
1

Submitted: October 29, 2023.

G. Lencse is with the Department of Telecommunications, Széchenyi

István University, Győr, H-9026, Hungary. (e-mail: lencse@sze.hu)

Abstract—The Benchmarking Working Group (BMWG) of the

Internet Engineering Task Force (IETF) has defined a series of

Requests for Comments (RFC) to standardize the benchmarking

of network interconnect devices (e.g., bridges, routers, different

IPv6 transition solutions). The paper points out that there are

cases where the performance results are significantly different

when a single IP address pair or multiple IP addresses are used.

The cause of this phenomenon is rooted in the recent hardware

and software advancements: Receive Side Scaling (RSS) makes it

possible to distribute packet processing workload over multiple

CPU cores. However, this may be implemented in two ways: the

first way only includes the IP addresses into the hash function

used to distribute the workload among the CPU cores, whereas

the second one also includes the port numbers. RFC 4814

proposed an excellent solution for the second case by

recommending the usage of pseudorandom port numbers during

benchmarking; however, the first case was not handled properly,

because no explicit recommendation was given regarding the

usage of multiple IP addresses. This paper attempts to bridge this

methodological gap; a practical solution is proposed for using

pseudorandom IP addresses in various scenarios including the

benchmarking of IPv4 and IPv6 routers and Network Address

Translation from IPv6 Clients to IPv4 Servers (stateful NAT64)

gateways. Its feasibility is shown by disclosing the details of its

implementation in siitperf. Then the proposed solution is

validated by both stateless and stateful tests. It is shown that the

measurement results of the tests following the proposed solution

can better characterize the true performance of the network

interconnect devices that follow the first type of RSS

implementation than the results of the tests using a single IP

address pair.

Index Terms—network performance testers, receive side

scaling, siitperf, throughput.

I. INTRODUCTION

ENCHMARKING of network interconnect devices aims

 to accurately measure their certain standardized perform-

ance characteristics in order to obtain reasonable and

comparable results, which are essential for both the developers

and the users of the devices. To that end, the Benchmarking

Working Group (BMWG) of the Internet Engineering Task

Force (IETF) has defined a series of Requests for Comments

(RFCs). RFC 2544 [1] was published in 1999, and it still

determines how commercial network performance testers

work. In its appendix, it has defined a test frame format with

fixed IP addresses and fixed User Datagram Protocol (UDP)

port numbers for router testing, which was very convenient for

the manufactures of the testers, as the very same test frames

could be reused. As time passed by, state-of-the-art routers

started using multiple processing units, among which the

network traffic was distributed by using the entropy provided

by the different source and destination IP addresses and port

numbers. This solution is called Receive-Side Scaling (RSS)

[2]. To that end, RFC 4814 [3] highly recommends the use of

pseudorandom port numbers during benchmarking, however,

it did not provide a solution regarding the IP addresses for the

general case (please refer to Section II.A.2 for the details).

Depending on the implementation, RSS may only include

the source and destination IP addresses or it may also include

the source and destination port numbers into the tuple used for

hashing. RFC 4814 compliant testers work properly in the

second case, however, pseudorandom port numbers cannot

provide entropy if the Device Under Test (DUT) follows the

first type of RSS implementation; therefore, these devices

produce poor benchmarking results in RFC 4814 compliant

laboratory tests, whereas they can exhibit a high performance

in production environments where the usage of multiple IP

addresses ensures the entropy for the proper operation of their

RSS implementation. Therefore, the conditions of laboratory

tests should be improved to ensure unbiased performance

testing. To that end, this paper examines how the usage of

multiple IP addresses can be introduced in the performance

testing of various network interconnect devices. Practical

recommendations are provided for the usage of pseudorandom

source and destination IP addresses in the case of both

stateless and stateful benchmarking following the approach of

RFC 4814 regarding the port numbers. The most important

design and implementation considerations for extending

siitperf [4] to support the usage of multiple IP addresses

are also disclosed. The solution proposed is validated by

performing benchmarking measurements pointing out a

significant improvement of the results. The findings should

make an important contribution to the field of benchmarking

network interconnect devices by making stateless and stateful

performance measurements unbiased regarding the type of

RSS implementation of the DUT.

The rest of this paper is organized as follows: Section II

gives a summary of the background information regarding

Making Stateless and Stateful Network

Performance Measurements Unbiased

G. Lencse

B

2

stateless and stateful network interconnect device performance

testing. Section III presents the recommendation for the

introduction of multiple IP addresses. Section IV discloses the

design and implementation of the extension of siitperf to

support stateless and stateful benchmarking measurements

with multiple IP addresses. In section V, the performance

limits of the new functions of siitperf and its performance

degradation due to the more complex operation are

determined. The proposed methodology and its

implementation are validated by stateless and stateful

benchmarking measurements in various scenarios in Section

VI and Section VII, respectively. The findings are discussed in

Section VIII, and the paper is concluded in Section IX.

II. INTRODUCTION TO THE BENCHMARKING OF NETWORK

INTERCONNECT DEVICES

A. Benchmarking Methodology for IPv4 or IPv6 Routers

1) The original methodology

RFC 2544 has defined all the relevant aspects of

benchmarking network interconnect devices including the test

and traffic setup, standard frame sizes, frame formats, and

measurement procedures. The primary recommended test

setup is built up by two devices: the Tester and the DUT. Their

corresponding network interfaces are connected and the Tester

sends test frames through the DUT and receives back the

frames, as shown in Fig. 1. It needs to be noted that although

the arrows are unidirectional, bidirectional traffic is required.

The essential benchmarking procedure is the throughput

measurement, which determines the highest constant frame

rate at which the DUT is able to forward all frames sent by the

Tester. There are several other benchmarking procedures that

give further insight into the performance of the DUT, like

latency that determines the one way delay caused by the DUT

measured at the frame rate previously determined by the

throughput measurement procedure, or frame loss rate, which

is to be determined at various frame rates. When routers are

tested, it is required to perform the tests first, using a single

source and destination IP address pair (as shown in Fig. 1) and

then, using 256 different destination networks. The

198.18.0.0/15 IPv4 address range was reserved for

benchmarking. Its first half (198.18.0.0/16) and its second half

(198.19.0.0/16) are intended to be used on the left side and

right side of the devices, respectively. Thus (numbering the

bits from 0) the 16-23 bits ensure the possibility to describe

the required 256 destination networks. As for the transport

layer protocol, UDP was recommended.

It needs to be noted that benchmarking measurements are to

be performed in an isolated laboratory environment and the

usage of the dedicated address space can be a guarantee of

preventing the measurement traffic from leaking out to the

Internet.

2) Updates to the methodology

As time passed by, the methodology was updated in

multiple ways.

As for router testing, RFC 4814 [3] requires the usage of

pseudorandom source and destination port numbers from their

specified ranges, 1,024–65,535 and 1–49,151, respectively. (If

there is a requirement that either the source or the destination

port number needs to have a specific value, then only the other

port number should be pseudorandom.) However, section 4.4

of RFC 4814 considers the problem of IP addresses as solved

in the general case. It only mentions the above-mentioned 8

bits (writes them as x.x.R.x/24) to be used as pseudorandom.

However, this solution does not help, when the tests are done

using a single destination network.

RFC 5180 [5] provided an update regarding the usage of

IPv6 addresses. It has reserved a much larger address range for

benchmarking: 2001:0:2::/48. However, it has explicitly

declared IPv6 transition technologies out of its scope.

B. Benchmarking Methodology for Stateful NAT64

Gateways

1) The method in theory

RFC 8219 [6] has defined a comprehensive benchmarking

methodology for IPv6 transition technologies. To that end, it

classified the high number of IPv6 transition technologies [7]

into a small number of categories (dual stack, single

translation, double translation, and encapsulation

technologies) regarding the solution used for packet traversal

across the access and core network of the Internet Service

Provider (ISP) and defined the test setup for each category.

Network Address Translation from IPv6 Clients to IPv4

Servers (stateful NAT64) [8] belongs to the category of the

single translation technologies. For this category, the Single

DUT test setup, shown in Fig. 2, is recommended. It is similar

to the test setup shown in Fig. 1, but here, different IP versions

are used on the left side and on the right side of both the

Tester and the DUT. Of course, both X and Y in IPvX and IPvY

are from the set of {4, 6} and X≠Y.

As for the benchmarking procedures, RFC 8219 reused the

throughput and the frame loss rate measurement procedures

unchanged, it redefined the latency measurement procedure to

provide more accurate results and added further procedures to

 +--------------------------------------+

198.18.0.2/24 | | 198.19.0.2/24

+-------------| Tester |<------------+

| | | |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| | | |

+------------>| DUT: IPv4 router |-------------+

198.18.0.1/24 | | 198.19.0.1/24

 +--------------------------------------+

Fig. 1. Test setup for an IPv4 router (based on RFC 2544).

+--------------------+

| |

+--------|IPvX Tester IPvY|<-------+

| | | |

| +--------------------+ |

| |

| +--------------------+ |

| | | |

+------->|IPvX DUT IPvY|--------+

| |

+--------------------+

Fig. 2. Single DUT test setup [6].

3

measure Packet Delay Variation (PDV) and Inter Packet

Delay Variation (IPDV), whereas the latter was declared

optional.

The requirement for benchmarking with bidirectional traffic

was kept and benchmarking with unidirectional traffic was

added as an optional test.

2) Practical problems

It turned out that benchmarking stateful NAT64 gateways

requires further considerations because the verbatim

application of certain requirements would result in various

problems:

 The usage of pseudorandom source and destination port

numbers in the IPv6 packets would result in potentially

more than 3 billion connections, thus the test would

exhaust the capacity of the connection tracking table of

the stateful NAT64 gateway.

 The usage of pseudorandom port numbers in the IPv4

packets would result in packets that do not belong to

any existing connection and the stateful NAT64

gateway would simply drop them.

Please refer to [9] for more details.

3) A solution to the problems

A general methodology suitable for the benchmarking of

any stateful NATxy gateways, where x and y are in {4, 6},

using RFC 4814 pseudorandom port numbers was defined by

this Internet Draft [10], which was adopted by the BMWG of

IETF at the IETF 114 meeting on July 26, 2022.

A brief introduction to the benchmarking methodology for

the stateful NAT64 gateways is provided by reusing the text of

[9], [10] and [11].

The test setup is shown in Fig. 3. The DUT is the stateful

NAT64 gateway, which has a connection tracking table.

The Initiator can send a test frame using any desired source

port number destination and port number combinations, but it

uses limited ranges to avoid the exhaustion of the capacity of

the connection tracking table of the DUT. (According to the

original methodology, only a single source and destination IP

address pair was used [9].) Following the long established

tradition of RFC 2544, RFC 5180, and RFC 8219 the UDP

transport layer protocol is used.

The Responder receives the test frames and extracts the

source IP address, source port number, destination IP address,

destination port number (four tuple) from them then stores the

four tuples in its state table. When it sends a test frame, it

takes a four tuple from its state table (swaps source and

destination), thus it creates a valid test frame, which belongs

to an existing connection in the connection tracking table of

the DUT.

The methodology uses two test phases. During phase 1 only

the Initiator sends test frames. The DUT registers the new

connections into its connection tracking table, translates the

test frames and forwards them to the Responder. Thus, the

connection tracking table of the DUT and the state table of the

Responder are initialized, thus, in phase 2, the Responder is

able to send valid test frames.

To achieve clear and repeatable measurements, two extreme

situations are used:

1. During phase 1, all test frames create a new connection.

2. During phase 2, the test frames never create a new

connection.

They can be simply ensured by using:

 a sufficiently large (to be able to store all the

connections) and empty connection tracking table for

each test

 pseudorandom enumeration of all possible four tuples

in phase 1

 a properly high timeout value in the DUT (higher than

the time duration from the beginning of phase 1 to the

end of phase 2).

The maximum connection establishment rate has been

introduced as a new metric to quantify the connection setup

performance of the DUT. It is the highest constant frame rate

at which the DUT is able to process all test frames in phase 1.

All “classic” measurements (throughput, latency, frame loss

rate, etc.) can be performed in phase 2. To that end, first,

phase 1 has to be executed using a frame rate safely lower

than the measured connection establishment rate. Then comes

phase 2 with the desired measurement.

The methodology was validated by performing its

benchmarking measurements with three radically different

stateful NAT64 gateway implementations [12].

C. Stateless Measurement Tools

Commercial network performance testers follow the

requirements of RFC 2544 and the newer ones usually support

the newer RFCs, too. In addition to this, they sometimes

provide further optional features beyond the requirements of

the RFCs. For example, it is quite common that they support

non-zero loss throughput measurements, too. For example, the

Anritsu MP1590B device has a parameter called Loss

Tolerance. (Its value must be set to 0 to perform an RFC 2544

compliant throughout test.) However, it allows the user to set

only a single IP address at each network port.

The Spirent SPT-N4U Tester also supports RFC 5180 tests

for benchmarking IPv6 routers. With an appropriate trick, it

was used for benchmarking various stateless NAT64

implementations [13]. It has numerous advanced features, for

example, when it is used in stateful mode, its Avalance

Commander is able to generate IP addresses randomly from a

specified range. However, when it is used in stateless mode

for Layer 2-3 tests including the RFC 2544 throughput

measurements, it does not support using multiple IP addresses

per its network ports, either.

Siitperf [4] is the world’s first free software RFC 8219

 +--------------------------------------+

 2001:2::2 |Initiator Responder| 198.19.0.2

+-------------| Tester |<------------+

| IPv6 address| [state table]| IPv4 address|

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| 2001:2::1 | DUT: | 198.19.0.1 |

+------------>| Stateful NAT64 gateway |-------------+

 IPv6 address| [connection tracking table] | IPv4 address

 +--------------------------------------+

Fig. 3. Test setup for benchmarking stateful NAT64 gateways. [9]

4

compliant Stateless IP/ICMP Translation (SIIT) [14] (also

called stateless NAT64) tester, written in C++ using Intel’s

Data Plane Development Kit (DPDK) [15] available from

GitHub [16]. It was designed to be a flexible research tool and

provides several features beyond the requirements of the

RFCs, but it did not support the usage of multiple IP addresses

prior to its current development, either.

D. Stateful Measurement Tool

As far as the author knows, the stateful extension of

siitperf [9] is the only existing implementation of the

concept for benchmarking stateful NATxy gateways using

RFC 4814 pseudorandom port numbers described in [10]. It

supports stateful NAT64 and stateful NAT44 measurements,

but stateful NAT66 and stateful NAT46 measurements were

not implemented. Its latest version prior to its current

development only supported the use of a single source and

destination IP address pair as documented in [9].

III. RECOMMENDATION FOR USING MULTIPLE IP

ADDRESSES

The aim of the introduction of multiple IP addresses is the

same as that of multiple port numbers, i.e. to support the even

distribution of the load among multiple processing elements of

network interconnect devices. To construct a similar solution

to that of RFC 4814 regarding the port numbers, it was also

considered to be desirable to use 16-bit address space.

However, the size of the IPv4 address range reserved for

benchmarking imposes a serious limitation. As for the

stateless testing using IPv4 addresses, the author suggests two

major solutions:

1. Only the last 8 bits of the IPv4 addresses are used. (The

usable range is: 2-254, as 1 is used for addressing the

DUT and 255 is the broadcast address.) Thus, it

remains possible to use the 16-23 bits to describe 256

destination networks.

2. The last 16 bits of the IPv4 addresses are used. (The

usable range is: 2-65,534.) Thus, the usage of 256

destination networks is sacrificed. This solution is

shown in Fig. 4.

With regard to IPv6, there is no such problem, as the

reserved benchmarking prefix contains an abundant number of

bits. It even is possible to use exactly 65,536 different IPv6

address, as shown in Fig. 5. For simplicity, bits from 96 to 111

are used to distinguish 64k IPv6 addresses, and their last 16

bits are the same (expressing decimal 2). Bits from 56 to 63

can be used to describe the 256 destination networks.

When stateful NAT44 / NAT64 testing is designed, it

should be considered that stateful NAT44 or NAT64 gateways

that serve a high number of clients typically use more than a

single public IPv4 address. However, in this case the entire

198.18.0.0/15 network can be used on the right side of the test

setup, as shown in Fig. 6 and Fig. 7, because private IPv4

addresses or IPv6 address are used on the left side of the

stateful NAT44 or stateful NAT64 gateway, respectively.

(Due to the /15 mask, 198.18.255.255 and 198.19.0.0 are

normal, usable IPv4 addresses.) It needs to be noted that the

usage of 256 destination networks is out of the scope, as the

performance of the stateful NAT44 / NAT64 gateway is

measured and not the routing performance (even if the device

also implements routing).

IV. DESIGN AND IMPLEMENTATION OF TESTING WITH

MULTIPLE IP ADDRESSES

A. Design Principles

An existing software was to be extended, so the design

considerations were the following:

198.18.0.2/16-198.18.255.254/16 198.19.0.2/16-198.19.255.254/16

 \ +--------------------------------------+ /

 \ | | /

+-------------| Tester |<------------+

| | | |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| | | |

+------------>| DUT: IPv4 router |-------------+

 / | | \

 / +--------------------------------------+ \

198.18.0.1/16 198.19.0.1/16

Fig. 4. Multiple IP address test setup for benchmarking IPv4 routers.

2001:2::[0000-ffff]:2/64 2001:2:0:8000::[0000-ffff]:2/64

 \ +--------------------------------------+ /

 \ | | /

+-------------| Tester |<------------+

| | | |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| | | |

+------------>| DUT: IPv6 router |-------------+

 / | | \

 / +--------------------------------------+ \

 2001:2::1/64 2001:2:0:8000::1/64

Fig. 5. Multiple IP address test setup for benchmarking IPv6 routers.

10.[0-255].[0-255].2/8 198.19.0.0/15-198.19.255.254/15

 \ +--------------------------------------+ /

 \ |Initiator Responder| /

+-------------| Tester |<------------+

| private IPv4| [state table]| public IPv4 |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| 10.0.0.1/8 | DUT: | public IPv4 |

+------------>| Stateful NAT44 gateway |-------------+

 private IPv4| [connection tracking table] | \

 +--------------------------------------+ \

 198.18.0.1/15 - 198.18.255.255/15

Fig. 6. Multiple IP address test setup for benchmarking stateful NAT44

gateways.

2001:2::[0000-ffff]:2/64 198.19.0.0/15 - 198.19.255.254/15

 \ +--------------------------------------+ /

 IPv6 \ |Initiator Responder| /

+-------------| Tester |<------------+

| addresses | [state table]| public IPv4 |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| 2001:2::1/64| DUT: | public IPv4 |

+------------>| Stateful NAT64 gateway |-------------+

 IPv6 address | [connection tracking table] | \

 +--------------------------------------+ \

 198.18.0.1/15 - 198.18.255.255/15

Fig. 7. Multiple IP address test setup for benchmarking stateful NAT64

gateways.

5

1. To support flexible and convenient usage of multiple

IP address during both stateless and stateful tests.

2. To fit together with the already existing design.

3. To facilitate a simple and efficient implementation.

4. To keep the performance of the Tester high.

5. To maintain the readability of the source code.

It needs to be noted that an introduction to siitperf is

presented in the Appendix for the readers not familiar with it.

B. Parameter Design

To support flexibility and to follow the existing design,

several new parameters were introduced.

The user should be able to decide if and how the IP

addresses on the left side and right side should vary. The new

parameters are: IP-{L,R}-var, and their possible values

and meanings are:

0. use fixed IP addresses (as before)

1. increase the varying part of the IP addresses

2. decrease the varying part of the IP addresses

3. the varying part should be pseudorandom

It needs to be noted that if 0 is specified for both directions,

the further parameters are completely redundant and fixed IP

addresses are used.

The user should be able to specify the minimum and

maximum values for the varying parts of the IPv4 or IPv6

addresses. The new parameters are: IP-{L|R}-

{min,max}.

To support a simple and efficient implementation, the

author decided to allow only 16 bits long varying part of both

IPv4 and IPv6 addresses and to use the same parameters for

IPv4 and IPv6 and for “real” and “virtual” addresses. (Please

recall that the same code works with IPv4 and IPv6 when

varying port numbers are used.) However, the offset of the 16-

bit varying part (its distance from the beginning of the IP

address) can be specified by the user independently for the

two IP versions and for the left and right side addresses using

the IPv{4,6}-{L,R}-offset parameters. Their valid

range for IPv4 and IPv6 are 1-2 and 8-14, respectively. (They

were later restricted due to simple implementation and

performance considerations; please refer to Section V.F.1.)

The enumeration of the IP addresses can be controlled by

the Enumerate-ips parameter. Its possible values and their

meanings are:

0. no IP address enumeration

1. enumerate IP addresses in increasing order

2. enumerate IP addresses in decreasing order

3. enumerate IP addresses in pseudorandom order

It needs to be noted that the enumeration of the IP addresses

may happen only in the first phase of stateful tests (similarly

to the port number enumeration).

It also needs to be noted that the parameter design is

validated at the end of the Appendix, where it is shown that

the new parameters are suitable to express the settings

required for the proposed test setups.

C. Implementation of the Stateless Measurements

Implementing the usage of multiple IP addresses for

stateless tests was straightforward. The only important design

decision worth mentioning was the introduction of a new

msend() function to implement the usage of multiple IP

addresses. Its rationale was to avoid the further increase of the

number of sending loops in the send() function and thus to

maintain the readability of the source code. As the support for

multiple destination networks was sacrificed (to have enough

bits to express multiple IP addresses) this new sender function

has only two sending loops: one for using only multiple IP

addresses but fixed port numbers and the other one for using

both multiple IP addresses and multiple port numbers.

Otherwise, the same programming style was used as in the

original code; the given fields of pre-generated templates were

modified in the sending loops. To that end, pointers were set

to the appropriate fields and more or less the same code was

executed for the IPv4 and IPv6 test frames with the following

two differences:

1. As opposed to IPv4 packets, IPv6 packets do not have

header checksum. (Technically, the value of the field

pointed by the corresponding pointer is set only if the

IP version for the given side is 4 and the frame belongs

to the foreground traffic.)

2. UDP checksum is mandatory for IPv6 packets, but it is

optional for IPv4 packets. In the case of IPv4 packets,

the 0 value of the field indicates that UDP checksum is

not used. Therefore, if the checksum calculation results

in a 0 value, its unary complement (0xffff) has to be

written into the field. (As above, unary complement is

used if the IP version for the given side is 4 and the

frame belongs to the foreground traffic.)

D. Implementation of the Stateful Measurements

Whereas the IP addresses and port numbers can be handled

independently from each other in the case of stateless

measurements, the situation is rather different in the case of

stateful measurements. The purpose of their enumeration is to

use up all their possible combinations in phase 1 one so that

no new four tuples (network flows) may appear in phase 2. To

that end, both IP addresses and port numbers must be

enumerated, except for the case when one of them has fixed

values. So far, IP addresses had fixed values and only the port

numbers could be enumerated [9] and under these conditions

stateful benchmarking worked perfectly [12]. Similarly, if the

port numbers have fixed values, it is enough to enumerate only

the IP addresses.

The implementation of their enumerations required some

careful considerations because the four possible values of the

Enumerate-ports parameter and the four possible values

of the Enumerate-ips parameter could have potentially 16

combinations. Their handling could have been implemented,

for example, by a C language switch that has 16 case-es.

However, it would have been only the high level structure of

the program as both port numbers and IP addresses may be

varying only partially (either the source or the destination,

whereas the other one is fixed). As the author did not see

much point in writing such a complicated program, the

number of combinations to be implemented was reduced. The

author believes that the following rule allows all practically

6

useful combinations: if any of the two parameters has the

value of 0, then the other one may have any value, but if they

both have non-zero values, then they must have the same

value.

As for implementing the Initiator, the original isend()

function was kept to handle the cases when Enumerate-

ips has 0 value. Otherwise, the new imsend() function is

used, which can be considered the Initiator extension of the

new msend() function; it implements IP address

enumeration. It has two sending loops: the first one handles

the case when only the IP addresses are enumerated but the

port numbers are not, and the second one handles the case

when both the IP addresses and the port numbers are

enumerated. Table I shows the summary of the allowed

combinations of IP address and port number enumerations and

how they are handled.

As stated above, the imsend() function was derived from

the msend() function by adding IP address enumeration to it.

An alternative could have been an “misend()” function that

could have been derived from the isend() function by

adding the usage of multiple IP addresses to it. However, that

would have involved conflicts e.g., regarding the usage of the

same bits for multiple destination networks and multiple IP

addresses.

The new imsend() function kept the resilience of the

isend() function in the sense that it supports port number

enumeration but does not mandate it. When linear

enumeration of the IP addresses and port numbers is done,

they act as a four times two-byte counter, but the four two-

byte fields of the counter may only take the values allowed by

their specified ranges. (The 16-bit field in the destination IP

address is the most significant one, then comes the 16-bit field

in the source IP address, next the destination port number, and

finally, the source port number is the least significant one.)

Pseudorandom enumeration was implemented in the same way

as before by using pre-generated values.

It needs to be noted that no modifications to the

rreceive() and rsend() functions were needed because

they both handle the full four tuple.

E. Restrictions due to Implementation Considerations

Two changes were made to the design at the

implementation stage due to considerations of checksum

calculation.

1) IPv4 and IPv6 offset

Both IPv4 header checksum and UDP checksum are

calculated on 16 bits, that is two bytes. Using odd numbers as

IPv{4,6}-{L,R}-offset would complicate the

checksum calculation; therefore, the author decided to allow

only even numbers. This constraint is not significant in the

case of IPv6. As for IPv4, it means that the only allowed offset

is 2. This restriction influences the test setup shown in Fig. 6.

It was modified, as shown in Fig. 8. The loss of a few IP

addresses from 65,536 is absolutely negligible.

Thus, the IPv4 offset parameters could have been fully

eliminated, but they were still kept as they might be useful

later if an unforeseen application scenario requires allowing

for (and implement) further offset value(s).

2) IP address enumeration versus fixed IP addresses

As stated before, when the value of the Enumerate-

ports parameter required port number enumeration, it was

done in phase 1, even if the port numbers did not change in

phase 2 due to the values of the {Fwd,Rev}-var-

{s,d}port parameters. This approach could have been

followed with regard to the IP addresses just for consistency.

However, this approach would lead to certain contradiction

during the implementation. To be able to handle the

checksums correctly, the changing parts of the IP addresses

are masked to 0, if the values of the appropriate IP-{L|R}-

var parameters are non-zero. (All IP addresses exist only in a

single copy in the Throughput class.) How should they be

handled, if the Enumerate-ips parameter requires IP

address enumeration, but the values of the IP-{L|R}-var

parameters are 0?

 If they are not masked to 0, then their checksum will

not be correct in phase 1.

 If they are masked to 0, then those bits are lost and will

not be available in phase 2.

Of course, two copies of the IP addresses could have been

used, but it would require a significant modification of the

existing code and the author considered that it was not worth

the effort, as he did not see any reasonable application

scenario of using IP address enumeration in phase 1 and then

TABLE I

ALLOWED COMBINATIONS OF IP ADDRESS AND PORT NUMBER ENUMERATIONS AND HOW THEY ARE HANDLED

Enumerate-ports (right) 0 1 2 3

Enumerate-ips (below)

0 These cases have already been implemented by the original isend() function.

1 imsend() loop1 imsend() loop2 -- --

2 imsend() loop1 -- imsend() loop2 --

3 imsend() loop1 -- -- imsend() loop2

10.0.0.2/16 – 10.0.255.254/16 198.19.0.0/15 - 198.19.255.254/15

 \ +--------------------------------------+ /

 \ |Initiator Responder| /

+-------------| Tester |<------------+

| private IPv4| [state table]| public IPv4 |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| 10.0.0.1/16 | DUT: | public IPv4 |

+------------>| Stateful NAT44 gateway |-------------+

 private IPv4 | [connection tracking table] | \

 +--------------------------------------+ \

 198.18.0.1/15 - 198.18.255.255/15

Fig. 8. Multiple IP address test setup for benchmarking stateful NAT44

gateways (modified version).

7

using fixed IP addresses in phase 2 of the stateful tests.

Therefore, the author has come to the conclusion that the non-

zero value of the Enumerate-ips parameter requires the

IP-{L|R}-var parameters not to have zero values, either.

(The program checks it and gives an appropriate “Input Error”

message if the condition is not met.)

V. SELF-TEST OF THE TESTER

A. Meaning and Purposes of the Self-Tests

The self-test of the Tester means that its two interfaces are

connected omitting the DUT, and benchmarking

measurements are performed. The achieved frame rate of the

throughput test depends on the frame sending and frame

receiving abilities of the Tester. The self-test is a must before

using the Tester for measurements, otherwise, there is no

guarantee that the Tester measures the performance of the

DUT; the Tester itself may be the bottleneck. In addition to

this the self-test can be used to measure the performance

penalty of the new functions and it raises the question to what

extent the performance of the Tester decreased due to the new

functions?

B. Test System for the Self-Test of the Tester

The topology of Test System for self-test is shown in Fig. 9.

The most important parameters of the used Dell PowerEdge

R730 server were: two 3.2GHz Intel Xeon E5-2667 v3 CPUs

having 8 cores each, 8x16GB 2133MHz DDR4 SDRAM

(accessed quad channel), and Intel X540-T2 10GbE network

adapter. Hyper-threading was switched off and the CPU clock

frequency was set to 3.2GHz (fixed), the nominal clock

frequency of the CPU, to achieve stable measurement results

using the tlp Linux package. Later it was set to 1.2GHz, the

minimum clock frequency of the CPU, in the same way.

Debian Linux 9.13 operating system with 4.9.0-13-amd64

kernel and DPDK 16.11.11-1+deb9u2 amd64 were used. As

siitperf does not have version numbers, its version is

identified by its latest commit 165cb7f on September 6, 2023.

C. Stateless Tests and Results

1) Tests for guaranteeing the performance of the Tester

To support stateless tests, IPv4 and IPv6 throughput tests

were performed as self-test. The applied frame size was 64

bytes and 84 bytes for IPv4 and IPv6, respectively. As for the

further parameters, all the four combinations of fixed and

pseudorandom port numbers and IP addresses were used. The

ranges for pseudorandom port numbers were those

recommended by RFC 4814. The ranges for the varying part

of the IPv4 and IPv6 addresses were 2-65,534 and 0-65,535,

respectively. The parameters complied with the test cases are

shown in Fig. 4 and Fig. 5. As required by RFC 2544 and its

successors, bidirectional traffic was used. It needs to be noted

that siitperf reports the results as frames/second per

direction. It means that in all, siitperf sent and received

twice as many frames as reported due to the bidirectional

traffic.

The clock frequency of the Tester was set to fixed 3.2GHz,

the nominal clock frequency of the CPU, to achieve a high

performance. The results of the IPv4 and IPv6 throughput tests

are shown in Table II and Table III, respectively. All

measurements were executed 10 times and median was used

as summarizing function and the minimum and maximum

values were also included. The dispersion in the last line of

the tables was calculated as follows:

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚𝑒𝑑𝑖𝑎𝑛
⋅ 100% (1)

Regarding the guaranteed performance of the tester, the

minimum values should be considered. In all cases, more than

7.1Mfps per direction frame rate was achieved. The bottleneck

was always the X540 NIC as it is proven by the next series of

measurements.

It can be observed that the dispersion of the results is

always in the order of 1% magnitude. (It is used as a basis for

comparison below.)

2) Tests for checking the performance costs of operation

To make the CPU performance the bottleneck, the clock

frequency of the Tester was set to 1.2GHz, its lowest possible

value. Otherwise, the same parameters were used as before.

The results of the IPv4 and IPv6 throughput tests are shown in

Table IV and Table V, respectively. The last rows of the tables

show the relative performance of the given cases compared to

the case when fixed IP addresses and fixed port numbers were

used; the figures clearly show the performance penalty of

generating pseudorandom port numbers or IP address or both.

The IP version does not count for much, all four performance

results are very similar to one another both in the case of IPv4

eno1

Tester
Dell PowerEdge R730

eno2

running
siitperf

10GbE w/ direct cable

Test System for Self-test

Fig. 9. Test system for the self-test of the Tester.

TABLE II

STATELESS SELF-TESTS: IPV4 THROUGHPUT OF THE TESTER @ 3.2GHZ

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 7,161,269 7,184,723 7,175,444 7,161,422

Minimum (fps) 7,124,510 7,122,922 7,116,697 7,108,397

Maximum (fps) 7,226,746 7,214,859 7,219,178 7,203,141

Dispersion (%) 1.43 1.28 1.43 1.32

TABLE III

STATELESS SELF-TESTS: IPV6 THROUGHPUT OF THE TESTER @ 3.2GHZ

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 7,168,274 7,193,027 7,189,696 7,122,892

Minimum (fps) 7,139,500 7,181,418 7,150,621 7,108,885

Maximum (fps) 7,208,871 7,257,874 7,250,252 7,207,073

Dispersion (%) 0.97 1.06 1.39 1.38

8

and IPv6. Their performance is somewhat higher when only

the port numbers are pseudorandom rather than in the case

when only the IP addresses are pseudorandom. The

explanation for this phenomenon is that varying IP addresses

also influence the UDP checksum through the pseudo-header,

but varying port numbers do not influence the IP header

checksum. When fixed port numbers but pseudorandom IP

addresses are used, the median IPv6 throughput

(4,138,784fps) is somewhat higher than the median IPv4

throughput (4,089,050fps). The root cause for this is an extra

conditional instruction in the source code handling IPv4 test

frames: if the computed value of the UDP checksum happens

to be 0, then 0xffff has to be stored.

It can be observed that the results using fixed frame format

are still around 7Mfps and the dispersion of these results is

also in the order of 1% magnitude. The dispersion of all the

other results is at most 0.25%. The author assumes that the

relatively higher dispersion of the results close to 7Mfps was

caused by the race condition of the two senders that were

competing for the limited resources of the same NIC. (The

measurement log files show that the tests failed because one of

the senders was not able to complete the sending of the

required number of frames within 60.0006s.)

D. Stateful Tests and Results

As siitperf implements only stateful NAT64/NAT44

tests and stateful NAT66/NAT46 are out of its scope, its

Receiver can handle only IPv4 packets. Therefore, when

stateful self-tests are performed, the Initiator must send IPv4

packets (as the loopback wire does not do the stateful NAT64

translation, which is normally done by the omitted DUT).

However, considering that practically the same code

modifies the IPv6 and IPv4 packet templates1 and also the

self-test results of the stateless test, one can easily infer that

the results of the stateful NAT44 self-tests provide good

guidelines for the stateful NAT64 benchmarking performance

of the Tester, too.

First, it is considered, what kinds of measurements are

needed to guarantee the performance of the Tester for stateful

measurements.

In phase 1, four different cases are possible regarding the

fixed or varying nature of the IP addresses and port numbers:

1. Only a single test frame is sent.

2. A single IP address pair and multiple port number

combinations are used.

3. Fixed port numbers and multiple IP addresses are

used.

4. Multiple IP addresses and multiple port numbers are

used.

Based on the above four cases, the relevant benchmarking

methodology [10] uses no. 2 and no. 4 with the conditions that

in case 2, all possible source port number and destination port

number combination must be enumerated in pseudorandom

order, and in case 4, all the possible four tuples must be

enumerated in pseudorandom order. As for case 1, although it

is supported by siitperf, and the situation that all frames

belonging to a single connection can be used as a reference

measurement in phase 2, but there is no point in measuring the

frame sending performance of siitperf when it sends only

a single test frame in phase 1 as there is a gap between the two

phases. Case 3 was considered interesting and it was included

in the tests. (This case may be relevant when only a low

number of connections are needed, but the aim is to have as

many different IP addresses as possible.)

In phase 2, the Initiator uses the same sending functions

(send() and msend()) as for stateless test, thus they

require no further testing. And the Responder does not need

testing either as it is implemented by the old rsend()

function, which handles the full four tuple.

For the actual tests, 4 million connections were used as

recommended by Gapon for a highly loaded NAT server [17].

In case 2, they are generated by using source port numbers 1-

40,000 and destination port numbers 1-100, in case 3, using

the 16-bit source address parts from 2-4001, and the 16-bit

destination address parts from 2-1001, finally in case 4, the

16-bit source address parts from 2-11, the 16-bit destination

address parts from 2-11, source port numbers 1-400 and

destination port numbers 1-100.

The results are shown in Table VI. The results in the first

1 With two exceptions: in the case of IPv4 test frames the IPv4 header

checksum has to be set and the value of the UDP checksum has to be

examined if it is 0 and if so, then 0xffff has to be used instead.

 TABLE IV

STATELESS SELF-TESTS: IPV4 THROUGHPUT OF THE TESTER @ 1.2GHZ

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 7,026,719 4,293,187 4,089,050 2,828,910

Minimum (fps) 6,995,938 4,284,162 4,088,918 2,827,513

Maximum (fps) 7,062,523 4,294,927 4,089,133 2,830,567

Dispersion 0.95 0.25 0.01 0.11

Rel. perf. (%) reference 61.10 58.19 40.26

TABLE V

STATELESS SELF-TESTS: IPV6 THROUGHPUT OF THE TESTER @ 1.2GHZ

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 7,049,596 4,297,380 4,138,784 2,863,442

Minimum (fps) 6,998,045 4,295,897 4,138,173 2,862,604

Maximum (fps) 7,078,370 4,297,495 4,140,626 2,864,345

Dispersion 1.14 0.04 0.06 0.06

Rel. perf. (%) reference 60.96 58.71 40.62

TABLE VI

STATEFUL SELF-TESTS: MAXIMUM CONNECTION ESTABLISHMENT RATE

TESTS, 4M CONNECTIONS; UNIDIRECTIONAL THROUGHPUT IN THE FORWARD

DIRECTION USING FIXED FRAME FORMAT AS REFERENCE, TESTER @ 3.2GHZ

 In phase 1: pseudorandom enumeration of Forward

IP addresses -- 4,000*1,0000 10*10* throughput

port numbers 40,000*100 -- *400*100 fixed fr.

Median (fps) 10,069,082 9,944,307 9,936,514 11,878,250

Minimum (fps) 10,066,405 9,944,090 9,933,592 11,878,111

Maximum (fps) 10,069,227 9,944,347 9,937,012 11,878,925

Dispersion 0.03 0.00 0.03 0.01

Rel. perf. (%) 84.77 83.72 83.65 reference

9

three columns show the maximum connection establishment

rates. They can be significantly higher than those in Table II

because they were measured with unidirectional traffic; only

the Initiator sent test frames to the Responder in phase 1. The

last column shows throughput results measured with

unidirectional traffic in the forward direction using fixed IP

addresses and port numbers. It was added as reference to be

able to see the cost of the pseudorandom enumeration of port

numbers, IP addresses, or both. As the pseudorandom numbers

are pre-generated, and they are read linearly from array(s)

during the tests, there is much less performance penalty than

in the case of the stateless tests when the pseudorandom

numbers are generated during the test. As experienced with

the stateless tests, the modification of the IP address is more

“expensive” than that of the port numbers.

VI. STATELESS BENCHMARKING MEASUREMENTS

A. Aim and Test System

The aim of the stateless benchmarking tests was to examine

if the usage of multiple IP addresses makes any difference in

the throughput of IPv4 and IPv6 packet forwarding. To that

end, the corresponding network interfaces of the Tester and

that of the DUT were connected with direct cables, as shown

in Fig. 10. The DUT had exactly the same hardware

parameters as the Tester. The same test system was used for

stateless and stateful measurements and the DUT was used

with both Debian Linux 11.7 (with 5.10.0-23-amd64 kernel)

and OpenBSD 7.3 (with GENERIC.MP #1125 kernel)

operating systems. The CPU clock frequency was always set

to fixed 3.2GHz under Linux, but the author could not set the

CPU clock frequency to a fixed value under OpenBSD.

B. Packet Forwarding Performance under Linux

Basically, the same four types of tests were performed as in

the case of the self-test: fixed frame format, only

pseudorandom port numbers, only pseudorandom IP

addresses, pseudorandom IP addresses and pseudorandom port

numbers. However, it was experienced during the preliminary

tests that using a high number of IP addresses significantly

deteriorated the performance of the system. Therefore, only

1000 different IP addresses were used on each side. Regarding

IPv4, it meant that the last two bytes of the IP addresses had

the values from 2 to 1001. Regarding IPv6, the 12-13 bytes

had the values from 0 to 999. The Address Resolution

Protocol (ARP) and Neighbor Discovery Protocol (NDP)

table entries were set manually in the DUT as siitperf was

not able to answer ARP or NDP requests. When

pseudorandom port numbers were used, Receive Side Scaling

(RSS) was set in such a way that also port numbers may take

part in the hash function using one of the four possible

commands that can be expressed by the brace expansions

below:
ethtool -N eno{1,2} rx-flow-hash udp{4,6} sdfn

When fixed port numbers were used, only the source and

destination IP addresses took part in the hash function. To that

end, only “sd” was used instead of “sdfn” in the commands

above.

The results of the IPv4 throughput tests are shown in Table

VII. When fixed frame format was used, the median frame

forwarding rate was 963,365fps per direction. In this case only

two CPU cores handled all interrupts (one CPU core per

direction). In the other three cases the interrupts were

distributed among all CPU cores. The results of the three cases

were similar, but the difference was noticeable, when only the

port numbers were pseudorandom, the median was

4,276,009fps, but when only the IP addresses were

pseudorandom, the median was only 4,250,979fps. When the

IP addresses were pseudorandom, then the usage of fixed or

pseudorandom port numbers caused no significant difference

(4,250,979fps vs. 4,249,162fps).

In addition to the above measurements, the test with fixed

port numbers and pseudorandom IP addresses was also

performed using 100 different IP addresses at each side. The

median value of the throughput was 4,261,588fps per

direction, which is still significantly lower than that with fixed

IP addresses and pseudorandom port numbers. This difference

shows that the usage of multiple ARP table entries has its

performance costs.

The results of the IPv6 throughput tests are shown in Table

VIII. Exactly the same tendencies can be observed as with

DUT
Dell PowerEdge R730

Debian Linux 11.7
or OpenBSD 7.3

Tester
Dell PowerEdge R730
(running siitperf)

eno1 eno2

eno2/ix1eno1/ix0

2x 10G Ethernet
with direct cables

Multi-Purpose Test System

Fig. 10. Test system for the stateless and stateful tests both under Linux

and under OpenBSD.

TABLE VII

IPV4 PACKET FORWARDING PERFORMANCE OF THE DUT UNDER LINUX

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 963,365 4,276,009 4,250,979 4,249,162

Minimum (fps) 959,051 4,275,288 4,249,983 4,248,696

Maximum (fps) 964,912 4,277,649 4,251,957 4,250,490

Dispersion (%) 0.61 0.06 0.05 0.04

TABLE VIII

IPV6 PACKET FORWARDING PERFORMANCE OF THE DUT UNDER LINUX

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 920,647 4,246,709 4,217,141 4,215,284

Minimum (fps) 919,785 4,245,603 4,216,513 4,213,819

Maximum (fps) 922,157 4,250,001 4,218,788 4,217,775

Dispersion (%) 0.26 0.10 0.05 0.09

10

IPv4 in Table VII. (The values themselves are slightly lower.)

C. Packet Forwarding Performance under OpenBSD

As the Packet Filter (PF) is enabled under OpenBSD 7.3 by

default and its state handling has a significant impact on the

performance of packet forwarding, PF was disabled manually

using the pfctl -d command.

The same four types of tests were performed as in the case

of Linux, and–as far as it was possible–the same parameters

were used. However, OpenBSD does not support the setting of

the parameters of RSS [18], and thus only the source and

destination IP addresses took part in the hash function, the

source and destination port numbers were ignored throughout

the measurement process in each case.

The results of the IPv4 throughput tests are shown in Table

IX. As expected, the usage of pseudorandom port numbers

caused no significant performance difference compared to the

cases when fixed port numbers were used; however, the usage

of pseudorandom IP addresses resulted in a highly significant

(more than 3-fold) performance increase compared to the

cases when fixed IP addresses were used. The load conditions

of the CPU cores were checked and it was found that the

usage of pseudorandom IP addresses distributed the interrupts

of packet arrivals more or less equally to each of the 16 CPU

cores. However, significant systems load could be observed

only on five of the CPU cores (numbered by OpenBSD as

CPU01 to CPU05). The high dispersion of the results in the

cases when fixed IP addresses were used may be explained by

the fact that the interrupts were hashed to one of the CPU

cores that was also used by the packet forwarding process;

they competed for the usage of the CPU core, and their load

was also changing with time.

The results of the IPv6 throughput tests are shown in Table

X. The same tendencies can be observed in the case of IPv4,

but in this case, the increase caused by the usage of multiple

IP addresses was much lower.

VII. STATEFUL BENCHMARKING MEASUREMENTS

A. Aim and Test System

As in the stateless case, the aim of the stateful tests was to

examine if the usage of multiple IP addresses makes any

difference in stateful NAT64 benchmarking results.

B. Stateful NAT64 Tests under Linux using Jool

The version of Jool was 4.1.7, the most mature version of

Jool. As far as the details of the measurements are concerned,

the same method and even the same scripts were used as

described in the Appendix of [12].

For all the three types of measurements, 4,000,000

connections were used, but they were achieved in three

different ways:

1. Only the port numbers varied, the source port number

range was: 1-40,000; the destination port number range

was: 1-100.

2. Only the IP addresses varied, and the varying part of

the IPv6 addresses took the values 0-3999, the varying

part of the IPv4 addresses took the values 2-1001.

3. Both IP addresses and port numbers varied, and the

varying part of the IPv6 address took the values 0-9,

the varying part of the IPv4 address took the values 2-

11, the source port number range was 1-400, and

destination port number range was 1-100.

It needs to be noted that “source” and “destination” port

numbers, as well as their ranges should always be interpreted

in the traffic from the Initiator to the DUT. The stateful

NAT64 gateway may change the source port numbers, and the

Responder stores the four tuples received into its state table

and it generates traffic only in phase 2, using the four tuples

stored. The “IPv6 addresses” should be interpreted as the

source addresses in the traffic from the Initiator to the DUT. In

the IPv4 traffic, they are replaced by the public IPv4 address

of the DUT. In the traffic from the Initiator to the DUT, the

destination IPv6 addresses are actually IPv4-embedded IPv6

addresses, where the above-mentioned “IPv4 addresses” were

appended to the 64:ff9b::/96 NAT64 Well-Known Prefix

(WKP).

The results of the maximum connection establishment rate

and throughput measurements are shown in Table XI and

Table XII, respectively. It can be stated that the usage of

multiple IP addresses caused no significant difference in the

performance of the Jool stateful NAT64 implementation

compared to the case where fix IP addresses were used. (The

small performance decrease can be attributed to the higher

number of elements in the ARP or NDP tables.)

C. Stateful NAT64 Tests under OpenBSD using PF

The measurement method described in [12] was reused with

an important difference. Instead of deleting the connections

with the pfctl -F states command, the DUT was

rebooted after every single step of the binary search algorithm.

It was done so to ensure a completely empty connection

tracking table for each step because the above-mentioned

command does not delete the complete content of the

connection tracking table of PF, but it only “marks the states

as expired, and then the purge scan is able to take them and

actually free them” [19].

The same types of measurements using the same parameters

TABLE IX

IPV4 PACKET FORWARDING PERFORMANCE OF THE DUT UNDER OPENBSD

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 390,125 384,596 1,277,414 1,283,352

Minimum (fps) 367,116 374,872 1,249,999 1,276,078

Maximum (fps) 437,745 441,549 1,296,876 1,297,120

Dispersion (%) 18.10 17.34 3.67 1.64

TABLE X

IPV6 PACKET FORWARDING PERFORMANCE OF THE DUT UNDER OPENBSD

IP addresses fixed fixed random random

port numbers fixed random fixed random

Median (fps) 384,970 384,859 582,165 580,394

Minimum (fps) 351,553 382,807 577,024 562,499

Maximum (fps) 385,749 385,391 597,657 602,539

Dispersion (%) 8.88 0.67 3.54 6.90

11

were executed as with Jool.

The results of the maximum connection establishment rate

measurements are shown in Table XIII. The usage of

pseudorandom IP addresses and fixed port numbers resulted in

a slight (11.7%) increase of the maximum connection

establishment rate compared to the case when fixed IP

addresses and pseudorandom port numbers were used. When

both the IP addresses and the port numbers were

pseudorandom, the performance increase was only 7.24%.

(The author assumes that the usage of 10 IP addresses on each

side was probably not enough to achieve an even distribution

of the interrupts on the CPU cores, but the investigation of this

question is beyond the scope of the current paper.)

As far as the throughput tests are concerned, during the

preliminary tests the author experienced that the steps of the

binary search failed due to a very low number of missing

frames in the reverse direction even at rather low frame rates.

To handle this issue, a Loss Tolerance of 0.01% was used. It

means that the given step of the binary search was considered

“passed” if at least 99.99% of the frames arrived back to the

Tester. (It was checked individually for each direction, and the

condition had to be satisfied for both directions for passing the

test.)

The results of the throughput measurements are shown in

Table XIV. It is highly important that the usage of

pseudorandom IP addresses resulted in significantly higher

throughput then with fixed IP addresses. Unfortunately, the

results show a rather high dispersion in all cases. For this

reason, the author refrains from drawing conclusion from the

fact that the combination of pseudorandom IP addresses and

port numbers seem to result in a somewhat higher throughput

than throughput of the case when only IP addresses were

pseudorandom.

VIII. DISCUSSION AND FUTURE RESEARCH

OpenBSD 7.3 IPv4 packet forwarding throughput results in

Table IX show that the usage of pseudorandom IP addresses

caused a more than 3-fold performance increase compared to

the cases when fixed IP addresses were used. This is a highly

significant difference. As Internet traffic has multiple IP

addresses, it means that in this case the RFC 2544 / RFC 4814

compliant laboratory test results did not reflect well the IPv4

packet forwarding performance of OpenBSD 7.3, as a result,

they should be updated.

OpenBSD 7.3 IPv6 packet forwarding throughput results in

Table X and OpenBSD 7.3 PF stateful NAT64 packet

forwarding results in Table XIV also show more than 50

percent difference, which is also significant.

OpenBSD was used only as an example, several other

various network interconnect devices may exist that do not

support the setting of RSS, so that also the port numbers may

be taken into consideration and thus their packet forwarding

performance can show a rather significant difference when

fixed IP addresses are used during laboratory testing and for

forwarding Internet traffic. This methodological gap should be

closed so that the results of the laboratory test may be more

useful for both the manufactures and the users of network

interconnect devices. To that end, the author discussed the

issue with the chairs of the IETF BMWG and submitted the

following Internet Draft [20] prior to the submission of the

current paper for review.

The appropriate ranges for IP addresses to reflect the nature

of the Internet traffic is beyond the scope of the current paper

and it is considered an open question and an important topic

for future research.

TABLE XI

MAXIMUM CONNECTION ESTABLISHMENT OF THE JOOL STATEFUL NAT64

IMPLEMENTATION, 4M CONNECTIONS

 In phase 1: pseudorandom enumeration of

IP addresses -- 4,000*1,0000 10*10*

port numbers 40,000*100 -- *400*100

Median (fps) 577,879 542,059 559,947

Minimum (fps) 576,150 539,061 557,613

Maximum (fps) 578,614 543,504 562,531

Dispersion 0.43 0.82 0.88

Rel. perf. (%) reference 93.80 96.90

TABLE XII

THROUGHPUT OF THE JOOL STATEFUL NAT64 IMPLEMENTATION, 4M

CONNECTIONS, BIDIRECTIONAL TRAFFIC, PER DIRECTION RATES

 In phase 1: pseudorandom enumeration of

IP addresses -- 4,000*1,0000 10*10*

port numbers 40,000*100 -- *400*100

Median (fps) 302,557 289,338 295,007

Minimum (fps) 301,170 289,015 294,332

Maximum (fps) 303,516 289,907 295,703

Dispersion 0.78 0.31 0.46

Rel. perf. (%) reference 95.63 97.50

TABLE XIII

MAXIMUM CONNECTION ESTABLISHMENT OF THE PF STATEFUL NAT64

IMPLEMENTATION, 4M CONNECTIONS

 In phase 1: pseudorandom enumeration of

IP addresses -- 4,000*1,0000 10*10*

port numbers 40,000*100 -- *400*100

Median (fps) 98,540 110,069 105,675

Minimum (fps) 97,532 108,791 104,701

Maximum (fps) 100,601 111,359 109,376

Dispersion 3.11 2.33 4.42

Rel. perf. (%) reference 111.70 107.24

TABLE XIV

THROUGHPUT OF THE PF STATEFUL NAT64 IMPLEMENTATION, 4M

CONNECTIONS, BIDIRECTIONAL TRAFFIC, PER DIRECTION RATES,

BEWARE: LOSS TOLERANCE: 0.01%

 In phase 1: pseudorandom enumeration of

IP addresses -- 4,000*1,0000 10*10*

port numbers 40,000*100 -- *400*100

Median (fps) 174,457 272,768 295,648

Minimum (fps) 129,279 238,616 246,676

Maximum (fps) 206,372 355,361 364,066

Dispersion 44.19 42.80 39.71

Rel. perf. (%) reference 156.35 169.47

12

IX. CONCLUSION

It was pointed out that IETF BMWG documents lack

guidelines for how to use pseudorandom IP addresses in

stateless or stateful benchmarking. A solution was proposed to

fill this methodological gap while honoring the constraints of

the IPv4 and IPv6 address ranges reserved for benchmarking.

The siitperf free software stateless and stateful network

performance tester program was extended to support the

proposed solution. The performance penalty of the usage of

pseudorandom IP addresses was measured and it was shown

that the design goal of maintaining the high performance of

siitperf was achieved.

The proposed solution was validated by performing both

stateless and stateful benchmarking measurements. It was

found that the proposed solution can give definitely different

results than those produced using fixed IP addresses. With the

help of the proposed method and the new version of

siitperf, the laboratory benchmarking results of IPv4 and

IPv6 routers, as well as those of stateful NAT64 gateways

much better reflect the performance of the tested devices when

they are used in production systems for forwarding Internet

traffic.

ACKNOWLEDGEMENTS

The author thanks Fortix Consulting Ltd. for providing his

research group with three Dell PowerEdge R730 servers.

The author thanks the National Media and Infocommuni-

cations Authority (NMHH) of Hungary for lending an Anritsu

MP1590B Network Performance Tester.

The author thanks István Pilisi, NMHH, for his advice

regarding the above-mentioned device and the Spirent SPT-

N4U Tester, too.

The author thanks Keiichi Shima, Bertalan Kovács, István

Pilisi, Szabolcs Szilágyi, and Ádám Bazsó for their reviewing

and commenting on the manuscript.

The author thanks Vargáné Katalin Kiss and John

Kowalchuk, Széchenyi István University, for the English

language proofreading of the manuscript.

APPENDIX

A. Introduction to Siitperf

A brief introduction to siitperf is given to provide the

reader with the essential information necessary to understand

its extension to support multiple IP addresses. The following

sections are based on author’s open access papers [9], [11],

[21], and [22] in which all the details can be found. Some of

their text is reused.

1) The Stateless Version of Siitperf

The aim of the author was to design and implement a high

performance and also flexible research tool. To that end,

siitperf is a collection of binaries and shell scripts. The

core measurements can be performed by one of three binaries,

which are executed multiple times by one of four shell scripts.

The binaries perform the sending and receiving of certain

Ethernet test frames containing IPv4 or IPv6 datagrams (in

short: IPv4 or IPv6 test frames) at a pre-defined constant

frame rate according to the test setup shown in Fig. 2. As

siitperf allows X=Y, it can also be used for benchmarking

an IPv4 or an IPv6 router. The shell scripts call the binaries

supplying them with the proper command line parameters for

the given core measurement.

The first two of the supported benchmarking procedures

(throughput and frame loss rate) require only the above-

mentioned sending of test frames at a constant rate and

counting the received test frames, thus the core measurement

of both procedures is the same. The difference is that the

throughput measurement requires finding the highest rate at

which the DUT can forward all test frames without loss,

whereas the frame loss rate measurement requires performing

the core measurement at various frame rates to determine the

frame loss rate at those specific frame rates. The core

measurement of both tests was implemented in the

siitperf-tp binary and the two different benchmarking

procedures were performed by two different bash shell scripts.

The one used for determining the throughput uses a binary

search to find the highest lossless frame rate with the

predefined error, which expresses the stopping criterion for

the binary search. It stops, when:

higher_limit – lower_limit <= error.

The core measurements of the latency and PDV

benchmarking procedures were implemented by the

siitperf-lat and siitperf-pdv binaries,

respectively. They are different extensions of siitperf-

tp.

Input parameters that are unchanged during the consecutive

executions of the binaries are read from the

siitperf.conf file, whereas those that are changed are

supplied by the shell scripts as command line parameters.

The binaries were implemented in C++ using DPDK to

achieve a high enough performance. An object oriented design

was followed: the Throughput class served as a base class

for the Latency and Pdv classes. The program structure of

each C++ program is very simple: the main program reads the

parameters first from the configuration file and then from the

command line. Next, it calls the init() function of the

required measurement, which initializes the Environment

Abstraction Layer (EAL) of the DPDK, resets and starts the

network interfaces, and performs a few sanity checks. Finally,

the main program executes the proper measurement

procedure. The measurement procedure prepares the

parameters for the senders and receivers, and starts one sender

and one receiver for each active direction (as separate

threads). They are executed by their exclusively used CPU

cores to ensure guaranteed performance. (The used CPU cores

should be excluded from the scheduler of the Linux kernel

using the isolcpus kernel command line parameter.) After

the sender and receiver threads have finished, the main thread

collects and evaluates their results. In a general case, when

frame sending and receiving is active in both directions, two

senders and two receivers are used, which are executed by

13

their respective CPU cores, as shown in Fig. 11. (Packets

traversing through the DUT in the left to right direction are

called forward traffic and the packets sent in the opposite

direction are called reverse traffic.)

The send() and receive() functions are started by the

rte_eal_remote_launch() function of DPDK, which

does not allow the execution of non-static member functions.

It was a serious limitation, thus the author could not carry out

a fully object oriented design. The remotely executed

functions can exchange data through a data structure, the

address of which is provided to the functions as a pointer.

The first version of siitperf [4] used a high number of

parameters in its configuration file to support flexibility. Its IP

version could be set independently on its left and right sides

using the two parameters that can be generated by the

following brace expansion: IP-{L,R}-Vers. For each side

(left and right) and both IP versions (4 and 6) the user could

set two IP addresses: real and virtual. (The latter was used to

represent an IP address from the other address family than that

was actually used on the given side.) Table XV gives a short

summary of how the eight potential IP addresses were used.

RFC 8219 also requires that besides the traffic that is

translated (called “foreground traffic”), SIIT tests should also

use non-translated native IPv6 traffic (called “background

traffic”), and different proportions of the two types of traffic

have to be used. Background traffic is normal IPv6 test frames

and they are always sent from the “real” IPv6 address of the

given side to the “real” IPv6 address of the other side.

Background traffic is indistinguishable from the foreground

test frames if the IP version of both sides is 6 (case no. 4).

As for the receive() function, it was written to be

resilient. It does not take care of the IP version of the given

side, but it checks the EtherType field of the frame to

determine its IP version. It also checks if the received frame is

a test frame. (To that end, siitperf writes the bytes of the

“IDENTIFY” string as the first eight bytes of the UDP data

field. It is not handled as a string, but as a 64-bit integer for

performance considerations. [4])

Originally, siitperf literally followed the test frame

format with fixed IP addresses and port numbers specified in

the Appendix C.2.6.4 of RFC 2544. When the support for

RFC 4814 pseudorandom port numbers was added [21], the

flexible design of siitperf was kept; the user can specify

the source and destination port number ranges for each

direction separately and if the source and destination port

numbers should have a fixed value, they should increase,

decrease, or be pseudorandom. (Only the last one complies

with RFC 4814.) These details are important regarding the

design of the extension to support multiple IP addresses, as

they should fit together. There are four parameters that

describe the behavior of the port numbers. Their names can be

obtained by the following brace expansion: {Fwd,Rev}-

var-{s,d}port. The values of the parameters can be 0-3

with the following meanings: 0: fixed; 1: increasing; 2:

decreasing; 3: pseudorandom. The ranges for the port numbers

can be specified using 8 parameters: {Fwd,Rev}-

{s,d}port-{min,max}. In all, there are 12 parameters

used.

It is an important implementation detail that siitperf

uses packet templates in which it modifies source and

destination port numbers, as well as the appropriate 8-bit part

of the IPv4 or IPv6 addresses, when multiple destination

networks are used. IPv4 and UDP checksums are pre-

calculated when the packet templates are generated (using 0

values for the fields to be modified) and they are modified

according to the checksum of the modified fields. Depending

on the IP version, pointers are set to the fields to be

manipulated, and then the same code works for both IPv4 and

IPv6 test frames.

Another important implementation detail was that only a

single send() function was written and originally it had two

sending loops: one for sending the same test frame using fixed

IP addresses and port numbers, and another one for preparing

several (up to 256) test frames the destination IP address of

which belonged to different destination networks. When

Table XV. Specification of which parameters are used as source and destination IP addresses for foreground test frames on each side.

(L/R means: Left/Right, the Virt(ual) value is used to represent an IP address from a different address family than used on the given side). [9]

Case IP version Type of the

DUT

IP addresses used by the Left Sender IP addresses used by the Right Sender

No. Left Right source destination source destination

1. 6 4 stateless NAT64 gw. IPv6-L-Real IPv6-R-Virt IPv4-R-Real IPv4-L-Virt

2. 4 6 stateless NAT46 gw. IPv4-L-Real IPv4-R-Virt IPv6-R-Real IPv6-L-Virt

3. 4 4 IPv4 router IPv4-L-Real IPv4-R-Real IPv4-R-Real IPv4-L-Real

4. 6 6 IPv6 router IPv6-L-Real IPv6-R-Real IPv6-R-Real IPv6-L-Real

Fig. 11. Operation of the sender and receiver functions of siitperf during

stateless testing. [9]

Tester
Left Side Right Side

CPU-L-Send

send()

CPU-L-Recv

receive()

CPU-R-Recv

receive()

CPU-R-Send

send()

Network
Interface

Left Port Right Port

Forward Traffic

Reverse
Traffic

14

support for RFC 4814 pseudorandom port numbers was added,

then the number of sending loops was doubled to support the

original operation mode with fixed port numbers besides the

new one with varying port numbers.

The following command line parameters are used for the

throughput test:

 IPv6 frames size (in bytes), IPv4 frames are

automatically 20 bytes shorter

 frame rate (in frames per second)

 duration of testing (in seconds)

 global timeout (in milliseconds), the tester stops

receiving, when this global timeout elapsed after frame

sending finished

 n and m: they are two relative prime numbers for

specifying the proportion of foreground and

background traffic: m packets form every n packets

belong to the foreground traffic and the rest (n-m)

packets belong to the background traffic.

Besides the parameters above, which are common for all the

three binary programs, siitperf-lat and siitperf-

pdv use various further ones, but they are not relevant to the

current paper.

When the send() function finishes frame sending, it

checks the duration of the frame sending. If it exceeds the

desired duration by a factor higher than the predefined

constant called “TOLERANCE” (the value of which is

defined as 1.00001), it reports an error, and then bash shell

script considers the test as failed. The aim of this checking is

to avoid the kind of error situation that the test is performed at

a longer time and thus at a lower frame rate then required due

to the insufficient performance of the Tester.

2) Extension for Stateful Tests

The extension of siitperf for stateful NAT64 / NAT44

measurements is documented in [9].

The phase 1 operation of the Initiator is implemented by the

new isend() function, which is able to provide the

pseudorandom enumeration of all possible source port number

and destination port number combinations required by the

benchmarking methodology [10]. They are pre-generated

before phase 1 using Durstenfeld’s random shuffle algorithm

[23]. Following the traditions of siitperf, the user has

several factors of freedom; the port number enumeration is

optional, and if it is used, increasing or decreasing order can

also be used (besides pseudorandom), where the source port

number is the low order counter and destination port number

is the high order counter.

The operation of the sender and receiver functions of

siitperf in stateful mode during phase 1 and phase 2 are

shown in Fig. 12 and Fig. 13, respectively. In phase 1, the

Initiator only sends packets using the isend() function, and

it does not receive any packets. In phase 2, it sends and

receives packets using the legacy send() and receive()

functions.

It needs to be noted that the isend() function is much

more general than required by the Internet Draft [10]. It is an

extended version of the original send() function, keeping its

all four packet sending loops and adding the optional

functionality of port number enumeration. The only restriction

is that port number enumeration may not be used together with

multiple destination networks.

As for the Receiver, its implementation required two new

functions: rreceive()and rsend(); and a new data

structure: state table. The latter is implemented by an array of

size M (specified by the user as command line parameter), the

elements of which are atomic four tuples because it is

concurrently read and written during phase 2. The

rreceive() function extracts the source and destination

IPv4 addresses and port numbers from the received IPv4 test

frames and stores them in the state table. (The writing order is

always increasing and its index is increased modulo M) The

rsend() function prepares IPv4 test frames based on the

four tuples taken from the state table (source and destination is

swapped). The reading order can be increasing, decreasing and

pseudorandom. (The latter is recommended.)

Fig. 12. Operation of the sender and receiver functions of siitperf during

phase 1 of stateful testing. [9]

Tester
Initiator Responder

CPU-L-Send

isend()

CPU-L-Recv CPU-R-Recv

rreceive()

CPU-R-Send

Network
Interface

Left Port Right Port

Preliminary Traffic

State Table

write

Fig. 13. Operation of the sender and receiver functions of siitperf during

phase 2 of stateful testing. [9]

Tester
Initiator Responder

CPU-L-Send

send()

CPU-L-Recv

receive()

CPU-R-Recv

rreceive()

CPU-R-Send

rsend()

Network
Interface

Left Port Right Port

Forward Traffic

Reverse
Traffic

State Table

read write

15

The stateful extension introduced only 3 new configuration

file parameters. The name of the first one is Stateful, and

its possible values and their meanings are: 0: perform stateless

test; 1: perform stateful test, the Initiator is on the left side and

the Responder is on the right side; 2: same as 1, but the

Initiator and the Responder are on the opposite sides.

The second new parameter is Enumerate-ports, and its

possible values and their meanings are: 0: no port number

enumeration; 1 or 2: port numbers are enumerated in

increasing or decreasing order; 3: port numbers are

enumerated in pseudorandom order.

Notes regarding the values of the Enumerate-ports

parameter:

 The value of 3 must be used to comply with the

requirements of the Internet Draft [10]. The other

values facilitate further opportunities for testing (e.g.,

to examine if the order of enumeration matters or not).

 Any non-zero value of the Enumerate-ports

parameter overrides the values of the {Fwd,Rev}-

var-{s,d}port parameters for phase 1.

 The zero value of the Enumerate-ports parameter

results in the usage of the values of the Fwd-var-

{s,d}port or Rev-var-{s,d}port parameters

also in phase 1, depending on the 1 or 2 value of the

Stateful parameter.

It is very important to note that port number enumeration

applies only to the foreground traffic (traffic to be translated).

The frames that belong to the background traffic (native IPv6

traffic) do not take part in the port number enumeration.

The third new parameter is Responder-ports, and its

possible values and their meanings are: 0: a single fixed four

tuple is used (like when a single test frame is always used); 1

or 2: the four tuples are taken from the state table in increasing

or decreasing order; 3: the four tuples are selected from the

state table in a pseudorandom way. Although the latter is

recommended by the Internet Draft [10], reading the state

table in increasing order provides a higher Tester performance

due to less computation and caching [9].

The new command line parameters are to be interpreted as

follows:

 N: the number of test frames to send in phase 1

 M: the number of entries in the state table of the Tester

 R: the frame rate, at which the test frames are sent

during phase 1 (in frames per second)

 T: the global timeout for phase 1 frames (in

milliseconds)

 D: the overall delay caused by phase 1 (in

milliseconds)

It needs to be noted that phase 1 and phase 2 were originally

called “preliminary phase” and “real test phase” [9]. This

approach explains why those parameters were defined when

siitperf supported only stateless tests, which were then

applied to “the real test phase” (now referred to as phase 2),

and when different parameters were needed, new ones were

defined for the “preliminary phase” (now referred to as phase

1).

B. Validation of the Parameters

The parameter design is partially validated by setting the

parameters to reflect the test setups mentioned in the previous

sections of this paper.

Parameters for the traditional IPv4 routing tests with fixed

IP addresses according to Fig. 1 and for the stateful NAT64

tests according to Fig. 3 are as follows:
IP-L-var 0 # fixed

IP-R-var 0 # fixed

Moreover, the values of the further new parameters are

redundant and everything works as before.

For all the following test cases, they are to be set as follows

(they are not repeated below):
IP-L-var 3 # pseudorandom

IP-R-var 3 # pseudorandom

Parameters for IPv4 router testing according to Fig. 4:
IP-L-min 2 # ".1" is for the DUT

IP-L-max 65534 # ".255.255" is broadcast

IP-R-min 2 # ".1" is for the DUT

IP-R-max 65534 # ".255.255" is broadcast

IPv4-L-offset 2 # last 16 bits

IPv4-R-offset 2 # last 16 bits

Parameters for IPv6 router testing according to Fig. 5:
IP-L-min 0 # The full range

IP-L-max 0xffff # can be used.

IP-R-min 0 # The full range

IP-R-max 0xffff # can be used.

IPv6-L-offset 12 # bits 96-111

IPv6-R-offset 12 # bits 96-111

Parameters for stateful NAT44 testing according to Fig. 6:
IP-L-min 0 # The full range

IP-L-max 65535 # can be used.

IP-R-min 0 # 0 is valid, but

IP-R-max 65534 # ".255.255" is broadcast.

IPv4-L-offset 1 # bits 8-23

IPv4-R-offset 2 # bits 16-31

Parameters for stateful NAT64 testing according to Fig. 7:
IP-L-min 0 # The full range

IP-L-max 0xffff # can be used.

IP-R-min 0 # 0 is valid, but

IP-R-max 65534 # ".255.255" is broadcast.

IPv6-L-offset 12 # bits 96-111

IPv6-R-offset 14 # bits 112-127 (for IPv6-R-Virt!)

Parameters for stateful NAT44 testing according to Fig. 8:
IP-L-min 2 # ".1" is for the DUT

IP-L-max 65534 # ".255.255" is broadcast

IP-R-min 0 # 0 is valid, but

IP-R-max 65534 # ".255.255" is broadcast.

IPv4-L-offset 2 # bits 16-31

IPv4-R-offset 2 # bits 16-31

And for all stateful tests:
Enumerate-ips 3

Thus it was shown that the new parameters are suitable to

express the settings required for the proposed test setups.

REFERENCES

[1] S. Bradner, J. McQuaid, Benchmarking methodology for

network interconnect devices, IETF RFC 2544, 1999. DOI:

10.17487/rfc2544

[2] T. Herbert, W. Brujin, “Scaling in the Linux networking stack”,

Linux Kernel Documentation, 2014, [Online], available:

https://www.kernel.org/doc/Documentation/networking/scaling.t

xt

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt

16

[3] D. Newman, T. Player, “Hash and stuffing: Overlooked factors

in network device benchmarking”, IETF RFC 4814, 2008. DOI:

10.17487/RFC4814

[4] G. Lencse, “Design and implementation of a software tester for

benchmarking stateless NAT64 gateways”, IEICE Transactions

on Communications, vol. E104-B, no. 2, pp. 128-140. DOI:

10.1587/transcom.2019ebn0010

[5] C. Popoviciu, A. Hamza, D. Dugatkin, “IPv6 benchmarking

methodology for network interconnect devices”, IETF RFC

5180, 2008. DOI: 10.17487/rfc5180

[6] M. Georgescu, L. Pislaru, G. Lencse, “Benchmarking

methodology for IPv6 transition technologies”, IETF RFC 8219,

2017. DOI: 10.17487/rfc8219

[7] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6

transition technologies: A subjective classification for security

analysis”, IEICE Transactions on Communications, vol. E102-

B, no 10, pp. 2021–2035. DOI: 10.1587/transcom.2018ebr0002

[8] M. Bagnulo, P. Matthews, and I. Beijnum, “Stateful NAT64:

Network address and protocol translation from IPv6 clients to

IPv4 servers”, IETF RFC 6146, Apr. 2011, DOI:

10.17487/RFC6146.

[9] G. Lencse, “Design and implementation of a software tester for

benchmarking stateful NATxy gateways: theory and practice of

extending siitperf for stateful tests”, Computer Communications,

vol. 172, no. 1, pp. 75-88, August 1, 2022, DOI:

10.1016/j.comcom.2022.05.028

[10] G. Lencse, K. Shima, “Benchmarking methodology for stateful

NATxy gateways using RFC 4814 pseudorandom port

numbers”, Internet Draft, Feb. 14, 2023, draft-ietf-bmwg-

benchmarking-stateful-02 [Online], available:

https://datatracker.ietf.org/doc/html/draft-ietf-bmwg-

benchmarking-stateful-02

[11] G. Lencse and K. Shima, “Optimizing the performance of the

iptables stateful NAT44 solution”, Infocommunications Journal,

vol. 15, no. 1, March 2023, pp. 55-63, DOI:

10.36244/ICJ.2023.1.6

[12] G. Lencse, K. Shima, K. Cho, "Benchmarking methodology for

stateful NAT64 gateways", Computer Communications, vol.

210, no. 1, October 1. 2023, pp. 256-272, DOI:

10.1016/j.comcom.2023.08.009

[13] G. Lencse, “Benchmarking Stateless NAT64 Implementations

with a Standard Tester”, Telecommunication Systems, vol. 75,

no. 3, pp. 245-257, 2020. DOI: 10.1007/s11235-020-00681-x

[14] C. Bao, X. Li, et al., IP/ICMP translation algorithm, IETF RFC

7915, DOI: 10.17487/rfc7915

[15] D. Scholz, “A look at Intel’s dataplane development kit”, Proc.

Seminars Future Internet (FI) and Innovative Internet

Technologies and Mobile Communications (IITM), Munich,

2014, pp. 115–122. DOI: 10.2313/NET-2014-08-1_15

[16] G. Lencse, Siitperf: An RFC 8219 compliant SIIT (stateless

NAT64) tester, free software under GPLv3 license, [Online]

Available: https://github.com/lencsegabor/siitperf

[17] V. Gapon, “Tuning nf_conntrack”, personal blog, [Online],

available: https://ixnfo.com/en/tuning-nf_conntrack.html

[18] S. Henderson, “Re: Does OpenBSD support Receive Side

Scaling (also called: multi-queue receiving)”, 2022, the list

archive of the OpenBSD MISC mailing list, [online], available:

https://marc.info/?l=openbsd-

misc&m=166581934723445&w=2.

[19] D. Gwynne, “Re: pf state-table-induced instability”, 2023, the

list archive of the OpenBSD MISC mailing list, [online],

available: https://marc.info/?l=openbsd-

misc&m=169326012603726&w=2

[20] G. Lencse, K. Shima, “Recommendations for using multiple IP

addresses in benchmarking tests”, Internet Draft, Oct. 20, 2023,

draft-lencse-bmwg-multiple-ip-addresses-00 [Online], available:

https://datatracker.ietf.org/doc/html/draft-lencse-bmwg-

multiple-ip-addresses-00

[21] G. Lencse, “Adding RFC 4814 random port feature to siitperf:

Design, implementation and performance estimation”,

International Journal of Advances in Telecommunications,

Electrotechnics, Signals and Systems, vol. 9, no. 3, pp. 18–26.

DOI: 10.11601/ijates.v9i3.291

[22] G. Lencse, “Checking the Accuracy of Siitperf”,

Infocommunications Journal, vol. 13, no. 2, pp. 2-9, June 2021,

DOI: 10.36244/ICJ.2021.2.1

[23] R. Durstenfeld, “Algorithm 235: Random permutation”,

Communications of the ACM, vol. 7, no. 7, p. 420, July 1964,

DOI: 10.1145/364520.364540

Gábor Lencse received his MSc and

PhD in computer science from the

Budapest University of Technology and

Economics, Budapest, Hungary in 1994

and 2001, respectively.

He has been working full time for the

Department of Telecommunications,

Széchenyi István University, Győr,

Hungary since 1997. Now, he is a

Professor. He has been working part time for the Department

of Networked Systems and Services, Budapest University of

Technology and Economics, Budapest, Hungary as a Senior

Research Fellow since 2005. The main area of his research is

the performance and security analysis of IPv6 transition

technologies. He is a co-author of RFC 8219.

Dr. Lencse is a member of the Institute of Electronics,

Information and Communication Engineers (IEICE), Japan.

https://datatracker.ietf.org/doc/html/draft-ietf-bmwg-benchmarking-stateful-02
https://datatracker.ietf.org/doc/html/draft-ietf-bmwg-benchmarking-stateful-02
https://github.com/lencsegabor/siitperf
https://ixnfo.com/en/tuning-nf_conntrack.html
https://marc.info/?l=openbsd-misc&m=166581934723445&w=2
https://marc.info/?l=openbsd-misc&m=166581934723445&w=2
https://marc.info/?l=openbsd-misc&m=169326012603726&w=2
https://marc.info/?l=openbsd-misc&m=169326012603726&w=2
https://datatracker.ietf.org/doc/html/draft-lencse-bmwg-multiple-ip-addresses-00
https://datatracker.ietf.org/doc/html/draft-lencse-bmwg-multiple-ip-addresses-00

