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Abstract—The Benchmarking Working Group (BMWG) of the 

Internet Engineering Task Force (IETF) has defined a series of 

Requests for Comments (RFC) to standardize the benchmarking 

of network interconnect devices (e.g., bridges, routers, different 

IPv6 transition solutions). The paper points out that there are 

cases where the performance results are significantly different 

when a single IP address pair or multiple IP addresses are used. 

The cause of this phenomenon is rooted in the recent hardware 

and software advancements: Receive Side Scaling (RSS) makes it 

possible to distribute packet processing workload over multiple 

CPU cores. However, this may be implemented in two ways: the 

first way only includes the IP addresses into the hash function 

used to distribute the workload among the CPU cores, whereas 

the second one also includes the port numbers. RFC 4814 

proposed an excellent solution for the second case by 

recommending the usage of pseudorandom port numbers during 

benchmarking; however, the first case was not handled properly, 

because no explicit recommendation was given regarding the 

usage of multiple IP addresses. This paper attempts to bridge this 

methodological gap; a practical solution is proposed for using 

pseudorandom IP addresses in various scenarios including the 

benchmarking of IPv4 and IPv6 routers and Network Address 

Translation from IPv6 Clients to IPv4 Servers (stateful NAT64) 

gateways. Its feasibility is shown by disclosing the details of its 

implementation in siitperf. Then the proposed solution is 

validated by both stateless and stateful tests. It is shown that the 

measurement results of the tests following the proposed solution 

can better characterize the true performance of the network 

interconnect devices that follow the first type of RSS 

implementation than the results of the tests using a single IP 

address pair. 

 

Index Terms—network performance testers, receive side 

scaling, siitperf, throughput.  

 

I. INTRODUCTION 

ENCHMARKING of network interconnect devices aims 

 to accurately measure their certain standardized perform-

ance characteristics in order to obtain reasonable and 

comparable results, which are essential for both the developers 

and the users of the devices. To that end, the Benchmarking 

Working Group (BMWG) of the Internet Engineering Task 

Force (IETF) has defined a series of Requests for Comments 

(RFCs).  RFC 2544 [1] was published in 1999, and it still 

determines how commercial network performance testers 

work. In its appendix, it has defined a test frame format with 

fixed IP addresses and fixed User Datagram Protocol (UDP) 

port numbers for router testing, which was very convenient for 

the manufactures of the testers, as the very same test frames 

could be reused. As time passed by, state-of-the-art routers 

started using multiple processing units, among which the 

network traffic was distributed by using the entropy provided 

by the different source and destination IP addresses and port 

numbers. This solution is called Receive-Side Scaling (RSS) 

[2]. To that end, RFC 4814 [3] highly recommends the use of 

pseudorandom port numbers during benchmarking, however, 

it did not provide a solution regarding the IP addresses for the 

general case (please refer to Section II.A.2 for the details). 

Depending on the implementation, RSS may only include 

the source and destination IP addresses or it may also include 

the source and destination port numbers into the tuple used for 

hashing. RFC 4814 compliant testers work properly in the 

second case, however, pseudorandom port numbers cannot 

provide entropy if the Device Under Test (DUT) follows the 

first type of RSS implementation; therefore, these devices 

produce poor benchmarking results in RFC 4814 compliant 

laboratory tests, whereas they can exhibit a high performance 

in production environments where the usage of multiple IP 

addresses ensures the entropy for the proper operation of their 

RSS implementation. Therefore, the conditions of laboratory 

tests should be improved to ensure unbiased performance 

testing. To that end, this paper examines how the usage of 

multiple IP addresses can be introduced in the performance 

testing of various network interconnect devices. Practical 

recommendations are provided for the usage of pseudorandom 

source and destination IP addresses in the case of both 

stateless and stateful benchmarking following the approach of 

RFC 4814 regarding the port numbers. The most important 

design and implementation considerations for extending 

siitperf [4] to support the usage of multiple IP addresses 

are also disclosed. The solution proposed is validated by 

performing benchmarking measurements pointing out a 

significant improvement of the results. The findings should 

make an important contribution to the field of benchmarking 

network interconnect devices by making stateless and stateful 

performance measurements unbiased regarding the type of 

RSS implementation of the DUT. 

The rest of this paper is organized as follows: Section II 

gives a summary of the background information regarding 
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stateless and stateful network interconnect device performance 

testing. Section III presents the recommendation for the 

introduction of multiple IP addresses. Section IV discloses the 

design and implementation of the extension of siitperf to 

support stateless and stateful benchmarking measurements 

with multiple IP addresses. In section V, the performance 

limits of the new functions of siitperf and its performance 

degradation due to the more complex operation are 

determined. The proposed methodology and its 

implementation are validated by stateless and stateful 

benchmarking measurements in various scenarios in Section 

VI and Section VII, respectively. The findings are discussed in 

Section VIII, and the paper is concluded in Section IX. 

II. INTRODUCTION TO THE BENCHMARKING OF NETWORK 

INTERCONNECT DEVICES 

A. Benchmarking Methodology for IPv4 or IPv6 Routers 

1) The original methodology 

RFC 2544 has defined all the relevant aspects of 

benchmarking network interconnect devices including the test 

and traffic setup, standard frame sizes, frame formats, and 

measurement procedures. The primary recommended test 

setup is built up by two devices: the Tester and the DUT. Their 

corresponding network interfaces are connected and the Tester 

sends test frames through the DUT and receives back the 

frames, as shown in Fig. 1. It needs to be noted that although 

the arrows are unidirectional, bidirectional traffic is required. 

The essential benchmarking procedure is the throughput 

measurement, which determines the highest constant frame 

rate at which the DUT is able to forward all frames sent by the 

Tester. There are several other benchmarking procedures that 

give further insight into the performance of the DUT, like 

latency that determines the one way delay caused by the DUT 

measured at the frame rate previously determined by the 

throughput measurement procedure, or frame loss rate, which 

is to be determined at various frame rates. When routers are 

tested, it is required to perform the tests first, using a single 

source and destination IP address pair (as shown in Fig. 1) and 

then, using 256 different destination networks. The 

198.18.0.0/15 IPv4 address range was reserved for 

benchmarking. Its first half (198.18.0.0/16) and its second half 

(198.19.0.0/16) are intended to be used on the left side and 

right side of the devices, respectively. Thus (numbering the 

bits from 0) the 16-23 bits ensure the possibility to describe 

the required 256 destination networks. As for the transport 

layer protocol, UDP was recommended. 

It needs to be noted that benchmarking measurements are to 

be performed in an isolated laboratory environment and the 

usage of the dedicated address space can be a guarantee of 

preventing the measurement traffic from leaking out to the 

Internet. 

2) Updates to the methodology 

As time passed by, the methodology was updated in 

multiple ways. 

As for router testing, RFC 4814 [3] requires the usage of 

pseudorandom source and destination port numbers from their 

specified ranges, 1,024–65,535 and 1–49,151, respectively. (If 

there is a requirement that either the source or the destination 

port number needs to have a specific value, then only the other 

port number should be pseudorandom.) However, section 4.4 

of RFC 4814 considers the problem of IP addresses as solved 

in the general case. It only mentions the above-mentioned 8 

bits (writes them as x.x.R.x/24) to be used as pseudorandom. 

However, this solution does not help, when the tests are done 

using a single destination network. 

RFC 5180 [5] provided an update regarding the usage of 

IPv6 addresses. It has reserved a much larger address range for 

benchmarking: 2001:0:2::/48. However, it has explicitly 

declared IPv6 transition technologies out of its scope. 

B. Benchmarking Methodology for Stateful NAT64 

Gateways 

1) The method in theory 

RFC 8219 [6] has defined a comprehensive benchmarking 

methodology for IPv6 transition technologies. To that end, it 

classified the high number of IPv6 transition technologies [7] 

into a small number of categories (dual stack, single 

translation, double translation, and encapsulation 

technologies) regarding the solution used for packet traversal 

across the access and core network of the Internet Service 

Provider (ISP) and defined the test setup for each category. 

Network Address Translation from IPv6 Clients to IPv4 

Servers (stateful NAT64) [8] belongs to the category of the 

single translation technologies. For this category, the Single 

DUT test setup, shown in Fig. 2, is recommended. It is similar 

to the test setup shown in Fig. 1, but here, different IP versions 

are used on the left side and on the right side of both the 

Tester and the DUT. Of course, both X and Y in IPvX and IPvY 

are from the set of {4, 6} and X≠Y.  

As for the benchmarking procedures, RFC 8219 reused the 

throughput and the frame loss rate measurement procedures 

unchanged, it redefined the latency measurement procedure to 

provide more accurate results and added further procedures to 

              +--------------------------------------+ 

198.18.0.2/24 |                                      | 198.19.0.2/24 

+-------------|                Tester                |<------------+ 

|             |                                      |             | 

|             +--------------------------------------+             | 

|                                                                  | 

|             +--------------------------------------+             | 

|             |                                      |             | 

+------------>|          DUT: IPv4 router            |-------------+ 

198.18.0.1/24 |                                      | 198.19.0.1/24 

               +--------------------------------------+ 

Fig. 1. Test setup for an IPv4 router (based on RFC 2544).  

 

+--------------------+ 

|                    | 

+--------|IPvX   Tester   IPvY|<-------+ 

|        |                    |        | 

|        +--------------------+        | 

|                                      | 

|        +--------------------+        | 

|        |                    |        | 

+------->|IPvX     DUT    IPvY|--------+ 

|                    | 

+--------------------+ 

Fig. 2. Single DUT test setup [6]. 
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measure Packet Delay Variation (PDV) and Inter Packet 

Delay Variation (IPDV), whereas the latter was declared 

optional.  

The requirement for benchmarking with bidirectional traffic 

was kept and benchmarking with unidirectional traffic was 

added as an optional test. 

2) Practical problems 

It turned out that benchmarking stateful NAT64 gateways 

requires further considerations because the verbatim 

application of certain requirements would result in various 

problems:  

 The usage of pseudorandom source and destination port 

numbers in the IPv6 packets would result in potentially 

more than 3 billion connections, thus the test would 

exhaust the capacity of the connection tracking table of 

the stateful NAT64 gateway. 

 The usage of pseudorandom port numbers in the IPv4 

packets would result in packets that do not belong to 

any existing connection and the stateful NAT64 

gateway would simply drop them. 

Please refer to [9] for more details.  

3) A solution to the problems 

A general methodology suitable for the benchmarking of 

any stateful NATxy gateways, where x and y are in {4, 6}, 

using RFC 4814 pseudorandom port numbers was defined by 

this Internet Draft [10], which was adopted by the BMWG of 

IETF at the IETF 114 meeting on July 26, 2022. 

A brief introduction to the benchmarking methodology for 

the stateful NAT64 gateways is provided by reusing the text of 

[9], [10] and [11]. 

The test setup is shown in Fig. 3. The DUT is the stateful 

NAT64 gateway, which has a connection tracking table. 

The Initiator can send a test frame using any desired source 

port number destination and port number combinations, but it 

uses limited ranges to avoid the exhaustion of the capacity of 

the connection tracking table of the DUT. (According to the 

original methodology, only a single source and destination IP 

address pair was used [9].) Following the long established 

tradition of RFC 2544, RFC 5180, and RFC 8219 the UDP 

transport layer protocol is used. 

The Responder receives the test frames and extracts the 

source IP address, source port number, destination IP address, 

destination port number (four tuple) from them then stores the 

four tuples in its state table. When it sends a test frame, it 

takes a four tuple from its state table (swaps source and 

destination), thus it creates a valid test frame, which belongs 

to an existing connection in the connection tracking table of 

the DUT. 

The methodology uses two test phases. During phase 1 only 

the Initiator sends test frames. The DUT registers the new 

connections into its connection tracking table, translates the 

test frames and forwards them to the Responder. Thus, the 

connection tracking table of the DUT and the state table of the 

Responder are initialized, thus, in phase 2, the Responder is 

able to send valid test frames. 

To achieve clear and repeatable measurements, two extreme 

situations are used: 

1. During phase 1, all test frames create a new connection. 

2. During phase 2, the test frames never create a new 

connection. 

They can be simply ensured by using: 

 a sufficiently large (to be able to store all the 

connections) and empty connection tracking table for 

each test 

 pseudorandom enumeration of all possible four tuples 

in phase 1 

 a properly high timeout value in the DUT (higher than 

the time duration from the beginning of phase 1 to the 

end of phase 2). 

The maximum connection establishment rate has been 

introduced as a new metric to quantify the connection setup 

performance of the DUT. It is the highest constant frame rate 

at which the DUT is able to process all test frames in phase 1. 

All “classic” measurements (throughput, latency, frame loss 

rate, etc.) can be performed in phase 2. To that end, first, 

phase 1 has to be executed using a frame rate safely lower 

than the measured connection establishment rate. Then comes 

phase 2 with the desired measurement. 

The methodology was validated by performing its 

benchmarking measurements with three radically different 

stateful NAT64 gateway implementations [12]. 

C. Stateless Measurement Tools 

Commercial network performance testers follow the 

requirements of RFC 2544 and the newer ones usually support 

the newer RFCs, too. In addition to this, they sometimes 

provide further optional features beyond the requirements of 

the RFCs. For example, it is quite common that they support 

non-zero loss throughput measurements, too. For example, the 

Anritsu MP1590B device has a parameter called Loss 

Tolerance. (Its value must be set to 0 to perform an RFC 2544 

compliant throughout test.) However, it allows the user to set 

only a single IP address at each network port. 

The Spirent SPT-N4U Tester also supports RFC 5180 tests 

for benchmarking IPv6 routers. With an appropriate trick, it 

was used for benchmarking various stateless NAT64 

implementations [13]. It has numerous advanced features, for 

example, when it is used in stateful mode, its Avalance 

Commander is able to generate IP addresses randomly from a 

specified range. However, when it is used in stateless mode 

for Layer 2-3 tests including the RFC 2544 throughput 

measurements, it does not support using multiple IP addresses 

per its network ports, either. 

Siitperf [4] is the world’s first free software RFC 8219 

              +--------------------------------------+ 

    2001:2::2 |Initiator                    Responder| 198.19.0.2 

+-------------|                Tester                |<------------+ 

| IPv6 address|                         [state table]| IPv4 address| 

|             +--------------------------------------+             | 

|                                                                  | 

|             +--------------------------------------+             | 

|   2001:2::1 |                 DUT:                 | 198.19.0.1  | 

+------------>|        Stateful NAT64 gateway        |-------------+ 

  IPv6 address|     [connection tracking table]      | IPv4 address 

              +--------------------------------------+ 
 

Fig. 3.  Test setup for benchmarking stateful NAT64 gateways. [9] 
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compliant Stateless IP/ICMP Translation (SIIT) [14] (also 

called stateless NAT64) tester, written in C++ using Intel’s 

Data Plane Development Kit (DPDK) [15] available from 

GitHub [16]. It was designed to be a flexible research tool and 

provides several features beyond the requirements of the 

RFCs, but it did not support the usage of multiple IP addresses 

prior to its current development, either. 

D. Stateful Measurement Tool 

As far as the author knows, the stateful extension of 

siitperf [9] is the only existing implementation of the 

concept for benchmarking stateful NATxy gateways using 

RFC 4814 pseudorandom port numbers described in [10]. It 

supports stateful NAT64 and stateful NAT44 measurements, 

but stateful NAT66 and stateful NAT46 measurements were 

not implemented. Its latest version prior to its current 

development only supported the use of a single source and 

destination IP address pair as documented in [9].  

III. RECOMMENDATION FOR USING MULTIPLE IP 

ADDRESSES 

The aim of the introduction of multiple IP addresses is the 

same as that of multiple port numbers, i.e. to support the even 

distribution of the load among multiple processing elements of 

network interconnect devices. To construct a similar solution 

to that of RFC 4814 regarding the port numbers, it was also 

considered to be desirable to use 16-bit address space. 

However, the size of the IPv4 address range reserved for 

benchmarking imposes a serious limitation. As for the 

stateless testing using IPv4 addresses, the author suggests two 

major solutions: 

1. Only the last 8 bits of the IPv4 addresses are used. (The 

usable range is: 2-254, as 1 is used for addressing the 

DUT and 255 is the broadcast address.) Thus, it 

remains possible to use the 16-23 bits to describe 256 

destination networks. 

2. The last 16 bits of the IPv4 addresses are used. (The 

usable range is: 2-65,534.) Thus, the usage of 256 

destination networks is sacrificed. This solution is 

shown in Fig. 4. 

With regard to IPv6, there is no such problem, as the 

reserved benchmarking prefix contains an abundant number of 

bits. It even is possible to use exactly 65,536 different IPv6 

address, as shown in Fig. 5. For simplicity, bits from 96 to 111 

are used to distinguish 64k IPv6 addresses, and their last 16 

bits are the same (expressing decimal 2). Bits from 56 to 63 

can be used to describe the 256 destination networks. 

When stateful NAT44 / NAT64 testing is designed, it 

should be considered that stateful NAT44 or NAT64 gateways 

that serve a high number of clients typically use more than a 

single public IPv4 address. However, in this case the entire 

198.18.0.0/15 network can be used on the right side of the test 

setup, as shown in Fig. 6 and Fig. 7, because private IPv4 

addresses or IPv6 address are used on the left side of the 

stateful NAT44 or stateful NAT64 gateway, respectively. 

(Due to the /15 mask, 198.18.255.255 and 198.19.0.0 are 

normal, usable IPv4 addresses.) It needs to be noted that the 

usage of 256 destination networks is out of the scope, as the 

performance of the stateful NAT44 / NAT64 gateway is 

measured and not the routing performance (even if the device 

also implements routing). 

IV. DESIGN AND IMPLEMENTATION OF TESTING WITH 

MULTIPLE IP ADDRESSES 

A. Design Principles 

An existing software was to be extended, so the design 

considerations were the following: 

198.18.0.2/16-198.18.255.254/16      198.19.0.2/16-198.19.255.254/16 

           \  +--------------------------------------+  / 

            \ |                                      | / 

+-------------|                Tester                |<------------+ 

|             |                                      |             | 

|             +--------------------------------------+             | 

|                                                                  | 

|             +--------------------------------------+             | 

|             |                                      |             | 

+------------>|          DUT: IPv4 router            |-------------+ 

            / |                                      | \ 

           /  +--------------------------------------+  \ 

198.18.0.1/16                                        198.19.0.1/16 

 

Fig. 4.  Multiple IP address test setup for benchmarking IPv4 routers. 

 

 

 
2001:2::[0000-ffff]:2/64             2001:2:0:8000::[0000-ffff]:2/64 

           \  +--------------------------------------+  / 

            \ |                                      | / 

+-------------|                Tester                |<------------+ 

|             |                                      |             | 

|             +--------------------------------------+             | 

|                                                                  | 

|             +--------------------------------------+             | 

|             |                                      |             | 

+------------>|          DUT: IPv6 router            |-------------+ 

            / |                                      | \ 

           /  +--------------------------------------+  \ 

   2001:2::1/64                                  2001:2:0:8000::1/64 
 

Fig. 5.  Multiple IP address test setup for benchmarking IPv6 routers. 

 

 

 
10.[0-255].[0-255].2/8               198.19.0.0/15-198.19.255.254/15 

           \  +--------------------------------------+  / 

            \ |Initiator                    Responder| / 

+-------------|                Tester                |<------------+ 

| private IPv4|                         [state table]| public IPv4 | 

|             +--------------------------------------+             | 

|                                                                  | 

|             +--------------------------------------+             | 

|  10.0.0.1/8 |                 DUT:                 | public IPv4 | 

+------------>|        Stateful NAT44 gateway        |-------------+ 

  private IPv4|     [connection tracking table]      | \ 

              +--------------------------------------+  \ 

                                   198.18.0.1/15 - 198.18.255.255/15 
 

Fig. 6.  Multiple IP address test setup for benchmarking stateful NAT44 

gateways. 

 

 

 
2001:2::[0000-ffff]:2/64           198.19.0.0/15 - 198.19.255.254/15 

           \  +--------------------------------------+  / 

  IPv6      \ |Initiator                    Responder| / 

+-------------|                Tester                |<------------+ 

| addresses   |                         [state table]| public IPv4 | 

|             +--------------------------------------+             | 

|                                                                  | 

|             +--------------------------------------+             | 

| 2001:2::1/64|                 DUT:                 | public IPv4 | 

+------------>|        Stateful NAT64 gateway        |-------------+ 

 IPv6 address |     [connection tracking table]      | \ 

              +--------------------------------------+  \ 

                                   198.18.0.1/15 - 198.18.255.255/15 

Fig. 7.  Multiple IP address test setup for benchmarking stateful NAT64 

gateways. 
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1. To support flexible and convenient usage of multiple 

IP address during both stateless and stateful tests. 

2. To fit together with the already existing design. 

3. To facilitate a simple and efficient implementation. 

4. To keep the performance of the Tester high. 

5. To maintain the readability of the source code. 

It needs to be noted that an introduction to siitperf is 

presented in the Appendix for the readers not familiar with it. 

B. Parameter Design 

To support flexibility and to follow the existing design, 

several new parameters were introduced. 

The user should be able to decide if and how the IP 

addresses on the left side and right side should vary. The new 

parameters are: IP-{L,R}-var, and their possible values 

and meanings are: 

0. use fixed IP addresses (as before) 

1. increase the varying part of the IP addresses 

2. decrease the varying part of the IP addresses 

3. the varying part should be pseudorandom 

It needs to be noted that if 0 is specified for both directions, 

the further parameters are completely redundant and fixed IP 

addresses are used. 

The user should be able to specify the minimum and 

maximum values for the varying parts of the IPv4 or IPv6 

addresses. The new parameters are: IP-{L|R}-

{min,max}.  

To support a simple and efficient implementation, the 

author decided to allow only 16 bits long varying part of both 

IPv4 and IPv6 addresses and to use the same parameters for 

IPv4 and IPv6 and for “real” and “virtual” addresses. (Please 

recall that the same code works with IPv4 and IPv6 when 

varying port numbers are used.) However, the offset of the 16-

bit varying part (its distance from the beginning of the IP 

address) can be specified by the user independently for the 

two IP versions and for the left and right side addresses using 

the IPv{4,6}-{L,R}-offset parameters. Their valid 

range for IPv4 and IPv6 are 1-2 and 8-14, respectively. (They 

were later restricted due to simple implementation and 

performance considerations; please refer to Section V.F.1.) 

The enumeration of the IP addresses can be controlled by 

the Enumerate-ips parameter. Its possible values and their 

meanings are: 

0. no IP address enumeration 

1. enumerate IP addresses in increasing order 

2. enumerate IP addresses in decreasing order 

3. enumerate IP addresses in pseudorandom order 

It needs to be noted that the enumeration of the IP addresses 

may happen only in the first phase of stateful tests (similarly 

to the port number enumeration). 

It also needs to be noted that the parameter design is 

validated at the end of the Appendix, where it is shown that 

the new parameters are suitable to express the settings 

required for the proposed test setups. 

C. Implementation of the Stateless Measurements 

Implementing the usage of multiple IP addresses for 

stateless tests was straightforward. The only important design 

decision worth mentioning was the introduction of a new 

msend() function to implement the usage of multiple IP 

addresses. Its rationale was to avoid the further increase of the 

number of sending loops in the send() function and thus to 

maintain the readability of the source code. As the support for 

multiple destination networks was sacrificed (to have enough 

bits to express multiple IP addresses) this new sender function 

has only two sending loops: one for using only multiple IP 

addresses but fixed port numbers and the other one for using 

both multiple IP addresses and multiple port numbers. 

Otherwise, the same programming style was used as in the 

original code; the given fields of pre-generated templates were 

modified in the sending loops. To that end, pointers were set 

to the appropriate fields and more or less the same code was 

executed for the IPv4 and IPv6 test frames with the following 

two differences: 

1. As opposed to IPv4 packets, IPv6 packets do not have 

header checksum. (Technically, the value of the field 

pointed by the corresponding pointer is set only if the 

IP version for the given side is 4 and the frame belongs 

to the foreground traffic.) 

2. UDP checksum is mandatory for IPv6 packets, but it is 

optional for IPv4 packets. In the case of IPv4 packets, 

the 0 value of the field indicates that UDP checksum is 

not used. Therefore, if the checksum calculation results 

in a 0 value, its unary complement (0xffff) has to be 

written into the field. (As above, unary complement is 

used if the IP version for the given side is 4 and the 

frame belongs to the foreground traffic.) 

D. Implementation of the Stateful Measurements 

Whereas the IP addresses and port numbers can be handled 

independently from each other in the case of stateless 

measurements, the situation is rather different in the case of 

stateful measurements. The purpose of their enumeration is to 

use up all their possible combinations in phase 1 one so that 

no new four tuples (network flows) may appear in phase 2. To 

that end, both IP addresses and port numbers must be 

enumerated, except for the case when one of them has fixed 

values. So far, IP addresses had fixed values and only the port 

numbers could be enumerated [9] and under these conditions 

stateful benchmarking worked perfectly [12]. Similarly, if the 

port numbers have fixed values, it is enough to enumerate only 

the IP addresses.  

The implementation of their enumerations required some 

careful considerations because the four possible values of the 

Enumerate-ports parameter and the four possible values 

of the Enumerate-ips parameter could have potentially 16 

combinations. Their handling could have been implemented, 

for example, by a C language switch that has 16 case-es. 

However, it would have been only the high level structure of 

the program as both port numbers and IP addresses may be 

varying only partially (either the source or the destination, 

whereas the other one is fixed). As the author did not see 

much point in writing such a complicated program, the 

number of combinations to be implemented was reduced. The 

author believes that the following rule allows all practically 
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useful combinations: if any of the two parameters has the 

value of 0, then the other one may have any value, but if they 

both have non-zero values, then they must have the same 

value. 

As for implementing the Initiator, the original isend() 

function was kept to handle the cases when Enumerate-

ips has 0 value. Otherwise, the new imsend() function is 

used, which can be considered the Initiator extension of the 

new msend() function; it implements IP address 

enumeration. It has two sending loops: the first one handles 

the case when only the IP addresses are enumerated but the 

port numbers are not, and the second one handles the case 

when both the IP addresses and the port numbers are 

enumerated. Table I shows the summary of the allowed 

combinations of IP address and port number enumerations and 

how they are handled. 

As stated above, the imsend() function was derived from 

the msend() function by adding IP address enumeration to it. 

An alternative could have been an “misend()” function that 

could have been derived from the isend() function by 

adding the usage of multiple IP addresses to it. However, that 

would have involved conflicts e.g., regarding the usage of the 

same bits for multiple destination networks and multiple IP 

addresses.  

The new imsend() function kept the resilience of the 

isend() function in the sense that it supports port number 

enumeration but does not mandate it. When linear 

enumeration of the IP addresses and port numbers is done, 

they act as a four times two-byte counter, but the four two-

byte fields of the counter may only take the values allowed by 

their specified ranges. (The 16-bit field in the destination IP 

address is the most significant one, then comes the 16-bit field 

in the source IP address, next the destination port number, and 

finally, the source port number is the least significant one.) 

Pseudorandom enumeration was implemented in the same way 

as before by using pre-generated values. 

It needs to be noted that no modifications to the 

rreceive() and rsend() functions were needed because 

they both handle the full four tuple.  

E. Restrictions due to Implementation Considerations 

Two changes were made to the design at the 

implementation stage due to considerations of checksum 

calculation. 

1) IPv4 and IPv6 offset 

Both IPv4 header checksum and UDP checksum are 

calculated on 16 bits, that is two bytes. Using odd numbers as 

IPv{4,6}-{L,R}-offset would complicate the 

checksum calculation; therefore, the author decided to allow 

only even numbers. This constraint is not significant in the 

case of IPv6. As for IPv4, it means that the only allowed offset 

is 2. This restriction influences the test setup shown in Fig. 6. 

It was modified, as shown in Fig. 8. The loss of a few IP 

addresses from 65,536 is absolutely negligible.  

Thus, the IPv4 offset parameters could have been fully 

eliminated, but they were still kept as they might be useful 

later if an unforeseen application scenario requires allowing 

for (and implement) further offset value(s). 

2) IP address enumeration versus fixed IP addresses 

As stated before, when the value of the Enumerate-

ports parameter required port number enumeration, it was 

done in phase 1, even if the port numbers did not change in 

phase 2 due to the values of the {Fwd,Rev}-var-

{s,d}port parameters. This approach could have been 

followed with regard to the IP addresses just for consistency. 

However, this approach would lead to certain contradiction 

during the implementation. To be able to handle the 

checksums correctly, the changing parts of the IP addresses 

are masked to 0, if the values of the appropriate IP-{L|R}-

var parameters are non-zero. (All IP addresses exist only in a 

single copy in the Throughput class.) How should they be 

handled, if the Enumerate-ips parameter requires IP 

address enumeration, but the values of the IP-{L|R}-var 

parameters are 0? 

 If they are not masked to 0, then their checksum will 

not be correct in phase 1. 

 If they are masked to 0, then those bits are lost and will 

not be available in phase 2. 

Of course, two copies of the IP addresses could have been 

used, but it would require a significant modification of the 

existing code and the author considered that it was not worth 

the effort, as he did not see any reasonable application 

scenario of using IP address enumeration in phase 1 and then 

TABLE I 

ALLOWED COMBINATIONS OF IP ADDRESS AND PORT NUMBER ENUMERATIONS AND HOW THEY ARE HANDLED 

Enumerate-ports (right) 0 1 2 3 

Enumerate-ips (below)     

0 These cases have already been implemented by the original isend() function. 

1 imsend() loop1 imsend() loop2 -- -- 

2 imsend() loop1 -- imsend() loop2 -- 

3 imsend() loop1 -- -- imsend() loop2 

 

 

10.0.0.2/16 – 10.0.255.254/16       198.19.0.0/15 - 198.19.255.254/15 

           \  +--------------------------------------+  / 

            \ |Initiator                    Responder| / 

+-------------|                Tester                |<------------+ 

| private IPv4|                         [state table]| public IPv4 | 

|             +--------------------------------------+             | 

|                                                                  | 

|             +--------------------------------------+             | 

| 10.0.0.1/16 |                 DUT:                 | public IPv4 | 

+------------>|        Stateful NAT44 gateway        |-------------+ 

 private IPv4 |     [connection tracking table]      | \ 

              +--------------------------------------+  \ 

                                   198.18.0.1/15 - 198.18.255.255/15 
 

Fig. 8.  Multiple IP address test setup for benchmarking stateful NAT44 

gateways (modified version). 
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using fixed IP addresses in phase 2 of the stateful tests.  

Therefore, the author has come to the conclusion that the non-

zero value of the Enumerate-ips parameter requires the 

IP-{L|R}-var parameters not to have zero values, either. 

(The program checks it and gives an appropriate “Input Error” 

message if the condition is not met.) 

V. SELF-TEST OF THE TESTER 

A. Meaning and Purposes of the Self-Tests 

The self-test of the Tester means that its two interfaces are 

connected omitting the DUT, and benchmarking 

measurements are performed. The achieved frame rate of the 

throughput test depends on the frame sending and frame 

receiving abilities of the Tester. The self-test is a must before 

using the Tester for measurements, otherwise, there is no 

guarantee that the Tester measures the performance of the 

DUT; the Tester itself may be the bottleneck. In addition to 

this the self-test can be used to measure the performance 

penalty of the new functions and it raises the question to what 

extent the performance of the Tester decreased due to the new 

functions? 

B. Test System for the Self-Test of the Tester 

The topology of Test System for self-test is shown in Fig. 9. 

The most important parameters of the used Dell PowerEdge 

R730 server were: two 3.2GHz Intel Xeon E5-2667 v3 CPUs 

having 8 cores each, 8x16GB 2133MHz DDR4 SDRAM 

(accessed quad channel), and Intel X540-T2 10GbE network 

adapter. Hyper-threading was switched off and the CPU clock 

frequency was set to 3.2GHz (fixed), the nominal clock 

frequency of the CPU, to achieve stable measurement results 

using the tlp Linux package. Later it was set to 1.2GHz, the 

minimum clock frequency of the CPU, in the same way. 

Debian Linux 9.13 operating system with 4.9.0-13-amd64 

kernel and DPDK 16.11.11-1+deb9u2 amd64 were used. As 

siitperf does not have version numbers, its version is 

identified by its latest commit 165cb7f on September 6, 2023. 

C. Stateless Tests and Results 

1) Tests for guaranteeing the performance of the Tester 

To support stateless tests, IPv4 and IPv6 throughput tests 

were performed as self-test. The applied frame size was 64 

bytes and 84 bytes for IPv4 and IPv6, respectively. As for the 

further parameters, all the four combinations of fixed and 

pseudorandom port numbers and IP addresses were used. The 

ranges for pseudorandom port numbers were those 

recommended by RFC 4814. The ranges for the varying part 

of the IPv4 and IPv6 addresses were 2-65,534 and 0-65,535, 

respectively. The parameters complied with the test cases are 

shown in Fig. 4 and Fig. 5. As required by RFC 2544 and its 

successors, bidirectional traffic was used. It needs to be noted 

that siitperf reports the results as frames/second per 

direction. It means that in all, siitperf sent and received 

twice as many frames as reported due to the bidirectional 

traffic. 

The clock frequency of the Tester was set to fixed 3.2GHz, 

the nominal clock frequency of the CPU, to achieve a high 

performance. The results of the IPv4 and IPv6 throughput tests 

are shown in Table II and Table III, respectively. All 

measurements were executed 10 times and median was used 

as summarizing function and the minimum and maximum 

values were also included. The dispersion in the last line of 

the tables was calculated as follows: 

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚𝑒𝑑𝑖𝑎𝑛
⋅ 100%      (1) 

Regarding the guaranteed performance of the tester, the 

minimum values should be considered. In all cases, more than 

7.1Mfps per direction frame rate was achieved. The bottleneck 

was always the X540 NIC as it is proven by the next series of 

measurements. 

It can be observed that the dispersion of the results is 

always in the order of 1% magnitude. (It is used as a basis for 

comparison below.) 

2) Tests for checking the performance costs of operation 

To make the CPU performance the bottleneck, the clock 

frequency of the Tester was set to 1.2GHz, its lowest possible 

value. Otherwise, the same parameters were used as before. 

The results of the IPv4 and IPv6 throughput tests are shown in 

Table IV and Table V, respectively. The last rows of the tables 

show the relative performance of the given cases compared to 

the case when fixed IP addresses and fixed port numbers were 

used; the figures clearly show the performance penalty of 

generating pseudorandom port numbers or IP address or both. 

The IP version does not count for much, all four performance 

results are very similar to one another both in the case of IPv4 

eno1

Tester
Dell PowerEdge R730

eno2

running 
siitperf

10GbE w/ direct cable

Test System for Self-test

 

Fig. 9.  Test system for the self-test of the Tester.  

TABLE II 

STATELESS SELF-TESTS: IPV4 THROUGHPUT OF THE TESTER @ 3.2GHZ  

IP addresses fixed fixed random random 

port numbers fixed random fixed random 

Median (fps) 7,161,269 7,184,723 7,175,444 7,161,422 

Minimum (fps) 7,124,510 7,122,922 7,116,697 7,108,397 

Maximum (fps) 7,226,746 7,214,859 7,219,178 7,203,141 

Dispersion (%) 1.43 1.28 1.43 1.32 

 

 

TABLE III 

STATELESS SELF-TESTS: IPV6 THROUGHPUT OF THE TESTER @ 3.2GHZ  

IP addresses fixed fixed random random 

port numbers fixed random fixed random 

Median (fps) 7,168,274 7,193,027 7,189,696 7,122,892 

Minimum (fps) 7,139,500 7,181,418 7,150,621 7,108,885 

Maximum (fps) 7,208,871 7,257,874 7,250,252 7,207,073 

Dispersion (%) 0.97 1.06 1.39 1.38 
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and IPv6. Their performance is somewhat higher when only 

the port numbers are pseudorandom rather than in the case 

when only the IP addresses are pseudorandom. The 

explanation for this phenomenon is that varying IP addresses 

also influence the UDP checksum through the pseudo-header, 

but varying port numbers do not influence the IP header 

checksum. When fixed port numbers but pseudorandom IP 

addresses are used, the median IPv6 throughput 

(4,138,784fps) is somewhat higher than the median IPv4 

throughput (4,089,050fps). The root cause for this is an extra 

conditional instruction in the source code handling IPv4 test 

frames: if the computed value of the UDP checksum happens 

to be 0, then 0xffff has to be stored. 

It can be observed that the results using fixed frame format 

are still around 7Mfps and the dispersion of these results is 

also in the order of 1% magnitude. The dispersion of all the 

other results is at most 0.25%. The author assumes that the 

relatively higher dispersion of the results close to 7Mfps was 

caused by the race condition of the two senders that were 

competing for the limited resources of the same NIC. (The 

measurement log files show that the tests failed because one of 

the senders was not able to complete the sending of the 

required number of frames within 60.0006s.)  

D. Stateful Tests and Results 

As siitperf implements only stateful NAT64/NAT44 

tests and stateful NAT66/NAT46 are out of its scope, its 

Receiver can handle only IPv4 packets. Therefore, when 

stateful self-tests are performed, the Initiator must send IPv4 

packets (as the loopback wire does not do the stateful NAT64 

translation, which is normally done by the omitted DUT). 

However, considering that practically the same code 

modifies the IPv6 and IPv4 packet templates1 and also the 

self-test results of the stateless test, one can easily infer that 

the results of the stateful NAT44 self-tests provide good 

guidelines for the stateful NAT64 benchmarking performance 

of the Tester, too. 

First, it is considered, what kinds of measurements are 

needed to guarantee the performance of the Tester for stateful 

measurements. 

In phase 1, four different cases are possible regarding the 

fixed or varying nature of the IP addresses and port numbers: 

1. Only a single test frame is sent. 

2. A single IP address pair and multiple port number 

combinations are used. 

3. Fixed port numbers and multiple IP addresses are 

used. 

4. Multiple IP addresses and multiple port numbers are 

used. 

Based on the above four cases, the relevant benchmarking 

methodology [10] uses no. 2 and no. 4 with the conditions that 

in case 2, all possible source port number and destination port 

number combination must be enumerated in pseudorandom 

order, and in case 4, all the possible four tuples must be 

enumerated in pseudorandom order. As for case 1, although it 

is supported by siitperf, and the situation that all frames 

belonging to a single connection can be used as a reference 

measurement in phase 2, but there is no point in measuring the 

frame sending performance of siitperf when it sends only 

a single test frame in phase 1 as there is a gap between the two 

phases. Case 3 was considered interesting and it was included 

in the tests. (This case may be relevant when only a low 

number of connections are needed, but the aim is to have as 

many different IP addresses as possible.) 

In phase 2, the Initiator uses the same sending functions 

(send() and msend()) as for stateless test, thus they 

require no further testing. And the Responder does not need 

testing either as it is implemented by the old rsend() 

function, which handles the full four tuple. 

For the actual tests, 4 million connections were used as 

recommended by Gapon for a highly loaded NAT server [17]. 

In case 2, they are generated by using source port numbers 1-

40,000 and destination port numbers 1-100, in case 3, using 

the 16-bit source address parts from 2-4001, and the 16-bit 

destination address parts from 2-1001, finally in case 4, the 

16-bit source address parts from 2-11, the 16-bit destination 

address parts from 2-11, source port numbers 1-400 and 

destination port numbers 1-100. 

The results are shown in Table VI. The results in the first 

 

 
1 With two exceptions: in the case of IPv4 test frames the IPv4 header 

checksum has to be set and the value of the UDP checksum has to be 

examined if it is 0 and if so, then 0xffff has to be used instead. 

 TABLE IV 

STATELESS SELF-TESTS: IPV4 THROUGHPUT OF THE TESTER @ 1.2GHZ  

IP addresses fixed fixed random random 

port numbers fixed random fixed random 

Median (fps) 7,026,719 4,293,187 4,089,050 2,828,910 

Minimum (fps) 6,995,938 4,284,162 4,088,918 2,827,513 

Maximum (fps) 7,062,523 4,294,927 4,089,133 2,830,567 

Dispersion 0.95 0.25 0.01 0.11 

Rel. perf. (%) reference 61.10 58.19 40.26 

 

 

TABLE V 

STATELESS SELF-TESTS: IPV6 THROUGHPUT OF THE TESTER @ 1.2GHZ  

IP addresses fixed fixed random random 

port numbers fixed random fixed random 

Median (fps) 7,049,596 4,297,380 4,138,784 2,863,442 

Minimum (fps) 6,998,045 4,295,897 4,138,173 2,862,604 

Maximum (fps) 7,078,370 4,297,495 4,140,626 2,864,345 

Dispersion 1.14 0.04 0.06 0.06 

Rel. perf. (%) reference 60.96 58.71 40.62 

 

 

TABLE VI 

STATEFUL SELF-TESTS: MAXIMUM CONNECTION ESTABLISHMENT RATE 

TESTS, 4M CONNECTIONS; UNIDIRECTIONAL THROUGHPUT IN THE FORWARD 

DIRECTION USING FIXED FRAME FORMAT AS REFERENCE, TESTER @ 3.2GHZ  

 In phase 1: pseudorandom enumeration of Forward 

IP addresses --  4,000*1,0000 10*10* throughput 

port numbers 40,000*100 -- *400*100 fixed fr. 

Median (fps) 10,069,082 9,944,307 9,936,514 11,878,250 

Minimum (fps) 10,066,405 9,944,090 9,933,592 11,878,111 

Maximum (fps) 10,069,227 9,944,347 9,937,012 11,878,925 

Dispersion 0.03 0.00 0.03 0.01 

Rel. perf. (%) 84.77 83.72 83.65 reference 
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three columns show the maximum connection establishment 

rates. They can be significantly higher than those in Table II 

because they were measured with unidirectional traffic; only 

the Initiator sent test frames to the Responder in phase 1. The 

last column shows throughput results measured with 

unidirectional traffic in the forward direction using fixed IP 

addresses and port numbers. It was added as reference to be 

able to see the cost of the pseudorandom enumeration of port 

numbers, IP addresses, or both. As the pseudorandom numbers 

are pre-generated, and they are read linearly from array(s) 

during the tests, there is much less performance penalty than 

in the case of the stateless tests when the pseudorandom 

numbers are generated during the test. As experienced with 

the stateless tests, the modification of the IP address is more 

“expensive” than that of the port numbers.  

VI. STATELESS BENCHMARKING MEASUREMENTS 

A. Aim and Test System 

The aim of the stateless benchmarking tests was to examine 

if the usage of multiple IP addresses makes any difference in 

the throughput of IPv4 and IPv6 packet forwarding. To that 

end, the corresponding network interfaces of the Tester and 

that of the DUT were connected with direct cables, as shown 

in Fig. 10. The DUT had exactly the same hardware 

parameters as the Tester. The same test system was used for 

stateless and stateful measurements and the DUT was used 

with both Debian Linux 11.7 (with 5.10.0-23-amd64 kernel) 

and OpenBSD 7.3 (with GENERIC.MP #1125 kernel) 

operating systems. The CPU clock frequency was always set 

to fixed 3.2GHz under Linux, but the author could not set the 

CPU clock frequency to a fixed value under OpenBSD. 

B. Packet Forwarding Performance under Linux 

Basically, the same four types of tests were performed as in 

the case of the self-test: fixed frame format, only 

pseudorandom port numbers, only pseudorandom IP 

addresses, pseudorandom IP addresses and pseudorandom port 

numbers. However, it was experienced during the preliminary 

tests that using a high number of IP addresses significantly 

deteriorated the performance of the system. Therefore, only 

1000 different IP addresses were used on each side. Regarding 

IPv4, it meant that the last two bytes of the IP addresses had 

the values from 2 to 1001. Regarding IPv6, the 12-13 bytes 

had the values from 0 to 999. The Address Resolution 

Protocol (ARP) and Neighbor Discovery Protocol (NDP) 

table entries were set manually in the DUT as siitperf was 

not able to answer ARP or NDP requests. When 

pseudorandom port numbers were used, Receive Side Scaling 

(RSS) was set in such a way that also port numbers may take 

part in the hash function using one of the four possible 

commands that can be expressed by the brace expansions 

below: 
ethtool -N eno{1,2} rx-flow-hash udp{4,6} sdfn 

When fixed port numbers were used, only the source and 

destination IP addresses took part in the hash function. To that 

end, only “sd” was used instead of “sdfn” in the commands 

above.  

The results of the IPv4 throughput tests are shown in Table 

VII. When fixed frame format was used, the median frame 

forwarding rate was 963,365fps per direction. In this case only 

two CPU cores handled all interrupts (one CPU core per 

direction). In the other three cases the interrupts were 

distributed among all CPU cores. The results of the three cases 

were similar, but the difference was noticeable, when only the 

port numbers were pseudorandom, the median was 

4,276,009fps, but when only the IP addresses were 

pseudorandom, the median was only 4,250,979fps. When the 

IP addresses were pseudorandom, then the usage of fixed or 

pseudorandom port numbers caused no significant difference 

(4,250,979fps vs. 4,249,162fps). 

In addition to the above measurements, the test with fixed 

port numbers and pseudorandom IP addresses was also 

performed using 100 different IP addresses at each side. The 

median value of the throughput was 4,261,588fps per 

direction, which is still significantly lower than that with fixed 

IP addresses and pseudorandom port numbers. This difference 

shows that the usage of multiple ARP table entries has its 

performance costs. 

The results of the IPv6 throughput tests are shown in Table 

VIII. Exactly the same tendencies can be observed as with 

DUT
Dell PowerEdge R730

Debian Linux 11.7 
or OpenBSD 7.3 

Tester
Dell PowerEdge R730 
(running siitperf) 

eno1 eno2

eno2/ix1eno1/ix0

2x 10G Ethernet
with direct cables  

Multi-Purpose Test System

 
 

Fig. 10.  Test system for the stateless and stateful tests both under Linux 

and under OpenBSD.  

TABLE VII 

IPV4 PACKET FORWARDING PERFORMANCE OF THE DUT UNDER LINUX  

IP addresses fixed fixed random random 

port numbers fixed random fixed random 

Median (fps) 963,365 4,276,009 4,250,979 4,249,162 

Minimum (fps) 959,051 4,275,288 4,249,983 4,248,696 

Maximum (fps) 964,912 4,277,649 4,251,957 4,250,490 

Dispersion (%) 0.61 0.06 0.05 0.04 

 

 

TABLE VIII 

IPV6 PACKET FORWARDING PERFORMANCE OF THE DUT UNDER LINUX 

IP addresses fixed fixed random random 

port numbers fixed random fixed random 

Median (fps) 920,647 4,246,709 4,217,141 4,215,284 

Minimum (fps) 919,785 4,245,603 4,216,513 4,213,819 

Maximum (fps) 922,157 4,250,001 4,218,788 4,217,775 

Dispersion (%) 0.26 0.10 0.05 0.09 
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IPv4 in Table VII. (The values themselves are slightly lower.) 

C. Packet Forwarding Performance under OpenBSD 

As the Packet Filter (PF) is enabled under OpenBSD 7.3 by 

default and its state handling has a significant impact on the 

performance of packet forwarding, PF was disabled manually 

using the pfctl -d command. 

The same four types of tests were performed as in the case 

of Linux, and–as far as it was possible–the same parameters 

were used. However, OpenBSD does not support the setting of 

the parameters of RSS [18], and thus only the source and 

destination IP addresses took part in the hash function, the 

source and destination port numbers were ignored throughout 

the measurement process in each case. 

The results of the IPv4 throughput tests are shown in Table 

IX. As expected, the usage of pseudorandom port numbers 

caused no significant performance difference compared to the 

cases when fixed port numbers were used; however, the usage 

of pseudorandom IP addresses resulted in a highly significant 

(more than 3-fold) performance increase compared to the 

cases when fixed IP addresses were used. The load conditions 

of the CPU cores were checked and it was found that the 

usage of pseudorandom IP addresses distributed the interrupts 

of packet arrivals more or less equally to each of the 16 CPU 

cores. However, significant systems load could be observed 

only on five of the CPU cores (numbered by OpenBSD as 

CPU01 to CPU05). The high dispersion of the results in the 

cases when fixed IP addresses were used may be explained by 

the fact that the interrupts were hashed to one of the CPU 

cores that was also used by the packet forwarding process; 

they competed for the usage of the CPU core, and their load 

was also changing with time. 

The results of the IPv6 throughput tests are shown in Table 

X. The same tendencies can be observed in the case of IPv4, 

but in this case, the increase caused by the usage of multiple 

IP addresses was much lower. 

VII. STATEFUL BENCHMARKING MEASUREMENTS 

A. Aim and Test System 

As in the stateless case, the aim of the stateful tests was to 

examine if the usage of multiple IP addresses makes any 

difference in stateful NAT64 benchmarking results. 

B. Stateful NAT64 Tests under Linux using Jool 

The version of Jool was 4.1.7, the most mature version of 

Jool. As far as the details of the measurements are concerned, 

the same method and even the same scripts were used as 

described in the Appendix of [12]. 

For all the three types of measurements, 4,000,000 

connections were used, but they were achieved in three 

different ways: 

1. Only the port numbers varied, the source port number 

range was: 1-40,000; the destination port number range 

was: 1-100.  

2. Only the IP addresses varied, and the varying part of 

the IPv6 addresses took the values 0-3999, the varying 

part of the IPv4 addresses took the values 2-1001. 

3. Both IP addresses and port numbers varied, and the 

varying part of the IPv6 address took the values 0-9, 

the varying part of the IPv4 address took the values 2-

11, the source port number range was 1-400, and 

destination port number range was 1-100. 

It needs to be noted that “source” and “destination” port 

numbers, as well as their ranges should always be interpreted 

in the traffic from the Initiator to the DUT. The stateful 

NAT64 gateway may change the source port numbers, and the 

Responder stores the four tuples received into its state table 

and it generates traffic only in phase 2, using the four tuples 

stored. The “IPv6 addresses” should be interpreted as the 

source addresses in the traffic from the Initiator to the DUT. In 

the IPv4 traffic, they are replaced by the public IPv4 address 

of the DUT.  In the traffic from the Initiator to the DUT, the 

destination IPv6 addresses are actually IPv4-embedded IPv6 

addresses, where the above-mentioned “IPv4 addresses” were 

appended to the 64:ff9b::/96 NAT64 Well-Known Prefix 

(WKP). 

The results of the maximum connection establishment rate 

and throughput measurements are shown in Table XI and 

Table XII, respectively. It can be stated that the usage of 

multiple IP addresses caused no significant difference in the 

performance of the Jool stateful NAT64 implementation 

compared to the case where fix IP addresses were used. (The 

small performance decrease can be attributed to the higher 

number of elements in the ARP or NDP tables.) 

C. Stateful NAT64 Tests under OpenBSD using PF 

The measurement method described in [12] was reused with 

an important difference. Instead of deleting the connections 

with the pfctl -F states command, the DUT was 

rebooted after every single step of the binary search algorithm. 

It was done so to ensure a completely empty connection 

tracking table for each step because the above-mentioned 

command does not delete the complete content of the 

connection tracking table of PF, but it only “marks the states 

as expired, and then the purge scan is able to take them and 

actually free them” [19]. 

The same types of measurements using the same parameters 

TABLE IX 

IPV4 PACKET FORWARDING PERFORMANCE OF THE DUT UNDER OPENBSD  

IP addresses fixed fixed random random 

port numbers fixed random fixed random 

Median (fps) 390,125 384,596 1,277,414 1,283,352 

Minimum (fps) 367,116 374,872 1,249,999 1,276,078 

Maximum (fps) 437,745 441,549 1,296,876 1,297,120 

Dispersion (%) 18.10 17.34 3.67 1.64 

 

 

TABLE X 

IPV6 PACKET FORWARDING PERFORMANCE OF THE DUT UNDER OPENBSD 

IP addresses fixed fixed random random 

port numbers fixed random fixed random 

Median (fps) 384,970 384,859 582,165 580,394 

Minimum (fps) 351,553 382,807 577,024 562,499 

Maximum (fps) 385,749 385,391 597,657 602,539 

Dispersion (%) 8.88 0.67 3.54 6.90 
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were executed as with Jool. 

The results of the maximum connection establishment rate 

measurements are shown in Table XIII. The usage of 

pseudorandom IP addresses and fixed port numbers resulted in 

a slight (11.7%) increase of the maximum connection 

establishment rate compared to the case when fixed IP 

addresses and pseudorandom port numbers were used. When 

both the IP addresses and the port numbers were 

pseudorandom, the performance increase was only 7.24%. 

(The author assumes that the usage of 10 IP addresses on each 

side was probably not enough to achieve an even distribution 

of the interrupts on the CPU cores, but the investigation of this 

question is beyond the scope of the current paper.) 

As far as the throughput tests are concerned, during the 

preliminary tests the author experienced that the steps of the 

binary search failed due to a very low number of missing 

frames in the reverse direction even at rather low frame rates. 

To handle this issue, a Loss Tolerance of 0.01% was used. It 

means that the given step of the binary search was considered 

“passed” if at least 99.99% of the frames arrived back to the 

Tester. (It was checked individually for each direction, and the 

condition had to be satisfied for both directions for passing the 

test.) 

The results of the throughput measurements are shown in 

Table XIV. It is highly important that the usage of 

pseudorandom IP addresses resulted in significantly higher 

throughput then with fixed IP addresses. Unfortunately, the 

results show a rather high dispersion in all cases. For this 

reason, the author refrains from drawing conclusion from the 

fact that the combination of pseudorandom IP addresses and 

port numbers seem to result in a somewhat higher throughput 

than throughput of the case when only IP addresses were 

pseudorandom. 

VIII. DISCUSSION AND FUTURE RESEARCH 

OpenBSD 7.3 IPv4 packet forwarding throughput results in 

Table IX show that the usage of pseudorandom IP addresses 

caused a more than 3-fold performance increase compared to 

the cases when fixed IP addresses were used.  This is a highly 

significant difference. As Internet traffic has multiple IP 

addresses, it means that in this case the RFC 2544 / RFC 4814 

compliant laboratory test results did not reflect well the IPv4 

packet forwarding performance of OpenBSD 7.3, as a result, 

they should be updated.  

OpenBSD 7.3 IPv6 packet forwarding throughput results in 

Table X and OpenBSD 7.3 PF stateful NAT64 packet 

forwarding results in Table XIV also show more than 50 

percent difference, which is also significant. 

OpenBSD was used only as an example, several other 

various network interconnect devices may exist that do not 

support the setting of RSS, so that also the port numbers may 

be taken into consideration and thus their packet forwarding 

performance can show a rather significant difference when 

fixed IP addresses are used during laboratory testing and for 

forwarding Internet traffic. This methodological gap should be 

closed so that the results of the laboratory test may be more 

useful for both the manufactures and the users of network 

interconnect devices. To that end, the author discussed the 

issue with the chairs of the IETF BMWG and submitted the 

following Internet Draft [20] prior to the submission of the 

current paper for review. 

The appropriate ranges for IP addresses to reflect the nature 

of the Internet traffic is beyond the scope of the current paper 

and it is considered an open question and an important topic 

for future research.  

TABLE XI 

MAXIMUM CONNECTION ESTABLISHMENT OF THE JOOL STATEFUL NAT64 

IMPLEMENTATION, 4M CONNECTIONS 

 In phase 1: pseudorandom enumeration of 

IP addresses --  4,000*1,0000 10*10* 

port numbers 40,000*100 -- *400*100 

Median (fps) 577,879 542,059 559,947 

Minimum (fps) 576,150 539,061 557,613 

Maximum (fps) 578,614 543,504 562,531 

Dispersion 0.43 0.82 0.88 

Rel. perf. (%) reference 93.80 96.90 

 

 

TABLE XII 

THROUGHPUT OF THE JOOL STATEFUL NAT64 IMPLEMENTATION, 4M 

CONNECTIONS, BIDIRECTIONAL TRAFFIC, PER DIRECTION RATES 

 In phase 1: pseudorandom enumeration of 

IP addresses --  4,000*1,0000 10*10* 

port numbers 40,000*100 -- *400*100 

Median (fps) 302,557 289,338 295,007 

Minimum (fps) 301,170 289,015 294,332 

Maximum (fps) 303,516 289,907 295,703 

Dispersion 0.78 0.31 0.46 

Rel. perf. (%) reference 95.63 97.50 

 

 

TABLE XIII 

MAXIMUM CONNECTION ESTABLISHMENT OF THE PF STATEFUL NAT64 

IMPLEMENTATION, 4M CONNECTIONS 

 In phase 1: pseudorandom enumeration of 

IP addresses --  4,000*1,0000 10*10* 

port numbers 40,000*100 -- *400*100 

Median (fps) 98,540 110,069 105,675 

Minimum (fps) 97,532 108,791 104,701 

Maximum (fps) 100,601 111,359 109,376 

Dispersion 3.11 2.33 4.42 

Rel. perf. (%) reference 111.70 107.24 

 

 

TABLE XIV 

THROUGHPUT OF THE PF STATEFUL NAT64 IMPLEMENTATION, 4M 

CONNECTIONS, BIDIRECTIONAL TRAFFIC, PER DIRECTION RATES,  

BEWARE: LOSS TOLERANCE: 0.01% 

 In phase 1: pseudorandom enumeration of 

IP addresses --  4,000*1,0000 10*10* 

port numbers 40,000*100 -- *400*100 

Median (fps) 174,457 272,768 295,648 

Minimum (fps) 129,279 238,616 246,676 

Maximum (fps) 206,372 355,361 364,066 

Dispersion 44.19 42.80 39.71 

Rel. perf. (%) reference 156.35 169.47 
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IX. CONCLUSION 

It was pointed out that IETF BMWG documents lack 

guidelines for how to use pseudorandom IP addresses in 

stateless or stateful benchmarking. A solution was proposed to 

fill this methodological gap while honoring the constraints of 

the IPv4 and IPv6 address ranges reserved for benchmarking. 

The siitperf free software stateless and stateful network 

performance tester program was extended to support the 

proposed solution. The performance penalty of the usage of 

pseudorandom IP addresses was measured and it was shown 

that the design goal of maintaining the high performance of 

siitperf was achieved. 

The proposed solution was validated by performing both 

stateless and stateful benchmarking measurements. It was 

found that the proposed solution can give definitely different 

results than those produced using fixed IP addresses. With the 

help of the proposed method and the new version of 

siitperf, the laboratory benchmarking results of IPv4 and 

IPv6 routers, as well as those of stateful NAT64 gateways 

much better reflect the performance of the tested devices when 

they are used in production systems for forwarding Internet 

traffic. 
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APPENDIX 

A. Introduction to Siitperf 

A brief introduction to siitperf is given to provide the 

reader with the essential information necessary to understand 

its extension to support multiple IP addresses. The following 

sections are based on author’s open access papers [9], [11], 

[21], and [22] in which all the details can be found. Some of 

their text is reused. 

1) The Stateless Version of Siitperf 

The aim of the author was to design and implement a high 

performance and also flexible research tool. To that end, 

siitperf is a collection of binaries and shell scripts. The 

core measurements can be performed by one of three binaries, 

which are executed multiple times by one of four shell scripts. 

The binaries perform the sending and receiving of certain 

Ethernet test frames containing IPv4 or IPv6 datagrams (in 

short: IPv4 or IPv6 test frames) at a pre-defined constant 

frame rate according to the test setup shown in Fig. 2. As 

siitperf allows X=Y, it can also be used for benchmarking 

an IPv4 or an IPv6 router. The shell scripts call the binaries 

supplying them with the proper command line parameters for 

the given core measurement.  

The first two of the supported benchmarking procedures 

(throughput and frame loss rate) require only the above-

mentioned sending of test frames at a constant rate and 

counting the received test frames, thus the core measurement 

of both procedures is the same. The difference is that the 

throughput measurement requires finding the highest rate at 

which the DUT can forward all test frames without loss, 

whereas the frame loss rate measurement requires performing 

the core measurement at various frame rates to determine the 

frame loss rate at those specific frame rates. The core 

measurement of both tests was implemented in the 

siitperf-tp binary and the two different benchmarking 

procedures were performed by two different bash shell scripts. 

The one used for determining the throughput uses a binary 

search to find the highest lossless frame rate with the 

predefined error, which expresses the stopping criterion for 

the binary search. It stops, when: 

higher_limit – lower_limit <= error. 

The core measurements of the latency and PDV 

benchmarking procedures were implemented by the 

siitperf-lat and siitperf-pdv binaries, 

respectively. They are different extensions of siitperf-

tp. 

Input parameters that are unchanged during the consecutive 

executions of the binaries are read from the 

siitperf.conf file, whereas those that are changed are 

supplied by the shell scripts as command line parameters.  

The binaries were implemented in C++ using DPDK to 

achieve a high enough performance. An object oriented design 

was followed: the Throughput class served as a base class 

for the Latency and Pdv classes. The program structure of 

each C++ program is very simple: the main program reads the 

parameters first from the configuration file and then from the 

command line. Next, it calls the init() function of the 

required measurement, which initializes the Environment 

Abstraction Layer (EAL) of the DPDK, resets and starts the 

network interfaces, and performs a few sanity checks. Finally, 

the main program executes the proper measurement 

procedure. The measurement procedure prepares the 

parameters for the senders and receivers, and starts one sender 

and one receiver for each active direction (as separate 

threads). They are executed by their exclusively used CPU 

cores to ensure guaranteed performance. (The used CPU cores 

should be excluded from the scheduler of the Linux kernel 

using the isolcpus kernel command line parameter.) After 

the sender and receiver threads have finished, the main thread 

collects and evaluates their results.  In a general case, when 

frame sending and receiving is active in both directions, two 

senders and two receivers are used, which are executed by 
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their respective CPU cores, as shown in Fig. 11. (Packets 

traversing through the DUT in the left to right direction are 

called forward traffic and the packets sent in the opposite 

direction are called reverse traffic.)  

The send() and receive() functions are started by the 

rte_eal_remote_launch() function of DPDK, which 

does not allow the execution of non-static member functions. 

It was a serious limitation, thus the author could not carry out 

a fully object oriented design.  The remotely executed 

functions can exchange data through a data structure, the 

address of which is provided to the functions as a pointer. 

The first version of siitperf [4] used a high number of 

parameters in its configuration file to support flexibility. Its IP 

version could be set independently on its left and right sides 

using the two parameters that can be generated by the 

following brace expansion: IP-{L,R}-Vers. For each side 

(left and right) and both IP versions (4 and 6) the user could 

set two IP addresses: real and virtual. (The latter was used to 

represent an IP address from the other address family than that 

was actually used on the given side.) Table XV gives a short 

summary of how the eight potential IP addresses were used. 

RFC 8219 also requires that besides the traffic that is 

translated (called “foreground traffic”), SIIT tests should also 

use non-translated native IPv6 traffic (called “background 

traffic”), and different proportions of the two types of traffic 

have to be used. Background traffic is normal IPv6 test frames 

and they are always sent from the “real” IPv6 address of the 

given side to the “real” IPv6 address of the other side. 

Background traffic is indistinguishable from the foreground 

test frames if the IP version of both sides is 6 (case no. 4). 

As for the receive() function, it was written to be 

resilient. It does not take care of the IP version of the given 

side, but it checks the EtherType field of the frame to 

determine its IP version. It also checks if the received frame is 

a test frame. (To that end, siitperf writes the bytes of the 

“IDENTIFY” string as the first eight bytes of the UDP data 

field. It is not handled as a string, but as a 64-bit integer for 

performance considerations. [4])  

Originally, siitperf literally followed the test frame 

format with fixed IP addresses and port numbers specified in 

the Appendix C.2.6.4 of RFC 2544. When the support for 

RFC 4814 pseudorandom port numbers was added [21], the 

flexible design of siitperf was kept; the user can specify 

the source and destination port number ranges for each 

direction separately and if the source and destination port 

numbers should have a fixed value, they should increase, 

decrease, or be pseudorandom. (Only the last one complies 

with RFC 4814.) These details are important regarding the 

design of the extension to support multiple IP addresses, as 

they should fit together. There are four parameters that 

describe the behavior of the port numbers. Their names can be 

obtained by the following brace expansion: {Fwd,Rev}-

var-{s,d}port. The values of the parameters can be 0-3 

with the following meanings: 0: fixed; 1: increasing; 2: 

decreasing; 3: pseudorandom. The ranges for the port numbers 

can be specified using 8 parameters: {Fwd,Rev}-

{s,d}port-{min,max}. In all, there are 12 parameters 

used. 

It is an important implementation detail that siitperf 

uses packet templates in which it modifies source and 

destination port numbers, as well as the appropriate 8-bit part 

of the IPv4 or IPv6 addresses, when multiple destination 

networks are used. IPv4 and UDP checksums are pre-

calculated when the packet templates are generated (using 0 

values for the fields to be modified) and they are modified 

according to the checksum of the modified fields. Depending 

on the IP version, pointers are set to the fields to be 

manipulated, and then the same code works for both IPv4 and 

IPv6 test frames.  

Another important implementation detail was that only a 

single send() function was written and originally it had two 

sending loops: one for sending the same test frame using fixed 

IP addresses and port numbers, and another one for preparing 

several (up to 256) test frames the destination IP address of 

which belonged to different destination networks. When 

 

Table XV.  Specification of which parameters are used as source and destination IP addresses for foreground test frames on each side. 

(L/R means: Left/Right, the Virt(ual) value is used to represent an IP address from a different address family than used on the given side). [9] 

Case  IP version Type of the 

DUT 

IP addresses used by the Left Sender IP addresses used by the Right Sender 

No. Left Right source destination source destination 

1. 6 4 stateless NAT64 gw. IPv6-L-Real IPv6-R-Virt IPv4-R-Real IPv4-L-Virt 

2. 4 6 stateless NAT46 gw. IPv4-L-Real IPv4-R-Virt IPv6-R-Real IPv6-L-Virt 

3. 4 4 IPv4 router IPv4-L-Real IPv4-R-Real IPv4-R-Real IPv4-L-Real 

4. 6 6 IPv6 router IPv6-L-Real IPv6-R-Real IPv6-R-Real IPv6-L-Real 

 

  

Fig. 11.  Operation of the sender and receiver functions of siitperf during 

stateless testing. [9] 
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support for RFC 4814 pseudorandom port numbers was added, 

then the number of sending loops was doubled to support the 

original operation mode with fixed port numbers besides the 

new one with varying port numbers. 

The following command line parameters are used for the 

throughput test: 

 IPv6 frames size (in bytes), IPv4 frames are 

automatically 20 bytes shorter 

 frame rate (in frames per second) 

 duration of testing (in seconds) 

 global timeout (in milliseconds), the tester stops 

receiving, when this global timeout elapsed after frame 

sending finished 

 n and m: they are two relative prime numbers for 

specifying the proportion of foreground and 

background traffic: m packets form every n packets 

belong to the foreground traffic and the rest (n-m) 

packets belong to the background traffic. 

Besides the parameters above, which are common for all the 

three binary programs, siitperf-lat and siitperf-

pdv use various further ones, but they are not relevant to the 

current paper. 

When the send() function finishes frame sending, it 

checks the duration of the frame sending. If it exceeds the 

desired duration by a factor higher than the predefined 

constant called “TOLERANCE” (the value of which is 

defined as 1.00001), it reports an error, and then bash shell 

script considers the test as failed. The aim of this checking is 

to avoid the kind of error situation that the test is performed at 

a longer time and thus at a lower frame rate then required due 

to the insufficient performance of the Tester.  

2) Extension for Stateful Tests 

The extension of siitperf for stateful NAT64 / NAT44 

measurements is documented in [9].  

The phase 1 operation of the Initiator is implemented by the 

new isend() function, which is able to provide the 

pseudorandom enumeration of all possible source port number 

and destination port number combinations required by the 

benchmarking methodology [10]. They are pre-generated 

before phase 1 using Durstenfeld’s random shuffle algorithm 

[23]. Following the traditions of siitperf, the user has 

several factors of freedom; the port number enumeration is 

optional, and if it is used, increasing or decreasing order can 

also be used (besides pseudorandom), where the source port 

number is the low order counter and destination port number 

is the high order counter. 

The operation of the sender and receiver functions of 

siitperf in stateful mode during phase 1 and phase 2 are 

shown in Fig. 12 and Fig. 13, respectively. In phase 1, the 

Initiator only sends packets using the isend() function, and 

it does not receive any packets. In phase 2, it sends and 

receives packets using the legacy send() and receive() 

functions. 

It needs to be noted that the isend() function is much 

more general than required by the Internet Draft [10]. It is an 

extended version of the original send() function, keeping its 

all four packet sending loops and adding the optional 

functionality of port number enumeration. The only restriction 

is that port number enumeration may not be used together with 

multiple destination networks.  

As for the Receiver, its implementation required two new 

functions: rreceive()and rsend(); and a new data 

structure: state table. The latter is implemented by an array of 

size M (specified by the user as command line parameter), the 

elements of which are atomic four tuples because it is 

concurrently read and written during phase 2. The 

rreceive() function extracts the source and destination 

IPv4 addresses and port numbers from the received IPv4 test 

frames and stores them in the state table. (The writing order is 

always increasing and its index is increased modulo M) The 

rsend() function prepares IPv4 test frames based on the 

four tuples taken from the state table (source and destination is 

swapped). The reading order can be increasing, decreasing and 

pseudorandom. (The latter is recommended.) 

 

Fig. 12.  Operation of the sender and receiver functions of siitperf during 

phase 1 of stateful testing. [9] 
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Fig. 13.  Operation of the sender and receiver functions of siitperf during 

phase 2 of stateful testing. [9] 
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The stateful extension introduced only 3 new configuration 

file parameters. The name of the first one is Stateful, and 

its possible values and their meanings are: 0: perform stateless 

test; 1: perform stateful test, the Initiator is on the left side and 

the Responder is on the right side; 2: same as 1, but the 

Initiator and the Responder are on the opposite sides.  

The second new parameter is Enumerate-ports, and its 

possible values and their meanings are: 0: no port number 

enumeration; 1 or 2: port numbers are enumerated in 

increasing or decreasing order; 3: port numbers are 

enumerated in pseudorandom order. 

Notes regarding the values of the Enumerate-ports 

parameter: 

 The value of 3 must be used to comply with the 

requirements of the Internet Draft [10]. The other 

values facilitate further opportunities for testing (e.g., 

to examine if the order of enumeration matters or not). 

 Any non-zero value of the Enumerate-ports 

parameter overrides the values of the {Fwd,Rev}-

var-{s,d}port parameters for phase 1. 

 The zero value of the Enumerate-ports parameter 

results in the usage of the values of the Fwd-var-

{s,d}port or Rev-var-{s,d}port parameters 

also in phase 1, depending on the 1 or 2 value of the 

Stateful parameter.  

It is very important to note that port number enumeration 

applies only to the foreground traffic (traffic to be translated). 

The frames that belong to the background traffic (native IPv6 

traffic) do not take part in the port number enumeration. 

The third new parameter is Responder-ports, and its 

possible values and their meanings are: 0: a single fixed four 

tuple is used (like when a single test frame is always used); 1 

or 2: the four tuples are taken from the state table in increasing 

or decreasing order; 3: the four tuples are selected from the 

state table in a pseudorandom way. Although the latter is 

recommended by the Internet Draft [10], reading the state 

table in increasing order provides a higher Tester performance 

due to less computation and caching [9]. 

The new command line parameters are to be interpreted as 

follows: 

 N: the number of test frames to send in phase 1 

 M: the number of entries in the state table of the Tester 

 R: the frame rate, at which the test frames are sent 

during phase 1 (in frames per second) 

 T: the global timeout for phase 1 frames (in 

milliseconds) 

 D: the overall delay caused by phase 1 (in 

milliseconds) 

It needs to be noted that phase 1 and phase 2 were originally 

called “preliminary phase” and “real test phase” [9]. This 

approach explains why those parameters were defined when 

siitperf supported only stateless tests, which were then 

applied to “the real test phase” (now referred to as phase 2), 

and when different parameters were needed, new ones were 

defined for the “preliminary phase” (now referred to as phase 

1). 

B. Validation of the Parameters 

The parameter design is partially validated by setting the 

parameters to reflect the test setups mentioned in the previous 

sections of this paper.  

Parameters for the traditional IPv4 routing tests with fixed 

IP addresses according to Fig. 1 and for the stateful NAT64 

tests according to Fig. 3 are as follows: 
IP-L-var 0 # fixed 

IP-R-var 0 # fixed 

Moreover, the values of the further new parameters are 

redundant and everything works as before.  

For all the following test cases, they are to be set as follows 

(they are not repeated below): 
IP-L-var 3 # pseudorandom 

IP-R-var 3 # pseudorandom 

Parameters for IPv4 router testing according to Fig. 4: 
IP-L-min 2      # ".1" is for the DUT 

IP-L-max 65534  # ".255.255" is broadcast 

IP-R-min 2      # ".1" is for the DUT 

IP-R-max 65534  # ".255.255" is broadcast 

IPv4-L-offset 2 # last 16 bits 

IPv4-R-offset 2 # last 16 bits 

Parameters for IPv6 router testing according to Fig. 5: 
IP-L-min 0       # The full range 

IP-L-max 0xffff  # can be used.  

IP-R-min 0       # The full range 

IP-R-max 0xffff  # can be used. 

IPv6-L-offset 12 # bits 96-111 

IPv6-R-offset 12 # bits 96-111 

Parameters for stateful NAT44 testing according to Fig. 6: 
IP-L-min 0      # The full range 

IP-L-max 65535  # can be used.  

IP-R-min 0      # 0 is valid, but 

IP-R-max 65534  # ".255.255" is broadcast. 

IPv4-L-offset 1 # bits 8-23 

IPv4-R-offset 2 # bits 16-31 

Parameters for stateful NAT64 testing according to Fig. 7: 
IP-L-min 0       # The full range 

IP-L-max 0xffff  # can be used.  

IP-R-min 0       # 0 is valid, but  

IP-R-max 65534   # ".255.255" is broadcast. 

IPv6-L-offset 12 # bits 96-111 

IPv6-R-offset 14 # bits 112-127 (for IPv6-R-Virt!) 

Parameters for stateful NAT44 testing according to Fig. 8: 
IP-L-min 2      # ".1" is for the DUT 

IP-L-max 65534  # ".255.255" is broadcast 

IP-R-min 0      # 0 is valid, but 

IP-R-max 65534  # ".255.255" is broadcast. 

IPv4-L-offset 2 # bits 16-31 

IPv4-R-offset 2 # bits 16-31 

And for all stateful tests: 
Enumerate-ips 3 

Thus it was shown that the new parameters are suitable to 

express the settings required for the proposed test setups. 
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