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ARTICLE INFO ABSTRACT

Index terms: The benchmarking of Network Address and Protocol Translation from IPv6 clients to IPv4 servers (stateful
Benchmarking NAT64) gateways is challenging from a methodological point of view because the state of the art benchmarking
Iptables standards have some requirements that are conflicting when applied to stateful NAT64 gateways. In this paper,
f)oo} BSD PF several methodological gaps are pointed out and a benchmarking methodology is proposed, which is applicable
Sc[z:bility for any stateful NATxy gateways, where x and y are in {4, 6}. It bridges all the gaps by reconciling the
Stateful NAT64 conflicting requirements and facilitating the execution of the industry standard benchmarking measurement

Tayga procedures (throughput, latency, frame loss rate, packet delay variation) with stateful NATxy gateways. New
performance metrics specific to stateful testing are also defined: maximum connection establishment rate,
connection tear down rate, and connection tracking table capacity. The proposed methodology is suitable for
examining the scalability of the stateful NATxy gateways, too. The methodology is validated by applying it to
the benchmarking of three radically different stateful NAT64 implementations: Jool, tayga plus iptables, and

OpenBSD Packet Filter (PF). The details of the measurements and their results are fully disclosed.

1. Introduction

Stateful Network Address and Protocol Translation from IPv6 clients
to IPv4 servers (stateful NAT64) [1] has played an important role in
the stage of transitioning the Internet from Internet Protocol version
4 (IPv4) to Internet Protocol version 6 (IPv6) for about a decade [2].
Together with Domain Name System (DNS) extensions for network address
translation from IPv6 clients to IPv4 servers (DNS64) [3] they enable IPv6-
only clients to communicate with IPv4-only servers. In 2014 a survey
on IPv4 address sharing mechanisms [4] stated that “the only actual
address sharing mechanism that really pushes forward the transition
to IPv6 is stateful NAT64”. The Combination of Stateful and Stateless
Translation (464XLAT) [5] was constructed to address the problem
of IPv4-only applications and the usage of IPv4 literals; furthermore,
the Provider-side Translator (PLAT) of 464XLAT is actually a stateful
NAT64 gateway. Unfortunately, the transition to IPv6 happens rather
slowly due to various root causes [6]; therefore, the authors expect that
stateful NAT64 will be needed for decades.

Several stateful NAT64 implementations have been developed, and
their performance and scalability are important decision factors for
network operators when selecting the most appropriate one for their
purposes. The comparison of their performance has been a research
topic over the past ten years (please refer to the overview in Section 3).

However, there are methodological gaps (please refer to Sections 2 and
4.2). Therefore, the published performance measurements could not
comply with the state of the art benchmarking methodology defined
by various Internet Engineering Task Force (IETF) Benchmarking Work-
ing Group (BMWG) Request for Comments (RFC) documents requiring
testing with bidirectional traffic [7] and using pseudorandom port
numbers [8].

It is a common property of any stateful NATxy gateways, where
x and y are in {4, 6}, and also of stateful firewalls that connections
may only be initiated from the client side. Packets arriving in the
opposite direction are discarded if they do not belong to a connection.
The connections are registered using a connection tracking table, which
leads to a scalability issue in that the performance of stateful devices
degrades with an increase in the number of network flows.

The primary aim of this paper was to propose a methodology
for benchmarking stateful gateways to measure how their throughput
performance degrades with the number of network flows. The proposed
method complies with the state of the art benchmarking practices
and works with stateful gateways. The methodology was validated by
checking if the proposed measurements can be carried out with rad-
ically different stateful NAT64 implementations and if they produced
meaningful results. The authors also tried to find out if there were any
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flaws in the methodology regarding its assumptions and how the tester
could interact with the stateful gateway (e.g., the content of its entire
connection tracking table could be deleted or a User Datagram Protocol
(UDP) timeout could be set up).

The remainder of this paper is structured as follows: In Section 2, the
problem statement is given. In Section 3, an overview of the research
done on the performance analysis of stateful NAT64 implementations
is provided and also their weaknesses are highlighted. In Section 4,
the necessary background information regarding benchmarking are
summarized, the different methodological gaps are pointed out, and a
state of the art benchmarking methodology for stateful NATxy gateways
is proposed. In Section 5, the available free software [9] for stateful
NAT64 implementations are surveyed and three radically different ones
are selected. In Section 6, the validation of the proposed benchmark-
ing methodology by performing benchmarking measurements of the
selected stateful NAT64 implementations is outlined. Sections 7-12
contain details of the benchmarking measurements and their results.
In Section 13, the findings are discussed. This paper is summarized in
the Conclusion section.

2. Problem statement

There is a long established and continually evolving industry stan-
dard methodology for benchmarking network interconnect devices, and
its latest version [10] also includes stateful NAT64. (Please refer to
Section 4.1 for a short introduction to it.) However, it needs to be
mentioned that:

1. This methodology has some requirements that are partially con-
tradictory regarding the benchmarking of stateful NAT64 gate-
ways, and thus they cannot be implemented in their literal
meaning: the usage of bidirectional traffic required by RFC
2544 [7] and the usage of pseudorandom port numbers required
by RFC 4814 [8] do not work with stateful NAT64 gateways.
(Please refer to Section 4.2.1 for details.)

. This methodology lacks appropriate state-handling related per-
formance metrics that are necessary to give a comprehensive
characterization of the performance of stateful NAT64 gateways.
(Please refer to Section 4.2.2 for details.)

. This methodology does not provide sufficient guidelines on how
to measure scalability, which is an extremely important property
of software-based stateful NAT64 solutions regarding how their
performance scales up with the increasing number of active CPU
cores and potential degradation of their performance caused
by the increasing number of network flows. (Please refer to
Section 4.2.3 for details.)

The authors have already written an Internet Draft [11] proposing a
methodology that reconciles the contradictory requirements for bench-
marking stateful NAT64 gateways, defines the necessary new perfor-
mance metrics, and is suitable for measuring the scalability of stateful
NAT64 implementations. However, to follow up on this:

1. The methodology needs to be validated: it should be checked
if the proposed measurements can be carried out with the dif-
ferent stateful NAT64 implementations, and if they produce
meaningful and usable results that satisfactorily characterize the
performance of the stateful NAT64 gateways.

. It should be checked whether the requirements of the methodol-
ogy are both necessary and satisfactory. (If not, then they should
be updated.)

Please refer to Section 6 for details on how these goals were achieved.
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3. Related work

This is a brief overview of the research results in the field of
performance analysis of stateful NAT64 gateways, which also reveals
the limitations.

RFC 6146 [1] defined stateful NAT64 in 2011. Several papers were
published in the following years regarding the performance analysis
of various stateful NAT64 implementations. The common aspect of the
first three papers [12,13], and [14] from 2012 was that they measured
together the performance of a given NAT64 implementation and a given
DNS64 implementation, which was a serious drawback, as explained
in [15].

A simple method suitable for separate performance analysis of
different DNS64 and stateful NAT64 implementations was invented in
2012 [16], and the performance of tayga plus iptables and OpenBSD
PF was compared using ICMP in 2013 [17], and using ICMP, TCP, and
UDP in 2014 [18].

Barayuga and Yu compared various performance characteristics of
three systems: stateful NAT44, stateful NAT64, and IPv6 using UDP in
2014 [19] and using TCP in 2015 [20]. They used Jool for stateful
NAT64 implementation and iperf as a measurement tool.

Among other IPv4aaS (IPv4-as-a-Service) technologies, the perfor-
mance of 464XLAT (of which the PLAT was a stateful NAT64 gateway)
was measured by means of round-trip-delay, jitter, throughput, and
packet loss using the D-ITG traffic generator in 2015 [21].

The authors of [22] compared the performance of various IPv6
transition solutions including the tayga plus iptables and the Jool
stateful NAT64 solutions by measuring one-way delay and throughput
(using iperf for the latter) in 2016.

All the above papers predated RFC 8219 [10] (published in 2017)
and their measurement methods did not comply with it. Even later
researchers could not follow the methodology described in it, due to
lack of compliant Testers and the methodological gap regarding stateful
NAT64, which is pointed out in Section 4.2.1.

As for the latest results, it is worth mentioning the M.Sc. thesis
of Jan Pokorny [23] from 2019, which compared the performance
of different stateful NAT64 implementations. Originally, he wanted
to use iperf but its performance was not high enough, so he used
PF_RING [24] as his measurement tool.

It is also worth mentioning two further papers from 2020, including
not stateful but rather stateless NAT64 tests with a few RFC 8219
compliant measurements. In the first one [25], a legacy RFC 5180 [26]
compliant commercial Tester was used with some trick to perform
throughput tests utilizing the fact that the throughput measurement
procedure did not change since RFC 2544 [7]. In the second one [27],
throughput and frame loss rate measurements of three Stateless IP/ICMP
Translation (SIIT) implementations were reported.

Paper [28] aimed to compare the scalability of the Jool imple-
mentation of 464XLAT and MAP-T [29], and thus it also contained
stateful NAT64 measurements. Although the measurement setup only
facilitated that the performance of the Client-side Translator (CLAT)
and PLAT devices were measured together, it was pointed out that the
bottleneck was the PLAT. These measurements did not comply with
RFC 8219 due to the measurement tool used, but later the measure-
ments were performed in another setup using a different measurement
tool [30], and these measurements complied with the Dual Device Under
Test (DUT) setup of RFC 8219.

4. Introduction of benchmarking methodology for stateful NAT64
gateways

4.1. Summary of the basics

RFC 2544 [7] was published in 1999 and since then it has deter-
mined how commercial network performance testers work. It laid down
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all important conditions for the benchmarking measurements of net-
work interconnect devices, including test setup, test frame formats and
sizes, requirement for bidirectional traffic, and for IP packet forwarding
devices, the stipulation of testing with a single IP address pair and
also with 256 different destination networks. Furthermore, it specified
the usage of UDP as a transport layer protocol. RFC 2544 defined the
following benchmarking measurement procedures: throughput, latency,
frame loss rate, back-to-back frames, system recovery, and reset. Moreover,
it used IPv4 in its examples and the maximum frame rate values for
various media presented in the Appendix also show its age.

An IPv6 upgrade was published in RFC 5180 [26] in 2008, which
explicitly excluded IPv6 transition technologies from its scope. It also
covered some contemporary media types, like Ten Gigabit Ethernet
(10GbE).

The benchmarking methodology for IPv6 transition technologies
was defined in RFC 8219 [10] in 2017. It focused mainly on the
differences caused by the various IPv6 transition technologies. In order
to handle the high number of IPv6 transition technologies [31] effi-
ciently, it classified them into a small number of categories regarding
the method they used for the traversal of the access and core network
of the Internet Service Provider (ISP): dual stack, single translation, double
translation, and encapsulation. Additionally, it defined the benchmarking
methodology for the last three categories (as dual stack devices can
be benchmarked according to RFC 2544 and RFC 5180). As for the
benchmarking procedures, it reused the majority of them from RFC
2544, e.g., throughput, frame loss rate, etc., but it redefined the latency
measurement procedure, and it defined further ones for Packet Delay
Variation (PDV) and Inter Packet Delay Variation (IPDV). It kept the
requirement of testing with bidirectional traffic, but it added the usage
of unidirectional traffic as an optional test.

It needs to be mentioned that RFC 4814 [8] recommended the usage
of pseudorandom source and destination port numbers. This is very
important because RFC 2544 used a fixed test frame format including
port numbers, which was very convenient for the manufacturers of
testing devices; the same test frames could be sent out repeatedly.
However, the modern multi-core packet forwarding devices (including
routers implemented by Linux servers) usually support Receive Side
Scaling (RSS), also called multi-queue receiving, and they need entropy
to be able to distribute the interrupts caused by packet arrivals among
all Central Processing Unit (CPU) cores. (Otherwise, when testing with a
single IP address pair, two CPU cores would process all interrupts; one
for each direction, which is far from the typical operation of a router
that forwards Internet traffic.)

4.2. Methodological gaps

4.2.1. Requirements of bidirectional traffic and pseudorandom port num-
bers

Stateful NAT64 belongs to the single translation technologies among
the categories of RFC 8219; therefore, it should be tested according
to the Single DUT Setup. It means that the IPv6 and IPv4 interfaces
of a stateful NAT64 gateway should be connected to the IPv6 and
IPv4 interfaces of the Tester, respectively, and the Tester should send
bidirectional traffic through the DUT. However, RFC 4814 has defined
the following ranges for port numbers:

* Source port numbers: 1,024-65,535
» Destination port numbers: 1-49,151

Therefore, the number of possible source port number and destination
port number combinations is: 3,170,829,312.

The verbatim application of the requirements of these two RFCs
have different negative consequences depending on the direction:

1. In the IPv6 to IPv4 direction, the usage of potentially more
than three billion source port number and destination port num-
ber combinations would exhaust the capacity of the connection
tracking table of the DUT.
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2. In the IPv4 to IPv6 direction, the usage of randomly invented
port number combinations would result in the drop of the pack-
ets that do not belong to a connection stored in the connection
tracking table of the DUT, thus, the vast majority of the test
frames would be dropped.

It should be noted that the exhaustion of the capacity of the connection
tracking table of the DUT may result in various problems depending on
its replacement policy and settings. Just to mention a few:

« If the size of the connection tracking table of the DUT is not
limited by a specific setting, then the DUT may collapse due
to memory exhaustion. (Such a situation has been reported in
Section 4.9 of [11].)

If the size of the connection tracking table of the DUT is limited
by a specific setting, then depending on its replacement policy,
it either cannot store new connections (and it may also drop the
packets) or it can overwrite its connections and due to this extra
work the results will not reflect the operation of the DUT when it
processes Internet traffic.

Therefore, careful considerations are required to bridge this method-
ological gap and to facilitate the benchmarking of stateful NAT64
gateways complying with both RFC 8219 and RFC 4814.

4.2.2. Missing state-handling performance metrics

Section 8 of RFC 8219 recommends two additional benchmarking
tests for stateful IPv6 transition technologies; they are the concurrent
TCP connection capacity and the maximum TCP connection establishment
rate measurements. However, both of them only apply to TCP, whereas
testing with UDP is required and a performance metric for connection
tear down is completely missing. (For the authors’ Internet Draft [11],
testing with TCP is out of scope. Please see Table 1 for which document
covers what.)

It should be noted that test frame format defined in RFC 2544
exclusively uses UDP (and not TCP) as a transport layer protocol.
Testing with UDP was kept in both RFC 5180 and RFC 8219 regarding
the standard benchmarking procedures (throughput, latency, frame loss
rate, etc.). The proposed methodology of the authors follows this long
established benchmarking tradition using UDP as a transport layer
protocol, too. The rationale for this is that the standard benchmarking
procedures require sending frames at arbitrary constant frame rates,
which would violate the flow control and congestion control algo-
rithms of the TCP protocol. TCP connection setup (using the three-way
handshake) would further complicate testing.

4.2.3. Missing guidelines for scalability measurements

RFC 8219 and all its predecessors have the view that the perfor-
mance of a device needs to be measured. It is called Device Under
Test, and it is considered to be a black box. However, stateful NAT64
solutions are often implemented in software and they are not bound
to a specific hardware, but they can be executed using a wide range
of commodity servers. Thus, the benchmarking results produced by
using a given specific hardware configuration do not provide enough
information to predict their performance using a different hardware
configuration. It would be more useful to know their performance
using only a single CPU core of a widely used CPU type, and espe-
cially, how their performance scales up with the number of available CPU
cores. Nevertheless, this topic was out of scope of RFC 8219 and its
predecessors.

As for the performance degradation caused by multiple connections,
it is partially addressed by Section 10 of RFC 8219. It mentions an
increased number of network flows, but it does not specify how they are
to be achieved. For example, it can be done by using multiple and an
increasing number of source or destination IP addresses or source or
destination port numbers.
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Table 1
The coverage of measurement types and transport protocols.
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Type of measurement TCP

UbP

Maximum connection establishment rate RFC 8219 [10]
Connection tracking table capacity RFC 8219 [10]
Connection tear down rate -

Authors’ Internet Draft [11]
Authors’ Internet Draft [11]
Authors’ Internet Draft [11]

B et et +
2001:2::2 |Initiator Responder| 198.19.0.2
Fomm e | Tester |<====mmmmmm— +
| IPv6 address| [state table]| IPv4 address]|
| o + |
| |
| B + |
| 2001:2::1 | DUT: | 198.19.0.1 |

Stateful NAT64 gateway

IPv6 address| [connection tracking table] | IPv4 address

Fig. 1. Test setup for benchmarking stateful NAT64 gateways [11].

4.3. Proposed methodology

The first two authors of this paper proposed a general method-
ology for benchmarking stateful NATxy gateways using RFC 4814
pseudorandom port numbers, where x and y were in {4, 6}. The first
version of their individual Internet Draft was submitted in 2021 and
it significantly evolved until its adoption by the BMWG of IETF at the
IETF 115 meeting. The first version as a WG draft was published on
September 24, 2022 [11]. This version is used to give a short summary
of the proposed methodology and also as a reference regarding the
further development and refinement of the methodology.

As for the IP version numbers, theoretically all four combina-
tions of 4 and 6 are possible; practically, stateful NAT64 and stateful
NAT44, also called Network Address and Port Translation (NAPT) have
widespread deployment. In this paper, the focus is on stateful NAT64.
(Here only a short summary of the methodology described in the
23-page long Internet Draft [11] is given.)

The test setup for benchmarking stateful NAT64 gateways is shown
in Fig. 1. The IPv6 port of the Tester is called the Initiator and its IPv4
port is called the Responder. The Responder maintains an internal data
structure, state table, of which the one that performs the measurement
has full control. The DUT maintains an internal data structure, which is
the connection tracking table. Its size, content, as well as its policies are
unknown to one who performs the measurement, as black box testing
is done. However, the one that performs the measurement can clear
its contents (using some implementation dependent method), adjust its
timeout time, and infer to its contents from its observable behavior.

As for the transport layer protocol, RFC 2544 recommends UDP, and
it is kept in RFC 8219, which the authors also followed. It is important
to note that stateful NAT64 gateways maintain state for both UDP and
ICMP in their connection tracking tables, and not only for TCP.

The pseudorandom port numbers required by RFC 4814 are applied
to the benchmarking of stateful NAT64 gateways as follows:

1. The Initiator uses limited port number ranges. The source port
number range is larger (a few times 10,000) and the destination
port number range is smaller and it is used as a parameter
(e.g., from a few times ten to a few thousands). The rationale
for this asymmetry is that the vast majority of the Internet traffic
uses a wide range of source port numbers but only a few very
popular destination port numbers according to [32].

2. Two test phases are used. (For historic reasons, phase 1 and phase
2 are called, in [11], preliminary test phase and real test phase,
respectively.)

3. During phase 1, only the Initiator sends IPv6 test frames. The
DUT performs the stateful NAT64 translation and stores the con-
nections in its connection tracking table. The Responder receives
the IPv4 test frames, extracts the four tuples (source IPv4 address,

source port number, destination IPv4 address destination port
number) from the received frames and stores them in its state
table.

4. During phase 2, the Initiator and the DUT behave as before, and
the Responder constructs and sends IPv4 test frames, taking valid
four tuples from its state table (swapping source and destina-
tion). The Responder also updates its state table according to
the information extracted from the newly received test frames.

Although the contents of the connection tracking table of the DUT
cannot be directly examined, its contents can be controlled with the
careful selection of certain parameters. To that end:

1. It is assumed that the connection tracking table of the DUT is
able to store all connections generated by the possible source
port number and destination port number combinations deter-
mined by their selected ranges. (It can be checked, please refer to
the connection tracking table capacity measurement in Section
4.9 of [111)

2. Only a single source and destination IP address pair is used. (This
is a limitation, which is discussed in Section 13.2.4.)

3. Each experiment is started with an empty connection tracking
table.

4. In the DUT, a timeout time is set that is larger than the sum of
the length of phase 1, the gap between the two phases, and the
length of phase 2.

5. During phase 1, all possible source port number and destination
port number combinations are enumerated in a pseudorandom
order.

By using the above-mentioned simple steps, the following can be
achieved:

+ During phase 1, all test frames result in creating a new connection
in the connection tracking table of the DUT.

» During phase 2, neither new connections are created in the con-
nection tracking table of the DUT, nor connections are deleted
from there.

These clear situations make it possible to perform repeatable mea-
surements. Phase 1 is suitable for the measurement of a new metric
called maximum connection establishment rate. It is the highest (constant)
frame rate at which the DUT is able to properly process all test frames
in phase 1. In practice, a binary search is used to find the highest such
rate. The maximum connection establishment rate measurement has
two sub-variants:

1. The first one supposes that if a test frame arrived to the Receiver,
then it had been properly processed by the DUT. (This one was
the original version and it was retroactively named non-validated
maximum connection establishment rate measurement.)

2. The second one checks in phase 2, if all connections have
been established. To that end, the Responder sends test frames
using all stored four tuples at a low enough rate and the Ini-
tiator checks if all frames arrived. It is called: validated maxi-
mum connection establishment rate measurement. Please refer
to Section 11 for details.

The maximum connection establishment rate is an important metric for
stateful NAT64 gateways, thus it should be reported. Additionally, it is
needed for the other tests.
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The “classic” measurement procedures (throughput, latency, frame
loss rate, PDV, IPDV) can be executed in phase 2. In this case, phase 2
must be preceded by phase 1, during which the frame rate is safely
lower than the previously measured maximum connection establish-
ment rate to ensure that all required connections are created in the
connection tracking table of the DUT.

The connection tear down performance is also an important metric
for stateful NAT64 gateways because all established connections have
to be terminated. To that end, an aggregate measurement method was
recommended. In short, first N number of connections are loaded into
the connection tracking table of the DUT and then the entire content of
the connection tracking table is deleted using some out-of-band solution
(e.g., by deleting the kernel module under Linux). The duration of the
deletion (7T') is then measured. The connection tear down rate is: N /T
and needs to be measured for various values of N.

It is complicated to measure the capacity of the connection tracking
table of stateful NAT64 gateways because the validation of the used
validated maximum connection establishment rate measurement may
fail for two different reasons that have different meanings:

« It may fail because the capacity of the connection tracking table
has been exhausted.
« It may fail because the frame rate was too high.

Please refer to Section 4.9 of [11], for a more detailed analysis of the
situation.

Here, only the highlights of the measurement method are given,
which consists of two major steps:

1. The order of magnitude of the size of the connection tracking
table is determined by an exponential search: Starting from a
safe initial number of connections (that can be surely stored
in the connection tracking table), the tested number is always
doubled and it is checked by the validated maximum connection
establishment rate measurement, if the currently tested number
of connections can be stored in the connection tracking table.
The result is the last safe number (N,) and the number of
connections the test failed at (Np).

. In general, a binary search is used to find the exact size of
the connection tracking table where the starting interval of the
binary search is [N, N f].

The performance metrics can be classified into two groups:

1. “Stateful” metrics: connection establishment rate, connection
tear down rate, connection tracking table capacity.

2. “Classic” metrics: throughput, latency, frame loss rate, PDV,
IPDV.

For scalability, no new metrics were defined, but measurement series
are recommended, through which the value of a parameter is changed.
As for scalability against the number of CPU cores, testing with a
series of active CPU core numbers is recommended that are powers
of two, i.e., 1, 2, 4, 8, etc., in order to be able to scan a wide range
while keeping the number of tests reasonable. As for scalability against
the number of connections, it is recommended tuning the number of
connections by increasing the size of the destination port number range.

4.4. Available measurement tool

As far as the authors know, siitperf is the only RFC 8219 and
RFC 4814 compliant SIIT and stateful NAT64/NAT44 tester. It is avail-
able from GitHub [33] under the GPLv3 license. Its original version
(documented in [34]) was only a SIIT tester and it literally followed the
fixed test frame format, as defined in Appendix C.2.6.4 of RFC 2544.
Later the RFC 4814 pseudorandom port numbers were enabled for
use [35]. Eventually, it was extended for stateful benchmarking [36].
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Siitperf was designed to be a flexible research tool allowing
for the usage of several tunable parameters even if the RFCs rec-
ommended using constant values. Its core business logic was imple-
mented in C/C++ programs using the Intel Data Plane Development Kit
(DPDK) [37]. The binaries can be used to perform a single step of the
measurements and they are executed by various bash shell scripts. The
shell scripts are also provided, but they have to be customized depend-
ing on the actual measurement environment and intended parameters.

5. Survey of stateful NAT64 implementations to be benchmarked

For a long time the authors considered only free software [9] for
benchmarking for the same reasons as presented in [38]:

+ The licenses of certain vendors (e.g., [39,40]) do not allow the
publication of benchmarking results.

» The free software can be used by anyone for any purpose, thus
the results can be helpful for anyone.

+ The (free) software is free of charge for the authors, too.

Therefore, the authors surveyed the available free software for
stateful NAT64 implementations. They could not test all the available
ones due to time limitations. The following criteria were set up for
selecting implementations for testing:

1. The set of implementations to be tested should contain diverse
implementations to support the validation of the benchmarking
methodology.

. The selected implementations should not be obsolete but cur-
rently usable ones in order to provide network operators and
researchers with useful information.

. The known high performance is an advantage, but not a re-
quirement as criterion 1 has a higher priority than criterion
2.

The following implementations were selected for testing for the follow-
ing reasons:

+ Jool [41] has been widely used in the latest papers and it has a
good performance.

» Tayga [42] is well-known, and it differs from the other candidates
in the sense that it is a user-space stateless NAT64 translator and
it is used together with iptables to implement stateful NAT64.
Although it is old, it is a part of the Debian Linux distribution.

» OpenBSD PF [43] is very diverse from other candidates and it has
shown good performance [17].

The authors were aware of the following implementations, but did not
choose them for testing:

» FD.io VPP [44] has been mentioned in many research papers over
the past five years. As it is DPDK-based, it was expected to have
high performance, although the authors did not find any informa-
tion published about its stateful NAT64 performance. Its version
22.06 was successfully installed. However, it always crashed with
segmentation fault when its stateful NAT64 performance was
tested. The case was reported on the vpp-dev@lists.fd.io mailing
list [45] and the investigation of the problem is in progress. The
authors plan to test it later (after a successful bugfix).

Ecdysis [46] was one of the first stateful NAT64 implementations.
Its code has been included into OpenBSD PF and it is still available
as a Linux kernel module. In 2012 the authors tested it with
different Linux kernels but it did not work [16]. Its latest release
was in 2014 when it was updated for 3.13 Linux kernel, but it is
highly unlikely to work with 4.x kernels.

ASAMAP Vyatta [47] was used in [21]. Its latest version is from
2014, and it runs only with Linux 3.x kernels. Moreover, it was
built on Debian 6 and did not recognize the RAID controller of
the Dell PowerEdge R430 servers used for benchmarking.
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Table 2

Throughput of IPv4 packet forwarding as a function of the number of the active CPU cores.
Number of active CPU cores 1 2 4 8 16 32
Error (fps) 400 1,000 2,000 4,000 8,000 8,000
Median (fps) 907,421 1,623,045 3,187,499 6,249,999 11,851,562 12,007,812
Minimum (fps) 901,952 1,592,772 3,091,796 6,121,092 11,617,186 11,992,186
Maximum (fps) 912,890 1,625,976 3,205,076 6,253,906 11,882,812 12,023,436
Average (fps) 907,811 1,619,920 3,173,045 6,230,468 11,831,249 12,007,811
Standard deviation 3,299 10,021 36,169 42,473 76,918 12,758
Median / previous median - 1.79 1.96 1.96 1.90 1.01

» VyOS [48] can be considered a successor of Vyatta, but it does
not actually have a stateful NAT64 implementation, there is only
a “feature request” for it where one can state how important this
feature would be [49].

» WrapSix [50] is about a 10-year-old user space stateful NAT64
implementation and Jan Pokorny did not manage to get it to work
in 2019 [23].

6. Steps of evaluation

To validate the methodology, the authors tested if their proposed
benchmarking measurements could be carried out with the three se-
lected stateful NAT64 implementations and documented in detail to
show that the measurements work with all of them, despite the fact
that they have some radical differences. As there were a high number
of possible measurements, some reductions were made and only the
relevant ones were carried out. The authors considered the following
aspects:

1. To test the feasibility of all measurement types, the following
types of measurements were carried out with all three imple-
mentations (at least once):

a. maximum connection establishment rate

b. throughput (as a representative of the “classic” tests to be
performed in phase 2)

c. connection tear down rate

. To test scalability, the authors performed:

a. tests with a different number of active CPU cores where
it was relevant

with different number of connections for all implementa-
tions

b.

. To provide network operators with usable performance data,
the authors did more measurements with scalable and high
performance implementations.

Although RFC 8219 requires testing with bidirectional traffic and
makes testing with unidirectional traffic optional, the authors per-
formed a unidirectional test with all implementations because they
gave an important insight into the operation of the given stateful
NAT64 implementation:

+ These results were used in Section 11.

» They were important for network operators because the download
traffic of stateful NAT64 gateways is usually significantly higher
than their upload traffic.

The authors also investigated if there is a justification for using the val-
idated connection establishment rate as a replacement for the original
non-validated one.

The authors verified if the order of port numbers makes a difference,
if port number enumeration is used.

The connection tracking table capacity measurements were omitted
because they currently do not work with some of the implementations.
It is planned that this will be addressed in a separate work.

The results were carefully analyzed from the viewpoint of the
methodology and the findings are discussed in Section 13.
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7. The Linux test system and baseline measurements

With the exception of OpenBSD PF, the other two implementations
were tested using the same Linux test system. Its description is in
Appendix A.1.

The throughput of IPv4 and IPv6 packet forwarding of the Linux
kernel using 1, 2, 4, 8, 16, and 32 active CPU cores was measured to
check the performance of the test system and to give an insight into its
scalability.

The tests were executed 10 times with each number of active CPU
cores and IP versions.

It may be noted that siitperf interpreted the packet rate as
“number of packets per second per direction” and it also reported
the results with this interpretation. However, commercial network
performance testers usually report packet rate as the number of all
forwarded packets per second. Thus, the reported throughput results of
siitperf were multiplied by two. This was also done with the error
of the binary search. The error value expresses the stopping criterion for
the binary search. It stops, when:

higher_limit — lower_limit <= error.

(€8]

The value of error was selected to be less than 0.1% of the results so
that the results would have three valuable digits.

As for the summarizing function, the Internet Draft [11] recom-
mended the usage of median because it is less sensitive to the outliers
than average.

To express the dispersion of the results, the authors recommended
the first percentile and the 99th percentile, which are now the same as
minimum and maximum, respectively, as the number of the results is
less than 100.

The throughput results of the scalability test of Linux kernel IPv4
packet forwarding are shown in Table 2. In the last row, the proportion
of the median and the previous median (measured with half as many
cores) was also added.

It might be apparent that the increase of the throughput from a
single core to two cores was only 79%, whereas it was 96% in the
following two cases. This phenomenon can be explained by two root
causes:

1. the multi-core operation has its cost compared to the single-core
operation,

the measurement system was a Non-Uniform Memory Access'
(NUMA) inhomogeneous system from two cores. (The Intel 10G
dual-port X540 NIC and the CPU cores 0, 2, 4, ...30 belonged
to NUMA node 0 and the CPU cores 1, 3, 5, ...31 belonged to
NUMA node 1.)

2.

There was an even more salient and strange phenomenon at 32
cores; the throughput showed only a negligible increase (1%). It was
caused by an issue that the authors also observed earlier under Debian
9 with 4.9.0-16-amd64 Linux kernel: even if 32 CPU cores were online,

1 It is a memory system design, where the memory access time depends on
the location of the memory. A CPU can access its local memory faster than
non-local memory. Please refer to [51] for full depth explanation.
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Table 3

Throughput of IPv6 packet forwarding as a function of the number of the active CPU cores.
Number of active CPU cores 1 2 4 8 16 32
Error (fps) 400 1,000 2,000 4,000 4,000 4,000
Median (fps) 771,873 1,250,780 2,464,061 4,707,030 6,703,124 5,874,999
Minimum (fps) 752,732 1,199,218 2,423,436 4,621,092 6,652,342 5,761,718
Maximum (fps) 775,390 1,252,342 2,479,686 4,753,906 6,722,656 5,894,530
Average (fps) 768,670 1,242,968 2,461,874 4,704,686 6,699,999 5,860,155
Standard deviation 7,630 17,508 17,496 38,459 18,941 41,699
Median / previous median - 1.62 1.97 1.91 1.42 0.88

Table 4

Maximum connection establishment rate of Jool as a function of the number of the active CPU cores, 4M connections.
Number of active CPU cores 1 2 4 8 16
Error (cps) 100 200 400 400 400
Median (cps) 208,984 331,835 420,653 454,345 483,153
Minimum (cps) 208,299 324,804 416,747 452,392 472,411
Maximum (cps) 213,768 337,695 423,095 457,275 486,572
Median / previous median - 1.59 1.27 1.08 1.06

Table 5

Throughput of Jool as a function of the number of the active CPU cores, 4M connections, bidirectional traffic.
Number of active CPU cores 1 2 4 8 16
Error (fps) 200 200 400 400 400
Median (fps) 236,717 371,286 475,780 491,794 497,654
Minimum (fps) 234,178 368,162 473,044 487,108 495,702
Maximum (fps) 237,694 375,194 480,858 495,702 501,952
Median / previous median - 1.57 1.28 1.03 1.01

the interrupts were scheduled only to cores 0-15. The authors believe Table 6

that this was a kernel bug because according to dmesg, 32 receive
queues are supported by the NICs (Rx Queue count = 32). Therefore,
the authors decided to use only 1, 2, 4, 8, and 16 CPU cores for testing
the scalability of the various stateful NAT64 implementations.

Note: Debian 11.2 with 5.10.0-11-amd64 kernel was also tested and
an even worse issue was found: the interrupts were scheduled only to
the even number CPU cores: 0, 2, 4, ...30.

The results of the scalability test of Linux kernel IPv6 packet for-
warding are shown in Table 3. The same tendencies can also be
observed here and the situation is even worse at 32 cores as the
throughput decreases by 12%.

Despite all these issues, the Linux test system was found to be
scalable up to 16 CPU cores and its performance was more than enough
for benchmarking the selected stateful NAT64 implementations.

8. Benchmarking Jool

There is a detailed description of the measurements with Jool in
Appendix A.2.

8.1. Scalability against the number of active CPU cores

It was examined how the performance of Jool scaled up with the
number of active CPU cores from 1 to 16. For these tests, four million
connections were used, based on the suggestion of Vyacheslav Gapon,
for a high-loaded NAT server [52]. Following the recommendation
of [11], the source port number range was wider (1-40,000) and the
destination port number range was narrower (1-100).

The maximum connection establishment rate measurement results
are shown in Table 4. They show moderate scalability. The increase of
performance was significant up to four CPU cores (59% and 27%), but
it started vanishing from 8 CPU cores (8% and 6%).

The throughput measurement results using bidirectional traffic are
shown in Table 5. They are very similar to those in the previous table,
but here the performance increase is vanishing even more from 8 CPU
cores (3% and 1%).

It can be stated that Jool has shown rather poor scalability with the
number of active CPU cores. A 16-fold increase in the number of active
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Maximum connection establishment rate of Jool as a function of the number of
connections, 16 CPU cores.

Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Error (cps) 500 400 200
Median (cps) 625,976 483,153 356,445
Minimum (cps) 612,792 472,411 349,804
Maximum (cps) 630,370 486,572 358,397
Median / previous median - 0.77 0.74

Table 7

Throughput of Jool as a function of the number of connections, 16 CPU cores.
Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Error (fps) 400 400 200
Median (fps) 698,826 497,654 378,513
Minimum (fps) 684,764 495,702 373,240
Maximum (fps) 704,294 501,952 381,834
Median / previous median - 0.71 0.76

CPU cores resulted in only 2.3- and 2.1-fold increase in the maximum
connection establishment rate and throughput, respectively.

8.2. Scalability against the number of connections

It was examined how the performance of Jool degraded with the
number of connections. The number of active CPU cores was always
16 and the number of connections was increased from 400,000 to
40,000,000 in two steps. The maximum connection establishment rate
and the throughput measurement results are shown in Table 6 and
Table 7, respectively. The 23% to 29% performance decrease due to
the tenfold increase of the number of connections is significant, but
moderate.

It should be noted that a two order of magnitude difference was
covered in the number of connections with only three measurements
because the authors wanted to demonstrate the feasibility of the tests
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Table 8
Throughput of Jool as a function of traffic direction, 4M connections, 16 CPU cores.
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Fig. 2. Frame loss rate of the Jool stateful NAT64 implementation as a function of
frame rate and frame size using bidirectional traffic.

with a relatively low number of measurements. For a more refined grain
analysis, the authors recommend using smaller steps in the logarithmic
scale (e.g., by doubling the number of connections). Those tests will
require much more time, if a high number of connections has to be
handled at a relatively low connection establishment rate.

8.3. Throughput test with unidirectional traffic

The upload-only, bidirectional, and download-only throughput of
Jool was compared using 4,000,000 connections and 16 CPU cores.
The results are shown in Table 8. The download throughput of Jool
(521,093 fps) is somewhat higher than its upload throughput (490,820
fps), which is favorable from the ISP point of view, as the volume of
the download traffic is expected to be higher than the volume of the
upload traffic.

8.4. Frame loss rate

The authors did not intend to carry out a comprehensive bench-
marking of Jool, so frame loss tests were performed only with 4,000,000
connections, 16 CPU cores and bidirectional traffic. Two different frame
sizes were used, 84/64bytes and 1044/1024 bytes, to demonstrate that
they do not make a significant difference. The results are shown in
Fig. 2. The color bars show the median values whereas the bottom
and top ends of the error bars show the minimum and maximum
values of the results of the 10 experiments. The results comply with
the expectations of the authors, which is the frame size does not make
a significant difference because the lion’s share of the work of Jool is
the header processing.

8.5. Latency and PDV

RFC 8219 requires that latency and PDV are measured at the frame
rate determined by the throughput measurement. It should be noted
that IPDV is an optional test and siitperf does not support it.

For latency measurements, RFC 8219 requires the usage of at least
500 timestamps. The authors used 50,000 of them so that the po-
tentially lost ones could be eliminated when the 99.9th percentile is
calculated (for details, please refer to [34]).
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The latency and PDV measurement results of Jool using 4,000,000
connections and 16 CPU cores at 497,654 fps (frames per second) rate
with bidirectional traffic (that is, 248,827 fps per direction) are shown
in Table 9 and Table 10, respectively.

Note: these results were included only for completeness, and the
latency and PDV tests were not performed with the other implementa-
tions, as the authors did not aim to perform full benchmarking of all
three stateful NAT64 implementations.

8.6. Connection tear down rate

The connection tracking table of the DUT was filled with 0.4M,
4M, and 40M connections, and their deletion time was measured. To
increase the accuracy of the results, the measurements were also per-
formed without loading any connections into the connection tracking
table. For simplicity, it is called the deletion time of an “empty”” connec-
tion tracking table, but it also contains all overhead. The second result
was subtracted from the first one to get the “net” deletion time used
for deleting the connections. Finally, the connection tear down rate
was calculated. The results are shown in Table 11. The connection tear
down rate measured with 0.4M connections was put into parenthesis as
it was considered rather unreliable, since the authors got 0.16s as the
difference of the values, of which the first one was measured with high
uncertainty. The other two results were fairly similar to each other and
they were about an order of magnitude higher than the corresponding
maximum connection establishment rate results in Table 6.

9. Benchmarking tayga+iptables

There is a detailed description of the measurements with tayga plus
iptables in Appendix A.3.

As tayga runs as a single-threaded user process, the authors did not
see much value in measuring its scalability against the number of CPU
cores, although it should be noted that the measurements benefited
somewhat from the 16 CPU cores as they all took part in the processing
of the interrupts of packet arrivals and iptables could also use them;
however, tayga was the bottleneck.

9.1. Scalability against the number of connections

The same number of connections were used as with Jool to test the
scalability of the stateful NAT64 gateway implemented by tayga plus
iptables against the number of connections.

The maximum connection establishment rate results are shown in
Table 12. As for scalability, the authors managed to achieve that the
performance of the system degraded only very slightly due to the
careful selection of the hash table size parameter. (As the number
of connections was a power of ten and the hash table size was a
power two, their ratio showed minor fluctuations across the three
measurements.)

In the third column, there is a rather low minimum value, 49,853
cps, and the second smallest value among the 10 results was 49,951 cps.
The measurement log file was checked and it was found that the test
failed due to the loss of less than 0.01% of test frames. Moreover, the
same occurred occasionally (seemingly randomly) when the test was
repeated. This was very likely to be caused by tayga as the authors
did not experience such an issue with iptables, although earlier it
was tested at much higher rates and with a much higher number of
connections [53].

The maximum connection establishment rate measurement was re-
peated by replacing the zero loss criterion with a 0.01% loss tolerance,
i.e., a test was considered successful if at least 99.99% of the frames
sent by the Initiator arrived at the Responder. (Please see the discussion
of this approach and its consequences in Section 13.3.) The results are
shown in Table 13. As expected, the median values are quite similar to
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Latency of Jool at 497,654fps cumulated rate of bidirectional traffic, 4M connections, 16 CPU cores.

Upload latency

Download latency

Typical Worst case Typical Worst case
Median (ms) 0.0316 0.0923 0.0302 0.0957
Minimum (ms) 0.0307 0.0795 0.0292 0.0847
Maximum (ms) 0.0364 0.1749 0.0351 0.1814

Table 10

PDV of Jool at 497,654fps cumulated rate of

bidirectional traffic, 4M connections, 16 CPU cores.
Packet delay variation Upload Download
Median (ms) 0.0742 0.0774
Minimum (ms) 0.0576 0.0611
Maximum (ms) 0.7788 0.7826

those in Table 12 in all three columns and now the minimum value in
the third column is quite close to the median.

The throughput was measured with the normal “zero loss” criterion,
both in phase 1 to fill the state table (please refer to Section 13.3
for how this was possible) and in phase 2 to qualify the given step
of the binary search successful. The results are shown in Table 14.
The throughput results showed practically no degradation. There is a
somewhat lower minimum value (93,652 fps) in the third column.

9.2. Throughput test with unidirectional traffic

The upload-only, bidirectional, and download-only throughput of
tayga plus iptables using 4,000,000 connections and 16 CPU cores
are shown in Table 15. As with Jool, the download throughput (151,757
fps) of this solution is also higher than its upload throughput (127,147
fps).

9.3. Connection tear down rate

As the parameters of the connection tracking table of iptables
were tuned, the deletion time of the empty connection tracking table
was measured with each parameter set separately, and it made sig-
nificant difference, as shown in Table 16. It should be noted that the
connection tear down performance characterizes iptables alone as
tayga did not take part in the deletion of the connections.

10. Benchmarking OpenBSD PF

There is a detailed description of the measurements with OpenBSD
PF in Appendix A.4. It is also explained there that OpenBSD did not
support setting RSS.

10.1. Baseline measurements

The IPv4 and IPv6 packet forwarding throughput tests were per-
formed using the version of Multi Processor (MP) kernel specified in the
Appendix and also with its Single Processor (SP) variant for comparison.
All results are shown in Table 17. The MP kernel achieved a rather low
performance increase compared to the SP kernel, it was 29% and 20%
for IPv4 and IPv6, respectively. As it was below the expectations of
the authors, they checked again the output of the top command and
found the root cause of the issue: the packet forwarding was done by
a single process, the execution of which caused a significantly higher
load than the processing of the interrupts, thus processing the interrupts
with a separate core for each direction did not help much. An extract
from the output of the top command is shown in Fig. 3. Therefore, the
authors saw no point in measuring the scalability of the stateful NAT64
performance of PF against the number of CPU cores.
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10.2. Scalability against the number of connections

The maximum connection establishment rate and throughput re-
sults are shown in Table 18 and Table 19, respectively. They show a
moderate performance degradation, to a similar extent as Jool.

10.3. Throughput test with unidirectional traffic

The upload-only, bidirectional and download-only throughput of
OpenBSD PF using 4,000,000 connections and MP kernel are shown in
Table 20. Unlike in the previous two cases, the download throughput of
PF was lower than the upload throughput. This can be disadvantageous
for ISPs.

10.4. Connection tear down rate

The connection tear down rate results of OpenBSD PF are shown in
Table 21.

Comparing the connection tear down rates of the three solutions,
it can be stated that Jool significantly outperformed the other two
solutions and OpenBSD PF produced the lowest results.

11. Investigation of the validated connection establishment rate

The validated connection establishment rate measurement has been
developed to facilitate the connection tracking table capacity mea-
surement. However, without validation, it cannot be proved that the
connections are really present in the connection tracking table. More-
over, this can be a problem because of the following experience:
there is a paper that aimed to demonstrate a Denial of Service (DoS)
attack against a stateful NAT64 gateway implemented by tayga plus
iptables in a virtual machine environment [54]. It documented that
a packet with private source IP address appeared at the IPv4 inter-
face of the gateway as iptables did not replace it with the public
IPv4 address of the gateway (as it did with the other packets), likely
due to serious overload. During benchmarking, people are looking for
the limits of the tested stateful NAT64 gateway, thus they willfully
cause an overload situation. Hence, an improper behavior caused by
overload might happen any time. This is why the “00” version of the
Internet Draft [11] recommends the usage of the validated connection
establishment rate measurement.

However, validation has its cost. It uses a “safety” factor alpha,
which may have a value less than 1. If R rate is used during the current
step of the binary search for the maximum connection establishment
rate, then the Responder should use r R * alpha rate during
validation to avoid that the validation fails because of using a too high
rate. In the current case, the unidirectional throughput has already
been measured in the download direction, thus the authors already
knew that it was higher than the maximum connection establishment
rate for all tested NAT64 implementations. However, in the case of
an untested implementation, there is no such guarantee, thus in the
general case, testing with several values of alpha (e.g., 0.5 or 0.8, etc.)
may be needed, if validation fails. Therefore, it can be time consuming
to use validation. This is why the authors consider it important to check
if validation is needed or not.

The validated maximum connection establishment rate measure-
ments were performed with all tested NAT64 implementations and their
results are displayed together with the results of the non-validated
measurements in Table 22. It is clearly visible that validation makes no
difference in the results, and therefore, the authors did not recommend
validation in the “02” version of the Internet Draft [11].
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Table 11

Connection tear down rate of Jool as a function of the number of connections, 16 CPU cores.
Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Filled table deletion time median (s) 0.46 1.37 11.79
Filled table deletion time minimum (s) 0.43 1.35 11.76
Filled table deletion time maximum (s) 0.48 1.39 11.95
Empty table deletion time median (s) 0.30 0.30 0.30
Empty table deletion time minimum (s) 0.29 0.29 0.29
Empty table deletion time maximum (s) 0.31 0.31 0.31
Connections deletion time (s) 0.16 1.07 11.49
Connection tear down rate (cps) (2,758,621) 3,755,869 3,481,288

Table 12

Maximum connection establishment rate of tayga+iptables as a function of the number of

connections, 16 CPU cores.

Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Hash table size 220 2% 277
Number of connections / hash table size 0.3815 0.4768 0.2980
UDP timeout of iptables (s) 100 200 2000
Error (cps) 100 50 50
Median (cps) 102,929 98,680 99,218
Minimum (cps) 102,049 97,997 49,853
Maximum (cps) 103,222 99,071 99,951
Median / previous median - 0.96 1.01

Table 13

Maximum connection establishment rate of tayga+iptables as a function

of the number of

connections, 16 CPU cores, Beware: Loss Tolerance: 0.01%.

Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Hash table size 220 223 277
Number of connections / hash table size 0.3815 0.4768 0.2980
UDP timeout of iptables (s) 100 200 2000
Error (cps) 50 50 50
Median (cps) 103,076 98,046 99,755
Minimum (cps) 102,098 97,607 99,560
Maximum (cps) 103,954 98,583 100,146
Median / previous median - 0.95 1.02

Table 14

Throughput of tayga+iptables as a function of the number of connections, bidirectional traffic, 16

CPU cores.
Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Hash table size 220 223 227
Number of connections / hash table size 0.3815 0.4768 0.2980
UDP timeout of iptables (s) 100 200 2000
Error (fps) 100 100 100
Median (fps) 129,978 128,416 128,221
Minimum (fps) 129,588 112,402 93,652
Maximum (fps) 130,564 128,610 128,610
Median / previous median - 0.99 1.00

12. Investigation of the effect of the order of enumeration of the
port numbers

Both the benchmarking methodology and the siitperf bench-
marking program evolved gradually. At the time, when siitperf
did not support the pseudorandom enumeration of port numbers, the
authors experienced that if the connection tracking table of iptables
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was filled using port number enumeration in increasing order, then its
maximum connection establishment rate was significantly lower than
in the case of pseudorandom port numbers. Therefore, the authors in-
vestigated this issue and to that end they used only iptables without
tayga to be able to repeat the original experiments and compare their
results with those in the case when pseudorandom enumeration of
port numbers was used. The results of those experiments when simple
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sys, 6.2% spin, 0.0% intr, 0.0% idle
1
sys, 0.0% spin, 25.0% intr, 75.0% idle
]
sys, 0.0% spin, 26.7% intr, 73.3% idle

-]

Fig. 3. An extract from the output of the top command. The deleted lines showed all 0 values. The load was 200 fps per direction IPv6 traffic. The test failed.

Table 15
Throughput of tayga+iptables as a function of traffic direction, 4M connections,
16 CPU cores, hash table size: 22, UDP timeout: 200 s.

Traffic direction upload bidirectional download
Error (fps) 100 100 100
Median (fps) 127,147 128,416 151,757
Minimum (fps) 125,683 112,402 151,268
Maximum (fps) 128,222 128,610 152,049

pseudorandom port numbers were used are also included because the
authors believe that they convey some important lessons.

A very important difference compared to the tests in Section 9
was that for the tests in this section, a much lower hash table size
was used compared to the number of connections. The value of the
hashsize parameter was 2!°, and 40,000 source port numbers and
100 destination port numbers were used for the experiments, thus, the
number of connections was 4,000,000 when linear or pseudorandom
port number enumerations were used. However, when pseudorandom
port numbers were used, then several combinations were repeated, and
thus only less than 2.53M connections were established. (The exact
number was measured; please refer to Table 23.) For this reason, the
experiment was repeated also with 40,000,000 test frames in phase
1, which resulted in more than 3,999,000 connections. Besides the
results and the usual additional parameters (including the number of
connections per hash table size), a line was also added to Table 23 in
which the ending new connection ratio was displayed, i.e., the ratio of
those test frames that resulted in a new connection at the end of the
test (expressed in percentage). The 2,371,094 cps maximum connection
establishment rate of the experiment when 4M frames were sent with
pseudorandom port numbers in phase 1 can be explained by two things:

1. The average length of the linked lists starting from each hash
table entry was only 4.82.

2. At the end of the experiment, only 36.79% of the test frames
resulted in a new connection.

As for the experiment with 40M phase 1 frames, it can be regarded
as a continuation of the previous one by sending another 36M phase
1 frames. While the average length of the linked lists was increasing,
up to 7.6290, the proportion of the test frames that resulted in a new
connection was decreasing to 0.0055%, which was nearly negligible;
the test finished like an upload-only test.

These results highly justify the earlier decision of the authors to
introduce pseudorandom port number enumeration as the maximum
connection establishment rate could not be clearly measured without
it.

Another important lesson is that linear port number enumeration
and pseudorandom port number enumeration do not result in signifi-
cantly different maximum connection establishment rates with ipta-
bles. However, these results do not tell anything about other imple-
mentations. Therefore, the authors still recommend the pseudorandom
enumeration of port numbers in compliance with RFC 4814.
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13. Discussion of findings
13.1. Feasibility and significance of the proposed tests

13.1.1. New performance metrics

The benchmarking measurements have shown that the proposed
measurement procedures for maximum connection establishment rate and
connection tear down rate can be carried out for all three implemen-
tations and they produce meaningful results. The new performance
metrics are meaningful, and characterize well the operation of the
examined stateful NAT64 implementations. The knowledge of the max-
imum connection establishment rate is a precondition to fill both the
connection tracking table of the DUT and the state table of the Tester,
which are needed in order to execute phase 2. The connection tear
down rate also reveals information about how much work it costs for
the given stateful NAT64 implementation to delete a connection.

However, the authors could not validate their proposed connection
tracking table capacity measurement procedure with OpenBSD because
one billion states were used (please refer to Appendix A.4), and so they
intend to deal with it separately.

13.1.2. The “classic” performance metrics

It has been demonstrated that the execution of phase 2 is possible
with all three stateful NAT64 implementations. Thus the “classic”
measurement procedures (throughput, frame loss rate, latency, etc.),
which were not feasible due to the contradicting requirements of RFC
2544 and RFC 4814 in the case of stateful NAT64 gateways, can be
carried out.

13.2. Refinements of the tests

13.2.1. Validation of connection establishment

According to the results, the alpha “safety” factor with a value of
less than 1 was not necessary for any of the tested implementations.
Moreover, the validated maximum connection establishment rate mea-
surement gave the same results as the one without validation, so the
authors do not recommend using the validated one.

13.2.2. Scalability against the number of CPU cores

It was pointed out that scalability regarding the number of CPU
cores was an important characteristic feature of the software-based
stateful NAT64 implementations. Using the powers of 2 as the number
of active CPU cores proved to be an efficient solution regarding the
ratio of the tested range of the number of CPU cores and the number
of tests necessary.

13.2.3. Scalability against the number of connections

RFC 8219 requires testing with a different number of network
flows, but it does not specify the implementation details. The authors
recommended using the size of the destination port number range as
a parameter and it proved to work. A tenfold increase proved to be
efficient regarding the ratio of the tested range and the number of tests.
Furthermore, there is enough “reserve” in the method, so testing with
40,000 source port numbers and 10,000 destination port numbers can
achieve 400,000,000 connections.
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Connection tear down rate of tayga+iptables as a function of the number of connections, 16 CPU

cores.

Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Hash table size 220 223 277
Number of connections / hash table size 0.3815 0.4768 0.2980
UDP timeout of iptables (s) 100 200 2000
Filled table deleletion time median (s) 0.69 6.32 71.01
Filled table deletion time minimum (s) 0.67 6.24 70.42
Filled table deletion time maximum (s) 0.74 6.41 72.23
Empty table deletion time median (s) 0.21 0.36 2.96
Empty table deletion time minimum (s) 0.20 0.34 2.94
Empty table deletion time maximum (s) 0.22 0.38 2.98
Connections deltion time (s) 0.48 5.96 68.05
Connection tear down rate (cps) 833,333 671,141 587,803

Table 17

Throughput of OpenBSD packet forwarding, bidirectional traffic.

IPv4 traffic IPv6 traffic
SP MP Sp MP

Error (fps) 400 400 200 200
Median (fps) 499,608 642,185 275,194 331,054
Minimum (fps) 487,890 641,014 274,804 330,272
Maximum (fps) 499,608 643,358 275,194 333,006
Scale up - 1.29 - 1.20

Table 18

Maximum connection establishment rate of OpenBSD PF as a function of the number of connections,

MP.
Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Error (cps) 50 40 50
Median (cps) 120,214 85,039 74,022
Minimum (cps) 118,701 84,882 73,680
Maximum (cps) 122,411 85,351 74,266
Median / previous median - 0.71 0.87

Table 19
Throughput of OpenBSD PF as a function of the number of connections, bidirectional traffic, MP.
Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Error (fps) 200 80 100
Median (fps) 237,304 198,828 173,338
Minimum (fps) 236,912 198,046 172,946
Maximum (fps) 250,584 199,452 174,120
Median / previous median - 0.84 0.87
Table 20 Note: the authors are aware that RFC 2544 also recommends testing
Throughput of OpenBSD PF as a function of traffic direction, 4M connections, MP. with 256 destination networks, but it is for router testing and network
Traffic direction Upload Bidirectional Download operators usually separate the stateful NAT64 function and the routing
Error (fps) 100 80 100 function. Even if the two functions are implemented by the same
Median (fps) 237,987 198,828 181,445 device, the proposed methodology deals with the benchmarking of the
Minimum (fps) 234,081 198,046 180,761 stateful NAT64 function
Maximum (fps) 239,549 199,452 181,737 .

13.2.4. Potential additional way of expressing network flows

OpenBSD does not support setting RSS, so that the port numbers are
also used by the hash function. In addition to using pseudorandom port
numbers, multiple IP addresses could be used. It can only be introduced
by the Initiator because the Responder can use only the four tuples it
has received. If the Initiator uses multiple source IP addresses, it can
provide entropy only for the IPv6 interface of the DUT because the
source IP addresses are replaced by the stateful NAT64 gateway. Using
multiple destination addresses may help in both directions.
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13.3. Considering non-zero loss acceptance criterion

In Section 9.1, the maximum connection establishment rate mea-
surements were performed with 99.99% acceptance criterion. Commer-
cial network performance testers usually have a parameter called loss
tolerance and allow its setting to be higher than zero value. The authors
also used 0.01% loss tolerance in some cases in [55] and demonstrated
its effects in [56]. However, if non-zero acceptance criterion is used
for measuring the maximum connection establishment rate and then
the received result is used during phase 1 of a test that has phase 2,
subsequently some possible four tuples may be missing from both the
connection tracking table of the DUT and from the state table of the
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Table 21

Connection tear down rate of OpenBSD PF as a function of the number of connections, MP.
Number of connections 400,000 4,000,000 40,000,000
Source port numbers 40,000 40,000 40,000
Destination port numbers 10 100 1,000
Filled table deletion time median (s) 1.45 11.56 94.20
Filled table deletion time minimum (s) 1.36 11.03 91.73
Filled table deletion time maximum (s) 1.78 13.81 118.52
Empty table deletion time median (s) 0.37 0.37 0.37
Empty table deletion time minimum (s) 0.36 0.36 0.36
Empty table deletion time maximum (s) 0.37 0.37 0.37
Connections deletion time (s) 1.08 11.19 93.83
Connection tear down rate (cps) 370,370 357,622 426,303

Table 22

Comparison of the validated and non-validated maximum connection establishment rate of each implementation, 4M connections, alpha=1.
Name of implementation Jool tayga + iptables OpenBSD PF
Type of test Validated Non-val. Validated Non-val. Validated Non-val.
Error (cps) 400 400 50 50 40 40
Median (cps) 484,863 483,153 98,437 98,680 85,000 85,039
Minimum (cps) 475,829 472,411 93,701 97,997 84,648 84,882
Maximum (cps) 487,548 486,572 98,875 99,071 85,351 85,351

Table 23

Maximum connection establishment rate of iptables, 16 CPU cores, various types of port number generation algorithms.

Type Linear enumeration Pseudorandom Pseudorandom Pseudorandom enumeration
Source port numbers 40,000 40,000 40,000 40,000
Destination port numbers 100 100 1,000 1,00
Number of phase 1 frames 4M 4M 40M 4M
Hash table size 219 219 219 219
Number of connections median 4,000,000 2,528,332 3,999,782 4,000,000
Number of connections minimum - 2,527,212 3,999,760 -
Number of connections maximum - 2,529,555 3,999,817 -
Number of connections / hash table size 7.6294 4.8224 7.6290 7.6294
Ending new connection ratio (%) 100 36.79 0.0055 100
UDP timeout (s) 100 100 100 100
Error (cps) 1,000 2,000 2,000 1,000
Median (cps) 1,307,616 2,371,094 2,337,890 1,305,663
Minimum (cps) 1,297,851 2,248,046 2,208,984 1,295,898
Maximum (cps) 1,315,429 2,396,484 2,404,296 1,313,476

Tester. If this happens, then the siitperf binary reports the problem
and does not start the phase 2 measurement. The situation can be
handled by the shell script in various ways:

It may also report an error and stop testing.

It may re-execute the given elementary test until its phase 1 test
is successful. (It was done in Section 9.1 for the throughput test.)
It may use, e.g., a 0.01% lower state table size than the number
of frames sent in phase 1. (The authors followed this approach
in [301.)

13.4. Further considerations

13.4.1. Potential “breaking” of the requirements of RFC 4814

The proposed methodology reduces the source port number and
destination port number ranges recommended by RFC 4814. The au-
thors would like to emphasize that this does not mean breaking the
requirements. The statement is supported by two arguments:

1. RFC 4814 says that if the service is identified by the destination
port number, then it may have a fixed value. This is a much more
significant reduction in the potential port number combinations
than what was used by the authors.

. Section 4.1 of RFC 4814 explains the aim of using pseudo-
random identifiers including port numbers. It is to distribute
traffic among processing elements of the benchmarked network
interconnect device. In an earlier paper [28], a fixed destination
port number and only 1,600 different source port numbers were
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used; this was still enough for hashing, as the CPU idle times
were practically the same for all CPU cores.

It may also be noted that the vast majority of the Internet traffic use
only a few very popular destination port numbers according to [32].
Therefore, if Internet traffic is considered, RFC 4814 uses too high
number of source port number and destination port number combina-
tions, and the reduced ranges recommended by the authors can even
be considered a better approximation of the port number combinations
of the Internet traffic than that of RFC 4814.

13.4.2. Legal consideration

Data retention legislation may require detailed logging so that the
network operators can provide information about the user of a given
IP address and port number combination at a given time. Thus, it may
be worth measuring the performance of the various stateful NAT64
implementations with the logging enabled, too.

14. Conclusion

The proposed benchmarking methodology has been successfully val-
idated with three radically different stateful NAT64 implementations.
The proposed methodology made it possible to perform the “classic”
tests like throughput, frame loss rate, latency, etc. with stateful NAT64
gateways in phase 2. The new maximum connection establishment rate
benchmarking procedure proved to be good and satisfactory; there is
no need for the validation version. The new connection tear down rate
measurement also worked perfectly. The authors intend to work on the
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connection tracking table capacity measurement. Recommendations for
scalability measurements also proved to be effective.

As for the performance of the benchmarked stateful NAT64 im-
plementations, Jool significantly outperformed tayga plus iptables and
OpenBSD PF. However, Jool also showed poor scalability with the
number of active CPU cores; an increase in the number of active CPU
cores over 4 resulted in no significant performance improvement.
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Appendix

A.1. Linux test system

The topology of the Linux test system is shown in Fig. 4. The
Tester and DUT were Dell PowerEdge R430 servers with two Intel Xeon
E5-2683v4 CPUs, 384 GB 2400 MHz DDR4 RAM and an Intel 10G dual-
port X540 NIC. Direct cable connections were used, Hyper-threading
was switched off, and the CPU clock frequency of the servers was set
to a fixed 2.1 GHz (using the t1lp Linux package) to ensure stable
measurement results.

As for the Tester, Debian 9.13 with 4.9.0-16-amd64 Kkernel,
16.11.11-1+deb9u2 DPDK, and siitperf latest commit 29643e6
on Sep 24, 2022 were used. As for the DUT, Debian 10.13 with
4.19.0-20-amd64 kernel was used.

The maxcpus = 7 kernel command line parameter was used to
set the number of active CPU cores to n, and after changing the value
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Tester enol: DHCP
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(running siitperf)
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© 2x10G Ethernet ™
—___with direct cal:llgi/,/f"/

enp5s0fl:
198.19.0.1/24
2001:2:0:8000:1

/\

DUT
Dell PowerEdge R430
Debian Linux 10.13

enol: DHCP

Fig. 4. Topology of the Linux test system.

of n, a “Power Cycle System (cold boot)” power control action of the
iDRAC (Integrated Dell Remote Manager Controller) of the server was
always performed. It was done in such a way because using only a
simple restart after changing the number of active CPU cores caused
inconsistent measurement results, and this type of reboot solved the
problem. The details of the issue were disclosed in Section 3.E.4 of [55].

RSS was set so that the port numbers were also used by the hash
function when the interrupts were distributed among the CPU cores
using the appropriate one from following four commands (please refer
to the two brace expansions to get them):

ethtool -N enp5s0£{0,1} rx-flow-hash udp{4,6} sdfn
A.2. Jool measurement setup and execution

The version of Jool used was 4.1.7, the most mature version of Jool
as of September 2022.

Jool has two modes of operation. One of them is called “iptables
Jool” and it requires an iptables rule to give over the packets to
Jool. The other one is called “netfilter Jool” and Jool tries to “grab” all
the packets that it can process. The latter was used as it was simpler to
set up.

The proposed methodology required to begin every single elemen-
tary test with an empty connection tracking table. It was solved by
starting Jool right before each elementary test and by stopping it after
finishing the given elementary test. The measurement (bash shell) script
that ran on the p108 server executed a short script set—-jool on p109
using ssh with key-based authentication before each test. The relevant
content of the set-jool script was:

modprobe jool
jool instance add --netfilter —--pool6 64:ff9b::/96
jool pool4d add 198.19.0.1 —-—udp 1-65535

In addition to this, the script was also able to set the UDP timeout
value when it was supplied as a command line parameter, but the
authors did not need to change the 5-minute default value.

Subsequently, the measurement script performed an elementary
test with a single execution of the siitperf program, and finally,
Jool was stopped by remotely executing the del-jool script that
contained only a single command:

modprobe -r jool
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Fig. 5. Topology of the OpenBSD test system.

A.3. Tayga+iptables measurement setup and execution

The version of tayga used was 0.9.2-8 amd64. A Network Specific
Prefix (NSP) was used for NAT64 translation instead of the NAT64
well-known prefix for reasons specific to tayga. It was set in the
/etc/tayga.conf file as follows:

prefix 2001:2:0:1::/96

By default, tayga sets everything to implement stateful NAT64
including the setting of the appropriate iptables rule, but it was
disabled because the authors wanted to do it manually as a part of the
set-iptables start script.

As tayga is much slower than Jool and the default timeout value
of iptables for UDP traffic is 30 s, it had to be changed. Regard-
ing how many connections they can handle, there was an important
difference between Jool and iptables. For Jool, the only limit is
the memory capacity of the server. However, iptables has two
important parameters that need to be tuned to handle a high number
of connections. One of them is the size of the connection tracking table
(nf_conntrack_max) and the other is the size of the hash table
(hashsize) [52]. These parameters were tuned to be able to handle
the required number of connections and to demonstrate that the careful
usage of hashing may make iptables quite scalable regarding the
number of connections. (Please see the used values in the tables of the
results.) To that end, the measurement script passed two command line
parameters to the set-iptables script: the first one was a number
to be used as an exponent of 2, which was set as both hash table size
and connection tracking table size and the second one was the timeout
time expressed in seconds.

The relevant content of the set-iptables file was:

/sbin/iptables -t nat —-A POSTROUTING -o enp5s0f1 \
-j MASQUERADE
size=$((2%*$1))
echo $size >\
/sys/module/nf_conntrack/parameters/hashsize
/sbin/sysctl -w net.netfilter.nf_conntrack_max=$size
/sbin/sysctl -w \
net.netfilter.nf_conntrack_udp_timeout=$2

And the del-iptables file had the following content:

/sbin/iptables -t nat -D POSTROUTING -o enp5s0£f1 \
-j MASQUERADE
/sbin/conntrack -F
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A.4. Openbsd PF measurement setup and execution

To benchmark OpenBSD PF, another test system was built using
the exact same type of Dell PowerEdge 430 servers and they were
interconnected in the same way with direct cable links, as shown in
Fig. 5. The software configuration of the Tester was also the same, but
OpenBSD 7.1 (the latest version of OpenBSD as of September 2022)
with GENERIC.MP#465 amd64 kernel was installed on the DUT.

The authors did not find any way to set RSS under OpenBSD,
this was supported by the answer received on the misc@openbsd.org
mailing list that a few network drivers (including ix) have support
for multiple queues, “but there’s no interface to adjust what’s fed into
the hash function” [57]. This was consistent with the experience of the
authors:

+ dmesg reported 16 queues for the NICs (1x0 and ix1)

» when the load of the CPU cores of the DUT was checked using the
top command during a throughput test with bidirectional traffic,
all interrupts were processed by two CPU cores (one core for each
direction).

Therefore, the authors could not use a proper RSS setting with
OpenBSD.

The authors encountered another issue with PF. When the number
of states was set to a value required by the number of connections (or
a few times higher), problems were experienced during the tests. (The
results significantly deteriorated with time.) To mitigate the issue, a
several order of magnitude higher value for the number of states was set
than would have been normally required by the situation. (Normally,
the size of the state table was set to a somewhat higher value than
necessary to be able to store the connections, e.g., if the authors wanted
to store 1M connections, 2M would be the choice, but not 1000M.)

For handling PF, the usual remotely executed scripts were used. The
content of set—pf was the following single line:

pfctl -f /etc/pf-set-nat64

The content of the pf-set-nat64 file was derived from the
original pf . conf file by appending it with the following lines:

set skip on bgeO # to protect ssh

set 1limit states 1000000000 # 1000M

set timeout interval 3600 # 1 hour

pass in on ix0 inet6 from any to 64:££f9b::/96 \
af-to inet from 198.19.0.1

Similarly, the del-pf file contained:
pfctl -f /etc/pf-del-nat64

Furthermore, the content of the pf-del-nat64 file was derived
from the original pf . conf file by appending it only with the following
line:

set skip on bgeO # to protect ssh

This line saved ssh connections from being broken when the state
table was cleared by pfctl.
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