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A B S T R A C T

In this paper, the viability of the throughput and frame loss rate benchmarking procedures of RFC 8219
is tested by executing them to examine the performance of three free software SIIT (also called stateless
NAT64) implementations: Jool, TAYGA, and map646. An important methodological problem of the two tested
benchmarking procedures is pointed out: they use improper timeout setting. A solution of individually checking
the timeout for each frame is proposed to get more reasonable results, and its feasibility is demonstrated. The
unreliability of the results caused by the lack of requirement for repeated tests is also pointed out, and the need
for relevant number of tests is demonstrated. The possibility of an optional non-zero frame loss acceptance
criterion for throughput measurement is also discussed. The benchmarking measurements are performed using
two different computer hardware, and all relevant results are disclosed and compared. The performance of the
kernel based Jool was found to scale up well with the number of active CPU cores and Jool also significantly
outperformed the two other SIIT implementations, which work in the user space.

1. Introduction

Stateless IP/ICMP translation (SIIT) [1] (also referred to as stateless
NAT64) plays an important role in the current phase of transitioning
from IPv4 to IPv6 as it is used in several contexts. For example, it is a
part of the well-known stateful NAT64 [2], which is used together with
DNS64 [3] to enable IPv6-only clients communicating with IPv4-only
servers. It works in the CLAT devices of 464XLAT [4], too. SIIT can also
be applied to provide IPv4 access to IPv6-only data centers or services.
One of its earliest such application is documented in [5].

Several free software [6] SIIT implementations exist and some of
them support stateful NAT64, too. When network operators select the
best fitting one for their purposes, they are interested in the perfor-
mance of the different implementations. For carrying out performance
measurements, one needs a well-defined methodology, measurement
tools (hardware or software), a suitable testbed, benchmarking exper-
tise, and a lot of time. As for methodology, RFC 8219 [7] defined a
benchmarking methodology for IPv6 transition technologies. It classi-
fied the high number of IPv6 transition technologies [8] into a small
number of categories, and it defined the benchmarking methods per
categories. Both SIIT and stateful NAT64 fell into the category of single
translation solutions, thus basically, they have the same benchmarking
tests, plus some additional tests were defined for stateful IPv6 transition
technologies (for the details, please refer to Section 8 of RFC 8219).

The aim of this paper is twofold:
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• to test the viability of the benchmarking methodology defined in
RFC 8219 concerning SIIT implementations, and also to amend it,
where it proves to be necessary,

• to measure the performance of several SIIT implementations and
thus provide network operators with ready to use benchmarking
results.

The most important contributions of our paper are:

• The first demonstration of the feasibility of the RFC 8219 tests for
the single translation solutions.

• Pointing out potential methodological problems in RFC 2544 [9]
and RFC 8219, please refer to Section 3.8 for the details.

• Performance comparison of three SIIT implementations.

The remainder of this paper is organized as follows. In Section 2,
we give a short introduction to the benchmarking method for single
translation solutions defined in RFC 8219 and also give a brief survey of
the related work including the available testing tools. In Section 3, first,
we design the test and traffic setup, next, we give a very brief summary
of the DPDK-based NAT64 Tester, then we describe our measurements,
after that, we disclose and discuss our results, and finally, we point
out some problems with the existing benchmarking methodology. In
Section 4, we describe a different measurement method, which can
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Fig. 1. Test and traffic setup for benchmarking stateless NAT64 gateways.

complement our previous measurements and demonstrates the feasi-
bility of our proposed solution for the methodology problem, then we
present and discuss our results. In Section 5, we make three recommen-
dations to update the two benchmarking procedures of RFC 8219 (RFC
2544) and disclose our plans for future research. Section 6 links ours
raw results and measurement scripts for the sake of reproducibility.
Section 7 concludes our paper.

2. Benchmarking SIIT gateways

2.1. Summary of the theoretical background

We give a short summary of the benchmarking methodology for SIIT
(also called stateless NAT64) gateways on the basis of RFC 8219. We
note that stateful NAT64 tests are basically the same with the exception
that communication may be initiated only from the IPv6 side and there
are some further tests for examining the stateful behavior.

The test setup is very simple: it consists of the Tester and the DUT
(Device Under Test). The two devices are interconnected by two links
as shown in Fig. 1. Testing with bidirectional traffic is required and
testing with unidirectional traffic is optional.

The measurement procedure for the throughput test was taken ver-
batim from RFC 2544. It also means that the strict absolutely zero frame
loss criterion of the throughput measurement was kept: the throughput
is the highest rate, at which the number of frames transmitted by the
Tester is equal with the number of frames received by the Tester, during
an at least 60 s long test. The literal wording of the measurement
procedure is as follows: ‘‘Send a specific number of frames at a specific
rate through the DUT and then count the frames that are transmitted by
the DUT. If the count of offered frames is equal to the count of received
frames, the rate of the offered stream is raised and the test is rerun. If
fewer frames are received than were transmitted, the rate of the offered
stream is reduced and the test is rerun’’. [9] In practice, the highest such
rate can be efficiently determined by a binary search, where the initial
upper limit of the interval is the maximum frame rate of the media and
the lower limit is zero. (For the general step of the binary search, the
average of the upper and lower limits is calculated. A test is performed
at that frame rate. If the test is successful, then the upper half interval
is used. If the test fails, then the lower half interval is used.)

The recommended frames sizes are: 64, 128, 256, 512, 768, 1024,
1280, and 1518 bytes. And it is also mentioned that 64 should be
replaced by 84 in the IPv6 to IPv4 direction due to minimum frame size
issue. The RFC does not mention, but it is deliberate that 1518 should
also be replaced by 1498 in the IPv4 to IPv6 direction due to maximum
frame size issue. However, all other frame sizes are also changed by the
translator and it is not mentioned, whether the other values (128, 256,
512, 768, 1024, 1280) are meant to be IPv4 or IPv6 frame sizes. As
RFC 8219 also has tests, where translated and native IPv6 traffic is to
be mixed, we suggest that the listed frame sizes should be used for IPv6.
Thus, we interpret that the frame sizes for IPv6 are: 84, 128, 256, 512,
768, 1024, 1280, 1518, and frame sizes for IPv4 are 64, 108, 236, 492,
748, 1004, 1260, 1498.

As for the before mentioned mixed traffic, the SIIT gateway should
act as a router for the native IPv6 traffic, and 100%, 90%, 50% and 10%
are recommended for the proportion of the translated traffic, where the
rest should be native IPv6 traffic.

The throughput measurement procedure only counts the number of
the sent and received frames, but it does not identify them individually,
thus it cannot check if their order is kept. Although our applications are
sensitive to delay,1 the throughput measurement procedure does not
use any per frame timeout.2 According to our interpretation, a very loose
timeout is defined in Section 23 of RFC 2544 as follows: after running
a particular test trial, one should ‘‘wait for two seconds for any residual
frames to be received’’. We follow this approach in Section 3, and then
challenge it in Section 3.8.

Section 12 of RFC 2544 also mentions that the tests should be
performed first with a single flow (using a single source address and
a single destination address) and then they should be repeated with
256 flows, where the destination addresses are randomly chosen from
256 different networks.

There is one more thing, in which we have found a gap in the
methodology of RFC 8219. It is the required number of repetitions of
the throughput and frame loss rate tests. RFC 8219 mentions at four
different places that the tests must be repeated at least 20 times. These
places are the benchmarking procedures for:

• latency (Section 7.2)
• packet delay variation (Section 7.3.1)
• inter packet delay variation (Section 7.3.2)
• DNS64 performance (Section 9.2).

As for DNS64 benchmarking measurements, we have explained the
need for at least 20 repetitions in [10] as follows. ‘‘There may be ran-
dom events, which influence the results. Consequently, the tests should
be repeated multiple times and the final result should be calculated by
using a particular summarizing function’’. The test was performed at
least 20 times and we used the median value to summarize the results.
To account for the variation of the results across the 20 repetitions, the
1st and 99th percentiles were used. It is also explained, that median
was preferred over average because median is less sensitive to outliers
than average.

In our case, the benchmarked SIIT implementations are software
components executed by computers, thus we contend that the same
conditions apply. Therefore, in this paper, we follow the same approach
and we believe that this is the true spirit of RFC 8219, even if its
literal wording does not say anything about the repetitions of the
throughput and frame loss rate measurements. RFC 2544 writes in
its Section 4 that: ‘‘Furthermore, selection of the tests to be run and

1 It is trivial for real-time voice or video transmission, but it is also true
for all applications using TCP, as TCP handles late segments as lost ones, thus
significant latency of considerable proportion of the segments degrades the
throughput experienced by the user (also called goodput).

2 Under per frame timeout we mean that the frames sent by the Tester
should arrive back to the Tester within a predefined time interval after their
sending.
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evaluation of the test data must be done with an understanding of gen-
erally accepted testing practices regarding repeatability, variance and
statistical significance of small numbers of trials’’. As for repeatability,
RFC 2330 [11] says that ‘‘A methodology for a metric should have
the property that it is repeatable: if the methodology is used multiple
times under identical conditions, the same measurements should result
in the same measurements’’. It was true, when most of the switching
devices were simple hardware based devices, where we can define some
upper limit for packet processing. However, we use software based
switching recently, and it sometimes has more variance in performance.
Therefore, we need to find some appropriate method to understand the
representative performance of such devices.

2.2. Related work and testing tools

We note that we are not aware of anyone else benchmarking SIIT
implementations in an RFC 8219 compliant way. One of its causes is
the lack of compliant testers. We know about a single publication only,
which reported the design and implementations of such tester [12].
However, it has never been publicly released due to its insufficient per-
formance. Rather, it was re-implemented using DPDK (Intel Data Plane
Development Kit [13]) by its author, Péter Bálint, a PhD student at the
Széchenyi István University, Győr, Hungary under the supervision of
the first author of this paper. We planned to use this program for our
measurements. However, our tests showed that this program failed to
work correctly, and we have found fundamental problems in it during
a systematic code review. We have rewritten its most important parts,
namely the receiving and sending functions and their synchronization.
Thus, the program became usable, and we could use it for the current
paper. But we decided to re-implement it from scratch in C++ using a
proper object oriented design. During the first review of this paper, we
have successfully implemented siitperf, the world’s first standard
free software SIIT benchmarking tool and made it publicly available
from GitHub [14] under the GPLv3 license. We have reported its design,
implementation and initial performance estimation in [15].

Right before our current effort, we have examined the possibility
of benchmarking stateless NAT64 implementations using a legacy RFC
2544/RFC 5180 [16] compliant Tester. We have reported our results
in [17].

As for the performance analysis of not stateless but stateful NAT64
implementations, we are aware of several papers. In some early pa-
pers, the performance of a given NAT64 implementation was mea-
sured together with a given DNS64 implementation, please see [18,19]
and [20]. We have pointed out that: ‘‘on the one hand this is natural,
as both services are necessary for the operation, on the other hand
this is a kind of ‘tie-in sale’ that may hide the real performance of a
given DNS64 or NAT64 implementation by itself. Even though both
services are necessary for the complete operation, in a large network,
they are usually provided by separate, independent devices; DNS64 is
provided by a name server and NAT64 is performed by a router. Thus,
the best implementation for the two services can be – and therefore
should be – selected independently’’ [21]. We have developed a method
suitable for the performance analysis of NAT64 implementations in-
dependently from DNS64 [22], and we compared the performance of
TAYGA and OpenBSD PF using ICMP in [23] and using ICMP, TCP
and UDP in [24]. Another paper [25] dealt with the performance of
different IPv6 transition solutions including the TAYGA and the Jool
NAT64 implementations measuring one way delay and throughput
(using iperf for the latter). All these papers were published before
RFC 8219, and their measurement methods did not comply with RFC
8219.

Fig. 2. Test System 1 is built up by N nodes, with a fixed 2 GHz CPU clock frequency
DUT/Test System 2 is built up by P nodes, with a variable (1.2–3 GHz) CPU clock
frequency DUT.

Table 1
The building elements of the test systems for basic tests.

Test system Tester Device Under Test (DUT)

Node Speed Node Speed Active cores

TS1 n017 2–2.8 GHz n018 2 GHz 0–7
TS2 p094 1.2–3 GHz p095 1.2-3 GHz 0–31

3. Benchmarking measurements with a stateless NAT64 tester

3.1. Test and traffic setup

Following the requirements of RFC 8219, we have designed the
test and traffic setup for benchmarking stateless SIIT gateways using
EAM (Explicit Address Mapping) [26]. Both the traffic to be translated
and the native IPv6 traffic are shown in Fig. 1. We call the first
one and the second one as foreground traffic (abbreviated as f.g.) and
background traffic (abbreviated as b.g.), respectively. Concerning the
foreground traffic, only IPv6 addresses are assigned to the left side
network interfaces of both the Tester and the DUT (from 2001:2::/64),
and similarly, their network interfaces on their right side have only
IPv4 addresses (from 198.19.0/24). The addresses typeset in italic font
are not assigned to the interfaces, they are written there to help the
reader to follow the operation of the system. They are used to refer
to the given interfaces in the other address space (IPv4 or IPv6). DUT
translates the addresses according to its static mapping table shown
below the DUT. We call the traffic from the IPv6 interface of the Tester
flowing through DUT and arriving to the IPv4 interface of the Tester as
‘‘forward’’ direction traffic, and we call the other direction as ‘‘reverse’’
direction, because RFC 8219 requires the use of native IPv6 traffic,
too, thus in that case the terms of ‘‘IPv6 side’’ and ‘‘IPv4 side’’ would
have been questionable. Concerning the native IPv6 traffic (using the
2001:2::2 and 2001:2:0:8000::2 IPv6 addresses), the DUT acts as a
router.

3.2. NAT64 tester in a nutshell

We give a very brief summary of the functional design of the
DPDK-based NAT64 tester (called nat64tester) used for our mea-
surements.

Following the high level design of Dániel Bakai’s excellent DNS64
tester called dns64perf++ [27], nat64tester performs only one
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test, and the binary search, as well as the further repetitions are
executed by a bash shell script. The functionality of nat64tester
is rather limited, as it can only be used for the two most important
tests, namely throughput and frame loss rate. A further limitation is that
it can only perform a single flow test. (We overcome this limitation in
Section 4 by using dns64perf++, which is able to use up to 64,000
different source ports.)

When the test is finished, nat64tester reports the number of sent
and received frames in each direction, and the shell script evaluates the
results.

• If a throughput measurement is done, the shell script checks if the
number of received frames is equal with the number of frames had
to be sent by the tester at the required rate during the required
testing time and makes the decision for the binary search.

• If a frame loss measurement is done, the shell script determines
the frame loss using the number of frames received and the
calculated number of frames had to be sent.

The script does not use the reported value of the number of frames
sent, but it is logged to help error debugging.

Unfortunately, nat64tester is not able to reply to ARP or ND
requests, therefore, we used direct cable connections between the
Tester and the DUT, and static ARP/ND table entries were set manually.

3.3. Measurement environment

Measurements were carried out using the resources of the NICT
StarBED,3 Japan. Two different types of servers (N nodes and P nodes)
were used.

• The N nodes are Dell PowerEdge C6220 servers with two 2 GHz
Intel Xeon E5-2650 CPUs having 8 cores each, 128 GB 1333 MHz
DDR3 RAM and Intel 10G dual port X520 network adapters.

• The P nodes are Dell PowerEdge R430 servers with two 2.1 GHz
Intel Xeon E5-2683 v4 CPUs having 16 cores each, 384 GB 2400
MHz DDR4 RAM and Intel 10G dual port X540 network adapters.

We have used two very similar tests systems with somewhat dif-
ferent goals. In Test System 1 (see Fig. 2 and Table 1), we switched
off hyper-threading in both computers and set the clock frequency of
the DUT to 2 GHz (fixed), because we knew from our previous bench-
marking experience [28] that they could cause scattered measurement
results. (We mean under scattered measurement results that the results
of the 20 measurements are significantly different.) Our aim with Test
System 1 was to eliminate all circumstances that could cause scattered
measurement results. However, Turbo Mode was enabled on the Tester
to give some extra performance. (In such case, the power budget is a
limit for the clock frequency of the cores. We have checked that the
clock frequency could reach 2.8 GHz, when no more than 4 cores were
used, and nat64tester uses 4 cores for bidirectional tests and 2
cores for unidirectional tests.)

In the Tester (n017), we have reserved cores 4–7 to execute
nat64tester, using the isolcpus=4,5,6,7 kernel parameter. (It
means that no other user tasks could be scheduled on these cores.)

In the DUT (n018), we have limited the online CPU cores to cores
0–7, using the maxcpus=8 kernel parameter to avoid possible NUMA
issues. (It was done so, because all the I/O devices, as well as cores
0–7 belonged to NUMA node 0. Scheduling sometimes the SIIT imple-
mentation on one of the cores 8–15, which belonged to NUMA node
1, could have resulted in a decreased performance and thus scattered
measurement results, which we wanted to avoid.)

Our aim with Test System 2 (see Fig. 2) was to test the same
implementations on a more modern CPU, the clock frequency of which
may not be set to a fixed value. In addition to that, CPU cores 0, 2, 4,

3 http://starbed.nict.go.jp/en/aboutus/index.html.

. . . , and 30 belonged to NUMA node 0, and cores 1, 3, 5, . . . , and 31
belonged to NUMA node 1. All NICs and disks belonged to NUMA node
0.

We have disabled hyper-threading in both computers. Plus, in
the Tester (p094), we have reserved cores 2, 4, 6, and 8 to exe-
cute nat64tester, using the isolcpus=2,4,6,8 kernel param-
eter. The CPU clock frequency of both computers could vary from
1.2 GHz to 3 GHz, which is the maximum turbo frequency of the CPU.
We have changed the ‘‘powersave’’ CPU frequency scaling governor
(cpufrequtils) to ‘‘performance’’ in both computers.

Besides the different node and interface names, the reader may
notice a small but significant difference between Test System 1 and Test
System 2 in Fig. 2. The last octet of the IPv4 address of the tester was
set to 3 in the latter. We explain its reason, when disclosing the results
of the throughput test in Section 3.5.1.

The Debian Linux operating system was updated to 9.9. (the latest
version at the time of testing) and the kernel version was 4.9.0-4-amd64
and 4.9.0-8-amd64 on the N nodes and on the P nodes, respectively.
The DPDK version was 16.11.8-1+deb9u1.

3.4. SIIT Implementations to be benchmarked

We deal only with free software [6] SIIT implementations for the
same reasons we presented in [29]:

• ‘‘The licenses of certain vendors (e.g. [30] and [31]) do not allow
the publication of benchmarking results.

• Free software can be used by anyone for any purposes, thus our
results can be helpful for anyone.

• Free software is free of charge for us, too’’.

We have made a survey of existing free software stateless NAT64
implementations in [17]. Now, we decided to benchmark the same
implementations using both different DUTs and a different tester. This
situation gives us both a basis for comparison and an opportunity
to dig deeper into the behavior of the tested implementations. The
implementations and software versions for our current benchmarking
test are:

• TAYGA 0.9.2 (released on June 10, 2011) [32], Debian package
version: 0.9.2-6+b1

• Jool 4.0.1 (released on April 26, 2019) [33]
• map646 (GitHub latest commit cd93431 on Mar 31, 2016) [34]

We note that in our previous paper [17], we tested Jool 3.5.7. Now,
we have also checked its performance during our preliminary test on
the N node (its DKMS build failed on the P node), but having seen
no major differences, we have omitted the old version. The versions
of the two other SIIT implementations were the same as now. As for
the rationale for choosing these three SIIT implementations, first of
all, we could not find any other free software SIIT implementations
under Linux (only stateful NAT64). We note that Jool is still actively
developed, TAYGA is no more developed but it is a part of the Debian
Linux distribution, and it seems to be still in use, because we have found
several posts from the last three years about how to configure TAYGA.
Map646 was created by the second author of this paper, and we were
interested in its performance, because it is still in use as the NAT46
gateway for the WIDE project [5].

To make our tests repeatable, we give the most important informa-
tion in the Appendix, how we set the different SIIT implementations.

3.5. Throughput test results

First, we disclose and analyze the throughput test results of each
implementation individually, and then we compare them and discuss
our most important findings.
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Fig. 3. Throughput results of Jool, TS1.

As we wrote in Section 2, we have executed all the measurements 20
times and calculated the median as well as the 1st and 99th percentiles.
(Of course, the latter two are also the minimum and maximum, as the
number of measurements is less than 100.)

All the results are presented in the same format: bar charts are used
for displaying the median values, and error bars show the 1st and 99th
percentile values.

3.5.1. Jool
The throughput results of Jool produced by TS1 (Test System 1)

are shown in Fig. 3. The error bars are hardly visible, because the 1st
percentile and 99th percentile values are very close to the median. Thus
we were definitely successful in the elimination of all possible factors
that could cause scattered results. The throughput values are nearly
constant, they show only a very slight decreasing tendency with the
increase of the frame size. This observation is in a complete agreement
with our previous results [17], and it can be explained by the fact
that the bottleneck is the processing power of the CPU and not the
transmission capacity of the 10Gbps Ethernet link. (The amount of work
needed for header processing does not depend on the frame size and the
transmission through the PCI Express bus is also very fast.)

Let us examine the exact figures for a given frame size, for exam-
ple 128 bytes, which actually means 128 bytes long Ethernet frames
carrying IPv6 datagrams and 108 bytes long Ethernet frames carrying
IPv4 datagrams. The median throughput values of the forward (form
IPv6 to IPv4), reverse (from IPv4 to IPv6) and bidirectional traffic
are 296,972 fps (frames per second) 290,234 fps, and 547,848 fps, re-
spectively. The observation that the bidirectional throughput is 5.62%
less than the double of the minimum of the unidirectional throughput
(580,468 fps) can be explained by the fact that although Ethernet is
full duplex and the packets in the two directions are handled by two
separate CPU cores, some other resources (e.g. the memory and the PCI
express bus) are shared.

The throughput results of Jool produced by TS2 (Test System 2) are
shown in Fig. 4. The error bars are usually well visible, indicating that
the 1st percentiles are significantly lower than the 99th percentiles.
We attribute this scattered nature of the results to the varying clock
frequency of the CPU, because during the preliminary tests, we have
observed that always the same CPU cores were loaded,4 thus differences
in the NUMA situation can be excluded as potential causes of the
differences.

We note that originally we used TS2 with the same IP addresses
as TS1. In that case, the two flows of the bidirectional tests were
served by the same CPU core, and thus the throughput results were
lower. However, in a real system, usually a lot of different IP addresses

4 In fact, we could observe only the load caused by software interrupts, as
Jool works in the Linux kernel.

Fig. 4. Throughput results of Jool, TS2.

Fig. 5. Throughput results of TAYGA, TS1.

are used, thus this clash is not a typical behavior, therefore, we have
eliminated it by changing the IP addresses.

Otherwise, the results are very similar to that of the measurements
with the N nodes, but of course, the values are higher, due to the higher
CPU clock frequency.

3.5.2. TAYGA
The throughput results of TAYGA produced by TS1 are shown in

Fig. 5. One of the most salient thing is that the bidirectional throughput
is rather low compared to the single directional ones. It is so because
TAYGA can utilize only a single CPU core.

There are visible problems at 84 bytes and 128 bytes frame sizes: the
throughput is visibly lower than it is at 256 bytes, and the error bars of
the IPv4 to IPv6 traffic are very high, indicating significantly scattered
measurement results. (For example, the 1st percentile is 96,777 fps and
the 99th percentile is 138,183 fps at 84 bytes frame size.) Behind this
phenomenon, we surmise some stability problems of TAYGA, and we
show it in Section 3.6.2, when discussing its frame loss rate results.
However, from the viewpoint of the theory of benchmarking it is much
more important that this situation demonstrates the need for multiple tests.

Otherwise, the results from 256 bytes to 1518 bytes frame sizes are
nearly constant, showing very small degradation with the increase of
the frame size. (Considering that TAYGA works is user-space, we could
easily accept even higher degradation than that.)

The throughput results of TAYGA produced by TS2 are shown in
Fig. 6. Similarly to Jool, the P node results are more scattered than the
N node results (the error bars are well visible) as expected. However,
the problem observed in the N nodes results at 84 bytes and 128 bytes
frame sizes is hardly noticeable. (Only the bidirectional throughput
shows some deviation: the median value at 84 bytes is visibly less,
than is should be and the error bar at 128 bytes is higher than at any
other places). We consider this phenomenon to be a good example,
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Fig. 6. Throughput results of TAYGA, TS2.

Fig. 7. Throughput results of map646, TS1.

Fig. 8. Throughput results of map646, TS2.

why it is worth repeating benchmarking tests using different types of
hardware: not only the measured performance may be different, but
different anomalies may be pointed out, which may remain hidden on
other systems.

3.5.3. Map646
The throughput results of map646 produced by TS1 are shown in

Fig. 7. Similarly to TAYGA, there are visible problems at 84 bytes
and 128 bytes frame sizes: the throughput is visibly lower than at
256 bytes, and the error bars are very high, indicating significantly
scattered measurement results.

The throughput result at 1518 bytes is missing because all frames
were lost due to (wrongful) fragmentation.

Fig. 9. Throughput comparison with 256 bytes frames, IPv4 to IPv6 direction.

Otherwise, the results from 256 bytes to 1280 bytes frame sizes are
nearly constant, showing only a small degradation with the increase of
the frame size.

The throughput results of map646 produced by TS2 are shown in
Fig. 8. Unlike with TS1, here the median throughput at 84 bytes and
128 bytes frame sizes is very similar to the throughput at other frame
sizes, only the somewhat higher error bar at 84 bytes reminds us the
problem observed on TS1.

3.5.4. Comparison and discussion
To be able to compare all three implementations, we considered

the IPv4 to IPv6 throughput and within that, we have chosen the
throughput values measured with 256 bytes long frames to exclude the
effect of the strange behavior of TAYGA and map646 at the two shortest
frame sizes.

The results are shown in Fig. 9. Jool has significantly outperformed
both TAYGA and map646, which was exactly what we expected, be-
cause Jool works in the kernel space and the other two implementations
work in the user space.

We note that the choice of the throughput results with 256 bytes
frame size was in favor of TAYGA and map646 over Jool.

3.6. Frame loss rate tests

According to RFC 2544, frame loss rate tests should be performed
for all frame sizes, which means very high number of measurements to
perform and results to evaluate. Knowing that throughput has shown
only a very slight decrease with the increase of the frame size, we
considered performing all possible measurements as pointless in our
particular case.5 Therefore, we have chosen two frame sizes, 128 bytes
and 1280 bytes for testing. (Frame size 128 falls into the range, where
TAYGA and map646 showed strange behavior, whereas 1280 is the
largest frame size that can be tested with all three implementations,
and it is exactly 10 times 128.) To have comparable results, we per-
formed the frame loss tests in the IPv4 to IPv6 direction for all three
implementations.

As for the measurement procedure described in RFC 2544, frame
loss test should be performed for different frame rates starting from
the maximum frame rate of the media, decreased in not more than
10% steps until two consecutive measurements show zero frame loss.
However, in our case the maximum frame rate of the 10Gbps Ethernet
with 128 bytes frame size is 8,445,945 fps, which is more than an
order of magnitude higher than any of the tested implementations
could achieve, thus such results would be meaningless. We have chosen
more realistic ranges, which ensured us meaningful results for all three
tested implementations. They are: from 50,000 fps to 500,000 fps using
50,000 fps steps.

5 Of course, it is meaningful in other cases, e.g. when the bottleneck is the
transmission capacity and not the CPU power.
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Fig. 10. Frame loss rate results of Jool, TS1.

Fig. 11. Frame loss rate results of TAYGA, TS1.

Fig. 12. Frame loss rate results of map646, TS1.

3.6.1. Jool
The frame loss rate results of Jool measured on TS1 are shown in

Fig. 10. In agreement with Fig. 3, no frame loss occurred from 50k fps
to 250 kfps. From 300 kfps rate, an increasing frame loss rate can be
observed. For any given frame rate, the frame loss rate with 1280 bytes
frames were higher than with 128byte frames, which also complies
with the results shown in Fig. 3: the throughput expressed as frames
per second had a slightly decreasing tendency with the growth of the
frame size. And, what is not shown directly on the graph, but we
could see from the raw data: from 300 kfps, the number of frames
transmitted during the 60 s long tests were approximately constant,
about 17.5 million and 15.9 million with 128 bytes and 1280 bytes
frames, respectively. (The low measure of the deviations can be seen
from the tiny sizes of the error bars.) Thus, we can lay down that
Jool has shown a very stable behavior even under serious overload
conditions.

3.6.2. TAYGA
The frame loss rate results of TAYGA measured on TS1 are shown in

Fig. 11. Whereas the median values roughly comply with what could be
expected on the basis of the previous results (frame loss appears from
150,000 fps, its tendency is increasing, and the frame loss is higher for
the longer frames), the most conspicuous thing is the appearance of
the high error bars from 200 kfps to 400 kfps caused by some outliers.
This result is in a complete agreement with the high fluctuation of the
throughput results of TAYGA in the IPv4 to IPv6 direction at 128 bytes
shown in Fig. 5. However, the throughput results on the same figure
are very stable at 1280 bytes. Yet the frame loss rate (and thus also the
throughput) shows high fluctuations under serious overload conditions
with 1280 bytes long frames.

3.6.3. Map646
The frame loss rate results of map646 measured on TS1 are shown

in Fig. 12. They are very similar to that of TAYGA with an exception
that here a high error bar appears also at 500 kfps rate with 1280 bytes.

3.7. Tests with mixed traffic

Similarly to the frame loss rate tests, we have also used two selected
frame sizes, 128 and 1280 bytes.

RFC 8219 requires the usage of 100%, 90%, 50%, and 10% trans-
lated traffic and the remainder should be native IPv6 traffic. In addition
to that, we found that it was worth using also 75% and 25% as
translated traffic, as well as native IPv6 traffic as reference.

3.7.1. Jool
The throughput results of Jool using mixed traffic measured on TS1

are shown in Fig. 13. It can be observed that the throughput with
25% and 10% translated traffic is higher than the throughput of IPv6
routing with 0% translated traffic. The explanation is very simple: the
translated and the native IPv6 traffic made two different flows, and
thus they were processed by two distinct CPU cores. To set up a simple
model for the throughput of the mixed traffic, let us use the following
notations:

𝑇𝑡 throughput of the translated traffic

𝑇𝑛 throughput of the native IPv6 traffic

𝑇𝑚 throughput of the mixed traffic

𝛼 proportion of the translated traffic, where 𝛼 ∈ [0, 1], and the
proportion of the native IPv6 traffic is 1 − 𝛼.

Then the mixed throughput can be expressed as follows:

𝑇𝑚(𝛼) = 𝑚𝑖𝑛
(

𝑇𝑡
𝛼
,

𝑇𝑛
1 − 𝛼

)

(1)

The dispersion of the results is low, and the throughput with
1280 bytes long frames is somewhat lower than with 128 bytes frames.

3.7.2. TAYGA
The throughput results of TAYGA using mixed traffic measured on

TS1 are shown in Fig. 14. Here only the throughput of the 1280 bytes
long frames with 10% translated traffic is higher than the throughput
of the native IPv6 traffic, which can be easily explained by Eqn. (1) and
the actual values of 𝑇𝑡 and 𝑇𝑛. As for the high error bar here, we have
checked the raw results and found their distribution to be bimodal: 12
of the 20 results were higher than 650 kfps, and 7 of them were below
460 kfps.
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Fig. 13. Throughput results of Jool with mixed traffic (the rest is native IPv6), TS1.

Fig. 14. Throughput results of TAYGA with mixed traffic (the rest is native IPv6), TS1.

Fig. 15. Throughput results of map646 with mixed traffic (the rest is native IPv6),
TS1.

3.7.3. Map646
The throughput results of map646 using mixed traffic measured on

TS1 are shown in Fig. 15. The high error bars at 10% translated traffic
show that even 10% translated traffic may significantly influence the
overall results of a measurement. It was possible because the loss of
even a single frame results in the failure of the complete test.

3.7.4. Comparison and discussion
Although the three figures look somewhat different (Jool showed

its maximum throughput value at 25% translated traffic, whereas the
other two implementations did it at 10%) they all followed the same
rule shown in Eqn. (1). We note that this behavior is the consequence
of the conditions that we used a single translated flow and a single
background flow and multiple CPU cores. Using only a single CPU core
or high number of flows, the throughput of the mixed traffic would

follow the rule shown in Eqn. (2), that is, the mixed throughput would
be the weighted harmonic mean of the throughput of the translated
traffic and the throughput of the native IPv6 traffic.

𝑇𝑚(𝛼) =
1

𝛼
𝑇𝑡

+ 1−𝛼
𝑇𝑛

(2)

3.8. Challenging the throughput test of RFC 2544

The throughput results obtained by RFC 2544 testers do not nec-
essarily accord with the experiences of the users. On the one hand,
the absolutely zero loss criterion may be too strict, as some low frame
loss rates (e.g. 10−4 or 10−5) do not prevent communication. Indeed,
some benchmarking professionals use 99.999% throughput (or 0.001%
loss) as their ‘‘zero loss’’ criterion [35]. However, on the other hand,
we contend that the RFC 2544 benchmarking procedure is way too lax.
Frames are sent for 60 s and received for 62 s. We understand, that
the additional 2 s timeout was probably set to surely receive also the
very last frames. However, it also means that the very first frame has
theoretically 62 s timeout. This is completely unacceptable from the
user point of view. Both TCP and real-time UDP applications will time
out much–much earlier than that! In order to assess the throughput
experienced by the users, one should use per packet timeout. We are
aware that RFC 2544 was published in 1999 and its procedures could
rely on the then available technologies only. In 2008, RFC 5180 updated
some of the technology dependent parts, for example, it defined the
maximum frame rate for 10Gbps Ethernet, however, it left the measure-
ment procedures unchanged. In 2017, RFC 8219 defined benchmarking
methodology for IPv6 transition technologies. It has redefined the
procedure for measuring latency to achieve more accurate results, and
added procedures for measuring packet delay variation and inter packet
delay variation, but the throughput and frame loss rate measurement
procedures were still kept unchanged.

We strongly argue that in 2019, the available technology makes it
possible to use per packet timeout and we highly recommend it. We
demonstrate its feasibility in Section 4. Similarly, we also believe that
our results presented above have sufficiently demonstrated that RFC
2544 throughput and frame loss rate tests must be updated regarding
the number of repetitions, the summarizing function and the way of
expressing the dispersion of the results.

4. Benchmarking measurements with dns64perf++

Unfortunately, the missing functions of nat64tester limited our
investigations. In this section, we use another testing tool,
dns64perf++, to perform further tests with the following aims:

• to demonstrate the feasibility of the measurements using per
packet timeout,

• to perform tests using high number of flows (which is unfortu-
nately not supported by nat64tester),

• to benchmark map646 using bidirectional traffic.

First, we give a short introduction to the benchmarking tool, then
we disclose the test setup, next continue on with various self-tests, and
then start testing the SIIT implementations.

4.1. The applied testing tool

The dns64perf++ testing tool was designed for benchmarking
DNS64 servers [27]. Originally, it used only two threads, one for
sending the queries and one for receiving the replies. Its performance
was about 250,000 queries per second executed by a 3200MHz Intel
Core i5-4570 CPU [27]. Later it was enabled to use 𝑛 times two threads
(𝑛 threads for sending queries and 𝑛 threads for receiving replies) and
thus we could use it up to 3.3 Mqps (3.3 million queries per second) rate
for benchmarking authoritative DNS servers [36]. It has two significant
advantages over nat64tester:
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Fig. 16. Test System 3 is built up by N nodes, with a fixed 2 GHz CPU clock frequency
DUT.

• It can individually identify every single DNS reply and check, if it
arrived within the predefined timeout time after the correspond-
ing query was sent.

• It can use a high number of different source port numbers for the
queries and thus facilitate two very important things:

– the distribution of the interrupts caused by the incoming
packets to all the CPU cores, which is a precondition for
receiving several million packets per second [37] and which
we can use for testing with multiple flows,

– the distribution of the queries among multiple threads or
processes of the DNS server, if it uses the so_reuseport
socket option, thus providing us with a high speed respon-
der for our tests.

From the SIIT gateway point of view, the DNS queries and replies
are UDP packets, which can be translated as any other packets. The
dns64perf++ program is used as a Tester, which sends and receives
packets, the content of which is redundant from the DUT’s point of
view. Of course, it has some limitations, too. One of them is the fixed
size of the queries and their replies. In general, this could be a serious
limitation, but in our case, this limitation is not at all a significant one,
as our previous tests showed no significant difference in the achieved
frame rates for different frame sizes. The limitation caused by the usage
of the authoritative DNS server is twofold: its maximum reply rate
limits the maximum frame rate of the SIIT measurements, and the time
necessary for the DNS server to produce a reply reduces the accuracy
of the SIIT measurement concerning timeout.

4.2. Measurement environment

We used some of the N nodes of StarBED, but actually different ones
than before to enable concurrent testing.

In our paper about the benchmarking methodology for DNS64
benchmarking [10], we have elaborated that the two subsystems of
the Tester may be implemented by two physical computers, when

high performance is needed. We have followed this approach during
building Test System 3 shown in Fig. 16. The DUT can be found in
the middle of the system: n015 was used to execute the tested SIIT
implementations. The dns64perf++ program was executed by n014
using its CPU cores 0–7 for executing the 8 sending threads and cores
8–15 for executing the 8 receiving threads. Based on our authoritative
DNS server benchmarking results [36], the NSD authoritative DNS
server was installed on the n016 node to provide authoritative DNS
service. It was set to use all 16 cores of the computer.

In accordance with our previous measurements, this system was set
to be protected from any possible disturbance that could cause scattered
measurement results. The CPU clock frequencies of both n015 and
n016 were set to fixed 2 GHz, the computers were interconnected by
direct cables, and only cores 0–7 of n015 were online (to avoid NUMA
issues). Although turbo mode was enabled on n014, the power budget
allowed to raise its CPU clock frequency up to 2.4 GHz only, when all
its cores were used. We have summarized the most important building
elements of Test System 3 in Table 2.

The IP addresses were set according to Fig. 16. The network traffic
through the SIIT gateway was now initiated from the IPv4 side, so that
map646 could also be tested with bidirectional traffic.

The direct connection between the two subsystems of the Tester
served the purposes of the self-test of the Tester [10]. In short, it was
used to check, up to what query rates the Tester could be used. We
have performed these tests using both IPv4 and IPv6 for carrying the
DNS requests and replies, as we knew from our earlier experience that
the achievable query per second rate was significantly lower with IPv6.

In addition to that, we have also performed routing tests, when the
DUTs were used as IPv4 or IPv6 routers. The routing tests had three
purposes:

• to check and demonstrate that the paths for the SIIT measure-
ments are working properly and having no bottleneck,

• to assess their maximum performances in IPv4 and IPv6 packet
forwarding,

• to test and demonstrate, how the number of flows influence the
performance of the system.

For the routing tests, all the IP addresses shown in Fig. 16 (including
those typeset in italic) were assigned to the NICs. All the tests (including
self-test, routing tests and the SIIT measurements) were performed
using 64,000 different source ports by dns64perf++ (8000 ports per
thread by 8 sending threads).

To distribute the interrupts evenly among the CPU cores, the fol-
lowing commands were used:

ethtool -N enp3s0f0 rx-flow-hash udp4 sdfn
ethtool -N enp3s0f0 rx-flow-hash udp6 sdfn
ethtool -N enp3s0f1 rx-flow-hash udp4 sdfn
ethtool -N enp3s0f1 rx-flow-hash udp6 sdfn

Static IPv4 and IPv6 routes were set in the computers acting as
the two subsystems of the Tester. The settings of the three tested SIIT
implementations were only slightly different than in Section 3, thus we
do not repeat them.

First, we performed the routing tests with excluding the source ports
from the rx-flow-hash (by using sd instead of sdfn), thus there
were only two flows (due to the bidirectional traffic).

We note that dns64perf++ measures the number of successfully
resolved queries per second, and we used this unit during the calibration
of the test system. We switched over to frames per second, when bench-
marking the different SIIT implementations in order to have our results
comparable with the previous ones. The conversion is very simple: each
resolved query means two frames: the first one carried the query and
the second one carried the answer for the query.
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Table 2
The building elements of Test System 3.

Test system Tester/Measurer Tester/AuthDNS Device Under Test (DUT) Connection of
the elementsNode Speed Active cores Node Speed Active cores Node Speed Active cores

TS3 n014 2–2.4 GHz 0–15 n016 2 GHz 0–15 n015 2 GHz 0–7 Direct cables

Fig. 17. Self-test results as a function of timeout time.

4.3. Self-test measurements

Similarly to the self-test measurements of the DNS64 benchmark-
ing tests [10], the aim of these measurements was to determine the
performance of the Tester, in order to ensure that the DUT be the
bottleneck during all further measurements. However, now we did not
have a predefined timeout value, rather we had to select a suitable one,
which was high enough to ensure as high as possible query rates on
the one hand, however, on the other hand, it had to be low enough for
performing meaningful SIIT measurements. The only hint we had from
our previous experience [36] was that 100 ms was likely workable from
the authoritative DNS server point of view.

We have performed self-test measurement using 200 ms, 100 ms,
50 ms, and 25 ms timeout values and both IPv4 and IPv6 as transport
protocol for carrying the DNS messages. The results are shown in
Fig. 17. (The upper limit of the binary search was set to 1,600,000 qps
and 1,000,000 qps for IPv4 and IPv6, respectively, thus they did not
limit the results.) To avoid that the unsatisfactory performance of
the AuthDNS subsystem impact the measurement results, the 1st per-
centiles (that is the minimum values) must be taken into consideration
as a limiting factor for the further tests. Considering also the results of
our preliminary routing tests, we had to choose the 100 ms timeout for
the routing tests to ensure the necessary performance for demonstrating
multi-flow operation. It means that our test system is surely usable up
to 1,100,000 qps and 900,000 qps, when it is used with IPv4 and IPv6
as transport protocol for the queries.

4.4. Routing tests

For the routing tests, we used the 100 ms timeout chosen before, not
adding any value to compensate the latency of the IPv4 or IPv6 router,
which was involved in both directions. The results of the routing tests
are shown in Fig. 18. We note that the single flow results reflect the
IPv4 and IPv6 routing performance of nodes, however, the multiple
flow results were limited by the setting of the upper limit of the
binary search (1,100,000 qps and 900,000 qps for IPv4 and for IPv6,
respectively). The multiple flow results are presented to demonstrate
that the test systems able to provide higher performance, when multiple
flows are used. By this test, we have also checked that our test system
can be used up to 1,100,000 queries per second with IPv4, which will
be enough for the later tests.

Fig. 18. Results of the routing tests (beware that the unit is qps and not fps).

Fig. 19. Bidirectional throughput of Jool with different acceptance criteria using DNS
traffic and 200 ms individual timeout.

The conclusion of these tests for our current effort is that both
measurement systems can be used up to high enough rates for testing
the different SIIT implementations.

The conclusion of these tests in general is that benchmarking of a
router is now possible with using individual timeout for every single frame.
If it can be done up to such rates using dns64perf++, which uses
TCP/IP socket interface, then it can be done up to significantly higher
rates using a DPDK-based Tester.

4.5. Frame loss rate consideration

During preliminary experiments, we have found that the test envi-
ronment using dns64perf++ produces a small amount of frame loss
that has a significant impact on the results because the measurement
procedure does not allow any loss of packets. To remedy this situa-
tion, we introduced an idea of acceptable loss rate criterion to achieve
comparable performance results among the three SIIT implementations.
The results of Jool with three different acceptance criteria (99.999%,
99.99%, and 99.9%) are shown in Fig. 19. (From now on, we use
fps unit for easier comparison with the results in Section 3. Although
we note that the comparability is only approximate due several rea-
sons, e.g. different frame sizes, different timeout, different hardware
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instances,6, etc.) Whereas the 99.999% acceptance criterion resulted
in very low rate, the 99.99% acceptance criterion resulted in rates
similar to that measured with the RFC 8219 compliant method, and
99.9% resulted in no further increase. We have performed the tests
also with TAYGA and map646 and found that their throughput did not
increase significantly using 99.9% as acceptance criterion compared to
99.99%. Therefore, we have chosen 99.99% as acceptance criterion for
our further investigations. By doing so, we do not want to propose it as
a general acceptance criterion, we have done so only to facilitate the
performance comparison of the implementations.

4.6. Choice of timeout value

We expect that 50 ms should be more than enough timeout for a SIIT
gateway. Calculating with 50 ms in each directions, we consider that
2 ∗ 50 ms + 100 ms = 200 ms timeout must be surely high enough for
the SIIT tests. The results shown in Fig. 19 were received using 200 ms
timeout value. That means the parameter combination of the timeout
value of 200 ms and the acceptance criterion of 99.99% gives us com-
prehensive and comparable results of the three SIIT implementations.
We used 200 ms timeout time for all further tests.

4.7. Performance comparison with bidirectional traffic using single and
multiple flows

For performance comparison of the three SIIT implementations,
we use their throughput results produced with 99.99% acceptance
criterion, as shown in Fig. 20. On the left side of the figure, the ‘‘single
flow’’ results are to be interpreted as ‘‘single flow per direction’’, the
two directions mean two flows, of course. Although these results are
not fully comparable with the single directional RFC 8219 compliant
ones on Fig. 9 (for the reasons mentioned before), it is deliberate that
Jool benefited from the fact that it could use two different cores for
processing the packets of the two directions, whereas the others could
not. As expected, the bidirectional throughput of Jool with 200 ms per
frame timeout is visibly lower than the double of its unidirectional one
shown in Fig. 9 with a global 2s timeout, similarly to the two other
implementations, the throughput of which are not doubled.

The results of the multi-flow measurements are shown on the right
side of Fig. 20. They were measured with the same settings as the single
flow ones, the only difference was that we enabled the source and desti-
nation ports in the ‘‘rx-flow-hash’’ on the DUT. (To facilitate easy visual
comparison, we plotted them together.) Due to using a high number of
flows, the performance of Jool increased radically. Interestingly, both
TAYGA and map646 benefited to some extent from the high number
of flows. We presume that the performance increase was caused by the
distribution of interrupts of the incoming packets to all the active CPU
cores, because we have checked that the CPU utilization of TAYGA and
map646 did not exceed 100%, the performance of a single CPU core.

From general point of view, our most important result is that we
could benchmark the selected SIIT implementations with bidirectional
traffic with both single and multiple flows using the dns64perf++
tool.

6 In [28] we have pointed out significant performance differences in
the authoritative DNS performances of the test systems built up of differ-
ent N nodes. (For example, the median, minimum and maximum values
were 168,623 qps, 167,935 qps and 168,961 qps for one test system and
163,904 qps, 163,447 qps and 164,361 qps for another test system, when NSD
was executed by a single CPU core. Please note that these intervals are non-
overlapping.) This was the reason why we did not parallelize the testing of
different DNS64 implementations using different nodes. Since then, we always
benchmark all tested implementations by using the very same nodes for each
of them.

Fig. 20. Throughput comparison with bidirectional DNS traffic, using 200 ms timeout
and 99.99% acceptance criterion.

Fig. 21. The throughput of Jool as a function of the number of CPU cores using a
high number of flows.

Table 3
The throughput of Jool as a function of the number of CPU cores using a high number
of flows.

Num. CPU cores 1 2 4 8

Median (fps) 319980 508506 956322 1886325
Increase of median – 1.59 1.88 1.97
1st percentile (fps) 309238 504744 949472 1872762
99th percentile (fps) 321592 509848 958336 1890758

4.8. The scale up of jool

We have examined, how the performance of Jool scales up with
the number of active CPU cores. To keep the number of measure-
ments relatively low, the number of CPU cores were always doubled
compared to the previous case starting from 1. The results are shown
in Fig. 21. (Beware, we used logarithmic scale!) To facilitate a more
precise analysis, we have included the results also in Table 3, which we
have completed with an additional row: ‘‘the increase of the median’’.
It expresses the ratio of the current throughput and the throughput with
half as many cores. It shows that the scale up from a single core to two
cores is far from linear (the increase is only 59%), which we attribute to
the cost of multi-core operation, but after that Jool scaled up very well
(by an increase of 88% and then 97%). Unfortunately, the performance
of TS3 was not enough to perform a measurement using all 16 cores of
the DUT, but as far as we could test, Jool scaled up very well. Thus,
we recommend its usage in high performance systems with multi-core
computers as gateways.
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5. Discussion and plans for future research

According to our understanding, the aim of benchmarking is to
‘‘accurately measure some standardized performance characteristics in
order to obtain reasonable and comparable results’’ [38]. As for network
interconnect devices, RFC 2544 compliant commercial testers have been
serving this purpose for two decades. As for IPv6 transition technologies,
RFC 8219 defined several benchmarking procedures, and we could test
the viability of only a fraction of them, namely throughput and frame
loss rate. RFC 8219 has taken both of them from RFC 2544 without
changes. Being aware that they are matured and widely used, yet we
believe that the time has come, when it is worth considering their
update. We have pointed out several possibilities to improve them. Our
recommendations for consideration are:

1. Checking the timeout individually for each frame.
2. The requirement of multiple repetitions of the tests.
3. An optional non-zero frame loss acceptance criterion.

As for the first one, we have shown that checking the timeout
individually for every single frame is reasonable (and the results are
more useful than those with a ‘‘global timeout’’, which can actually
be anything form 2 s to 62 s concerning a given frame), and we
have demonstrated its feasibility using a TCP/IP socket interface based
tester. Our new DPDK-based tester, siitperf [14] complies with the
requirements of RFC 8219, and it can optionally use per frame timeout
with throughput and frame loss rate tests [15].

As for the second one, we have shown, that high deviations are
possible both in throughput and in frame loss results, thus the repetition
of the tests is a must. No new measurement procedure is necessary,
only the requirements should be changed. We are aware that this
change may drastically increase the time of testing. Therefore, we do
not recommend always 20 repetitions, but rather a kind of adaptive
method, which can stop after a few tests, if the results are consistent,
but performs more tests if they are scattered. We plan to develop an
algorithm, which can be easily implemented (e.g. in a shell script)
and can determine on the fly, when testing may be finished. As for
summarizing function, we recommend median, whereas 1st and 99th
percentiles can be used to account the variation of the results.

As for the third one, we see contradicting arguments and inter-
ests. We are aware that the market of network interconnect devices
has several stakeholders with different interests. For example, some
high-end devices can operate at full line speed without frame loss,
whereas others cannot [39]. As researchers, we have our own special
interests. On the one hand, we need devices (e.g. switches, NICs) that
comply with the absolute zero loss criterion, to be able to perform
benchmarking tests. However, on the other hand, we have experienced
that in some cases, the absolute zero loss criterion may prevent us
from achieving practically usable results. (Our above experience with
the SIIT implementations in Section 4 is only one example. We had
the same experience in some cases in [28] and [36], and the non-
zero loss acceptance criterion is used in the practice of benchmarking
professionals for a long time [35].) Our recommendation is to keep
the absolutely zero loss criterion as the compulsory test and make the
higher than zero loss acceptance criterion test as a recognized optional
throughput test. Standardizing its reporting format would make its
results more transparent (by the compulsory indication of the allowed
frame loss rate of the acceptance criterion).

As we have mentioned in Section 2.2, we have re-implemented the
DPDK-based tester in C++ using a proper object oriented design. The
handling of individual timestamps for each frame required by the newly
recommended throughput and frame loss rate tests, is also used for the
packet delay variation tests recommended by RFC 8219, thus we could
make our coding work more economic with a proper design [15].

By using siitperf, we plan to compare the results of the tradi-
tional throughput and frame loss rate tests and the results of the newly
recommended ones using per frame timeout.

We also plan to test the viability of the further measurements
procedures recommended by RFC 8219 and supported by siitperf,
namely: latency and packet delay variation.

Another interesting direction of research is to examine the issue
of the scattered results of TAYGA and map646 with small frame size.
Perhaps the analysis of the kernel level packet processing overhead may
help us to find its root cause.

6. Reproducibility

We have made available the raw measurement results and the
measurement scripts to support reproducibility [40]. The hardware
parameters were given in Section 4.2. The setup and configuration of
the tested SIIT implementations are disclosed in Appendix.

7. Conclusion

We have tested the viability of the benchmarking methodology for
IPv6 transition technologies defined by RFC 8219 in the case of single
translation technologies, and successfully demonstrated the feasibility
of throughput and frame loss rate tests.

As for potential methodological problems in RFC 8219, we have
pointed out that the ‘‘global timeout’’ defined originally by RFC 2544
is improper, and recommended the individual checking of the timeout
for every single frame. We have also demonstrated its feasibility.

We have also pointed out the need for multiple tests, and recom-
mended an adaptive algorithm for determination of the number of tests
necessary, which is yet to be developed.

We have also shown that sometimes it is worth using a non-zero
frame loss acceptance criterion, which we recommended to be a recog-
nized optional test.

As for providing network operators with ready to use benchmarking
results, we have performed the throughput and frame loss rate bench-
marking tests required by RFC 8219 to analyze the performance of Jool,
TAYGA and map646 and we have found that the performance of Jool
scaled up well with the number of active CPU cores, and Jool also
significantly outperformed TAYGA and map646.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Gábor Lencse: Conceptualization, Methodology, Software, Valida-
tion, Investigation, Writing - original draft, Writing - review & editing,
Visualization. Keiichi Shima: Resources, Writing - review & editing,
Supervision, Project administration, Funding acquisition.

Acknowledgments

This work was supported by the Japan Trust International Research
Cooperation Program of the National Institute of Information and
Communications Technology (NICT), Japan.

The experiments were carried out by remotely using the resources of
NICT StarBED, 2–12 Asahidai, Nomi-City, Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the possibil-
ity to use StarBED, as well as to Satoru Gonno for his help and advice
in StarBED usage related issues.

65



G. Lencse and K. Shima Computer Communications 156 (2020) 54–67

Appendix. Setup and configuration of the tested siit implementa-
tions

Tayga

Tayga is a part of the Debian Linux distribution, and its installation
also prepares the necessary nat64 pseudo network interface. We have
made the following changes to its /etc/tayga.conf configuration
file:

ipv4-addr 198.19.0.9
ipv6-addr 2001:2::9
map 198.18.0.1 2001:2::1
map 198.18.0.2 2001:2::2
map 198.19.0.1 2001:2:0:1::1
map 198.19.0.2 2001:2:0:1::2

As we wanted to use the same configuration for all implementations,
the last line for p095 was as follows:

map 198.19.0.3 2001:2:0:1::3

In addition to that, we had to change two settings in the
/etc/default/tayga file as follows:

RUN="yes"
CONFIGURE_NAT44="no"

After that, we could start it by the standard way under Debian
Linux:

/etc/init.d/tayga start

Jool

Unfortunately, Jool was not a part of the Debian Linux distribution
at the time of our measurements. Its compilation and installation was
described in detail in its documentation [33], which we followed.
Jool does not have a configuration file, its parameters were set by
its user interface program, and the packets were redirected to Jool by
iptables rules. We used the following commands:

/sbin/modprobe jool_siit
jool_siit instance add "benchmarking" --iptables
jool_siit -i "benchmarking" eamt \
add 2001:2::/120 198.18.0.0/24

jool_siit -i "benchmarking" eamt \
add 2001:2:0:1::/120 198.19.0.0/24

ip6tables -t mangle -A PREROUTING -s 2001:2::/120 \
-d 2001:2:0:1::/120 -j JOOL_SIIT \
--instance "benchmarking"

iptables -t mangle -A PREROUTING -s 198.19.0.0/24 \
-d 198.18.0.0/24 -j JOOL_SIIT \
--instance "benchmarking"

jool_siit -i "benchmarking" eamt display

Map646

Map646 was downloaded from [34]. It needed a minor update,
because some changes were made to the library structure of the include
files for JSON. (It means that the json library no more exists in
/usr/include, but there are two different libraries for C and C++.)

We used the following settings in its /etc/map646.conf config-
uration file:

mapping-prefix 64:ff9b::
map-static 198.18.0.1 2001:2::1
map-static 198.18.0.2 2001:2::2

It also means that map646 could only be tested with unidirectional
traffic in the IPv4 to IPv6 direction. It is so, because map646 was
specifically designed for the WIDE cloud operation [5], and it does not
support Explicit Address Mapping (defined by RFC 7757 [26]). More
specifically, map646 cannot configure the (virtual) IPv6 addresses of
the right hand side of the network topology as specified in Fig. 1. The
(virtual) IPv6 addresses of the right hand side network must be a kind of
IPv4-embedded IPv6 address (defined by RFC 6052 [41]) in a map646
operation. That is the reason, why we cannot perform bidirectional and
reverse directional tests like with Jool and TAYGA.

Manual static ARP and ND settings

The static ARP and ND table entries were set manually in the DUTs.
The settings of n018 were as follows:

ip neighbor add 2001:2::2 lladdr a0:36:9f:13:fe:28 \
dev enp3s0f0 nud permanent

ip neigh add 198.19.0.2 lladdr a0:36:9f:13:fe:2a \
dev enp3s0f1 nud permanent

ip neighbor add 2001:2:0:8000::2 lladdr \
a0:36:9f:13:fe:2a dev enp3s0f1 nud permanent

The settings of p095 were as follows:

ip neighbor add 2001:2::2 lladdr a0:36:9f:c5:fa:1c \
dev enp5s0f0 nud permanent

ip neigh add 198.19.0.3 lladdr a0:36:9f:c5:fa:1e \
dev enp5s0f1 nud permanent

ip neighbor add 2001:2:0:8000::2 lladdr \
a0:36:9f:c5:fa:1e dev enp5s0f1 nud permanent
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