1::2

As we wanted to use the same configuration for all

implementations, the last line for p095 was as follows:
map 198.19.0.3 2001:2:0:1::3

In addition to that, we had to change two settings in the

/etc/default/tayga file as follows:

RUN="yes"

CONFIGURE_NAT44="no"

After that, we could start it by the standard way under Debian

Linux:

/etc/init.d/tayga start

3.4.2 Jool

Unfortunately, Jool is not yet a part of the Debian Linux

distribution. Its compilation and installation is described in

detail in its documentation [21], which we followed. Jool does

not have a configuration file, its parameters were set by its user

interface program, and the packets were redirected to Jool by

iptables rules. We used the following commands:

/sbin/modprobe jool_siit
jool_siit instance add "benchmarking" --iptables
jool_siit -i "benchmarking" eamt \
 add 2001:2::/120 198.18.0.0/24
jool_siit -i "benchmarking" eamt \
 add 2001:2:0:1::/120 198.19.0.0/24
ip6tables -t mangle -A PREROUTING -s 2001:2::/120 \
 -d 2001:2:0:1::/120 -j JOOL_SIIT \
 --instance "benchmarking"
iptables -t mangle -A PREROUTING -s 198.19.0.0/24 \
 -d 198.18.0.0/24 -j JOOL_SIIT \
 --instance "benchmarking"
jool_siit -i "benchmarking" eamt display

3.4.3 Map646

Map646 was downloaded from [22]. It needed a minor

update, because some changes were made to the library

structure of the include files for JSON. (It means that the json

library no more exists in /usr/include, but there are two

different libraries for C and C++.)

We used the following settings in its /etc/map646.conf

configuration file:
mapping-prefix 64:ff9b::
map-static 198.18.0.1 2001:2::1
map-static 198.18.0.2 2001:2::2

Fig. 6 Throughput results of Jool, TS1

0

100000

200000

300000

400000

500000

600000

84 128 256 512 768 1024 1280 1518

Th
ro

u
gh

p
u

t
(f

ra
m

es
/s

)

Frame size (bytes)

Jool Throughput (N)

IPv6-->IPv4 IPv4-->IPv6 Bidirectional

Review version for the Elsevier Computer Communications journal

6

It also means that map646 could only be tested with

unidirectional traffic in the IPv4 to IPv6 direction. (We have

disclosed its root causes in [13].)

3.4.4 Manual Static ARP and ND Settings

The static ARP and ND table entries were set manually in the

DUTs. The settings of n018 were as follows:

ip neighbor add 2001:2::2 lladdr a0:36:9f:13:fe:28 \
 dev enp3s0f0 nud permanent
ip neigh add 198.19.0.2 lladdr a0:36:9f:13:fe:2a \
 dev enp3s0f1 nud permanent
ip neighbor add 2001:2:0:8000::2 lladdr \
 a0:36:9f:13:fe:2a dev enp3s0f1 nud permanent

The settings of p095 were as follows:
ip neighbor add 2001:2::2 lladdr a0:36:9f:c5:fa:1c \
 dev enp5s0f0 nud permanent
ip neigh add 198.19.0.3 lladdr a0:36:9f:c5:fa:1e \
 dev enp5s0f1 nud permanent
ip neighbor add 2001:2:0:8000::2 lladdr \
 a0:36:9f:c5:fa:1e dev enp5s0f1 nud permanent

3.5 Throughput Test Results

First, we disclose and analyze the throughput test results of

each implementation individually, and then we compare them

and discuss our most important findings.

As we wrote in Section 2, we have executed all the

measurements 20 times and calculated the median as well as the

1st and 99th percentiles. (Of course, the latter two are also the

minimum and maximum, as the number of measurements is

less than 100.)

All the results are presented in the same format: bar charts

are used for displaying the median values, and error bars show

the 1st and 99th percentile values.

3.5.1 Jool

The throughput results of Jool produced by TS1 (Test

System 1) are shown in Fig. 6. The error bars are hardly visible,

because the 1st percentile and 99th percentile values are very

close to the median. Thus we were definitely successful in the

elimination of all possible factors that could cause scattered

results. The throughput values are nearly constant, they show

only a very slight decreasing tendency with the increase of the

frame size. This observation is in a complete agreement with

our previous results [13], and it can be explained by the fact that

the bottleneck is the processing power of the CPU and not the

transmission capacity of the 10Gbps Ethernet link. (The

amount of work needed for header processing does not depend

on the frame size and the transmission through the PCI Express

bus is also very fast.)

Let us examine the exact figures for a given frame size, for

example 128 bytes, which actually means 128 bytes long

Ethernet frames carrying IPv6 datagrams and 108 bytes long

Ethernet frames carrying IPv4 datagrams. The median

throughput values of the forward (form IPv6 to IPv4), reverse

(from IPv4 to IPv6) and bidirectional traffic are 296,972fps

(frames per second) 290,234fps, and 547,848fps, respectively.

The observation that the bidirectional throughput is 5.62% less

than the double of the minimum of the unidirectional

throughput (580,468fps) can be explained by the fact that

although Ethernet is full duplex and the packets in the two

directions are handled by two separate CPU cores, some other

resources (e.g. the memory and the PCI express bus) are shared.

The throughput results of Jool produced by TS2 (Test

System 2) are shown in Fig. 7. The error bars are usually well

Fig. 7 Throughput results of Jool, TS2

Fig. 8 Throughput results of TAYGA, TS1

Fig. 9 Throughput results of TAYGA, TS2

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

84 128 256 512 768 1024 1280 1518

Th
ro

u
gh

p
u

t
(f

ra
m

es
/s

)

Frame size (bytes)

Jool Throughput (P)

IPv6-->IPv4 IPv4-->IPv6 Bidirectional

0

20000

40000

60000

80000

100000

120000

140000

160000

84 128 256 512 768 1024 1280 1518

Th
ro

u
gh

p
u

t
(f

ra
m

es
/s

)

Frame size (bytes)

TAYGA Throughput (N)

IPv6-->IPv4 IPv4-->IPv6 Bidirectional

0

50000

100000

150000

200000

250000

84 128 256 512 768 1024 1280 1518

Th
ro

u
gh

p
u

t
(f

ra
m

es
/s

)

Frame size (bytes)

TAYGA Throughput (P)

IPv6-->IPv4 IPv4-->IPv6 Bidirectional

Review version for the Elsevier Computer Communications journal

7

visible, indicating that the 1st percentiles are significantly

lower than the 99th percentiles. We attribute this scattered

nature of the results to the varying clock frequency of the CPU,

because during the preliminary tests, we have observed that

always the same CPU cores were loaded3, thus differences in

the NUMA situation can be excluded as potential causes of the

differences.

We note that originally we used TS2 with the same IP

addresses as TS1. In that case, the two flows of the bidirectional

tests were served by the same CPU core, and thus the

throughput results were lower. However, in a real system,

usually a lot of different IP addresses are used, thus this clash is

not a typical behavior, therefore, we have eliminated it by

changing the IP addresses.

Otherwise, the results are very similar to that of the

measurements with the N nodes, but of course, the values are

higher, due to the higher CPU frequency.

3.5.2 TAYGA

The throughput results of TAYGA produced by TS1 are

shown in Fig. 8. There are visible problems at 84bytes and

128bytes frame sizes: the throughput is visibly lower than it is

at 256 bytes, and the error bars of the IPv4 to IPv6 traffic are

very high, indicating significantly scattered measurement

results. (For example, the 1st percentile is 96,777fps and the

99th percentile is 138,183fps at 84bytes frame size.) Behind

this phenomenon, we surmise some stability problems of

TAYGA, and we show it in Section 3.6.2, when discussing its

frame loss rate results. However, from the viewpoint of the

theory of benchmarking it is much more important that this

situation demonstrates the need for multiple tests.

Otherwise, the results from 256bytes to 1518bytes frame

sizes are nearly constant, showing very small degradation with

the increase of the frame size. (Considering that TAYGA works

is user-space, we easily could accept even higher degradation

than that.)

The throughput results of TAYGA produced by TS2 are

shown in Fig. 9. Similarly to Jool, the P node results are more

scattered than the N node results (the error bars are well visible)

as expected. However, the problem observed in the N nodes

results at 84bytes and 128bytes frame sizes is hardly noticeable.

(Only the bidirectional throughput shows some deviation: the

median value at 84bytes is visibly less, than is should be and the

error bar at 128bytes is higher than at any other places). We

consider this phenomenon to be a good example, why it is

worth repeating benchmarking tests using different types of

hardware: not only the measured performance may be different,

but different anomalies may be pointed out, which may remain

hidden on other systems.

3.5.3 Map646

The throughput results of map646 produced by TS1 are

shown in Fig. 10. Similarly to TAYGA, there are visible

problems at 84bytes and 128bytes frame sizes: the throughput

3 In fact, we could observe only the load caused by software interrupts, as

Jool works in the Linux kernel.

is visibly lower than at 256bytes, and the error bars are very

high, indicating significantly scattered measurement results.

The throughput result at 1518bytes is missing due to the

same reason discussed in [13].

Otherwise, the results from 256bytes to 1280bytes frame

sizes are nearly constant, showing only a small degradation

with the increase of the frame size.

The throughput results of map646 produced by TS2 are

Fig. 10 Throughput results of map646, TS1

Fig. 11 Throughput results of map646, TS2

Fig. 12 Throughput comparison with 256bytes frames, IPv4 to IPv6 direction

0

20000

40000

60000

80000

100000

120000

140000

160000

84 128 256 512 768 1024 1280 1518

Th
ro

u
gh

p
u

t
(f

ra
m

es
/s

)

Frame size (bytes)

map646 Throughput (N)

IPv6-->IPv4 IPv4-->IPv6 Bidirectional

0

50000

100000

150000

200000

250000

84 128 256 512 768 1024 1280 1518

Th
ro

u
gh

p
u

t
(f

ra
m

es
/s

)

Frame size (bytes)

map646 Throughput (P)

IPv6-->IPv4 IPv4-->IPv6 Bidirectional

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Jool TAYGA map646 Jool TAYGA map646

Th
ro

u
gh

p
u

t (
fr

a
m

e
s/

s)

Measured on N nodes Measured on P nodes

Throughput Comparison (256bytes, IPv4-->IPv6)

Review version for the Elsevier Computer Communications journal

8

shown in Fig. 11. Unlike with TS1, here the median throughput

at 84bytes and 128bytes frame sizes is very similar to the

throughput at other frame sizes, only the somewhat higher error

bar at 84bytes reminds us the problem observed on TS1.

3.4.5 Comparison and Discussion

To be able to compare all three implementations, we

considered the IPv4 to IPv6 throughput and within that, we

have chosen the throughput values measured with 256bytes

long frames to exclude the effect of the strange behavior of

TAYGA and map646 at the two shortest frame sizes.

The results are shown in Fig. 12. Jool has significantly

outperformed both TAYGA and map646, which was exactly

what we expected, because Jool works in the kernel space and

the other two implementations work in the user space.

We note that the choice of the throughput results with

256bytes frame size was in favor of TAYGA and map646 over

Jool.

3.6 Frame Loss Rate Tests

According to RFC 2544, frame loss rate tests should be

performed for all frame sizes, which means very high number

of measurements to perform and results to evaluate. Knowing

that throughput has shown only a very slight decrease with the

increase of the frame size, we considered performing all

possible measurements as pointless. Therefore, we have chosen

two frame sizes, 128bytes and 1280bytes for testing. (Frame

size 128 falls into the range, where TAYGA and map646

showed strange behavior, whereas 1280 is the largest frame

size that can be tested with all three implementations, and it is

exactly 10 times 128.) To have comparable results, we

performed the frame loss tests in the IPv4 to IPv6 direction for

all three implementations.

As for the measurement procedure described in RFC2544,

frame loss test should be performed for different frame rates

starting from the maximum frame rate of the media, decreased

in not more than 10% steps until two consecutive

measurements show zero frame loss. However, in our case the

maximum frame rate of the 10Gbps Ethernet with 128bytes

frame size is 8,445,945fps, which is more than an order of

magnitude higher than any of the tested implementations could

achieve, thus such results would be meaningless. We have

chosen more realistic ranges, which ensured us meaningful

results for all three tested implementations. They are: from

50,000fps to 500,000fps using 50,000fps steps.

3.6.1 Jool

The frame loss rate results of Jool measured on TS1 are

shown in Fig. 13. In agreement with Fig. 6, no frame loss

occurred from 50kfps to 250kfps. From 300kfps rate, an

increasing frame loss rate can be observed. For any given frame

rate, the frame loss rate with 1280bytes frames were higher than

with 128byte frames, which also complies with the results

shown in Fig. 6: the throughput expressed as frames per second

had a slightly decreasing tendency with the growth of the frame

size. And, what is not shown directly on the graph, but we could

see from the raw data: from 300kfps, the number of frames

transmitted during the 60s long tests were approximately

constant, about 17.5 million and 15.9 million with 128bytes and

1280bytes frames, respectively. (The low measure of the

deviations can be seen from the tiny sizes of the error bars.)

Thus, we can lay down that Jool has shown a very stable

behavior even under serious overload conditions.

3.6.2 TAYGA

The frame loss rate results of TAYGA measured on TS1 are

shown in Fig. 14. Whereas the median values roughly comply

with what could be expected on the basis of the previous results

Fig. 13 Frame loss rate results of Jool, TS1

Fig. 14 Frame loss rate results of TAYGA, TS1

Fig. 15 Frame loss rate results of map646, TS1

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

Fr
am

e
 lo

ss
 (%

)

Frame rate (kfps)

Jool Frame Loss Rate (N, IPv4-->IPv6)

128bytes 1280bytes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

Fr
am

e
 lo

ss
 (%

)

Frame rate (kfps)

TAYGA Frame Loss Rate (N, IPv4-->IPv6)

128bytes 1280bytes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

Fr
am

e
 lo

ss
 (%

)

Frame rate (kfps)

map646 Frame Loss Rate (N, IPv4-->IPv6)

128bytes 1280bytes

Review version for the Elsevier Computer Communications journal

9

(frame loss appears from 150,000fps, its tendency is increasing,

and the frame loss is higher for the longer frames), the most

conspicuous thing is the appearance of the high error bars from

200kfps to 400kfps caused by some outliers. This result is in a

complete agreement with the high fluctuation of the throughput

results of TAYGA in the IPv4 to IPv6 direction at 128bytes

shown in Fig. 8. However, the throughput results on the same

figure are very stable at 1280bytes. Yet the frame loss rate (and

thus also the throughput) shows high fluctuations under serious

overload conditions with 1280bytes long frames.

3.6.3 Map646

The frame loss rate results of map646 measured on TS1 are

shown in Fig. 15. They are very similar to that of TAYGA with

an exception that here a high error bar appears also at 500kfps

rate with 1280bytes.

3.7. Tests with Mixed Traffic

Similarly to the frame loss rate tests, we have also used two

selected frame sizes, 128 and 1280 bytes.

RFC 8219 requires the usage of 100%, 90%, 50%, and 10%

translated traffic and the remainder should be native IPv6

traffic. In addition to that, we found that it was worth using also

75% and 25% as translated traffic, as well as native IPv6 traffic

as reference.

3.7.1 Jool

The throughput results of Jool using mixed traffic measured

on TS1 are shown in Fig. 16. It can be observed that the

throughput with 25% and 10% translated traffic is higher than

the throughput of IPv6 routing with 0% translated traffic. The

explanation is very simple: the translated and the native IPv6

traffic made two different flows, and thus they were processed

by two distinct CPU cores. To set up a simple model for the

throughput of the mixed traffic, let us use the following

notations:

 Tt: throughput of the translated traffic

 Tn: throughput of the native IPv6 traffic

 Tm: throughput of the mixed traffic

 α: proportion of the translated traffic, where 𝛼 ∈ [0, 1],
and the proportion of the native IPv6 traffic is 1-α.

Then the mixed throughput can be expressed as follows:

𝑇𝑚(𝛼) = min

(
𝑇𝑡

𝛼
,

𝑇𝑛

1−𝛼
) (1)

The dispersion of the results is low, and the throughput with

1280bytes long frames is somewhat lower than with 128bytes

frames.

3.7.2 TAYGA

The throughput results of TAYGA using mixed traffic

measured on TS1 are shown in Fig. 17. Here only the

throughput of the 1280bytes long frames with 10% translated

traffic is higher than the throughput of the native IPv6 traffic,

which can be easily explained by Eqn. (1) and the actual values

of Tt and Tn. As for the high error bar here, we have checked the

raw results and found their distribution to be bimodal: 12 of the

20 results were higher than 650kfps, and 7 of them were below

460kfps.

3.7.3 Map646

The throughput results of map646 using mixed traffic

measured on TS1 are shown in Fig. 18. The high error bars at

10% translated traffic show that even 10% translated traffic

may significantly influence the overall results of a

measurement. It was possible because the loss of even a single

frame results in the failure of the complete test.

Fig. 16 Throughput results of Jool with mixed traffic (the rest is native IPv6),

TS1

Fig. 17 Throughput results of TAYGA with mixed traffic (the rest is native

IPv6), TS1

Fig. 18 Throughput results of map646 with mixed traffic (the rest is native

IPv6), TS1

0

200000

400000

600000

800000

100% 90% 75% 50% 25% 10% 0%

Tr
o

u
gh

p
u

t (
fp

s)

Proportion of translated traffic

Jool thougput with mixed traffic (N, IPv4-->IPv6)

128bytes 1280bytes

0

200000

400000

600000

800000

100% 90% 75% 50% 25% 10% 0%

Tr
o

u
gh

p
u

t (
fp

s)

Proportion of translated traffic

TAYGA thougput with mixed traffic (N, v4-->v6)

128bytes 1280bytes

0

200000

400000

600000

800000

100% 90% 75% 50% 25% 10% 0%

Tr
o

u
gh

p
u

t (
fp

s)

Proportion of translated traffic

map646 thougput with mixed traffic (N, v4-->v6)

128bytes 1280bytes

Review version for the Elsevier Computer Communications journal

10

3.7.4 Comparison and Discussion

Although the three figures look somewhat different (Jool

showed its maximum throughput value at 25% translated

traffic, whereas the other two implementations did it at 10%)

they all followed the same rule shown in Eqn. (1). We note that

this behavior is the consequence of the conditions that we used

a single translated flow and a single background flow and

multiple CPU cores. Using only a single CPU core or high

number of flows, the throughput of the mixed traffic would

follow the rule shown in Eqn. (2), that is, the mixed throughput

would be the weighted harmonic mean of the throughput of the

translated traffic and the throughput of the native IPv6 traffic.

𝑇𝑚(𝛼) =
1

𝛼

𝑇𝑡
+

1−𝛼

𝑇𝑛

 (2)

3.8. Challenging the Throughput Test of RFC 2544

The throughput results obtained by RFC 2544 testers do not

necessarily accord with the experiences of the users. On the one

hand, the absolutely zero loss criterion may be too strict, as

some low packet loss rates (e.g. 10-4 or 10-5) do not prevent

communication. Indeed, some benchmarking professionals use

99.999% throughput (or 0.001% loss) as their “zero loss”

criterion [23]. However, on the other hand, we contend that the

RFC 2544 benchmarking procedure is way too lax. Frames are

sent for 60 seconds and received for 62 seconds. We

understand, that the additional 2 seconds timeout was probably

set to surely receive also the very last frames. However, it also

means that the very first frame has theoretically 62 seconds

timeout. This is completely unacceptable from the user point of

view. Both TCP and real-time UDP applications will time out

much-much earlier than that! In order to assess the throughput

experienced by the users, one should use per packet timeout.

We are aware that RFC 2544 was published in 1999 and its

procedures could rely on the then available technologies only.

In 2008, RFC 5180 updated some of the technology dependent

parts, for example, it defined the maximum frame rate for

10Gbps Ethernet, however, it left the measurement procedures

unchanged. In 2017, RFC 8219 defined benchmarking

methodology for IPv6 transition technologies. It has redefined

the procedure for measuring latency to achieve more accurate

results, and added procedures for measuring packet delay

variation and inter packet delay variation, but the throughput

and frame loss measurement procedures were still kept

unchanged.

We strongly argue that in 2019, the available technology

makes it possible to use per packet timeout and we highly

recommend it. We demonstrate its feasibility in Section 4.

Similarly, we also believe that our results presented above

have sufficiently demonstrated that RFC 2544 throughput and

frame loss rate tests must be updated regarding the number of

repetitions, the summarizing function and the way of

expressing the dispersion of the results.

4 Benchmarking Measurements with

Dns64perf++

In this section, we do further tests with the following aims:

 to demonstrate the feasibility of the measurements using

per packet timeout,

 to perform tests using high number of flows (which is

unfortunately not supported by nat64tester),

 to benchmark map646 using bidirectional traffic.

First, we give a short introduction to the benchmarking tool,

then we disclose the test setup, next continue on with various

self-tests, and then start testing the SIIT implementations.

4.1 The Applied Testing Tool

The dns64perf++ testing tool was designed for

benchmarking DNS64 servers [17]. Originally, it used only two

threads, one for sending the queries and one for receiving the

replies. Its performance was about 250,000 queries per second.

Later it was enabled to use n times two threads (n threads for

sending queries and n threads for receiving replies) and thus we

could use it up to 3.3Mqps (3.3 million queries per second) rate

for benchmarking authoritative DNS servers [24]. It has two

significant advantages over nat64tester:

 It can individually identify every single DNS reply and

check, if it arrived within the predefined timeout time

after the corresponding query was sent.

 It can use a high number of different source port

numbers for the queries and thus facilitate two very

important things:

o the distribution of the interrupts caused by the

incoming packets to all the CPU cores, which is a

precondition for receiving several million packets

enp3s0f0: 198.18.0.2/24
not assigned: 2001:2::2/64

DUT
(running SIIT

gateway)

Tester/AuthDNS
(running NSD as

authoritative DNS
server)

enp3s0f0: 2001:2:0:1::2
not assigned: 198.19.0.2/24

enp3s0f1: 198.18.0.1
not assigned: 2001:2::1

enp3s0f1: 2001:2:0:1::1
not assigned: 198.19.0.1/24

Tester/Measurer
(running dns64perf++)

enp3s0f1:
2001:2:0:2::2/64
198.18.2.2/24

enp3s0f0:
2001:2:0:2::1/64
198.18.2.1/24

n014

n015

n016

eno2: DHCP

eno2: DHCP

eno2: DHCP

Test System 3

Fig. 19 Test System 3 built up by N nodes, with a fixed 2GHz CPU clock

frequency DUT

Review version for the Elsevier Computer Communications journal

11

per second [25] and which we can use for testing

with multiple flows,

o the distribution of the queries among multiple

threads or processes of the DNS server, if it uses

the so_reuseport socket option, thus

providing us with a high speed responder for our

tests.

From the SIIT gateway point of view, the DNS queries and

replies are UDP packets, which can be translated as any other

packets. The dns64perf++ program is used as a Tester,

which sends and receives packets, the content of which is

redundant from the DUT’s point of view. Of course, it has some

limitations, too. One of them is the fixed size of the queries and

their replies. In general, this could be a serious limitation, but in

our case, this limitation is not at all a significant one, as our

previous tests showed no significant difference in the achieved

frame rates for different frame sizes. The limitation caused by

the usage of the authoritative DNS server is twofold: its

maximum reply rate limits the maximum frame rate of the SIIT

measurements, and the time necessary for the DNS server to

produce a reply reduces the accuracy of the SIIT measurement

concerning timeout.

4.2 Measurement Environment

We used some of the N nodes of StarBED, but actually

different ones then before to enable concurrent testing.

In our paper about the benchmarking methodology for

DNS64 benchmarking [14], we have elaborated that the two

subsystems of the Tester may be implemented by two physical

computers, when high performance is needed. We have

followed this approach during building Test System 3 shown in

Fig. 19. The DUT can be found in the middle of the system:

n015 was used to execute the tested SIIT implementations.

The dns64perf++ program was executed by n014 using its

CPU cores 0-7 for executing the 8 sending threads and cores

8-15 for executing the 8 receiving threads. Based on our

previous results [24], the NSD authoritative DNS server was

installed on the n016 node to provide authoritative DNS

service. It was set to use all 16 cores of the computer.

In accordance with our previous measurements, this system

was set to be protected from any possible disturbance that could

cause scattered measurement results. The CPU clock

frequencies of both n015 and n016 were set to fixed 2GHz,

the computers were interconnected by direct cables, and only

cores 0-7 of n015 were online (to avoid NUMA issues).

Although turbo mode was enabled on n014, the power budget

allowed to raise its CPU clock frequency up to 2.4GHz only,

when all its cores were used. We have summarized the most

important building elements of Test System 3 in Table 2.

The IP addresses were set according to Fig. 19. The network

traffic through the SIIT gateway was now initiated from the

IPv4 side, so that map646 could also be tested with

bidirectional traffic.

The direct connection between the two subsystems of the

Tester served the purposes of the self-test of the Tester [14]. In

short, it was used to check, up to what query rates the Tester

could be used. We have performed these tests using both IPv4

and IPv6 for carrying the DNS requests and replies, as we knew

from our earlier experience that the achievable query per

second rate was significantly lower with IPv6.

In addition to that, we have also performed routing tests,

when the DUTs were used as IPv4 or IPv6 routers. The routing

tests had three purposes:

 to check and demonstrate that the paths for the SIIT

measurements are working properly and having no

bottleneck,

 to assess their maximum performances in IPv4 and IPv6

packet forwarding,

 to test and demonstrate, how the number of flows

influence the performance of the system.

For the routing tests, all the IP addresses shown in Fig. 19

(including those typeset in italic) were assigned to the NICs. All

the tests (including self-test, routing tests and the SIIT

measurements) were performed using 64,000 different source

ports by dns64perf++ (8000 ports per thread by 8 sending

threads).

To distribute the interrupts evenly among the CPU cores, the

following commands were used:
ethtool -N interface rx-flow-hash udp4 sdfn

ethtool -N interface rx-flow-hash udp6 sdfn

(The interfaces were enp3s0f0 and enp3s0f1.)

Static IPv4 and IPv6 routes were set in the computers acting

as the two subsystems of the Tester.

The settings of the three tested SIIT implementations were

only slightly different than in Section 3, thus we do not repeat

them.

First, we performed the routing tests with excluding the

source ports from the rx-flow-hash (by using sd instead of

sdfn), thus there were only two flows (due to the bidirectional

traffic).

We note that dns64perf++ measures the number of

successfully resolved queries per second, and we used this unit

during the calibration of the test system, and we switched over

to frames per second, when benchmarking the different SIIT

implementations in order to have our results comparable with

the previous ones. The conversion is very simple: each resolved

query means two frames: the first one carried the query and the

second one carried the answer for the query.

4.3 Self-test Measurements

Similarly to the self-test measurements of the DNS64

benchmarking tests [14], the aim of these measurements was to

Table 2 The Building Elements of Test System 3

Test Tester/Measurer Tester/AuthDNS DUT (Device Under Test) Connection of

System node speed active cores node speed active cores node speed active cores the elements

TS3 n014 2-2.4GHz 0-15 n016 2GHz 0-15 n015 2GHz 0-7 Direct cables

Review version for the Elsevier Computer Communications journal

12

determine the performance of the Tester, in order to ensure that

the DUT be the bottleneck during all further measurements.

However, now we did not have a predefined timeout value,

rather we had to select a suitable one, which was high enough to

ensure as high as possible query rates on the one hand,

however, on the other hand, it had to be low enough for

performing meaningful SIIT measurements. The only hint we

had from our previous experience [24] was that 100ms was

likely workable from the authoritative DNS server point of

view.

We have performed self-test measurement using 200ms,

100ms, 50ms, and 25ms timeout values and both IPv4 and IPv6

as transport protocol for carrying the DNS messages. The

results are shown in Fig 20. (The upper limit of the binary

search was set to 1,600,000qps and 1,000,000qps for IPv4 and

IPv6, respectively, thus they did not limit the results.) To avoid

that the unsatisfactory performance of the AuthDNS subsystem

impact the measurement results, the 1st percentiles (that is the

minimum values) must be taken into consideration as a limiting

factor for the further tests. Considering also the results of our

preliminary routing tests, we had to choose the 100ms timeout

for the routing tests to ensure the necessary performance for

demonstrating multi-flow operation. It means that our test

system is surely usable up to 1,100,000qps and 900,000qps,

when it is used with IPv4 and IPv6 as transport protocol for the

queries.

4.4 Routing Tests

For the routing tests, we used the 100ms timeout chosen

before, not adding any value to compensate the latency of the

IPv4 or IPv6 router, which was involved in both directions. The

results of the routing tests are shown in Fig. 21. We note that

the single flow results reflect the IPv4 and IPv6 routing

performance of nodes, however, the multiple flow results were

limited by the setting of the upper limit of the binary search

(1,100,000qps and 900,000qps for IPv4 and for IPv6,

respectively). The multiple flow results are presented to

demonstrate that the test systems able to provide higher

performance, when multiple flows are used. By this test, we

have also checked that our test system can be used up to

1,100,000 queries per second with IPv4, which will be enough

for the later tests.

The conclusion of these tests for our current effort is that

both measurement systems can be used up to high enough rates

for testing the different SIIT implementations.

The conclusion of these tests in general is that benchmarking

of a router is now possible with using individual timeout for

every single frame. If it can be done up to such rates using

dns64perf++, which uses TCP/IP socket interface, then it

can be done up to significantly higher rates using a DPDK

based Tester.

4.5 Choice of Timeout Value and Parameter Study

We expect that 50ms should be more than enough timeout

for a SIIT gateway. Calculating with 50ms in each directions,

we consider that 2*50ms + 100ms = 200ms timeout must be

surely high enough for the SIIT tests.

First, we tested Jool, and received an unexpectedly low

result, namely 3,177qps, which is 6354fps. We observed that all

20 measurements produced the very same results and several

binary search steps failed due to a very low rate loss (less than

0.01%). We have performed the test also with 400ms timeout,

but the results did not change. We have received similarly low

results with the two other SIIT implementations. We

Fig. 21 Bidirectional throughput of Jool with different acceptance criteria

(measured by TS3 and TS4 using DNS traffic)

Fig. 22 Bidirectional throughput of TAYGA with different acceptance criteria

(measured by TS3 and TS4 using DNS traffic)

Fig. 23 Bidirectional throughput of map646 with different acceptance criteria

(measured by TS3 and TS4 using DNS traffic) (NOT READY YET!)

0

100000

200000

300000

400000

500000

600000

700000

800000

99.999% 99.99% 99.9% 99.999% 99.99% 99.9%

Th
ro

u
gh

p
u

t (
fr

a
m

e
s/

s)

Measured on N nodes Measured on P nodes

Bidirectional throughput of Jool

0

50000

100000

150000

200000

250000

99.999% 99.99% 99.9% 99.999% 99.99% 99.9%

Th
ro

u
gh

p
u

t (
fr

a
m

e
s/

s)

Measured on N nodes Measured on P nodes

Bidirectional throughput of TAYGA

0

50000

100000

150000

200000

250000

99.999% 99.99% 99.9% 99.999% 99.99% 99.9%

Th
ro

u
gh

p
u

t (
fr

a
m

e
s/

s)

Measured on N nodes Measured on P nodes

Bidirectional throughput of map646

Fig. 20 Self-test results as a function of timeout time

Fig. 21 Results of the routing tests (beware that the unit is qps and not fps)

Fig. 22 Bidirectional throughput of Jool with different acceptance criteria

using DNS traffic and 200ms individual timeout

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

200 100 50 25

D
N

S
p

er
fo

rm
an

ce
 (

q
p

s)

Timeout (ms)

Authoritative DNS performance of NSD

IPv4 IPv6

0

200000

400000

600000

800000

1000000

1200000

single flow multiple flows

R
o

u
ti

n
g

p
er

fo
rm

an
ce

 (
q

p
s)

Single or multiple flows

Routing Tests with Single and Multiple Flows

IPv4 IPv6

0

100000

200000

300000

400000

500000

600000

99.999% 99.99% 99.9%

Th
ro

u
gh

p
u

t (
fr

a
m

e
s/

s)

Acceptance criterion

Bidirectional throughput of Jool

Review version for the Elsevier Computer Communications journal

13

considered that they were completely unsuitable for the

comparison of performance of the three SIIT implementations.

Then we used a different method, which allowed some low

lost rate as acceptance criterion. It means if at least 99.999% of

the queries were replied within timeout time, then the test was

considered as successful, otherwise it was considered as failed.

Also 99.99% and 99.9% values were used as acceptance

criterion. (The previously chosen 200ms timeout was used for

these and all further tests.) The results of Jool are shown in

Fig. 22. (From now on, we use fps unit for easier comparison

with the results in Section 3. Although we note that the

comparability is only approximate due several reasons, e.g.

different frame sizes, different timeout, different hardware

instances 4 , etc.) Whereas the 99.999% acceptance criterion

resulted in very low rate the 99.99% acceptance criterion

resulted in rates similar to that measured with the RFC 8219

compliant method, and 99.9% resulted in no further increase.

We have performed the tests also with TAYGA and map646

and found that their throughput did not increase significantly

using 99.9% as acceptance criterion compared to 99.99%.

Therefore, we have chosen 99.99% as acceptance criterion for

our further investigations. By doing so, we do not want to

propose it as a general acceptance criterion, we have done so

only to facilitate the performance comparison of the

implementations.

4.6 Performance Comparison with Bidirectional

Traffic using Single and Multiple Flows

We use the 99.99% acceptance criterion results of the three

SIIT implementations for comparison, as shown in Fig. 23. On

the left side of the figure, the “single flow” results are to be

interpreted as “single flow per direction”, the two directions

mean two flows, of course. Although these results are not fully

comparable with the single directional RFC 8219 compliant

ones on Fig. 12 (for the reasons mentioned before), it is

deliberate that Jool benefited from the fact that it could use two

different cores for processing the packets of the two directions,

whereas the others could not. As expected, its bidirectional

result with 200ms per frame timeout are visibly lower than the

double of its unidirectional one shown in Fig.12 with a global

2s timeout, similarly to the two other implementations, the

throughput of which are not doubled.

The results of the multi-flow measurements are shown on the

right side of Fig. 23. They were measured with the same

settings as the single flow ones, the only difference was that we

enabled the source and destination ports in the “rx-flow-hash”

on the DUT. (To facilitate easy visual comparison, we plotted

them together.) Due to using a high number of flows, the

performance of Jool increased radically. Interestingly, both

4 In [18], we have pointed out significant performance differences in the

authoritative DNS performances of the test systems built up of different N

nodes. (For example, the median, minimum and maximum values were

168,623qps, 167,935qps and 168,961qps for one test system and 163,904qps,
163,447qps and 164,361qps for another test system, when NSD was executed

by a single CPU core. Please note that these intervals are non-overlapping.)

This was the reason why we did not parallelize the testing of different DNS64
implementations using different nodes. Since then, we always benchmark all

tested implementations by using the very same nodes for each of them.

TAYGA and map646 benefited to some extent from the high

number of flows. We presume that the performance increase

was caused by the distribution of interrupts of the incoming

packets to all the active CPU cores, because we have checked

that the CPU utilization of TAYGA and map646 did not exceed

100%, the performance of a single CPU core.

From general point of view, our most important result is that

we could benchmark the selected SIIT implementations with

bidirectional traffic with both single and multiple flows using

the dns64perf++ tool.

4.7 The Scale Up of Jool

We have examined, how the performance of Jool scales up

with the number of active CPU cores. To keep the number of

measurements relatively low, the number of CPU cores were

always doubled compared to the previous case starting from 1.

Fig. 23 Throughput comparison with bidirectional DNS traffic, using 200ms

timeout and 99.99% acceptance criterion

Fig. 24 The throughput of Jool as a function of the number of CPU cores using

a high number of flows

Table 3 The throughput of Jool as a function of the number of CPU cores

using a high number of flows

Num. CPU cores 1 2 4 8

Median (fps) 319980 508506 956322 1886325
Increase of median - 1.59 1.88 1.97

1st percentile (fps) 309238 504744 949472 1872762
99th percentile (fps) 321592 509848 958336 1890758

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

Jool TAYGA map646 Jool TAYGA map646

Th
ro

u
gh

p
u

t (
fr

a
m

e
s/

s)

single flow multiple flows

Throughput Comparison (bidir. with DNS messages)

200000

2000000

1 2 4 8

Th
ro

u
gh

p
u

t (
fr

a
m

e
s/

s)

Number of active CPU cores

Throughput of Jool (bidir. with DNS messages)

Review version for the Elsevier Computer Communications journal

14

The results are shown in Fig. 24. (Beware, we used logarithmic

scale!) To facilitate a more precise analysis, we have included

the results also in Table 3, which we have completed with an

additional row: “the increase of the median”. It expresses the

ratio of the current throughput and the throughput with half as

many cores. It shows that the scale up from a single core to two

cores is far from linear (the increase is only 59%), which we

attribute to the cost of multi-core operation, but after that Jool

scaled up very well (by an increase of 88% and then 97%).

Unfortunately, the performance of TS3 was not enough to

perform a measurement using all 16 cores of the DUT, but as

far as we could test, Jool scaled up very well. Thus, we

recommend its usage in high performance systems with

multi-core computers as gateways.

5 Discussion and Plans for Future Research

According to our understanding, the aim of benchmarking is

to “accurately measure some standardized performance

characteristics in order to obtain reasonable and comparable

results” [26]. As for network interconnect devices, RFC 2544

compliant commercial testers have been serving this purpose

for two decades. As for IPv6 transition technologies, RFC 8219

defined several benchmarking procedures, and we could test

the viability of only a fraction of them, namely throughput and

frame loss rate. RFC 8219 has taken both of them from RFC

2544 without changes. Being aware that they are matured and

widely used, yet we believe that the time has come, when it is

worth considering their update. We have pointed out several

possibilities to improve them. Our recommendations for

consideration are:

1. Checking the timeout individually for each frame.

2. The requirement of multiple repetitions of the tests.

3. An optional non-zero frame loss acceptance criterion.

As for the first one, we have shown that checking the timeout

individually for every single frame is reasonable (and the

results are more useful than those with a “global timeout”,

which can actually be anything form 2 seconds to 62 seconds

concerning a given frame), and we have demonstrated its

feasibility using a TCP/IP socket interface based tester. We are

intending to develop a DPDK-based tester, which complies

with the requirements of RFC 8219, and can optionally use

individual timestamps.

As for the second one, we have shown, that high deviations

are possible both in throughput and in frame loss results, thus

the repetition of the tests is a must. No new measurement

procedure is necessary, only the requirements should be

changed. We are aware that this change may drastically

increase the time of testing. Therefore, we do not recommend

always 20 repetitions, but rather a kind of adaptive method,

which can stop after a few tests, if the results are consistent, but

performs more tests if they are scattered. We plan to develop an

algorithm, which can be easily implemented (e.g. in a shell

script) and can determine on the fly, when testing may be

finished. As for summarizing function, we recommend median,

whereas 1st and 99th percentiles can be used to account the

variation of the results.

As for the third one, we see contradicting arguments and

interests. We are aware that the market of network interconnect

devices has several stakeholders with different interests. For

example, some high-end devices can operate at full line speed

without frame loss, whereas others cannot [27]. As researchers,

we have our own special interests. On the one hand, we need

devices (e.g. switches, NICs) that comply with the absolute

zero loss criterion, to be able to perform benchmarking tests.

However, on the other hand, we have experienced that in some

cases, the absolute zero loss criterion may prevent us from

achieving practically usable results. (Our above experience

with the SIIT implementations in Section 4 is only one

example. We had the same experience in some cases in [18] and

[24], and the non-zero loss acceptance criterion is used in the

practice of benchmarking professionals for a long time [23].)

Our recommendation is to keep the absolutely zero loss

criterion as the compulsory test and make the higher than zero

loss acceptance criterion test as a recognized optional

throughput test. Standardizing its reporting format would make

its results more transparent (by the compulsory indication of the

allowed frame loss rate of the acceptance criterion).

As we have mentioned in the introduction, we are planning

to re-implement the DPDK based tester in C++ using a proper

object oriented design, which will also facilitate its easy

extention with new functions. The handling of individual

timestamps for each frame required by the newly recommended

throughput and frame loss rate tests, may also be used for the

packet delay variation and inter packet delay variation tests

recommended by RFC 8219, thus a proper design may make

the coding work more economic.

We plan to retest the three examined SIIT implementations

with the new tester to be able to compare the results of the

newly recommended tests with the results of the original ones.

Another interesting direction of research is to examine the

issue of the scattered results of TAYGA and map646 with small

frame size. Perhaps the analysis of the kernel level packet

processing overhead may help us to find its root cause.

6 Conclusion

We have performed the throughput and frame loss rate

benchmarking tests required by RFC 8219 to analyze the

performance of Jool, TAYGA and map646 and found that the

performance of Jool scaled up well with the number of active

CPU cores, and also significantly outperformed TAYGA and

map646.

We have pointed out that the “global timeout” defined

originally by RFC 2544 is improper, and recommended the

individual checking of the timeout for every single frame. We

have also demonstrated its feasibility.

We have also pointed out the need for multiple tests, and

recommended an adaptive algorithm, which is yet to be

developed.

We have also shown that sometimes it is worth using a

non-zero frame loss acceptance criterion, which we

recommended to be a recognized optional test.

Acknowledgements

This work was supported by the Japan Trust International

Review version for the Elsevier Computer Communications journal

15

Research Cooperation Program of the National Institute of

Information and Communications Technology (NICT), Japan.

The experiments were carried out by remotely using the

resources of NICT StarBED, 2-12 Asahidai, Nomi-City,

Ishikawa 923-1211, Japan.

The authors would like to thank Shuuhei Takimoto for the

possibility to use StarBED, as well as to Satoru Gonno for his

help and advice in StarBED usage related issues.

References

[1] Bao, C., Li, X., Baker, F., Anderson, T., & Gont, F. (2016). IP/ICMP
translation algorithm, IETF RFC 7915, DOI: 10.17487/RFC7915

[2] Bagnulo, M., Matthews, P., & Beijnum, I. (2011). Stateful NAT64:
Network address and protocol translation from IPv6 clients to IPv4
servers, IETF RFC 6146, DOI: 10.17487/RFC6146

[3] Bagnulo, M., Sullivan, A., Matthews, P., & Beijnum, I. (2011). DNS64:
DNS extensions for network address translation from IPv6 clients to IPv4
servers, IETF RFC 6147, DOI: 10.17487/RFC6147

[4] Mawatari, M., Kawashima, M., & Byrne, C. (2013). 464XLAT:
Combination of stateful and stateless translation, IETF RFC 6877, DOI:
10.17487/RFC6877

[5] Shima, K., Ishida, W., & Sekiya, Y. (2012). Designing an IPv6-oriented
datacenter with IPv4-IPv6 translation technology for future datacenter
operation, In: I. Ivanov, M. van Sinderen, F. Leymann, T. Shan (eds)
Cloud Computing and Services Science. (CLOSER 2012). Porto,
Portugal, Apr. 2012. pp. 39–53, Communications in Computer and
Information Science, vol 367. Springer, DOI:
10.1007/978-3-319-04519-1_3

[6] Free Software Foundation, The free software definition,
http://www.gnu.org/philosophy/free-sw.en.html Accessed May 1, 2019.

[7] Georgescu, M., Pislaru L., & Lencse, G. (2017). Benchmarking
methodology for IPv6 transition technologies, IETF RFC 8219, DOI:
10.17487/RFC8219

[8] Lencse, G., & Kadobayashi, Y., (2019). Comprehensive survey of IPv6
transition technologies: A subjective classification for security analysis,
IEICE Transactions on Comminications, to be published in E102-B(10),
October 2019. DOI: 10.1587/transcom.2018EBR0002

[9] Bálint, P. (2017). Test software design and implementation for
benchmarking of stateless IPv4/IPv6 translation implementations, in
Proc. 40th International Conference on Telecommunications and Signal
Processing (TSP 2017), Barcelona, Spain, Jul. 5-7, pp. 74–78. DOI:
10.1109/TSP.2017.8075940

[10] Scholz, D. (2014). A look at Intel’s dataplane development kit, Proc.
Seminars Future Internet (FI) and Innovative Internet Technologies and
Mobile Communications (IITM), Munich, Germany, pp. 115–122, DOI:
10.2313/NET-2014-08-1_15

[11] Bradner, S., & McQuaid, J. (1999). Benchmarking methodology for
network interconnect devices, IETF RFC 2544, DOI: 10.17487/RFC2544

[12] Popoviciu, C., Hamza, A., Van de Velde, G., & Dugatkin, D. (2018). IPv6
benchmarking methodology for network interconnect devices, IETF RFC
5180, DOI: 10.17487/RFC5180

[13] Lencse, G. (2019). Benchmarking stateless NAT64 implementations with
a standard tester, under second review in Telecommunication Systems,
http://www.hit.bme.hu/~lencse/publications/STS-2019-SLNAT64-Legac
y-revised.pdf

[14] Lencse, G., Georgescu, M., & Kadobayashi, Y. (2017). Benchmarking
methodology for DNS64 servers, Computer Communications, 109(1), pp.
162–175, DOI: 10.1016/j.comcom.2017.06.004

[15] Paxson, V, Almes, G., Mahdavi, J., & Mathis, M. Framework for IP
Performance Metrics, IETF RFC 2330, DOI: 10.17487/RFC2330

[16] Anderson, T., Potter, A. L. (2016). Explicit address mappings for stateless
IP/ICMP Translation, IETF RFC 7757, DOI: 10.17487/RFC7757

[17] Lencse, G., Bakai, D. (2017). Design and implementation of a test
program for benchmarking DNS64 servers, IEICE Transactions on
Communications, vol. E100-B, no. 6. pp. 948-954, DOI:
10.1587/transcom.2016EBN0007

[18] Lencse, G., & Kadobayashi, Y. (2018). Benchmarking DNS64
implementations: Theory and practice, Computer Communications,
127(1), pp. 61–74, DOI: 10.1016/j.comcom.2018.05.005

[19] Lencse, G., & Répás, S. (2016). Performance analysis and comparison of
four DNS64 implementations under different free operating systems,
Telecommunication Systems, vol. 63, no. 4, pp. 557–577, Nov. 2016,
DOI: 10.1007/s11235-016-0142-x

[20] Lutchansky, N. (2011). TAYGA: Simple, no-fuss NAT64 for Linux,
http://www.litech.org/tayga/ Accessed May 1, 2019.

[21] NIC Mexico, (2019). Jool: SIIT and NAT64,
http://www.jool.mx/en/about.html Accessed May 1, 2019.

[22] Shima, K. (2010). A one to one address mapping program for translation
from IPv4 packets to IPv6 packets and vice versa, source code of map646,
https://github.com/keiichishima/map646

[23] Tolly, K. (2001) The real meaning of zero-loss testing, IT World Canada,
https://www.itworldcanada.com/article/kevin-tolly-the-real-meaning-of-
zero-loss-testing/33066 Accessed May 1, 2019.

[24] Lencse, G. (2019). Performance analysis of authoritative DNS servers,
under review in Compuuter Networks,
http://www.hit.bme.hu/~lencse/publications/ECN-2019-AuthDNS-for-re
view.pdf

[25] Majkowski, M. (2015). How to receive a million packets per second,
Cloudflare Blog,
https://blog.cloudflare.com/how-to-receive-a-million-packets/ Accessed
May 1, 2019.

[26] Lencse, G. (2017) “Benchmarking methodology for IPv6 transition
technologies”, IIJ Lab seminar, Tokyo, Oct. 10, 2017,
https://seminar-materials.iijlab.net/iijlab-seminar/iijlab-seminar-2017101
0.pdf Accessed May 1, 2019.

[27] Tolly, E. (2016). “Mellanox spectrum vs. Broadcom strataXGS
tomahawk 25GbE & 100GbE performance evaluation”, Tolly Test Report
#216112,
http://www.mellanox.com/related-docs/tolly/tolly-report-performance-e
valuation-2016-march.pdf Accessed May 1, 2019.

Gábor Lencse received MSc and PhD in

computer science from the Budapest

University of Technology and Economics,

Budapest, Hungary in 1994 and 2001,

respectively.

He works for the Department of Tele-

communications, Széchenyi István

University, Győr, Hungary since 1997.

Now, he is a Professor. He is also a part

time Senior Research Fellow at the Department of Networked

Systems and Services, Budapest University of Technology and

Economics since 2005. His research interests include the

performance analysis of communication systems with current

focus on IPv6 transition technologies. He was a guest

researcher at IIJ Innovation Institute, Japan from April 2 to July

2, 2019, where his research topic was the performance analysis

of SIIT implementations.

Dr. Lencse is a member of IEICE (Institute of Electronics,

Information and Communication Engineers, Japan).

Keiichi Shima is a deputy director at the

Research Laboratory of IIJ Innovation

Institute, Inc. His research field is the

Internet, including designing and

implementing communication protocols,

computer networking technologies,

computer network security, AI-based

anomaly detection, and so forth. He also

works as a board member of the WIDE

project operating a nation wide research network in Japan.

http://www.gnu.org/philosophy/free-sw.en.html
http://www.hit.bme.hu/~lencse/publications/STS-2019-SLNAT64-Legacy-revised.pdf
http://www.hit.bme.hu/~lencse/publications/STS-2019-SLNAT64-Legacy-revised.pdf
http://www.litech.org/tayga/
http://www.jool.mx/en/about.html
https://github.com/keiichishima/map646
https://www.itworldcanada.com/article/kevin-tolly-the-real-meaning-of-zero-loss-testing/33066
https://www.itworldcanada.com/article/kevin-tolly-the-real-meaning-of-zero-loss-testing/33066
http://www.hit.bme.hu/~lencse/publications/ECN-2019-AuthDNS-for-review.pdf
http://www.hit.bme.hu/~lencse/publications/ECN-2019-AuthDNS-for-review.pdf
https://blog.cloudflare.com/how-to-receive-a-million-packets/
https://seminar-materials.iijlab.net/iijlab-seminar/iijlab-seminar-20171010.pdf
https://seminar-materials.iijlab.net/iijlab-seminar/iijlab-seminar-20171010.pdf
http://www.mellanox.com/related-docs/tolly/tolly-report-performance-evaluation-2016-march.pdf
http://www.mellanox.com/related-docs/tolly/tolly-report-performance-evaluation-2016-march.pdf

