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A B S T R A C T

Our siitperf is the world’s first RFC 8219 compliant free software SIIT (Stateless IP/ICMP Translation, also
called stateless NAT64) benchmarking tool. It was written in C++ using DPDK (Intel Data Plane Development
Kit). Our current effort aims to design and implement a test program for stateful NATxy gateways, including
both stateful NAT64 and stateful NAT44 (also called NAPT: Network Address and Port Translation). Due to
the object-oriented design of siitperf, it is feasible to extend it for stateful tests, while keeping its original
design and features. In this paper, we introduce the problem of benchmarking stateful NATxy gateways and
propose various solutions. We disclose the design and the most important implementation decisions of the
stateful extension of siitperf. We prove the viability of our design and implementation by a functional
NAT64 test and performing the maximum connection establishment rate, throughput, and frame loss rate
measurements of the Jool stateful NAT64 implementation. We also carry out an initial performance estimation
of the stateful extension of siitperf. Our tester is distributed as free software under the GPLv3 license for
the benefit of the research, benchmarking and networking communities.
. Introduction

RFC 8219 [1] has defined a comprehensive benchmarking method-
logy for IPv6 transition technologies in 2017. To that end, it classified
he high number of IPv6 transition technologies [2] into a small number
f categories: dual stack, single translation, double translation, and
ncapsulation technologies. Both the SIIT [3] (Stateless IP/ICMP Trans-
ation, also called stateless NAT64) and the stateful NAT64 [4] IPv6
ransition technologies belong to the single translation category.

We have created siitperf [5], the world’s first RFC 8219 com-
liant free software SIIT benchmarking tool in 2019. We have imple-
ented it in C++ using DPDK and documented its design, implemen-

ation, and initial performance estimation in [6]. As RFC 8219 reused
he throughput benchmarking procedure from RFC 2544 [7], we have
ollowed its test frame format using fixed source and destination UDP
ort numbers in our first implementation [6]. Then we have added
he optional use of pseudorandom port numbers recommended by RFC
814 [8] and documented the new feature in [9]. Our experience
as shown that it was relatively easy and straightforward to extend
iitperf to be able to use pseudorandom port numbers due to

ts object-oriented design, and we also managed to preserve its high
erformance [9].

Our current effort aims to extend siitperf to be able to bench-
ark stateful NAT64 gateways because they play an important role in

he current phase of IPv6 transition [2]. However, in this paper, we
oint out that this extension is not at all straightforward, because of the

E-mail address: lencse@sze.hu.

missing theoretical background. We are not aware of any other working
tester or publication, which would specify, how stateful NAT64, or
even stateful NAT44 (also called NAPT: Network Address and Port
Translation) gateways can be benchmarked using bidirectional traffic
with random port numbers. Whereas our primary goal is the bench-
marking of stateful NAT64 gateways, we consider the benchmarking
of stateful NAT44 gateways also important and want to support it too.
In theory, we design a method suitable for benchmarking any stateful
NATxy gateway, where x and y are in {4, 6}.

The remainder of this paper is organized as follows. Section 2
contains a short survey of related work and then a general discussion on
how stateful NATxy gateways may be benchmarked using bidirectional
traffic with random port numbers. Section 3 gives a summary of the
design and implementation of siitperf necessary to understand
the following sections. Section 4 discloses our most important design
considerations and implementation decisions. Section 5 summarizes
the key points of our state-of-the-art benchmarking methodology for
stateful NATxy gateways. Section 6 presents our functional tests and the
maximum connection establishment rate, throughput, and frame loss
rate measurements of the Jool [10] stateful NAT64 implementation, as
well as an initial performance estimation of the stateful operation of
siitperf. Section 7 provides a discussion and highlights our plans
for further tests, development, performance optimization, and research
on benchmarking methodology issues. Section 8 gives our conclusions.
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2. Benchmarking stateful NATxy gateways using bidirectional
traffic and random port numbers

2.1. Related work

In our short survey of relevant research results, we focus on the
performance analysis of stateful NAT64 gateways. RFC 6146 [4] de-
fined stateful NAT64 in 2011. During the following years, several
papers have been published about the performance analysis of various
stateful NAT64 solutions. Llanto and Yu [11] compared the perfor-
mance of stateful NAT64 to that of stateful NAT44 through measuring
RTT (Round-Trip Time) and ‘‘throughput’’. However, this ‘‘through-
put’’ was measured using Apache Benchmark [12], and not an RFC
2544 compliant tester. Monte et al. [13] compared the performance of
stateful NAT64 to that of their own ALG (Application Layer Gateway)
implementation. They also used Apache Benchmark to measure the
connection time and the full access time of various websites. Yu and
Carpenter [14] compared the performance of stateful NAT64 to that of
the NAT-PT and an HTTP proxy. They used HTTP traffic with various
request and response sizes, and they measured and compared the RTT
of the mentioned three different solutions.

All these papers followed the approach that they measured the
performance of a given NAT64 implementation along with a given
DNS64 implementation. On the one hand, this could be ordinary (as
stateful NAT64 is commonly used together with DNS64), however,
the results reflect a kind of ‘‘weighted average’’ of the two and not
the pure performance of the used NAT64 or DNS64 implementations.
We have pointed out in [15] that: ‘‘even though both services are
necessary for the complete operation, in a large network, they are
usually provided by separate, independent devices; DNS64 is provided
by a name server and NAT64 is performed by a router. Thus, the best
implementation for the two services can be – and also should be –
selected independently’’. To support this selection, we have compared
the performance of four different DNS64 implementations under Linux,
FreeBSD and OpenBSD [16] as well as we have compared the per-
formance of the TAYGA [17] + iptables and OpenBSD PF stateful

AT64 implementations [15].
The common feature of all these measurements is that the traffic

hrough the stateful NAT64 gateway happens in the following way:

1. First, a request is sent from the IPv6-only client to the IPv4-only
server.

2. Then a reply is sent (or multiple replies are sent) from the
IPv4-only server to the IPv6-only client.

On the one hand, this is ordinary, as connections through the
tateful NAT64 gateway may be initiated only from the client-side.
owever, this measurement method is very far from the measure-
ent method defined by the de facto industry standard RFC 2544 [7].

ts throughput measurement requires bidirectional traffic at a given
onstant frame rate. An elementary test lasts at least 60 s, while the
ester sends test frames through the DUT (Device Under Test) in both
irections and counts the number of sent and received frames. If the
umber of received frames equals the number of sent frames, then the
rame rate is increased and the test is re-run. Otherwise, the frame rate
s decreased, and the test is re-run. (This is the official wording, but in
ractice, a binary search is used.) The throughput is the highest frame
ate at which the number of received frames is equal to the number of
ent frames.

In theory, RFC 2544 was IP version independent, but it was written
ith IPv4 in mind (e.g. IPv4 addresses are used in its examples). RFC
180 [18] focused on IPv6, but it excluded IPv6 transition technologies
rom its scope. RFC 8219 addressed IPv6 transition technologies. It
eused some measurement procedures from RFC 2544 (e.g. throughput,
rame loss rate) redefined the latency measurement procedure, and
dded others (PDV and IPDV). Although RFC 8219 explicitly lists

tateful NAT64 among the single translation technologies, but it says
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Fig. 1. NAPT gateway test setup (based on RFC 2544).

nothing about how the problem of the traffic in the IPv4 to IPv6
direction through the stateful NAT64 gateway is to be handled. In
addition, RFC 4814 [8] requires the usage of a high number of different
port number combinations in both directions. We have not found any
publications resolving or at least discussing these challenges. Therefore,
we do so in the following subsections.

2.2. Problem formulation

As the problem is not specific to stateful NAT64, we discuss it in a
general way. We use the example of the more well-known and widely
used IPv4 NAPT (Network Address and Port Translation, please refer
to Section 2.2 of RFC 3022 [19], it is also called stateful NAT44). NAPT
is present in many places from small home networks to the largest ISP
networks, where it is used in the CGN (Carrier-Grade NAT) gateway.
Although we use IPv4 in our example to give an easy explanation of the
problem, any IP version could be used. Fig. 1 shows the test and traffic
setup for the throughput measurement of NAPT gateways. Although
the arrows would suggest unidirectional traffic, RFC 8219 requires
testing with bidirectional traffic, and testing with unidirectional traffic
is optional. Following our naming convention used in [6,9], we call
the direction following the arrows as forward direction and the opposite
one as reverse direction. We used private IP addresses on the left side
of the devices and public IP addresses on their right side. Due to the
operation of the NAPT solution, communication may only be initiated
in the forward direction.

Now, we follow the possible operation of the test system. Let the left
side port of the Tester send a test frame with the following IP addresses
and port numbers: source: 10.0.0.2:10000, destination: 198.19.0.2:80,
where the port numbers are arbitrary.

We note that the port numbers are UDP port numbers, because RFC
8219 requires testing with UDP traffic. We are aware that stateful
translators use different timeout values for TCP and UDP ‘‘connections’’.
Now, we follow the requirements of RFC 8219, but we return to this
issue in Section 7.

Let the connection tracking table of the NAPT gateway be empty at
the beginning of testing, and let the NAPT gateway does not change the
source port numbers when it is not necessary. Thus, the IP addresses
and port numbers of the translated test frame are as follows: source:
198.19.0.1:10000, destination: 198.19.0.2:80. When the right-side port
of the Tester receives the translated test frame, it may store the four
tuple of IP addresses and port numbers, and then it can send a test frame
with a valid four tuple that has a matching entry in the connection
tracking table of the NAPT gateway. The identifiers of the test frame to
be sent in the reverse direction are: source: 198.19.0.2:80, destination:
198.19.0.1:10000. The NAPT gateway translates back the test frame
using the information of its connection tracking table, and the iden-
tifiers of the translated frame are: source: 198.19.0.2:80, destination:
10.0.0.2:10000.

Now, let us consider how pseudorandom source and destination port
numbers can be used to comply with the requirements of RFC 4814.
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Their application in the reverse direction requires that preliminary
traffic be provided in the forward direction before the actual throughput
test: during this preliminary phase, the four tuples are observed and
stored. After that, the right-side port of the Tester may randomly choose
from among the stored four tuples to generate valid traffic that can be
translated by the NAPT gateway.

Theoretically, pseudorandom source and destination port numbers
could be used in the forward direction, however, this approach would
be a denial of service attack against the NAPT gateway, because it would
exhaust its connection tracking table. Let us see some calculations using
the recommendations of RFC 4814:

• Recommended source port range: 1024–65 535, its size is:
65 535−1024 + 1 = 64 512

• Recommended destination port range: 1–49 151, its size is: 49 151
• The number of source and destination port number combinations

is: 64 512*49 151 = 3,170,829,312.

And yet we did not consider the requirement for testing with also
56 destination networks, which would further increase the number of
onnection tracking table entries.

Thus, we have shown that the Tester should not follow the rec-
mmendations of RFC 4814 for pseudorandom source and destination
ort numbers blindly. However, on the other hand, we agree with
he purpose of RFC 4814, as we are aware that using the same fixed
ource and destination port numbers is very far from the operational
onditions of NAPT gateways. Even a small home NAPT device has
o handle a high number of different source port numbers since web
rowsers use a high number of concurrent TCP connections, the number
f which depends on several factors including the content of the given
eb page, the type of client operating system and browser, etc., please

efer to [20] for further details. A CGN NAPT gateway has to handle
lso a high number of different source IP addresses besides the high
umber of different source port numbers. These parameters have a
ignificant influence on the number of connection tracking table entries
nd thus they should not be overlooked.

.3. Possible solutions

To find a reasonable solution, let us consider, what port numbers
sually appear in the outgoing packets arriving at the NAPT gateway
f an ISP. It is likely that:

• The source port numbers will be quite different in the range of
1024-65 535.

• There will be a few very popular ones among the destination port
numbers, with the dominance of 443 (HTTPS) and 80 (HTTP),
appearing also the port numbers of several other widely used
protocols.1

Theoretically, it could be possible to capture traffic at the NAPT
ateway of an ISP, count the frequency of the occurrence of each
ource and destination port number, and store the statistics. One could
mplement a tester, which loads the statistics, and generates source and
estination port numbers following the distributions recorded in the
tatistics. However, several different questions arise, for example:

1. Are source and destination port numbers independent from each
other or is there any correlation between them?

2. How much similar or different are the statistics of different NAPT
gateways and how this difference influences the benchmarking
results?

3. To what extent the statistics are permanent or changing over
time, and how this possible change influences the benchmarking
results?

1 Please refer to the report of Internet Initiative Japan [21] for a particular
bservation of the popularity of the different protocols.
77
The answer to the first question may simply make the random
number generation a bit more complex, however, the answers to the
second two questions may make it impossible to produce and publish
meaningful benchmarking results that will be usable for others. We
would like to build a more simple and easy-to-use model. Therefore,
we make the following simplifications.

1. Let us omit the possible correlation of the source and destination
port numbers.

2. Let us use uniform distribution for the source port numbers
as recommended by RFC 4814. (Maybe its distribution is not
uniform, but skewed, however, we hope that using uniform
distribution is not a bad model.)

3. Let us also use uniform distribution for the destination port
numbers, but in a much narrower range than it is recommended
by RFC 4814. (This is a very significant simplification, which
requires validation.)

The size of the destination port range can be used as a parameter
and the performance of the NAPT gateway may be examined as a func-
tion of this parameter. The results may be useful when dimensioning a
NAPT gateway.

3. Summary of siitperf

In this section, we give a summary of the design and implementation
of siitperf only to the extent necessary to understand the following
sections. It is done by reusing some of the text of our open access
papers [6,9], in which further details are available.

As for siitperf, we intended it to be a flexible tool designed
for research and experimentation rather than an automated commodity
Tester. Therefore, it is a combination of binaries and shell scripts. It
supports the following benchmarking procedures: throughput, frame
loss rate, latency, and PDV (packet delay variation). There are three
binaries written in C++ using DPDK (Intel Data Plane Development
Kit) [22] to ensure high enough performance. The binaries implement
the core business logic and input a high number of parameters. There
are four bash shell scripts (for the above-mentioned four benchmarking
measurements), and they call the appropriate binary supplying the
command line parameters necessary for the given measurement step.
For example, the 20 repetitions and the binary search of the throughput
test are performed by the binary-rate-alg.sh script, which calls
the siitperf-tp binary for every 60 s long elementary test provid-
ing the required frame rate and several further parameters. The same
siitperf-tp binary is used by the frame-loss-rate.sh script
to measure the frame loss rate at various frame rates. Parameters that
may vary among the consecutive executions of the binaries are supplied
as command line parameters, whereas constant parameters (e.g. IP
addresses, MAC addresses, etc.) are supplied in the siitperf.conf
configuration file.

We followed an object-oriented design. The classes for both the
latency and the PDV measurements are extending their base class,
throughput. (They are slightly different from each other, as the latency
test uses only a specified number of timestamps, whereas the PDV test
uses timestamps for every single frame.)

The program structure of each C++ program is very simple: the
main program reads the parameters first from the configuration file
and then from the command line. Next, it calls the init() function
of the required measurement, which initializes the EAL (Environment
Abstraction Layer) of the DPDK, resets and starts the network inter-
faces, and performs a few sanity checks. Finally, the main program
executes the proper measurement procedure. The measurement proce-
dure prepares the parameters for the senders and receivers, and starts
one sender and one receiver for each active direction (as separate
threads). They are executed by their exclusively used CPU cores to
ensure guaranteed performance. After they have finished, the main
thread collects and evaluates their results.
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Table 1
Specification of which parameters used as source and destination IP addresses for foreground test frames on each side. (L/R means: Left/Right, the Virt(ual) value is used to
represent an IP address from a different address family than the frame belongs to. Please refer to [6] for the details.)

Case IP version Type of the IP addresses used by the Left Sender IP addresses used by the Right Sender

No. Left Right DUT Source Destination Source Destination

1. 6 4 Stateless NAT64 gw. IPv6-L-Real IPv6-R-Virt IPv4-R-Real IPv4-L-Virt
2. 4 6 Stateless NAT46 gw. IPv4-L-Real IPv4-R-Virt IPv6-R-Real IPv6-L-Virt
3. 4 4 IPv4 router IPv4-L-Real IPv4-R-Real IPv4-R-Real IPv4-L-Real
4. 6 6 IPv6 router IPv6-L-Real IPv6-R-Real IPv6-R-Real IPv6-L-Real
Fig. 2. The operation of the sender and receiver functions of the original siitperf.

We show in Fig. 2, how the sender and receiver threads (that is the
end() and receive() functions in the source code) are assigned

to the CPU-s denoted with the self-explanatory names (CPU-{L,R}-
{Send,Recv}) used in the configuration file.

From our point of view, it is important to mention that the four
threads (two senders and two receivers) do not have any common data
structures and they work independently from each other, except that:

• each receiver receives the test frames sent by the corresponding
sender,

• receivers and senders on the same side use the same NIC (network
interface card).

We have designed siitperf to be flexible due to using a high
number of parameters. For example, the IP version can be specified
individually and independently for each side, thus siitperf can also
be used for testing IPv4 or IPv6 routers, not only SIIT gateways. When
siitperf constructs and sends out test frames, their IP version always
follows the IP version specified in the configuration file by the IP-
-Vers and the IP-R-Vers parameters for the Left Sender and the
ight Sender, respectively. Table 1 summarizes which parameters are
sed as source and destination IP addresses for the test frames on each
ide.

RFC 8219 also requires that besides the traffic that is translated
we called it ‘‘foreground traffic’’), tests should also use non-translated
ative IPv6 traffic (we called it ‘‘background traffic’’), and different
roportions of the two types of traffic have to be used. For us, it
ill be important that background traffic is normal IPv6 test frames
nd they are always sent from the ‘‘real’’ IPv6 address of the given
ide to the ‘‘real’’ IPv6 address of the other side. Background traffic
s indistinguishable from the foreground test frames if the IP version of
oth sides is 6 (case no. 4).

We note that a dual stack router may also be benchmarked using
ase no. 3 because besides the IPv4 foreground traffic, the background

raffic is IPv6 and the proportion of the two may be set arbitrarily.

78
The proportion of the foreground traffic and background traffic can
be expressed by two command line parameters called n and m, please
refer to our original paper [6] for the details.

We note that the receiver function is resilient: it does not take care
of the IP version of its side, it rather checks the value of the Type field
of the Ethernet frame and processes the payload accordingly (as IPv4
or as IPv6). It does not check IP or MAC addresses, but it checks an
8-byte identifier to distinguish the test frames from other frames.

It is also important that RFC 2544 requires to use fixed source and
destination IP addresses first, and then 256 destination networks for
the benchmarking tests. We allow the user to specify the number of
the networks on the left and right sides independently using any value
from 1 to 256 in the configuration file:

Num-L-Nets 1 # Number of Left side networks
Num-R-Nets 1 # Number of Right side networks

The settings apply to both background and foreground traffic. But
they are used only for destination networks and do not affect the source
IP addresses.

There is a further parameter called START_DELAY (defined as a
C preprocessor constant in the source file defines.h), which was
originally intended to be typically technical: it facilitated the syn-
chronized start of frame sending by the senders. (As their startup
requires non-zero time, their frame sending has to be started at a well-
defined time.) During our tests, frame loss was experienced at the
beginning of the test, and it turned out that some part of the test system,
perhaps the DUT (Device Under Test) was not yet ready, right after
the initialization of the interfaces of the Tester. Thus, this parameter
has received a new function to support a predefined delay between the
starting of the network interfaces of the Tester and the starting of the
actual measurement facilitating the proper initialization of the network
interfaces of the DUT. Its default value was increased to 2 s and it may
be further increased if needed.

Further parameters providing factors of freedom can be found in our
original paper [6].

As for the extension of siitperf to use pseudorandom port num-
bers, we kept our flexible approach, and thus it can be specified
individually for each direction and for the source and destination
port numbers, whether they should be fixed or varying. If they are
varying, they may be pseudorandom or increasing or decreasing in the
consecutive frames. (The latter two are not RFC 4814 compliant, but
they may be useful in some cases.) The configuration file allows to set
the following parameters:

Fwd-var-sport 3
Fwd-var-dport 3
Rev-var-sport 1
Rev-var-dport 0

The numeric values are interpreted as follows:

0 fixed port number (the hard-wired value defined in Appendix C.2.6.4
of RFC 2544)

1 increasing port number,

2 decreasing port number
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It is computationally less expensive to use increasing (or decreasing)
port numbers than using pseudorandom port numbers. Of course, not
all combinations are useful, perhaps, there is no point in increasing
both the source and the destination port numbers.

The configuration file shipped with siitperf contains the default
settings for port number ranges as required by RFC 4814:

Fwd-sport-min 1024
Fwd-sport-max 65535
Fwd-dport-min 1
Fwd-dport-max 49151
Rev-sport-min 1024
Rev-sport-max 65535
Rev-dport-min 1
Rev-dport-max 49151

It is also an important implementation detail that the test frames are
not built up from scratch during testing, but pre-generated test frames
(templates) are modified to decrease the amount of work and, thus, to
increase the maximum achievable frame rate.

We note that all sorts of variable port numbers apply to both
foreground and background traffic.

As for the output of siitperf-tp, it reports the number of the
transmitted frames and the received frames for the active directions
(one direction may be missing):

Forward frames sent:
Forward frames received:
Reverse frames sent:
Reverse frames received:

It will be important that the bash shell scripts are expected to grep
for the above expressions in the output of the program.

So far, we have mainly focused on the siitperf-tp throughput
tester, which can also be used for the frame loss rate measurements.
The design and the operation of the siitperf-lat latency tester are
fairly similar. The main difference is that a certain number of frames are
tagged for latency measurements. As the maximum number of latency
frames is 50,000, they are always pre-generated. If the varying port
number feature is used, then the port numbers are updated in the
latency frames, too. When a tagged frame is sent, the sender function
stores its timestamp and when a tagged frame is received, the receiver
function stores its timestamp, too. After the latency test is finished,
siitperf-lat processes the timestamps and calculates the typical
latency and worst-case latency values for each active direction. The
latency tester has two further command line parameters, the delay
parameter specifies how much time after the start of the measurement
the first tagged frame should be sent, and the timestamps parameter
specifies the number of frames to be tagged.

The design and the operation of the siitperf-pdv PDV tester
are even more straightforward extensions of siitperf-tp. It sends
only PDV test frames, each of which contains an 8-byte ordinal number,
which is used as an index for the array of the receiving and sending
timestamps. These arrays are filled during the sending and receiving
of the PDV test frames, and arrays are processed after finishing the
measurement. The PDV tester has one further command line parameter
called frame timeout. If the value of this parameter is 0, then the times-
tamp arrays are processed as required by RFC 8219 to calculate PDV.
If the value of this parameter is higher than 0, then it is interpreted as
the timeout parameter for each frame individually: those frames having
higher latency than frame timeout are reclassified as lost. Hence, this
implements a special throughput test, where the timeout is checked
for each frame individually. Please refer to our original paper for the
details and the justification of the method [6]. For us, this method
is useful for determining the performance (maximum frame rate) of
siitperf-pdv.
 s
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4. Design of the stateful extension of siitperf

4.1. General design considerations

When we designed a functional extension of siitperf, we con-
sidered its compatibility with its previous versions very important. The
new software should be able to perform all the original tests using the
original parameters (in the command line and in the configuration file)
and provide the original output. To do so, special values of the new
parameters may be required, and if possible, these values should be
their default values. (Thus, the usage of an old configuration file and
command line parameters with the new software should result in its
old way of operation.)

4.2. High-level design decisions

4.2.1. Considerations for directions and flexibility
Due to the nature of the stateful translation, it can only be used

at most in one direction. To keep the flexibility of the software, we
decided to let the user specify the direction. We also wanted to allow
stateful translation to be combined with any IP version (4 or 6). From
the set of possible combinations, stateful NAT44, stateful NAT64, and
stateful NAT66 are surely meaningful. Stateful NAT46 [23] has also
been proposed, but its Internet-Draft has never been published as an
RFC.

4.2.2. Design of stateful testing
Regarding the stateful operation, let us name the roles of the two

ports of the Tester as Initiator and Responder. As shown in Fig. 3, the
Initiator resides on the ‘‘private’’2 side of the DUT, and only the Initiator
can initiate connection establishments due to the stateful nature of the
DUT. The Responder resides on the ‘‘public’’ side of the DUT and it
can send only test frames that belong to a connection already initiated
by the Initiator. As both of them must be able to send proper test
frames at the required frame rate from the very beginning of the test,
a preliminary phase is necessary, while the Responder can observe and
store enough valid four tuples (that belong to existing connections) in its
state table. Thus, the Initiator and the Responder perform the following
tasks:

• During the preliminary phase, the Initiator sends 𝑁 number of test
frames to the Responder through the DUT. The Responder extracts
the IP addresses and the port numbers from the tests frames and
stores them in its state table, but it does not send any test frames
yet.

• During the test phase, the Initiator acts the same as the sender
and receiver of the original siitperf. The Responder receives
and processes the test frames as needed3 and it further updates
its state table on the basis of the IP address and port number
information of the received frames. The responder also sends test
frames using the IP addresses and port numbers from its state
table.

As the Initiator is completely free to use any source and destina-
tion port number combinations during the test phase (even those not
used during the preliminary phase), it is absolutely necessary for the
Responder to update its state table during the test phase. This operation
also means that the sender and receiver of the Responder are no more
independent, but they have a common data structure, the state table,
which is written by the receiver and read by the sender. Please refer to
Section 4.5 for the details.

2 We use IPv4 terminology to facilitate an easy understanding for those,
ho are more familiar with IPv4 than with IPv6. However, our design is not
t all limited to stateful NAT44. Fig. 4 shows the test setup for benchmarking
tateful NAT64 gateways.

3 E.g. siitperf-tp simply counts them, whereas siitperf-lat and
iitperf-pdv perform further tasks with timestamps.
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Fig. 3. Test setup for benchmarking stateful NAT44 gateways.
Fig. 4. Test setup for benchmarking stateful NAT64 gateways.
e

4.3. Further design and implementation decisions

4.3.1. Considerations for the state table of the responder
RFC 8219 defines black-box testing: the user is not aware of the

internals of the DUT. In our case, it also means that we are not
aware of even the size and policy of the connection tracking table
of the DUT. We are not able to keep the consistency between the state
table of the Responder and the connection tracking table of the DUT
as we may not examine the latter. However, at least, we need to
enable the user to control, how the old four tuples of IP addresses and
port numbers are thrown out from the state table of the Responder.
Allowing the user to specify a timeout could be handy from the user’s
perspective. However, its handling would consume a significant amount
of processing power. Due to performance considerations, we decided to
implement the state table of the Responder as a simple ring buffer of
size 𝑀 . If the test frames arrive at rate 𝑟, then the entries of the state
table are overwritten in 𝑀∕𝑟 time. (Please refer to Section 4.3.6 for
another consistency-related issue.)

4.3.2. Considerations for the connection establishment rate
Usually, a high number of packets per connection are transmitted in

a typical application scenario of stateful NATxy gateways. It also means
that the connection establishment rate is significantly lower than the
packet rate.

During the test phase of our benchmarking tests, the number of test
frames per connection may be controlled by the number of possible four
tuples (and also by 𝑀).

However, at the beginning of the preliminary phase, the initiator
sends all different four tuples, that is, the connection establishment rate
is equal to the frame rate. As the maximum connection establishment
rate of a stateful device may be significantly lower than its maximum
forwarding rate, we decided to enable the user to specify a different
frame rate for the preliminary phase than the frame rate used in the
test phase. Please see Section 6.2, how siitperf supports the mea-
surement of the maximum connection establishment rate of a stateful
device.
80
4.3.3. Enumeration of port numbers
Our state-of-the-art benchmarking methodology for stateful NATxy

gateways summarized in Section 5, requires the pseudorandom enu-
meration of all possible port number combinations in the prelimi-
nary phase. In addition to that, we wanted to make siitperf also
suitable for wilfully exhausting the port number range of a stateful
NAT64/NAT44 gateway for simulating a denial of service attack to
support vulnerability analysis mentioned in [24,25].

Therefore, we have added a new input parameter to combine source
and destination port numbers into a single counter. It means that the source
port number is the lower two bytes and the destination port number is
the higher two bytes of a 4-byte counter. However, its possible values
are still limited by the specified ranges of the source and destination
port numbers. (Please refer to Section 4.3.5, how to set port number
numeration.)

We note that port number enumeration applies only to the trans-
lated traffic (called foreground traffic). The port numbers of the non-
translated traffic (background traffic) do not take part in the enumera-
tion.

We also note that port number enumeration is supported only in the
preliminary phase.

4.3.4. Port numbers of the responder
Due to the stateful translation, the Responder has to generate test

frames using the four tuples from its state table. It also means that
regarding foreground traffic,4 the Responder should simply ignore var-
ious settings specified in the configuration file. (Namely: the number
of destination networks and the port number ranges for the given
direction as well as the values regarding the nature of the port numbers,
that is, the 0, 1, 2 or 3 values of the *-var-{d|s}port parameters
for the given direction.)

In order to keep resilience, now we consider, what approaches can
be reasonable:

0 Use the fixed four tuple learned from the very first preliminary
frame.

4 We note that the original settings still apply for the background traffic.
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1 Take the next entry of the state table in increasing order.

2 Take the next entry of the state table in decreasing order.

3 Randomly select from among the state table entries.

We note that case 0 is the same approach, when hard-wired fixed port
numbers are used in the original siitperf, literally following the test
frame format in Appendix C.2.6.4 of RFC 2544.

We believe that case 3 is the true spirit of RFC 4814, whereas cases
1 and 2 are computationally less expensive alternatives. (At an early
stage of the design of the benchmarking method there was a practical
consideration that made at least one of them a must. We discuss it in
Section 4.3.6. However, later we found a better solution as described
in Section 5.)

4.3.5. New input parameters
Following our original policy that parameters that do not change

during the execution of the shell scripts are put into the configuration
file, we added the following parameters to the configuration file with
the default value of 0:

Stateful 0 # valid values: 0, 1, 2

Its values have the following meanings:

0 The original operation of siitperf is kept, no new command line
parameters are accepted.

1 Stateful test is performed, Initiator is on the left side and Responder
is on the right side. New command line parameters are expected.

2 Stateful test is performed, Initiator is on the right side and Responder
is on the left side. New command line parameters are expected.

We have introduced a configuration file parameter to control port
number enumeration:

Enumerate-ports 0 # valid: 0, 1, 2, 3

Its values have the following meanings:

0 The original operation of siitperf is kept, the port numbers
behave as usual.

1 The port numbers are enumerated in increasing order (source port
number is the low order counter and destination port number
is the high order counter), but the source and destination port
numbers are limited to their specified ranges.

2 Like ‘‘1’’, but the order of enumeration is decreasing.

3 All possible combinations of the available port numbers specified by
the source and destination port number ranges are enumerated
in a pseudorandom order.

We note that port number enumeration applies only for the foreground
traffic, and it is available only when a single destination network is set,
otherwise, the program gives an ‘‘Input Error:’’ message.

To express the policy, how the consecutive four tuples are selected
from the state table of the Responder for the foreground traffic, we
introduced the following configuration file parameter:

Responder-ports 0 # valid: 0, 1, 2, 3

The interpretation is defined by the listed items in Section 4.3.4.
As for the new command line parameters, they follow the command

line parameters of the throughput test, and they precede the additional
parameters of the Latency and PDV measurements.

They are to be specified in the following order:
 v

81
N (1 – 232 − 1) – the number of test frames to send in the preliminary
phase

M (1 – 232 − 1) – the number of entries in the state table of the Tester

R (in frames per second) – the frame rate, at which the test frames are
sent during the preliminary phase

(in milliseconds, 1 – 2000) – the global timeout for the preliminary
frames

(in milliseconds, 1 – 100,000,000) – the overall delay caused by the
preliminary phase

e note that 𝑁 denotes the number of all frames (including foreground
nd background frames) sent during the preliminary phase.

It is important that the sending of the 𝑁 number of test frames at
he specified 𝑅 frame rate should happen and also the 𝑇 global timeout
hould elapse within the 𝐷 time, otherwise siitperf reports an error
essage and exits.

We note that setting 𝑀 to 1 is allowed only in the case if
esponder-ports is set to 0. Please refer to Section 4.3.8 for an
xplanation.

.3.6. The issue of active directions
So far, we considered the general case, when both directions are

ctive, that is, bidirectional traffic is used for benchmarking. As it is in
tateless testing, any of the two directions may be set inactive also in
he case of stateful testing. It is trivially not a problem if traffic flows
nly from the Initiator to the Responder. When traffic flows only from
he Responder to the Initiator, then the state table of the Responder
s filled during the preliminary phase and it remains unchanged dur-
ng the testing phase. It may cause a serious problem under certain
onditions. Stateful NAT64 or NAT44 gateways use various timeout
alues for the connections. Let us consider the following situation.
f traffic flows only from the Responder to the Initiator during the
est phase, and the Responder uses pseudorandom four tuple selection,
t may happen that a specific four tuple is not used for a specific
imeout and then it is used again. It results in the construction of a
rame that belongs to a no more existing connection in the gateway.
herefore, it is dropped by the gateway, and the loss of the frame causes
he throughput test to fail. This issue is properly solved by using an
ppropriate timeout, please refer to Section 5 for the details.

.3.7. The issue of indistinguishable IPv6 background frames
When the IP version is 4 on the side where the Responder resides,

hen frames translated by either stateful NAT44 or stateful NAT64
rrive as IPv4 frames, and IPv6 frames belong to the background traffic.
ence, foreground and background frames can be easily distinguished
y the IP version. However, when the IP version is 6 on the side where
he Responder resides, then frames translated by either stateful NAT46
r stateful NAT66 arrive as IPv6 frames, and they are indistinguishable
rom the background traffic using only the IP version. The problem
ould be easily solved by using a different 8-byte identifier for the test
rames belonging to the background traffic or by examining also the
ource IPv6 address. However, we did not implement it yet, please refer
o Section 4.4.1 for more details.

.3.8. The issue of inter-thread communication
Both high performance and flexibility were our primary design

oncerns. As inter-thread communication may negatively influence
erformance, we had to make a compromise on the following issue.

Originally, we planned to allow the partial filling of the state table
f the Tester during the preliminary phase, and the receiver of the
esponder could fill the remaining entries in the test phase. However,

t would have required continuous communication of the number of

alid entries from the receiver of the Responder to the sender of the
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Responder, which could have a significant impact on the performance
of the Tester. Although it could have been stopped after filling the
state table, it would further complicate the code, whereas a single extra
‘‘if’’ statement in the innermost receiving and sending loops was also
considered a hindrance to be avoided. So, we decided that the state
table must be filled in the preliminary phase.

Writing and reading of the state table may slow down the Tester
only in the case if the same entry is affected. Therefore, we decided
to support fixed port numbers by a separate code, which does not
continuously write and read the single entry. In this case, the very first
entry of the state table is read only once at the beginning of the test
phase, and then the sender and the receiver work independently.

4.4. Implementation of the stateful tests

4.4.1. Scope decisions
Considering our limited time and the vast difference between the de-

ployment of stateful NAT44 and stateful NAT64 versus stateful NAT46
and stateful NAT66, we decided to support only the first two of them.
(The support for the latter two is not an intellectual challenge, but
requires a significant amount of coding and testing.)

Our decision means that the Initiator has to be able to handle both
IPv4 and IPv6, but the Responder needs to be able to handle only IPv4
as foreground traffic.

4.4.2. Design of the initiator
As we mentioned before, the sender of the Initiator is a modified

version of the sender function of the stateless siitperf. The main
difference is the support for port number enumeration using a twice
two-byte counter in the preliminary phase.5 Let us see an example.
If the source port numbers are set to increase from 10,000 to 49,999
(40,000 different values) and the destination port numbers are set to
increase from 80 to 179 (100 different values) then 40,000*100 =
4,000,000 different combinations can be enumerated.

• If the sender of the Initiator has to enumerate the available
port number combinations in a pseudorandom order, then it is
checked, if there are enough unique port number combinations,
and if not, then an Error is reported. (It is so to support proper
measurements as described in Section 5.)

• If increasing or decreasing port number enumeration is required,
then no such check is performed, and the counter of the combined
source and destination port numbers is allowed to wrap around.
(It is so not to limit the usability of siitperf as a denial of
service attack testing tool.)

Port number enumeration is supported only in the case when the
number of destination networks is set to 1.

During the operation of siitperf, frame sending and receiving
happens twice: first, in the preliminary phase, and second, in the
test phase. To protect the bash shell scripts processing the output of
siitperf from confusion, siitperf uses the word ‘‘Preliminary’’
instead of ‘‘Forward’’ or ‘‘Reverse’’, when reporting the number of
frames sent and received in the preliminary phase.

As for the receiver function, it is not used on the Initiator side during
the preliminary phase, and the original one was kept in the test phase.

4.4.3. Design of the receiver of the responder
The consistency of the state table entries is ensured using atomic

variables of C++. The type of the entries of the state table is defined
as follows:

typedef std::atomic<fourTuple> atomicFourTuple;

5 Port number enumeration is supported only in the preliminary phase. In
he test phase, the stateless sender is reused as the sender of the Initiator.
82
Hence, both the reading and the writing of the entries of the state
table are atomic operations.

The receiver of the Responder extracts the IPv4 addresses and port
numbers from the received IPv4 test frames and writes them first into
a local variable of type struct fourTuple, then it writes the four
tuples into the state table in increasing order starting from index 0.

We note that neither the receiver nor the sender of the Responder
converts IP addresses and port numbers between network byte order
and host byte order because they are only copied but not manipulated.

4.4.4. Design of the sender of the responder
The sender of the Responder supports multiple modes of operation.

If Responder-ports is set to 0, then a single IPv4 test frame is
generated based on the very first element of the state table (index 0),
and always this frame is sent as foreground traffic without regard to the
number of destination networks. Background traffic is generated using
fixed port numbers, but multiple destination networks may be used.

If Responder-ports is set to 1, 2, or 3, then all the entries of
the state table are used as specified in Section 4.3.4.

Following our original approach, we used pre-generated templates
of Test Frames and modified their IP addresses and port numbers.

4.4.5. Design of the latency measurements
So far, we focused on the design of the stateful extension of the

siitperf-tp throughput tester. The extension of the siitperf-
at latency tester is fairly similar, most things are quite straightfor-
ard. We mention only a few differences. As no tagged frames are sent
uring the preliminary phase, the Initiator of the throughput tester and
he receiver of the Responder of the throughput tester are reused in the
reliminary phase.

As with the throughput tests, port number enumeration is supported
nly in the preliminary phase of the latency measurements. (The pro-
ram gives a warning about it if port number enumeration is specified
n the configuration file.)

We note that latency frames (test frames tagged for latency mea-
urements) are pre-generated and used as templates: they are modified
n the same way as the templates of the normal test frames, the only
ifference is that they are used only once.

.4.6. Design of the PDV measurements
The extension of the siitperf-pdv PDV tester was completely

traightforward. We followed the same approach as with the latency
ester: the Initiator of the throughput tester and the receiver of the
esponder of the throughput tester are reused in the preliminary phase
nd port number enumeration is not supported in the test phase.

.4.7. Implementation of the pseudorandom enumeration of the port num-
ers

As the pseudorandom enumeration of all the available port number
ombinations is very important for our state-of-the-art measurement
ethod described in Section 5, we disclose its implementation details.

The pseudorandom port number pairs are generated before the
eginning of the preliminary phase by the CPU core which is later
sed for the execution of the sender of the Initiator to ensure the
llocation of NUMA local memory for the array of the pre-generated
ort numbers. First, all possible port number combinations (determined
y the source and destination port number ranges) are enumerated
n the array of port number combinations in increasing order, and
hen they are put into pseudorandom order using Dustenfeld’s random
huffle algorithm [26].



G. Lencse Computer Communications 192 (2022) 75–88

t

t

4

s
w

t
s

(
o

i
a
i
s
R

5

t
i

T
l
a
t
t

T
s

Fig. 5. The operation of sender and receiver functions of the stateful siitperf during
he preliminary phase.

Fig. 6. The operation of sender and receiver functions of the stateful siitperf during
he test phase (using bidirectional traffic).

.5. Summary of the sending and receiving functions

Now we summarize, what was changed and what was kept from the
ending and receiving functions of the original siitperf, as well as
hen they operate during a complete throughput test.

We suppose that the value of the Stateful parameter is set to 1,
hat is, the Initiator is on the left side and the Responder is on the right
ide.

During the preliminary phase, the Sender function of the Initiator
called isend()) sends preliminary frames, and the receiver function
f the Responder (called rreceive()) receives them, and extracts

and stores the four tuples into its state table, as shown in Fig. 5.
During the test phase, the Initiator acts completely the same as

n the stateless version. The Responder uses its new rreceive()
nd rsend() functions to receive and send frames. They are not
ndependent from each other, because they are interconnected by the
tate table, written by the receiver and read by the sender of the
esponder, as shown in Fig. 6.
83
. State-of-the-art benchmarking method

Until we published it as an Internet-Draft [27], there was no sys-
ematic proposal for benchmarking stateful NATxy gateways. The basic
dea of the measurement method is to ensure that:

1. During the preliminary phase, all test frames result in the estab-
lishment of a new connection in the DUT.

2. During the test phase, no new connections are established in the
connection tracking table of the DUT.

3. The connection tracking table of the DUT is empty at the begin-
ning of the preliminary phase, and no connections are deleted
from there until the end of the test phase.

hese conditions are necessary so that the maximum connection estab-
ishment rate measurement (performed in the preliminary phase) and
ll other measurements (e.g. throughput, latency, etc.) performed in the
est phase give clear and repeatable results. To that end, it is necessary
o:

1. Use all different and pseudorandom port number combinations
for all test frames during the preliminary phase.

2. Enumerate all possible port number combinations (determined
by the specified source and destination port number ranges) in
the preliminary phase.

3. Set the timeout in the DUT to a higher value than the length of
the entire experiment.

4. Make sure that the capacity of the connection tracking table of
the DUT is large enough to store all the connections (defined by
the number of all possible port number combinations).

5. Start each experiment with an empty connection tracking table
of the DUT.

his method proved to be viable when we used it for measuring the
calability of the iptables stateful NAT44 implementation up to

800 million connections and that of the Jool [10] stateful NAT64
implementation up to 1.6 billion connections [28].

6. Functional and performance tests

The aim of this section is threefold:

1. to demonstrate the operation of the stateful NAT64 measure-
ments,

2. to test the usability of our Tester in a typical application sce-
nario,

3. to make an initial performance assessment of the stateful oper-
ation of siitperf.

As a test environment, we used three ‘‘P’’ series nodes (p108, p109,
p110) of NICT StarBED,6 Japan. They are Dell PowerEdge R430 servers
with two 2.1 GHz Intel Xeon E5-2683 v4 CPUs having 16 cores each,
384 GB 2400 MHz DDR4 SDRAM, and Intel 10G dual-port X540 net-
work adapters. Hyper-threading was switched off and the clock fre-
quency of all servers was set to 2.1 GHz (fixed) using the tlp Linux
package.

We used two test setups with different goals. The aim of Test System
1 (shown in Fig. 7) was to demonstrate the operation of a stateful
NAT64 measurement and to perform the most important benchmarking
measurements of the Jool [10] stateful NAT64 implementation. Test
System 2 (Fig. 8) was used to perform an initial performance estimation
of siitperf.

The Debian Linux 9.13 operating system was used on p108 and p110
computers. The Linux kernel version was: 4.9.0-4-amd64. The DPDK
version was 16.11.11-1+deb9u2. The Debian Linux operating system
was updated to version 11.2 on p109 because that version contains Jool
in its package set. The Linux kernel version was: 5.10.0-11-amd64. The
Jool version was 4.1.5-1.

6 http://starbed.nict.go.jp/en/aboutus/index.html.

http://starbed.nict.go.jp/en/aboutus/index.html
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Fig. 7. Test system for stateful NAT64 tests with Jool.

Fig. 8. Test system for determining the performance limits of the stateful operation of
siitperf.

6.1. Demonstration of a stateful NAT64 test

We have tested the functional operation of the stateful NAT64
measurement using Test System 1, the topology of which is shown in
Fig. 7. The Tester and the DUT were interconnected by two 10GbE
direct cable links. IPv6 was used on the left side network interfaces
of the devices, and IPv4 was used on their right side. (IPv6 addresses
are also assigned to the right side interfaces to facilitate ‘‘background’’
traffic, which is native IPv6 and not translated.) Stateful NAT64 was
implemented by Jool [10]. We used the 64:ff9b::/64 NAT64 well-
known prefix to construct the IPv4-embedded IPv4 address as follows:
64:ff9b::198.19.0.2.

Jool was set up by the following commands:

modprobe jool
jool instance add --netfilter --pool6 64:ff9b::/96
jool pool4 add 198.19.0.1 --udp 1-65535

To demonstrate the operation of the stateful NAT64 test, we per-
formed a very short and low rate test. Only five preliminary frames
were sent: 4 foreground frames and 1 background frame (to demon-
strate it too). We used port number enumeration, and the Responder
selected the four tuples randomly.

The new configuration file parameters were set as follows:

Stateful 1 # yes, Initiator is on the Left
Enumerate-ports 1 # yes, in increasing order

Responder-ports 3 # 4-tuples random select

84
We used port number enumeration in increasing order instead
pseudorandom enumeration to facilitate an easy observation.

The command line was:

siitperf-tp 84 5 1 2000 5 4 5 4 5 500 2000

The first 6 command line parameters were ‘‘inherited’’ from the
command line of the stateless tester. They denote that:

• The IPv6 frame size was 84 bytes (64 bytes for IPv4).
• The frame rate was 5 frames/s (in each direction).
• The test duration was 1 s.
• The global timeout was 2000 ms.
• The value of 𝑛 was 5 and the value of 𝑚 was 4: it means that 4 of

every 5 frames belonged to the foreground traffic.

The next 5 parameters are new:

• 𝑁 = 5 preliminary frames were sent by the Initiator.
• The size of the state table of the Responder was 𝑀 = 4.
• The preliminary frame rate was 𝑅 = 5 frames/s.
• The global timeout for the preliminary phase was 𝑇 = 500 ms.
• The total delay caused by the preliminary phase was 𝐷 = 2000 ms.

(It includes the sending of the preliminary frames, the global
timeout of the preliminary phase and the waiting time before the
real test phase.)

We have captured the traffic by tshark on both network interfaces
of the DUT: enp5s0f0 and enp5s0f1, and they are shown in Figs. 9
and 10, respectively. As siitperf resets the network interfaces, the
first two lines of both figures contain IPv6 multicast messages. (As
tshark starts the time measurement from the arrival of the first frame,
the times of the two captures are synchronized approximately, but not
completely.)

In both figures, frames 3–6 are the foreground preliminary frames.
In Fig. 9, the 64:ff9b::c613:2 IPv6 destination address represents the
198.19.0.2 IPv4 address shown in Fig. 10 as the destination address.
And the 2001:2::2 source IPv6 address was replaced with 198.19.0.1
by Jool. Port number enumeration in increasing order can also be
observed: the source port numbers start from 10,000 and increase by
1 on the IPv6 side. Jool maps the consecutive source port numbers to
different, but also consecutive source port numbers, and currently it
happens from 4127.

As frame 7 is a background frame (native IPv6), the stateful NAT64
gateway leaves it unchanged. Its port numbers are pseudorandom, as
background frames do not take part in the port number enumeration.

Frames 8–17 were sent during the test phase. Now the port numbers
of the ‘‘forward’’ direction frames are random. The port numbers of the
4 foreground frames in the ‘‘reverse’’ direction frames are determined
by the pseudorandom selection of the four tuples.

We note that we used only a single public IPv4 address on the IPv4
interface of the stateful NAT64 gateway, but using multiple public IPv4
addresses could cause no problem, as the Responder stores the entire
four tuples and uses their elements for traffic generation.

6.2. Maximum connection establishment rate measurement

Before an actual stateful NAT64 throughput test could be per-
formed, one must determine the maximum connection establishment
rate, and a rate somewhat lower than that should be used during the
preliminary phase of the throughput test to prevent the failure of the
measurement during the preliminary phase due to frame loss caused by
an improper frame rate.

Therefore, we first determined the maximum connection establish-
ment rate of Test System 1 shown in Fig. 7.

It is important that the measurement script remotely started and
stopped Jool on the DUT before and after each test in order to delete
the content of its connection tracking table. For starting Jool, the same
commands were used as disclosed in Section 6.1. Jool was stopped after

each test using the following command:
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Fig. 9. The tshark capture of a stateful NAT64 test on the enp5s0f0 interface of the DUT.
Fig. 10. The tshark capture of a stateful NAT64 test on the enp5s0f0 interface of the DUT.
odprobe -r jool

As the default timeout of Jool is 5 min, we did not need to change
t. If one needs to set the timeout, it can be done by the following
ommand:

ool global update udp-timeout <value>

We limited the possible port number combinations to 4,000,0007 by
sing a source port range of [10,000; 49,999] and a destination port
ange of [80; 179].

We used no background traffic. First, we sent exactly 𝑁 = 4,000,000
number of preliminary frames necessary to fill the state table (𝑀 =
4,000,000). The global timeout for the preliminary frame sending was
𝑇 = 500 ms, and the overall delay before the test phase was calculated
as:

𝐷 = 1000 ∗ 𝑀
𝑅

+ 2 ∗ 𝑇 (1)

We used binary search to determine the maximum connection es-
tablishment rate, that is, the highest frame rate for the preliminary
test, at which all preliminary frames are successfully received by the
Responder. The binary search was performed 20 times, and the median,
first percentile, and 99th percentile of the results were determined. In
addition to that, we have also determined the dispersion of the results
calculated as follows:

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =
99𝑡ℎ 𝑝𝑒𝑟𝑐. − 𝑓𝑖𝑟𝑠𝑡 𝑝𝑒𝑟𝑐.

𝑚𝑒𝑑𝑖𝑎𝑛
∗ 100% (2)

As for frame size to be used, RFC 8219 lists a number of standard
frame sizes. We used only the first one of them, 64 bytes for IPv4
and thus 84 bytes for IPv6. Our previous benchmarking experience

7 Vyacheslav Gapon recommended this number as the size of the connection
racking table for a high-loaded NAT server [29].
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Table 2
Maximum connection establishment rate and throughput of the Jool stateful NAT64
implementation (𝑁 = 𝑀 = 4,000,000)

Type of Connection Throughput measurement results

measurement est. rate bidir. Forward Reverse

Median (fps) 532,368 276,208 523,289 589,493
1st perc. (fps) 524,999 260,470 499,943 561,094
99th p. (fps) 534,814 281,476 544,928 603,132
Dispersion 1.84 7.61 8.60 7.13

gained with these test systems shows that the achievable frame rate
does not significantly decrease with the frame size, as the bottleneck is
the processing power and not the 10 Gbps Ethernet [30]. We show an
example for testing with a higher frame size in Section 6.4.

We have performed the measurements enumerating all possible port
number combinations in pseudorandom order. The results are shown
in Table 2. Our maximum connection establishment rate results are
quite consistent: the first percentile (524,999) and the 99th percentile
(534,814) are quite close to each other.

6.3. Throughput measurement

Section 5.3 of RFC 8219 requires that all tests be performed with
bidirectional traffic. Unidirectional tests are optional, but we performed
them, because we were interested, if we could point out any asymmetric
behavior of Jool.

As for the parameters, we kept the settings of the connection es-
tablishment rate measurement in Section 6.2 unless stated otherwise.
During the preliminary phase, 𝑅 = 500,000 was used (based on our
result in Section 6.2).

The results are shown in the last three columns of Table 2. We
note that siitperf reports the frames/s per direction rate, that is, if a
bidirectional test is used, then the number of all forwarded frames per
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Fig. 11. Frame loss rate of the Jool stateful NAT64 implementation as a function
f frame rate and frame size using bidirectional traffic. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his article.)

econd is double the reported rate, thus the bidirectional throughput
f 276,208 fps means a total of 552,416 forwarded frames per second.
he 589,493 fps unidirectional throughput in the reverse (that is,
ownload) direction is somewhat higher than the 523,289 fps in the
orward (that is, upload) direction, which seems to be advantageous
or the users of a Jool NAT64 gateway. However, the analysis of the
esults is beyond the scope of our paper. Our measurements aimed to
emonstrate the operation of the measurement method.

.4. Frame loss rate measurement

Frame loss rate measurement is also a part of RFC 8219. It can be
erformed with the same siitperf-tp program using a different

shell script, which performs the tests at different frame rates and
records the number of successfully received frames.

As an illustration, we have carried out test series using Test System
with the same parameters used for the bidirectional throughput test

n Section 6.3. Besides using the same 84/64-byte long frames as in all
ther tests, we have used also 1044/1024-byte long frames. (Another
tandard frame size, which is significantly higher.) Our results are
hown in Fig. 11. The color bars show the median values and the
rror bars show the first percentile and 99the percentile values. The
esults are in good agreement with our previous experience [30]: the
ignificantly higher frame size resulted in only a very slightly higher
rame loss rate.

.5. An initial performance estimation of the stateful operation of siit-
erf

We used Test System 2 for determining the performance limits of
iitperf. Its topology was very simple as shown in Fig. 8. The two
0 GbE interfaces of the Tester were interconnected by a direct cable.
hus, the achievable maximum rates of the looped back Tester were

imited by the performance of siitperf itself. The hardware and
oftware configuration of p110 was the same as that of p108.

We note that due to our implementation decision that the Receiver
an handle only IPv4 traffic, its ‘‘self-test’’ for performance estimation
an only be performed if the Initiator sends IPv4 traffic. However, in
he knowledge of the implementation, that is, the isend() function
irst sets pointers to the port numbers depending on the IP version,
nd then the very same code is used to set the port numbers and to
ecalculate the UDP checksum, the performance of IPv6 preliminary
est frame generation is expected to be very close to that of the IPv4
rames.
 c
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Table 3
Achieved frame rate for maximum connection establishment rate measurements using
pre-generated random numbers for port number enumeration.
𝑁 , 𝑀 , Port numbers 4,000,000 40,000,000 400,000,000

Median (fps) 7,186,798 7,187,276 7,187,228
1st perc. (fps) 7,183,592 7,187,010 7,187,128
99th perc. (fps) 7,187,256 7,187,501 7,187,400
Dispersion 0.05 0.01 0.00

Table 4
Achieved frame rate for throughput test (bidirectional traffic) using pseudorandom four
tuple selection from the state table of the Tester.
𝑁 , 𝑀 , Port numbers 4,000,000 40,000,000 400,000,000

Median (fps) 4,582,440 4,263,139 4,199,651
1st perc. (fps) 4,576,166 4,249,968 4,183,592
99th perc. (fps) 4,583,627 4,264,649 4,201,179
Dispersion 0.16 0.34 0.42

We started with the maximum connection establishment rate mea-
surement, using the pseudorandom enumeration of all available port
numbers. Unless stated otherwise, the same parameters were used as
in Section 6.2. The value of 𝑁 and 𝑀 , that is, the number of possi-
ble port number combinations was increased from 4,000,000 through
40,000,000 to 400,000,000 by using 179, 1079, and 10,079 as the
upper limit of the destination port range. The results are shown in
Table 3. The results do not decrease with the increase of the number of
port number combination at all. It can be easily explained by the fact
that the port numbers are pre-generated as described in Section 4.4.7,
and then the array is read in linear order during the preliminary
phase. And the state table of the Responder is written also in linear
order. Therefore, their size does not matter: cache prefetching works
efficiently.

For the determination of the limits of siitperf in throughput
esting, we used the same values for port numbers and 𝑅 = 7,000,000.
he results are shown in Table 4. This time the values somewhat
eteriorate with the increase of the 𝑀 size of the state table, what
an be explained by the less and less efficiency of caching due to the
seudorandom 4-tuple selection of the sender of the Responder.

We have also determined the maximum frame rate using unidirec-
ional traffic with 𝑀 = 400,000,000 state table size. The results are
hown in Table 5. As expected, the median frame rate in the forward
irection (6,756,371 fps) is significantly higher than the median frame
ate of the bidirectional test (4,199,651 fps), because the bottleneck
as the reverse direction. The phenomenon that median frame rate

n the reverse direction (4,280,200 fps) is somewhat higher than the
idirectional one can be explained by the fact that the same NIC is used
y the receiver and the sender of the Responder during the bidirectional
est. (Theoretically, the reading and writing of the same state table may
lso have some effect, but we believe that it is not significant due to
he very large size of the state table (400,000,000 entries).

We have one further interesting observation: the median frame
ate of the throughput in the forward direction (6,756,371 fps) is
ower than the median of the maximum connection establishment rate
7,187,228 fps). That is, isend() with pseudorandom enumeration
f the port numbers is faster than the stateless send() function with
FC 4814 pseudorandom port number generation. The explanation is
eliberate: the port numbers for isend() are pre-generated, whereas
end() generates random numbers during the test.

. Discussion and future work

As far as we know, our stateful extension of siitperf is the
orld’s first RFC 8219 and RFC 4814 compliant stateful NAT64/stateful
AT44 tester. Having no sample to follow, we could rely only on our
wn considerations. Our first test results seem to justify our design

oncept in various aspects:
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Table 5
Achieved frame rate for throughput test (unidirectional traffic) using pseudorandom
four tuple selection from the state table of the Tester (𝑁 = 𝑀 = 400, 000, 000).

Traffic direction Forward Reverse

Median (fps) 6,756,371 4,280,200
1st percentile (fps) 6,756,102 4,265,318
99th percentile (fps) 6,757,568 4,281,251
Dispersion 0.02 0.37

1. The usage of the four tuples proved to be a working solution
for generating traffic in the direction from the Responder to the
Initiator at a sufficiently high frame rate.

2. Separating the preliminary phase and the test phase enabled
us to perform a unidirectional test having traffic only from the
Responder to the Initiator.

3. Letting the user specify a different frame rate for the prelim-
inary phase than for the test phase enabled us to properly
measure both the maximum connection establishment rate and
the throughput.

4. Making the extension resilient with several parameters also
proved to be useful, e.g. different policies for four tuple selec-
tion, resilience regarding the number of preliminary frames, the
size of the state table, etc.

Pseudorandom enumeration of all possible port number combinations
proved to be a key issue of measuring the maximum connection estab-
lishment rate and throughput separately. However, we included linear
enumeration of port numbers also in the Internet-Draft [27] as an
additional metric. Besides that, linear port number enumeration may
also be used for special purposes, like wilfully exhausting the port
number range of a stateful NAT64/NAT44 gateway for simulating a
denial of service attack. We plan to use it for testing various NAT64
implementations, how much they are vulnerable to this kind of attack,
as we mentioned in [24,25].

We are aware that still there are several open questions. For exam-
ple, in Section 6.5, we took the liberty of creating a different number of
port number combinations by keeping the source port number range as
fixed and increasing the destination port number range tenfold twice.
However, we have no idea, how much it is different if we use a source
port range of size 10,000 and a destination port range of size 100 versus
if we use a source port range of size 40,000 and a destination port range
of size 25. The number of possible combinations is 1 million in both
cases, but they may result in different performances.

And it was just one example. We expect to gain more experience
in stateful testing by carrying out comprehensive benchmarking of
various stateful NAT64 implementations like Jool or OpenBSD PF. Our
experience may show the need for further developments of siitperf.

We believe that having a suitable benchmarking tool is important,
but not sufficient. For example, network operator experience regarding
the most important parameters of a stateful NAT64 or NAT44 gateway
is absolutely necessary for producing usable benchmarking results.
Thus, we are looking for partners.

We would be grateful to receive any feedback regarding the theory
and practice of stateful testing and also regarding our tool, siitperf.
Its stateful extension is now available in the ‘‘stateful’’ branch [5], and
we plan to merge it into the ‘‘master’’ branch when we consider it to
be mature enough.

We are also open to add further functionalities like stateful NAT66
testing if there is user demand for it.

We plan to perform performance optimization when the set of
functionalities seems to be stable.

One of the most crucial methodology issues is the problem of using
UDP traffic for benchmarking as required by RFC 8219. However,
stateful NATxy gateways may handle TCP and UDP ‘‘connections’’
differently. Therefore, it may be necessary to implement testing also
with TCP traffic. However, we expect it to be more difficult due to
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the need for proper handling of TCP connection establishment and
termination.

During the first review of this paper, wrote an Internet-Draft [27]
about the proposed methodology for stateful NATxy testing and submit-
ted it to the Benchmarking Working Group of IETF. The presentation of
its ‘‘02’’ version was received very positively by the session chairs. It is
still under development and we hope that one day it may be published
as an RFC.

8. Conclusion

We conclude that our efforts were successful in creating the world’s
first RFC 8219 and RFC 4814 compliant free software stateful NATxy
benchmarking tool. Our tests proved that it works correctly and it has
high enough performance for benchmarking stateful NAT64 and even
stateful NAT44 gateway implementations. We have also advanced the
theory of stateful benchmarking by being the first to propose a working
solution.

Our future plans include its comprehensive testing, adding further
functionalities, and its performance optimization. We also plan to use
our new Tester for research in benchmarking methodology issues.
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