
Methodology for the identification of potential security issues of different IPv6
transition technologies: Threat analysis of DNS64 and stateful NAT64

Gábor Lencsea,∗, Youki Kadobayashib

aDepartment of Networked Systems and Services, Budapest University of Technology and Economics, Magyar tudósok körútja 2, Budapest,
H-1117, Hungary

bLaboratory for Cyber Resilience, Nara Institute of Science and Technology, Takayama-cho, 8916-5, Nara, 630-0192 Japan

Abstract

We are faced with the transition from IPv4 to IPv6, which will last for several years or possibly decades. There
are different IPv6 transition technologies, which enable the communication between hosts using the two incompatible
versions of the Internet Protocol in various scenarios, but they also involve additional security issues. In this paper, we
develop a methodology for the identification of potential security issues of different IPv6 transition technologies and their
implementations based on the STRIDE approach and its application to IPv6 transition technologies. Our methodology
includes the application of the STRIDE approach at two levels: the level of the individual IPv6 transition technologies
and the level of their selected implementations. We demonstrate the operation and viability of our methodology by the
detailed threat analysis of the DNS64 technology, and we prove the necessity of the implementation level analysis with
several examples. We also include the most interesting highlights of the security analysis of the stateful NAT64 IPv6
transition technology. We also make a survey of the published vulnerabilities of DNS64 and NAT64 in different research
papers and show the effectiveness of our systematic method by uncovering the threats of DNS64 and NAT64. Finally, we
point out the need for the in-depth security analysis of the DNS64 technology and its most important implementations.

Keywords: DNS64, Internet, IPv6 transition technologies, Network security, Stateful NAT64, STRIDE

1. Introduction

The deployment of IPv6, the new standard version of
the Internet Protocol [1], has been very slow since IPv6
was defined in a draft standard RFC in 1998 [2], and its
deployment accelerated only in the latest years [3]. Sev-
eral IPv6 transition technologies [4] were developed, which
address various communication scenarios. The application
of a dual stack, that is all networking elements using both
IPv4 and IPv6, would have been a good solution for a
smooth transition, if IPv6 had been deployed before the
depletion of the public IPv4 address pool, which actually
happened in 2011. As the transition did not take place yet,
and it is expected to last for decades [3], the coexistence of
IPv4 and IPv6 necessitates the application of several IPv6
transition technologies for decades.

Unfortunately, the TCP/IP protocol stack, and the most
important basic services, such as the Domain Name Sys-
tem [5], were not designed security aware. With the prolif-
eration of the Internet connected devices, network security
became an important issue. High numbers of potential se-
curity issues were identified at the different layers of the
TCP/IP protocol stack. In this paper, we focus on the

∗Corresponding author
Email addresses: lencse@hit.bme.hu (Gábor Lencse),

youki-k@is.naist.jp (Youki Kadobayashi)

potential security issues of the IPv6 transition technolo-
gies. Our aim is to develop a systematic methodology for
the identification of potential security issues of different
IPv6 transition technologies. Our threat analysis model is
based on the STRIDE approach [6], and its application to
IPv6 transition technologies [7], which we extend in this
paper. We demonstrate the viability of our method in
two case studies: the detailed threat analysis of DNS64 [8]
and a brief threat analysis of stateful NAT64 [9]. We also
perform a survey of research papers, RFCs and other pub-
lications concerning the published threats of DNS64 and
NAT64. We demonstrate that whereas the coverage of the
different threats is rather sporadic in the different pub-
lications, our methodology can efficiently uncover them.
Therefore, although STRIDE is based on industry best
practices (that is, “art”) rather than formal methods (e.g.,
formal protocol verification), we show that our methodol-
ogy based on STRIDE can be a useful analytical frame-
work to uncover the threats systematically, although there
is no guarantee for its completeness.

The remainder of this paper is organized as follows. In
section 2, our threat analysis methodology is presented.
In section 3, a short introduction is given to the DNS64
and NAT64 IPv6 transition technologies. In section 4,
the operation and viability of our threat analysis method-
ology is demonstrated on the detailed threat analysis of
the DNS64 technology. In section 5, the most important

Preprint submitted to Elsevier Computers & Security April 20, 2018

Table 1: Threats and the security properties that guard against them (from Fig. 2 and Fig. 3 of [6])

Threat Security Property Description of the security property
Spoofing Authentication The identity of users is established (or you are willing to accept anony-

mous users).
Tampering Integrity Data and system resources are only changed in appropriate ways by

appropriate people.
Repudiation Non-repudiation Users can not perform an action and later deny performing it.
Information disclosure Confidentiality Data is only available to the people intended to access it.
Denial of service Availability Systems are ready when needed and perform acceptably.
Elevation of privilege Authorization Users are explicitly allowed or denied access to resources.

Table 2: Susceptibility of the DFD elements to the different threats (from Fig. 5 of [6])

Element Spoofing Tampering Repudiation
Information
Disclosure

Denial of
Service

Elevation of
Privilege

Data Flows X X X
Data Stores X X X
Processes X X X X X X
Interactors X X

differences and the most interesting security issues of the
stateful NAT64 technology are addressed. Section 6 con-
tains a survey of security issues of DNS64 and NAT64
documented in the literature, and they are compared to
our results. Section 7 provides further arguments for the
individual security analysis of DNS64 implementations by
showing practical examples. In section 8, our plans for fu-
ture research are disclosed. Section 9 concludes our paper.

2. Our Threat Analysis Model

According to the book by Adam Shostack [10], the well-
known and widely used systematic approach to threat
modelling, called STRIDE, was invented by Loren Kohn-
felder and Praerit Garg. As we could not access their
paper from 1999 [11], we used a later paper from 2006 [6]
and the aforementioned book [10]. The STRIDE acronym
stands for Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, and Elevation of privilege.
Table 1 maps these threats to the security properties that
guard against them and also gives short descriptions for
the mentioned security properties. The STRIDE method-
ology facilitates the design of secure software (or systems)
by means of DFD (Data Flow Diagram) decomposition of
the system and a thorough analysis of the DFD compo-
nents, which of the six aforementioned threats they are
susceptible to. The possible elements of the DFDs are
data flows, data stores, processes, and interactors (repre-
senting an external entity). The trust boundaries must
also be marked. Table 2 shows the properties of the four
elements whether they are susceptible to the given threat
(marked by a “X” sign) or not. The authors of [6] clearly
state that the method does not give a guarantee for un-
covering all the threats, but this systematic analysis may
be of a great help in uncovering attacks that could have
been overlooked or have not been thought of otherwise.

The book by Adam Shostack [10] emphasizes that the
purpose of STRIDE is to help find the threats, and
STRIDE is not for categorizing the threats: a given threat
may be found in various ways, therefore, the threats do not
have to be (and sometimes cannot be) categorized. The
book calls the above described variant of STRIDE using
Table 2 as “STRIDE-per-Element”, and also mentions an-
other variant called “STRIDE-per-Interaction” and men-
tions that the latter one is more complicated to use.

The STRIDE approach was applied to the security vul-
nerability analysis of IPv6 transition technologies in [7] in
2016. In that paper, the high number of IPv6 transition
technologies were classified into a small number of general
categories: dual stack, single translation technologies, dou-
ble translation technologies, and encapsulation technolo-
gies. This approach made it possible to conduct a com-
prehensive threat analysis of nearly all the IPv6 transition
technologies by examining only the elements of the DFDs
constructed to represent the above four general categories,
concerning the related threats of the STRIDE model.

In our current effort, we would like to complement the
above method in two ways. Firstly, we need to add one
new category for the DNS64 [8] IPv6 transition technol-
ogy, which is not covered by any of the four aforemen-
tioned general categories. Secondly, the aforementioned
comprehensive analysis, which was made much easier by
the introduction of the general categories, is complemented
by a more in-depth investigation at two levels: the level
the individual IPv6 transition technologies and the level of
their most important implementations. Fig. 1 illustrates
the cost and benefit of the application of these methods to
threat analysis. We prove the viability of this approach in
section 4 and we also show examples why both these ad-
ditional levels are necessary in section 4.4.3, section 4.4.4,
section 4.6.1, section 4.8, and in section 7.

2

Generic

Categories

Individual

IPv6 Transition Technologies

Individual Implementations

of the IPv6 Transition Technologies

More

Work

More

Specific

Results

Figure 1: Method hierarchy: Costs and benefits of the different
threat analysis methods

As for the implementations, we only deal with those
that are free software [12] (also called open source [13]) for
multiple reasons:

• Free software comes with source code and free soft-
ware licenses explicitly allow the study of the source
code, which can be essential for security analysis.

• Proprietary software usually does not include source
code, and the licenses of certain vendors (e.g. [14]
and [15]) do not allow reverse engineering and some-
times even the publication of benchmarking results is
prohibited.

• Free software can be used by anyone for any purposes
thus our results can be helpful for everyone.

• Free software is available free of charge for us, too.

Within the category of the free software implementa-
tions, we give further priority to those that are widespread
and/or known to be stable and high performance (if such
information is available). We have already published this
reasoning in [4], where we have made a nearly exhaus-
tive survey of the IPv6 transition technologies and ranked
them regarding the importance of their security vulnera-
bility analysis. DNS64 [8] and stateful NAT64 [9], used
here as examples, were classified as essential, which is the
group of the IPv6 transition technologies of utmost impor-
tance.

3. Introduction to DNS64 and Stateful NAT64

The DNS64 [8] and stateful NAT64 [9] IPv6 transition
technologies can be used together for enabling IPv6-only
clients to communicate with IPv4-only servers. This com-
munication scenario is expressly relevant due to the deple-
tion of the global IPv4 address pool, thus we consider the
analysis of DNS64 and NAT64 important and inevitable

because no other standard IPv6 transition technology ex-
ists for this scenario after NAT-PT was moved to historic
status [16].

We demonstrate the operation of DNS64 and NAT64
in the example of an IPv6-only client and an IPv4-only
web server taken verbatim from our conference paper [17].
Fig. 2 shows a scenario where an IPv6-only client commu-
nicates with an IPv4-only web server. The DNS64 server
uses the 64:ff9b::/96 NAT64 Well-Known Prefix [18] for
generating IPv4-embedded IPv6 addresses [18]. There are
two prerequisites for the proper operation:

1. A DNS64 server should be set as the DNS server of
the IPv6-only client.

2. Packets towards the 64:ff9b::/96 network are routed
to the NAT64 gateway (routing must be configured
that way).

Let us follow the steps of the communication:

1. The client asks its DNS server (which is actually
a DNS64 server) about the IPv6 address of the
www.hit.bme.hu web server.

2. The DNS64 server asks the DNS system about the
IPv6 address of www.hit.bme.hu.

3. No IPv6 address is returned.

4. The DNS64 server then asks the DNS system for the
IPv4 address of www.hit.bme.hu.

5. The 152.66.248.44 IPv4 address is returned.

6. The DNS64 server synthesizes an IPv4-embedded
IPv6 address by placing the 32 bits of the received
152.66.248.44 IPv4 address after the 64:ff9b::/96 pre-
fix and sends the result back to the client.

7. The IPv6-only client sends a TCP SYN segment us-
ing the received 64:ff9b::9842:f82c IPv6 address and
it arrives to the IPv6 interface of the NAT64 gateway
(since the route towards the 64ff9b::/96 network is set
so in all the routers along the path).

8. The NAT64 gateway constructs an IPv4 packet us-
ing the last 32 bits (0x9842f82c) of the destination
IPv6 address as the destination IPv4 address (this is
exactly 152.66.248.44), its own public IPv4 address
(198.51.100.10) as the source IPv4 address and some
other fields from the IPv6 packet plus the payload of
the IPv6 packet. It also registers the connection into
its connection tracking table (and replaces the source
port number by a unique one if necessary). Finally, it
sends out the IPv4 packet to the IPv4-only server.

9. The server receives the TCP SYN segment and sends
a SYN ACK reply back to the public IPv4 address of
the NAT64 gateway.

10. The NAT64 gateway receives the IPv4 reply packet.
It constructs an appropriate IPv6 packet using the
necessary information from its state table. It sends
the IPv6 packet back to the IPv6-only client.

The communication may continue. It seems the client
is communicating to an IPv6 server. Similarly, the server

3

1 “AAAA” www.hit.b
me.hu ?

DNS64
server

“AAAA” 64:ff9
b::9

842:f8
2c

Domain
Name

 System

SYN 64:ff9b::9842:f82c

NAT64 gateway

SYN 152.66.248.44

IPv4 only server

6

7

IPv6 only client
SYN ACK 198.51.100.10 9

IPv6 Address: 2001:db8::ac31:b17
IPv6 Address: 2001:db8:abcd::1

IPv4 Address: 198.51.100.10

IPv4 Address: 152.66.248.44

Hostname: www.hit.bme.hu

10SYN ACK 2001:db8::ac31:b17

“AAAA” www.hit.bme.hu ?2

“A” www.hit.bme.hu ?4

“AAAA” (empty) 3

“A” 152.66.248.44 5

8

Figure 2: The operation of the DNS64+NAT64 solution: an IPv6-only client communicates with and IPv4-only server [17]

DNS64
client

DNS64 server

Internal
cache of the

DNS64 server
(optional)

DNS
system

ISP Network

1 2

3

4 5

6

7

8

Figure 3: DFD for the threat analysis of DNS64

“can see” an IPv4 client. If it logs the IP addresses of
the clients, then it will log the public IPv4 address of the
NAT64 gateway.

Most client-server applications can work well with the
DNS64 plus NAT64 solution, for more information see [19].

In practice, the usage of the NAT64 Well-Known Prefix
has several hindrances, see sections 3.1 and 3.2 of [18].
Therefore, the network operators allocate a subnet from
their own network for this purpose. It is called Network
Specific Prefix [18].

4. Threat Analysis for DNS64

Fig. 3 shows the DFD for the threat analysis of DNS64.
It contains two external entities (DNS client and DNS sys-
tem), a process (DNS64 server) two bidirectional data
flows (one between the client and the DNS64 server and
another one between the DNS64 server and the DNS sys-
tem) and a data store, which is the internal cache of the
DNS64 server. We did not put a data flow symbol be-
tween the DNS64 server and the data store: the cache

entries are stored inside the DNS64 process giving no sur-
face for attack against data transfer between them. The
trust boundaries are between the DNS64 server and the
two external entities. Thus, the DNS64 server (includ-
ing its inside cache) is a trusted element of the system,
which has a low likelihood of being exploited. However,
the others are untrusted, which have high likelihoods of
being exploited [7].

Now we shall examine each element of the DFD for the
threats that they may be susceptible to according to Ta-
ble 2. The sequence number of the subsections within sec-
tion 4 correspond to that of the DFD elements in Fig. 3.
We also present a summary of the DNS64 threats in Ta-
ble 3.

We note that STRIDE is a generic threat model and in
a given situation some of the threats may be relevant and
other ones may be not.

4.1. DNS64 Client

4.1.1. Spoofing

Spoofing here means source IP address spoofing, as there
are no other ways for the identification of the clients.

There may be different motivations behind spoofing:

• The aim of the attacker may be a DNS amplification
attack against the victim, whose address is spoofed.
It is a kind of DoS (Denial of Service) attack, and its
aim is to flood the victim with a high volume of traffic
[20].

• Spoofing may also be used go get unauthorized access
to the DNS64 service, if the DNS64 server uses an
ACL (Access Control List) to enable the service to a
limited set of clients only. In this case, the attacker
needs another step to get the reply (e.g. evesdropping,
routing redirect, etc.).

• In case of a DoS attack against the DNS64 server, the
attacker can use spoofing simply to hide its identity
or to circumvent rate limiting, see section 4.4.3.

4

Possible mitigation against spoofing is also described in
[20].

4.1.2. Repudiation

There is no real point in repudiating a DNS request,
except for the case, when the DNS request is sent as an
attack, but then the attacker uses source address spoofing,
as mentioned before. (Repudiation would be meaningful
e.g. in the case of cash withdrawal or purchasing goods,
but DNS and DNS64 are free of charge services.)

4.2. Data flow from DNS64 client to DNS64 server

4.2.1. Tampering

Tampering can be used to implement a kind of attack
against a legitimate client by changing the requested do-
main name in the question section to another one and thus
preventing the client from receiving an answer for its real
question. This attack is similar to DoS attacks in its re-
sult (the client fails to receive an answer), however the
name “DoS” is used for those attacks that are “absorbing
resources needed to provide service” [10]. Thus we call it
Failure of Service (FoS) attack.

Changing the question to one which results in a large
volume of answers would be somewhat closer to the logic
of the usual DoS attacks. However, for real DoS attacks, a
large number of requests are necessary, thus changing only
the client’s requests are not appropriate.

Changing the destination IP address of the packet may
be used to direct the packet to a fraudulent DNS/DNS64
server, which can implement any of the attacks described
in section 4.4.1.

4.2.2. Information Disclosure

The DNS requests sent by a user may be interesting for
several purposes, for example:

• Knowing the browsing habits of a user may help in
sending targeted advertisements.

• Secret services or even criminals may analyze them
for gaining information.

• It can be used for different attacks, see e.g. in sec-
tion 4.3.1.

4.2.3. Denial of Service

For example, by flooding the network, an attacker may
prevent a legitimate client from sending a query to the
DNS64 server (and thus form using the service).

4.3. Data flow from DNS64 server to DNS client

4.3.1. Tampering

Tampering can be used to return false IPv6 address and
thus deceive the client either implementing a FoS attack
similar to the one mentioned in section 4.2.1, or to direct
the traffic of the client to a computer controlled by the
attacker. If it is used as a part of a larger attack, e.g. the

attacker spoofs the website that the victim is intended to
use and returns the IPv6 address of the spoof web site to
the client, the attacker may be successful in phishing [21].

As for mitigation, DNSSEC [22] could help without
DNS64, but its interference with DNS64 requires some dis-
cussion, please refer to section 4.9.

4.3.2. Information Disclosure

If the DNS64 server is intended to serve only a limited
set of clients, an attacker may still use the DNS64 server by
spoofing a legitimate client (see section 4.1.1) and eaves-
dropping the answer.

In general, there is no much point in revealing publicly
available information, such as the one stored in the DNS
system, except the case if they are intended to be avail-
able for internal use only. DNS enumeration [23] can be
another example for information disclosure.

4.3.3. Denial of Service

The same as in section 4.2.3.

4.4. DNS64 server

Let us recall, that the DNS64 server is within our trust
boundaries, thus it is considered as protected. The protec-
tion should involve both a physical protection (e.g. being
locked into a room to prevent all unauthorized persons
from physically approaching it) and firewall protection (to
try to prevent unauthorized traffic from reaching it).

4.4.1. Spoofing, Tampering, Information Disclosure

Under the spoofing of a DNS64 server, we mean that an
attacker operates an unauthorized DNS64 server, which
replies instead of the authorized one. We contend that
there is no logical difference, whether another computer
is used to execute the counterfeit DNS64 server program,
or the original DNS64 server software is replaced by an
appropriately patched one, which performs certain extra
functions. Therefore, we handle the case of spoofing the
DNS64 server together with the case of tampering with
the DNS64 server.

The spoofed (or tampered) DNS64 server may do differ-
ent harmful things such as tampering with the DNS data
(e.g. resulting in phishing, see section 4.3.1) or informa-
tion disclosure (see section 4.2.2), which can be very effi-
cient for the attacker if they can implement the level of the
DNS64 server. To do further harmful things is only left to
the fantasy and bad will of the attacker (e.g. intermittent
and/or selective delayed service for certain computers).

The implementation of these kinds of attacks needs the
cooperation, or at least significant negligence of one or
more trusted persons responsible for the operation of the
network. Thus, we believe the only way to prevent these
kinds of attacks is to employ well trained, careful, and
trustworthy professionals. DNSSEC might help against
several attacks except this one, please see section 4.9 for
the details.

5

Whereas a spoofed or tampered DNS64 server is ideal
for information disclosure, it is an important question, is
information disclosure possible with a genuine untouched
DNS64 server? If yes, we consider it a bug in the DNS64
implementation.

4.4.2. Repudiation

There is no real point in the repudiation of the acts of a
DNS64 server (a DNS reply to a client or a DNS request to
the DNS system), except for the case, when they belong
to an attack, which may happen if the DNS64 server is
spoofed, see section 4.4.1.

4.4.3. Denial of Service

A DoS attack may be implemented by malicious but
legitimate clients sending a huge number of requests. Some
DNS64 servers support rate liming, that is, no more than
the specified number of requests per second are served for
a given client. For example, BIND supports this function
[24].

A crafty attacker may spoof the IP addresses of several
legitimate clients to by-pass rate limiting and also to hide
his/her identity, as mentioned in section 4.1.1.

High performance can be a kind of mitigation of DoS at-
tacks. We have compared the performances of four DNS64
implementations in [25], and we plan to make further per-
formance comparisons. See the details in section 4.10.1.

However, there is a completely different way of making
the services of some vulnerable DNS servers unavailable
(thus implementing a DoS attack). DNS names follow a
special encoding called message compression [26]. It can
also use pointers, which we illustrated in section II.A of
[17] (see Figures 4-6). An attacker may use a malformed
domain name, which contains a pointer that points to itself
in order to cause an infinite loop for a vulnerable DNS
server [27].

We note that there may be some other specific attacks
which try to confuse the DNS server by sending a request
or reply with corrupted internal structure. For example,
stating higher number or Resource Records than actually
included in the reply may cause an improperly written
implementation to produce segmentation fault.

An appropriate firewall using deep packet inspection can
protect the DNS64 server against a malformed domain
name attack, but we recommend the usage of well writ-
ten DNS64 servers that are not vulnerable to the attack.

We note that the possibility of rate limiting (or the lack
of it), the different performances of DNS64 implementa-
tions and their vulnerability to malformed domain name
attacks are important arguments for their individual anal-
ysis.

4.4.4. Elevation of Privilege

An elevation of privilege attack may be performed by
malicious (patched) DNS64 software coming from “inside”
persons (as mentioned in section 4.4.1), to gain further

privileges (root rights) on the server, which the DNS64
software is executed by. However, this is not the only
way for an elevation of privilege attack to happen. DNS64
servers receive input in both the queries from the clients
and the replies from the DNS system, thus they can be
susceptible to buffer overflow attacks [28]. If a buffer over-
flow attack is successful, then the attacker may execute his
program code using the rights (privileges) of the DNS64
server. Now, he is able to perform any activities described
in section 4.4.1 or 4.4.3. In addition to that, the attacker
may also try to find further security holes to gain further
rights.

We note that some of the attacks using corrupted inter-
nal structure messages (mentioned in section 4.4.3) may
also aim to gain control over the system.

However, we also note that these kind of attacks are very
sophisticated. Even in the case of the well-known buffer
overflow attack [28] its implementation is always CPU type
specific, because the code to be executed must be written
in the machine language of the given computer [29]. And
of course, the writer of the malicious code must know the
attacked software very well.

As for mitigation, the book by Adam Shostack [10] has
several recommendations:

1. the usage of Address Space Layout Randomization
(ASLR) may prevent a successful buffer overflow at-
tack

2. programming in type-safe languages (like Java or C#)
instead of C can make many of control flow / memory
corruption attacks harder

3. executing the server programs in sandboxes may pre-
vent the attacker from getting control over the whole
system.

Again, an appropriately set firewall using deep packet
inspection can protect the DNS64 server against a buffer
overflow attack, but we recommend the use of well written
DNS64 servers that are not vulnerable to the attack, which
requires individual analysis. Our approach can be justified
by performance considerations. It is much more efficient
to execute good software than to execute a vulnerable one
plus a second one to cover the vulnerabilities of the first
one.

4.5. Data flow from DNS64 server to DNS system

We note that some similarities can be observed between
the vulnerabilities of the data flow from the DNS64 server
to the DNS system and the vulnerabilities of the data flow
from the client to the DNS64 server (see section 4.2), but
there are significant differences as well.

4.5.1. Tampering

Very similar things can be said to the contents of sec-
tion 4.2.1, only the names of the endpoints are different.

6

4.5.2. Information Disclosure

As the information cannot be bound to a specific user,
but it belongs to the whole community that uses the
DNS64 server, the statistics are less useful both for tar-
geted advertisements or for gaining information about the
users.

However, the knowledge of the requests can be used for
an even more effective attack than in section 4.3.1. See its
details in section 4.6.1.

4.5.3. Denial of Service

Similarly to section 4.2.3, an attacker may prevent the
DNS64 server from sending a query to the DNS system by
flooding the network, but here, higher performance may be
needed due to the probably one order of magnitude higher
line speeds.

4.6. Data flow from DNS system to DNS64 server

Again, similarities can be observed to section 4.3, but
there are significant differences, too.

4.6.1. Tampering

Tampering can be much more effective than in sec-
tion 4.3.1, if the DNS64 server uses caching.

DNS cache poisoning (also referred to as DNS spoofing)
is an attack, which targets to load corrupt data into the
cache of a DNS server [30]. As a result, the traffic of
the clients that receive the false IP addresses from the
server, will be diverted. DNSSEC [22] could help, but its
deployment is too low to be an effective protection for all
the domain names.

The entries (called Resource Records, abbreviated as
RR) are stored in the cache of a DNS server until their
Time-To-Live (TTL) expires. Popular domain names (es-
pecially those with high TTL) are somewhat protected
against cache poisoning as they are usually cached. How-
ever, in some cases cached data is overwritten if the trust-
worthiness of the newly received data is ranked higher. For
ranking data, see section 4.5.1 of [31]. Reference [30] gives
a detailed analysis of the trust levels used by BIND and
shows that an “RRset is overwritten if the trust level of the
received RRset is higher or equal to the cached one and its
TTL is longer”. It also mentions that Unbound behaves
similarly, but MaraDNS behaves completely differently.

From this, one of the most important lessons is that dif-
ferent implementations may significantly differ from each
other in their vulnerabilities to different threats. This jus-
tifies our statement that it is worth examining the individ-
ual implementations of a given IPv6 transition technology.

In our threat model, a cache poisoning attack could be
implemented in different ways, one of them requires:

1. Either the cooperation of a legitimate client, which
would send a request for the targeted domain name,
or the attacker may be able to spoof a legitimate client
or tamper with the message flow from the client to the
DNS64 server.

2. Either spoofing an authoritative DNS server or tam-
pering with the message flow from the DNS system to
the DNS64 server.

As for mitigation, DNSSEC [22] could deliberately help
without DNS64 (for the domains, which it is used), and
we point out in section 4.9 that it still protects against
DNS cache poisoning, but with limitations concerning the
validation.

4.6.2. Information Disclosure

The same as in section 4.3.2.

4.6.3. Denial of Service

The same as in section 4.5.3.

4.7. DNS System

4.7.1. Spoofing

In practical terms, there is no difference, whether the
DNS system is spoofed or the message flow from the DNS
system to the DNS64 server is tampered. We described
the resulting DNS cache poisoning in section 4.6.1.

4.7.2. Repudiation

There is no real point in the repudiation of a genuine
DNS reply. The sender of a forged reply spoofs a legitimate
DNS server. DNSSEC could be a good solution if it were
deployed.

4.8. Internal Cache of DNS64 Server

Some DNS64 implementations support caching and oth-
ers do not, thus even the existence of caching is implemen-
tation dependent. Those that support caching, may have
different cache control algorithms.

Caching is done internally by those DNS64 implementa-
tions that support it, thus the general vulnerabilities of the
data stores (tampering, information disclosure and denial
of service) may not be immediately exploited, only through
the DNS64 implementations (as processes), and we have
already dealt with them in section 4.4. The reason we still
included the internal cache in the DFD is to show that it
is worth considering. Although its entries may not be ac-
cessed or manipulated immediately, some attacks may tar-
get its entries. For example, an attacker may send requests
for a AAAA record of a domain name to the DNS64 server
to find out the TTL value of the entry, which may be useful
in a cache poisoning attack. Moreover, a legitimate client
(or a spoofed one) may also manipulate the contents of
the cache by simply sending high number of AAAA record
requests for different domain names. The attacker may re-
duce the performance of the server by simply overwriting
the valuable cache contents with domain names, which are
useless for the users. In this case, the users will still get
correct answers, but somewhat later. The cache poisoning
attack, which we introduced in section 4.6.1, is an indirect
tampering with the contents of the cache. And cache poi-
soning may be efficiently supported by sending fake name

7

resolution requests to the DNS64 server at high frequency
so that the attacked domain name may be removed from
its internal cache.

4.9. DNS64 and DNSSEC

Using DNSSEC [22], a security aware and validating
client may check whether the data from a DNS server has
been modified. Of course, it works only if DNSSEC is im-
plemented from the root zone to the zone of the domain
name in question (or an appropriate trust anchor is used)
and DNSSEC is supported by the recursive DNS server,
which performs the name resolution for the client. Now,
we explain, how it works from the client side. In its query,
the client sets both the DO (“DNSSEC OK”) and the CD
(“Checking Disabled”) bits to signal to the DNS server
that the client is security aware (it may process DNSSEC
information) and that the client requires to receive vali-
dation data (it does not entrust the server to perform the
validation). This is the best possible scenario, because in
this case, the client is able to discover if tampering hap-
pened anywhere. Unfortunately, this scenario is incompat-
ible with DNS64 because the DNS64 server itself “tampers
with” the data: it synthesizes the so-called IPv4-embedded
IPv6 address, as we described it in section 3. This is also
confirmed in section 3 of [8], where a detailed analysis is
given of the possible scenarios of DNS64 and DNSSEC in-
terference. The following is a workable scenario: the client
sets the DO bit to 1 and the CD bit to zero requesting
the DNS64 server to perform the DNSSEC validation. In
this case, the DNS64 server validates the data. “If it fails,
it returns RCODE 2 (Server failure); otherwise, it returns
the answer.” [8]

For us it means, that we are protected from cache poi-
soning, due to the DNSSEC validation performed by the
DNS64 server, but we are not protected against tampering
performed on the data flow from the DNS64 server to the
client or against the spoofing (tampering) of the DNS64
server itself.

The solution is simple but not easy: the deployment of
both native IPv6 and DNSSEC will result in a more re-
liable DNS infrastructure. For further reading about the
issue, please refer to [32], which also presents some adop-
tion statistics both for IPv6 and DNSSEC as of its writing
in 2016.

4.10. Going to Implementation Level

In theory, the implementations should be analyzed in all
the aspects their behavior may be different. As this can
require a lot of resources (humans, computers) we recom-
mend the ranking of the implementations, and selecting a
few of them. The ranking may be based on their perfor-
mance, popularity, etc.

4.10.1. Performance comparison of DNS64 implementa-
tions

There are several free software DNS64 implementations.
We have examined the stability and performance of BIND

[33], TOTD [34], Unbound [35], and PowerDNS [36] in our
aforementioned paper [25]. They all proved to be stable
solutions, but they showed different performances. One
of the most important lessons learned from their perfor-
mance comparison was that the DNS64 implementations
scaled up very differently as a function of CPU cores on the
executing server. On the one hand, we could only go up
to four CPU cores using the then available measurement
methodology, software, and hardware, but on the other
hand, modern servers usually have 16 or more CPU cores.
Therefore, we believe that those results are not enough for
the performance ranking of the DNS64 server implemen-
tations. Since then, we have developed a benchmarking
methodology for DNS64 servers [37], which is also a part
of our new RFC on benchmarking methodology for IPv6
transition technologies [38]. We have developed a mea-
surement tool, dns64perf++ [39], which complies with
the compulsory requirements of the draft. We have also
added the optional feature of testing the caching perfor-
mance of DNS64 servers [40].

During the first review process of this paper we have
benchmarked BIND, PowerDNS and Unbound using 16-
core servers at NICT StarBED, Japan. We have found
significant differences both in their single core DNS64 per-
formances and in their scale-up from 1 to 16 CPU cores:
whereas Unbound showed the highest single core perfor-
mance, PowerDNS scaled up the best. We have reported a
serious issue regarding BIND: its DNS64 performance did
not increase from 4 to 16 CPU cores at all. Please refer to
[41] for further details.

4.10.2. Popularity of DNS64 server implementations

We do not have direct data about the popularity of
DNS64 servers, thus we can only suppose that their popu-
larity is similar to that of the DNS servers. This is surely
a rough approximation, because some DNS servers do not
support DNS64 and there are expressly DNS64 servers,
which do not implement traditional DNS services such as
authoritative or recursive DNS service.

ISC states that “BIND is far the most widely used DNS
software on the Internet” [33] and as it supports DNS64,
thus the security analysis of BIND is a must.

4.10.3. Transaction ID prediction attack

There is another interesting issue, which we have dis-
covered about the TOTD DNS64 implementation [42]. It
used an incremental counter for Transaction IDs, which
were trivial to predict, therefore it was very much sus-
ceptible to Transaction ID prediction attacks. We have
mitigated this vulnerability by introducing pseudorandom
transaction IDs [42]. Our security patch has been included
into the source code of TOTD 1.5.3 [43].

5. Stateful NAT64 in a Nutshell

We presume that the systematic security analysis of the
DNS64 servers was a sufficient demonstration of our se-

8

Table 3: Summary of DNS64 threats (please refer to the text of the corresponding subsection of section 4 for explanation)

DFD
element

Threat Possible attacks or benefits of the attacker

1
spoofing DNS amplification attack (DoS); unauthorized access to service; identity

hiding; circumventing rate limiting (see section 4.1.1)
repudiation - (see section 4.1.2)

2
tampering failure of service (similar to DoS) (see section 4.2.1)
information disclosure collecting information for different purposes (see section 4.2.2)
denial of service denial of service attack (see section 4.2.3)

3
tampering failure of service; part of phishing (see section 4.3.1)
information disclosure unauthorized access to service; DNS enumeration (see section 4.3.2)
denial of service denial of service attack (see section 4.3.3)

4

spoofing, tamp., inf. disc. phishing; failure of service; collecting information for different purposes;
etc. (see section 4.4.1)

repudiation - (see section 4.4.2)
denial of service different kinds of denial of service attacks, including malformed domain

name (see section 4.4.3)
elevation of privilege buffer overflow attack; DNS message with corrupted internal structure

5
tampering failure of service (similar to DoS) (see section 4.5.1)
information disclosure collecting information for different purposes (see section 4.5.2)
denial of service denial of service attack (see section 4.5.3)

6
tampering DNS cache poisoning (see section 4.6.1)
information disclosure unauthorized access to service; DNS enumeration (see section 4.6.2)
denial of service denial of service attack (see section 4.6.3)

7
spoofing DNS cache poisoning (see section 4.7.1)
repudiation - (see section 4.7.2)

8
(only indirect attacks) DNS cache poisoning; reducing the efficiency of caching; etc. (see sec-

tion 4.8)

IPv6-only
client

Stateful NAT64
gateway

Internal
connection

tracking table of
the NAT64 gateway

IPv4-only
server

ISP Network

1 2

3

4 5

6

7

8

Figure 4: DFD for the threat analysis of stateful NAT64

curity analysis method. As for NAT64, we would like to
touch upon some interesting differences only.

Fig. 4 shows the DFD for the threat analysis of stateful
NAT64, which looks very similar to that of DNS64. An
important difference is that the connection tracking table
is not optional, as NAT64 is stateful. There is another
important difference. Whereas the cache of the DNS64
server stores information that originated from the replies
of the DNS system, the entries of the connection tracking
table of the stateful NAT64 gateway are created solely on
the basis of the information available in the header of the
packets from IPv6-only clients thus this technology gives
less surface for attacks.

5.1. Possible DoS Attacks Against Stateful NAT64

We present a summary of the most interesting DoS at-
tacks against stateful NAT64 in Table 4.

5.1.1. Exhaustion of the connection tracking table

The exhaustion of the connection tracking table may be
used for a DoS attack. This attack can be easily imple-
mented by a legitimate client using its own IPv6 address
as source address, but forging source IPv6 address may
somewhat help the attacker in hiding. As for the target

9

address, the attacker needs to use all different IPv4 embed-
ded IPv6 addresses, which can be easily synthesized in the
knowledge of the prefix used by the DNS64 server. Maxi-
mum 232 number of target addresses can be synthesized1,
and if it is not enough, the number of different 5-tuple
combinations (source IP address, source port number, tar-
get IP address, target port number, and protocol number)
may be easily increased by using different (forged) source
addresses, or different source port numbers (perhaps the
destination port numbers are limited due to firewall poli-
cies).

We note that – depending on the implementation – a
very high number of entries in the connection tracking ta-
ble may have a negative impact on its lookup speed.

5.1.2. Exhaustion of the source port number and public
IPv4 address pool

The depletion of the pool of available source port num-
bers at the NAT64 gateway may also be a solution for a
DoS attack. The gateway may use 64k (or 63k, if the 0-
1023 system port range is left out) number of source ports
per public IPv4 address.

The traditional type of Network Address and Port
Translation (NAPT) always replaces the source port num-
ber by a unique one at the NAPT device. The extended
algorithm also includes the destination IP address and port
number into the tuple, and replaces the source port num-
ber only if the current tuple would be identical with an
existing one in the connection tracking table [44]. Thus,
depending on the type of the NAT64 implementation, the
task of the attacker may be relatively easy or very hard.

5.1.3. Brute force DoS attacks

Implementing a simple “brute force” DoS attack against
the stateful NAT64 gateway may not be simple because the
stateful NAT64 function is a much less demanding task
than DNS64. See section 5.2.1 for the details. Of course,
the CPU, memory (size or bandwidth), or network capac-
ity (understanding as line capacity measured in bit per
second or interrupt processing capacity measured in pack-
ets per second, which can be significantly reduced by in-
terrupt coalescing) of a NAT64 gateway may be exhausted
by an appropriately powerful “brute force” DoS attack.

5.2. Implementations

5.2.1. Performance analysis

As for free software stateful NAT64 implementations, we
have experience with PF (Packet Filter) of OpenBSD, and
the combination of the stateless TAYGA and the Netfilter
of Linux (also called iptables after the name of its user
interface tool). We examined and compared their stabil-
ity and performance using ICMP traffic [45]. To test the

1The number of possible IPv4 addresses may be less than
232, because Class D (224.0.0.0/4, multicast block) and Class E
(240.0.0.0/4, experimental block) addresses may be unusable for the
attack.

worst case behavior of the examined NAT64 gateways, we
used all different target addresses, which were redirected
to the same “responder” computer by an iptables rule.
Both NAT64 implementations proved to be stable, but PF
outperformed TAYGA more than three-fold by means of
served requests per second, which was not a surprise, as
TAYGA (stateless NAT64) is implemented in user space
and the stateful NAT part was done by another software
(iptables), whereas PF runs in kernel space and per-
forms the full stateful NAT64 by itself. The experiments
were also executed by using TCP and UDP traffic [46].

If an attacker tries simple “brute force” attack, the sig-
nificant performance difference may mean, that PF can
survive a DoS attack, which can seriously decrease the
performance of the TAYGA+iptables system.

However, our experience shows that the same DUT (De-
vice Under Test), which was intentionally a very old hard-
ware to be able to overload by using our then available
technology, could serve less than 500 AAAA record queries
per second as a DNS64 server [47], whereas it could process
more than 22,000 packets per second (and their replies) as
a NAT64 gateway [45]. Thus simple “brute force” attacks
do not seem to be easy to implement.

Ecdysis and Jool are two other free software stateful
NAT64 implementations, which we did not test yet, but
we consider them good candidates.

We plan to compare their performances using the bench-
marking method described in RFC 8219 [38], however
currently no stateful NAT64 benchmarking tool is avail-
able, which fully implements its measurements for stateful
NAT64 testing. The only benchmarking tool that com-
plies with RFC 8219 implements only the stateless NAT64
tests [48].

5.2.2. Results concerning port number exhaustion

We have examined the source code of iptables and
found that it implements extended NAPT [49]. Thus, it
will efficiently resist port number exhaustion attacks.

Since the extended NAPT algorithm was published more
than 10 years ago [44], we suppose that the other NAT64
implementations also use it, but we have not verified this
yet.

6. Related Work

We survey the results of other researchers concerning
the security issues of DNS64 and NAT64 to examine how
efficiently our methodology could discover the threats that
are known about these technologies.

Unlike in the case of e.g. 6to4 (the security issues are
discussed in a separate RFC [50]), or NAT-PT, the pre-
decessor of NAT64+DNS64, which was deprecated, inter
alia, due to its security issues [16], we have found very few
published results concerning the security issues of DNS64
and NAT64.

10

Table 4: Summary of the most interesting DoS attacks against stateful NAT64

Type of DoS attack
exhaustion of the connection tracking table (see section 5.1.1)
exhaustion of the source port number and public IPv4 address pool (see section 5.1.2)
simple “brute force” DoS attack (see section 5.1.3)

6.1. Security issues of DNS64

6.1.1. DNS64 threats in the literature

Unfortunately, neither [51] or [52] nor other research
papers deal with the security issues of DNS64, except for
our paper [42].

The defining RFC of DNS64 [8] contains the usual sec-
tion of “Security Considerations” (section 8), which men-
tions the following things:

1. DNS64 is subject to the security considerations of
DNS (we discuss them in section 6.1.3).

2. DNS64 may interfere with DNSSEC, because it mod-
ifies the messages. (The RFC provides an in depth
description of the case, we have addressed its essence
in section 4.9.)

3. If an attacker manages to change the prefix used by
the DNS64 server, it may result in:

• a DoS attack (if the resulting IPv6 addresses are
not assigned to any device)

• a flooding attack (if the resulting IPv6 addresses
are assigned to devices that do not wish to re-
ceive the traffic),

• an eavesdropping attack (in case, if the prefix is
routed through the attacker).

We have also found similar issues in other RFCs. The
RFC about the discovery of the IPv6 prefix used for IPv6
address synthesis [53] mentions in its section 3.1 that if the
client node uses an insecure channel between itself and
the DNS64 server, then the attacker may influence the
prefix discovery procedure, which “may result in denial-of-
service, redirection, man-in-the-middle, or other attacks.”
As a solution, it recommends the use of a secure channel
between the host and the DNS64 server, “for example,
an IPsec-based virtual private network (VPN) tunnel or a
link layer utilizing data encryption technologies” [53]. As
an alternative, RFC 6889 [54], which also points out the
problem that a client using DNS64 server may not perform
its own DNSSEC validation, recommends that the host
should perform its own DNS64 synthesis.

Section 2.7.3.2 of the Internet Draft on the operational
security considerations for IPv6 networks [55] also men-
tions that “DNS64 has an incidence on DNSSEC”.

Section 7 of another RFC about the analysis of solution
proposals for hosts to learn NAT64 prefix [56] mentions the
problem, that IP address of the DNS64 server configured
in the clients may not be reliable, if they received it by

DHCPv6. “Therefore, if, for example, the host cannot
trust DHCPv6, it cannot trust the DNS server learned via
DHCPv6 either, unless the host has a way to authenticate
all DNS responses (e.g., via DNSSEC).” [56]

6.1.2. Expressly DNS64 threats covered by our results

We can state that we have found all the possible types of
threats including tampering, although we did not think of
the kind of its exploitation that the attacker only changes
the prefix, but it is only one subtype of tampering, which
was covered in general.

6.1.3. General DNS threats in the literature

There are a high number of papers addressing the
threats of the Domain Name System.

Reference [57] enumerates the following threats:

• DNS cache poisoning

• tampering with the zone file at the authoritative DNS
servers

• DDoS (Distributed Denial of Service) by using DNS
amplification or DNS reflection.

Reference [58] lists the following ones:

• DNS cache poisoning

• DNS protocol attacks, that is, malformed DNS queries
or responses. (“Examples of such attacks include mal-
formed packets, code insertion, buffer overflows, mem-
ory corruption, NULL pointer de-reference or the ex-
ploitation of specific vulnerabilities.” [58])

• DNS redirection (MITM) attacks, mentioning DNS
changer and DNS replay, or illegitimate redirection
as examples.

• DNS fast fluxing (changing the DNS records at ex-
tremely high frequency, e.g. using 60s TTL, to assist
the attacker in hiding).

• DNS tunneling (using the DNS communication as a
covert channel for malicious communications to by-
pass traditional defense mechanism, e.g. firewalls).

• Domain phishing.

11

Reference [59] is an older and more general paper about
the internet infrastructure security, and it addresses the
attack against the DNS system in two ways. It deals with
the possible “impacts” of the attacks and the “types” of
the attacks. Under “impacts” it enumerates:

• Denial-of-Service, with the meaning that the client
may not connect to the desired server, achieved e.g.,
by sending back negative responses (that the domain
does not exist) or an incorrect IP address. (We called
it as FoS.)

• Masquerading, with the meaning that presenting a
compromised DNS server for the users.

• Information Leakage (the same as information disclo-
sure in our terminology).

• Domain Hijacking, with the meaning that the attacker
re-registers a legitimate domain with forged data (ex-
ploiting the insecure nature of the communication
channel between the domain owner and the registrar).

As for types, it lists:

• Cache Poisoning

• Server Compromising (the attacker takes control over
the DNS server and thus the attacker may do what-
ever wishes).

• Spoofing (the same as “masquerading” above).

A more current survey on the DNS threats [60] mentions
virtually the same types of threats that we have already
enlisted above.

And there is an RFC about the threat analysis of DNS
[61], which addresses the following threats:

• Packet Interception (including both information dis-
closure and tampering)

• ID Guessing and Query Prediction (means the guess-
ing of the 16-bit Transaction ID combined with the
knowledge of prediction of the QNAME and QTYPE
values to be able to insert a bogus response).

• Name Chaining, which is a special case of cache poi-
soning, based on using a kind of RR, e.g. CNAME or
NS, which can redirect a victim’s query to a location
of the attacker’s choice.

• Cache Poisoning (mentioned at the previous threat,
but it can be a more general type, too).

• Betrayal by Trusted Server (a DNS server misbehaves
due to a bug or by being tampered).

• Denial of Service

• Authenticated Denial of Domain Names (It is debated
whether there is a requirement for authenticating the
non-existence of a name or not.)

• Wildcards (special handling of names starting with
the label “*”, for more information see section 4.3.3
of [5]).

6.1.4. DNS threats covered by our results

Not all DNS threats are relevant to the DNS64 service,
e.g. tampering with the zone files at the authoritative DNS
servers, the re-registration of a domain by an attacker, or
changing the IP-address of the DNS/DNS64 server in the
client, etc. are general attacks against the Domain Name
System, and we consider that these types of attacks are
beyond the scope of our paper. However, those types of
attacks that are relevant to DNS64 were covered by our
detailed threat analysis of DNS64 in section 4.

6.2. Security issues of NAT64

6.2.1. Threats in the literature

Reference [51] states: “The main security issue of
NAT64 is DoS (Deny of Service) attack on the bind-
ing table, with ingress filtering on the IPv6 side as the
solution.” Reference [52] states: “In terms of security,
the main threats against NAT64 are potential Denial-of-
Service attacks, targeted to consume the scarce NAT64 re-
sources including memory, processing power, and the IPv4
transport-address pool. NAT64 can mitigate these attack
vectors by limiting the amount of resources assigned to
different purposes (e.g. the amount of memory used for
temporarily storing fragments waiting for reassembly).”
Because of the common authors, it is not surprising that
the RFC defining stateful NAT64 [9] also mentions more
or less the same vulnerabilities in its section 5.3, namely
different DoS attacks aimed:

• to consume transport addresses by initiating high
number of bindings initiated from different IPv6
transport addresses

• to consume the memory of the NAT64 device by send-
ing high number of fragments to be stored

• to consume the memory of the NAT64 device in the
form of session and/or binding table entries by send-
ing high number of SYN segments.

The Internet Draft on the operational security consid-
erations for IPv6 networks [55] mentions that: “A spe-
cific issue with the use of NAT64 is that it will interfere
with most IPsec deployments unless UDP encapsulation is
used.”

6.2.2. Threats covered by our results

Our results exactly cover the exhaustion of the binding
table (called connection tracking table in section 5.1.1)
as well as the exhaustion of the transport addresses
(called public IPv4 addresses and port numbers in sec-
tion 5.1.2). The “brute force” DoS, which we mentioned
in section 5.1.3, generally covers the CPU, memory and
communication capacity exhaustion, although we did not

12

explore the possible implementations of exhausting the
memory capacity by either SYN or fragmentation attacks.

Only the interference with IPsec was not addressed,
which is not a specific “threat” as we used above, but
a “general feature” of NAT64.

Thus, our methodology can be considered to be success-
ful in uncovering the known threats of NAT64, although
we did not do a full scope analysis, but only examined
those issues seemed to be interesting enough.

6.3. Discussion

Our methodology for the identification of potential secu-
rity issues of different IPv6 transition technologies proved
to be viable for finding the documented vulnerabilities of
DNS64 and NAT64 in a systematic way. This is very im-
portant, because the examined research papers usually re-
ported overlapping but significantly different attack vec-
tors. Thus, a systematic method is definitely of a great
help. However, we would like to emphasize that we do
not mean to suggest any guarantee of covering all possible
threats by using our methodology. The paper on STRIDE
[6] explicitly states that there is no such guarantee.

Another important observation is that while we did not
have any difficulty in finding research papers addressing
the security issues of stateful NAT64, we did not find any
research papers on the potential security issues of DNS64
(except for our earlier paper, which dealt with a spe-
cific DNS64 implementation, TOTD). Our experience was
rather similar, when we surveyed the performance analysis
of DNS64 and NAT64 implementations:

“The performance of the TAYGA NAT64 implementa-
tion (and implicitly of the TOTD DNS64 implementation)
is compared to the performance of NAT44 in [62]. The per-
formance of the Ecdysis NAT64 implementation (that has
its own DNS64 implementation) is compared to the per-
formance of the authors’ own HTTP ALG in [63]. The
performance of the Ecdysis NAT64 implementation (and
implicitly the performance of its DNS64 implementation)
is compared to the performance of both the NAT-PT and
an HTTP ALG in [64].” [25]

DNS64 was omitted from the four categories of [7]. It
seems from these examples that DNS64 is not treated as
co-ordinate with NAT64, but rather a subordinate, less im-
portant protocol than NAT64. While we agree that users’
datagrams are carried by the NAT64 gateway which is
the lion’s share of the work, NAT64 is unusable2 without
DNS64. The poor performance of the DNS64 server di-
rectly influences the users’ Quality of Experience (QoE),
and a successful DoS attack against the DNS64 server
makes the IPv4-only servers unavailable for the IPv6-only
clients. Tampering with the DNS64 server (or only with

2We are aware of the fact that stateful NAT64 is also used as
the PLAT implementation of 464XLAT [65], but now we talk about
the solution, which enables an IPv6-only client to communicate with
an IPv4-only server, and DNS64 is inevitable in this communication
scenario.

its cache contents as cache poisoning) may cause signifi-
cant harm to the users (e.g. by phishing). Therefore, we
conclude that the threat analysis of DNS64 is essential.
Our threat analysis of the DNS64 technology is the first
step to fill in this important gap, and it definitely should
be completed by the threat analysis of the most important
DNS64 implementations.

7. Cache Poisoning Vulnerability Analysis of
DNS64 Implementations

During the first review process of this paper we per-
formed a detailed cache poisoning vulnerability analysis
of several DNS64 implementations [66]. On the basis of
RFC 5452 [67], we have shown the three most important
countermeasures against cache poisoning:

• usage of cryptographic random numbers as Transac-
tion IDs

• usage of cryptographic random numbers as source
port numbers

• refraining from sending out multiple equivalent
queries (having identical QNAME, QTYPE, and
QCLASS fields) concurrently.

We have also created a methodology and a testbed to
determine, whether a specific DNS64 server implemented
these three countermeasures against cache poisoning. The
test results of several free software DNS64 implementa-
tions are shown in Table 5. Please refer to [66] for all the
details of our tests. Although TOTD and mtd64-ng [68]
do not support caching, and thus cache poisoning is not
applicable to them, mtd64-ng is going to be enabled for
caching in the near future, thus it must apply all three
countermeasures against cache poisoning before it can be
used as a production class DNS64 server.

These results also justify our statement that the individ-
ual security analysis of the implementations is inevitable.

8. Plans for Future Research

We are planning to select the most important free soft-
ware DNS64 server and NAT64 gateway implementations
(both on performance and deployment basis) and submit
them to detailed security analysis.

We also plan to select further IPv6 transition technolo-
gies from our survey [4] for the identification of their poten-
tial security issues as well as that of their most important
free software implementations.

9. Conclusion

We have presented a threat analysis model for IPv6
transition technologies by extending an earlier model that
applied the STRIDE approach to the potential security
vulnerability analysis of IPv6 transition technologies and

13

Table 5: Summary of the vulnerability test results [66]

DNS64 Implementation
Attack Type

Transaction ID
Prediction

Source Port Number
Prediction

Multiple Equivalent
Queries

DNS Cache
Poisoning

BIND 9.9.5 no problem found no problem found protected no problem found

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable

TOTD 1.5.3 protected vulnerable vulnerable not applicable

mtd64-ng 1.1.0 vulnerable vulnerable vulnerable not applicable
PowerDNS 3.6.2 no problem found no problem found protected no problem found
Unbound 1.6.0 no problem found no problem found protected no problem found

dealt with categories for the IPv6 transition technologies,
at two levels: the level of the given IPv6 transition tech-
nologies and the level of their implementations.

We have demonstrated the operation of our method
for the security vulnerability analysis of IPv6 transition
technologies with the detailed threat analysis of DNS64
servers, and we have also shown the necessity of further
analysis. We have also touched upon some interesting se-
curity issues of NAT64 gateways.

We have shown the efficiency of our method by com-
paring our results with the threat vectors can be found in
the literature, and we have pointed out that the in-depth
threat analysis of the DNS64 technology and its implemen-
tations is essential.

We also presented our plans for future research concern-
ing the threat analysis of the most important free software
DNS64 and NAT64 implementations, as well as further
IPv6 transition technologies and their implementations.

Acknowledgement

This work was supported by the International Exchange
Program of the National Institute of Information and
Communications Technology (NICT), Japan.

References

[1] S. Deering, R. Hinden, Internet protocol, version 6 (IPv6) spec-
ification, IETF RFC 8200 (STD: 86) (2017). doi:10.17487/
RFC8200.

[2] S. Deering, R. Hinden, Internet protocol, version 6 (IPv6) spec-
ification, IETF RFC 2460 (1998). doi:10.17487/RFC2460.

[3] M. Nikkhah, R. Guérin, Migrating the Internet to IPv6: An ex-
ploration of the when and why, IEEE/ACM Transactions on
Networking 24 (4) (2016) 2291–2304. doi:10.1109/TNET.
2015.2453338.

[4] G. Lencse, Y. Kadobayashi, Survey of IPv6 transition technolo-
gies for security analysis, IEICE Tech. Rep. 117 (187) (2017)
19–24.

[5] P. Mockapetris, Domain names – concepts and facilities, IETF
RFC 1034 (1987). doi:10.17487/RFC1034.

[6] S. Hernan, S. Lambert, T. Ostwald, A. Shostack, Threat model-
ing: Uncover security design flaws using the STRIDE approach,
MSDN Magazine 6 (11) (2006) 68–75.

[7] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, S. Ya-
maguchi, The STRIDE towards IPv6: A comprehensive threat
model for IPv6 transition technologies, in: Proc. 2nd Interna-
tional Conference on Information Systems Security and Privacy,
Rome, Italy, 2016. doi:10.13140/RG.2.1.2781.6085.

[8] M. Bagnulo, A. Sullivan, P. Matthews, I. Beijnum, DNS64:
DNS extensions for network address translation from IPv6
clients to IPv4 servers, IETF RFC 6147 (2011). doi:10.
17487/RFC6147.

[9] M. Bagnulo, P. Matthews, I. Beijnum, Stateful NAT64: Net-
work address and protocol translation from IPv6 clients to IPv4
servers, IETF RFC 6146 (2011). doi:10.17487/RFC6146.

[10] A. Shostack, Threat Modeling: Designing for Security, Wiley &
Sons, Indianapolis, Indiana, USA, 2014.

[11] L. Kohnfelder, P. Garg, The threats to our products, Microsoft
Interface (1999).

[12] Free Software Foundation, The free software definition.
URL http://www.gnu.org/philosophy/free-sw.en.
html

[13] Open Source Initiative, The open source definition.
URL http://opensource.org/docs/osd

[14] Cisco, End user license agreement.
URL http://www.cisco.com/c/en/us/products/
end-user-license-agreement.html

[15] Juniper Networks, End user license agreement.
URL http://www.juniper.net/support/eula/

[16] C. Aoun, E. Davies, Reasons to move the network address trans-
lator – protocol translator (NAT-PT) to historic status, IETF
RFC 4966 (2007). doi:10.17487/RFC4966.

[17] G. Lencse, A. G. Soós, Design of a tiny multi-threaded DNS64
server, in: Proc. 38th International Conference on Telecommu-
nications and Signal Processing (TSP 2015), Prague, Czech Re-
public, 2015, pp. 27–32. doi:10.1109/TSP.2015.7296218.

[18] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, X. Li, IPv6
addressing of IPv4/IPv6 translators, IETF RFC 6052 (2010).
doi:10.17487/RFC6052.

[19] S. Répás, T. Hajas, G. Lencse, Application compatibility of the
NAT64 IPv6 transition technology, in: Proc. 37th International
Conference on Telecommunications and Signal Processing (TSP
2014), Berlin, Germany, 2014, pp. 49–55. doi:10.1109/TSP.
2015.7296383.

[20] US-Cert, DNS amplification attacks, Alert TA13-088A (2016).
URL https://www.us-cert.gov/ncas/alerts/
TA13-088A

[21] Z. Ramzan, Phishing attacks and countermeasures, in:
P. Stavroulakis, M. Stamp (Eds.), Handbook of Information
and Communication Security, Springer, 2010, pp. 433–448.
doi:10.1007/978-3-642-04117-4_23.

[22] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, DNS
security introduction and requirements, IETF RFC 4033 (2005).
doi:10.17487/RFC4033.

[23] T. Wilhelm, Professional Penetration Testing: Creating and
Learning in a Hacking Lab, Elsevier, Waltham, MA, USA, 2013.

14

http://dx.doi.org/10.17487/RFC8200
http://dx.doi.org/10.17487/RFC8200
http://dx.doi.org/10.17487/RFC2460
http://dx.doi.org/10.1109/TNET.2015.2453338
http://dx.doi.org/10.1109/TNET.2015.2453338
http://dx.doi.org/10.17487/RFC1034
http://dx.doi.org/10.13140/RG.2.1.2781.6085
http://dx.doi.org/10.17487/RFC6147
http://dx.doi.org/10.17487/RFC6147
http://dx.doi.org/10.17487/RFC6146
http://www.gnu.org/philosophy/free-sw.en.html
http://www.gnu.org/philosophy/free-sw.en.html
http://www.gnu.org/philosophy/free-sw.en.html
http://opensource.org/docs/osd
http://opensource.org/docs/osd
http://www.cisco.com/c/en/us/products/end-user-license-agreement.html
http://www.cisco.com/c/en/us/products/end-user-license-agreement.html
http://www.cisco.com/c/en/us/products/end-user-license-agreement.html
http://www.juniper.net/support/eula/
http://www.juniper.net/support/eula/
http://dx.doi.org/10.17487/RFC4966
http://dx.doi.org/10.1109/TSP.2015.7296218
http://dx.doi.org/10.17487/RFC6052
http://dx.doi.org/10.1109/TSP.2015.7296383
http://dx.doi.org/10.1109/TSP.2015.7296383
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
http://dx.doi.org/10.1007/978-3-642-04117-4_23
http://dx.doi.org/10.17487/RFC4033

[24] C. Almond, Recursive client rate limiting in BIND 9.9.8, 9.10.3
and 9.11.0, ISC Knowledge Base, Reference Number: AA-01304
(2015).
URL https://kb.isc.org/article/AA-01304

[25] G. Lencse, S. Répás, Performance analysis and comparison
of four DNS64 implementations under different free operating
systems, Telecommunication Systems 63 (4) (2016) 557–577.
doi:10.1007/s11235-016-0142-x.

[26] P. Mockapetris, Domain names – implementation and specifica-
tion, IETF RFC 1035 (1987). doi:10.17487/RFC1035.

[27] Cert, Vulnerability note VU#23495: DNS implementations vul-
nerable to denial-of-service attacks via malformed DNS queries,
VU #23495 (2001).
URL https://www.kb.cert.org/vuls/id/23495

[28] A. D. Keromytis, Buffer overflow attacks, in: H. C. A. van
Tilborg, S. Jajodia (Eds.), Encyclopedia of Cryptography
and Security, Springer, 2011, pp. 174–177. doi:10.1007/
978-1-4419-5906-5_502.

[29] E. Levy, Smashing the stack for fun and profit, Phrack Magazine
7 (49) (1996) article 14.
URL http://phrack.org/issues/49/14.html#article

[30] S. Son, V. Shmatikov, The hitchhiker’s guide to DNS cache
poisoning, in: Proc. Security and Privacy in Communi-
cation Networks – 6th Iternational ICST Conference (Se-
cureComm 2010), Singapore, 2010, pp. 466–483. doi:10.
1007/978-3-642-16161-2_27.

[31] R. Elz, R. Bush, Clarifications to the DNS specification, IETF
RFC 2181 (1997). doi:10.17487/RFC2181.

[32] J. Linkova, Let’s talk about IPv6 DNS64 & DNSSEC, APNIC
Blog (2016).
URL https://blog.apnic.net/2016/06/09/
lets-talk-ipv6-dns64-dnssec/

[33] Internet Systems Consortium, BIND: Versatile, classic, com-
plete name server software.
URL https://www.isc.org/downloads/bind

[34] M. Dunmore (Ed.), An IPv6 Deployment Guide, The 6NET
Consortium, 2005.
URL http://www.6net.org/book/deployment-guide.
pdf

[35] NLnet Labs, Unbound.
URL http://unbound.net

[36] Powerdns.com BV, Powerdns.
URL http://www.powerdns.com

[37] G. Lencse, M. Georgescu, Y. Kadobayashi, Benchmarking
methodology for DNS64 servers, Computer Communications
109 (1) (2017) 162–175. doi:10.1016/j.comcom.2017.06.
004.

[38] M. Georgescu, L. Pislaru, G. Lencse, Benchmarking methodol-
ogy for IPv6 transition technologies, IETF RFC 8219 (2017).
doi:10.17487/RFC8219.

[39] G. Lencse, D. Bakai, Design and implementation of a test pro-
gram for benchmarking DNS64 servers, IEICE Transactions on
Communication E100-B (6) (2017) 948–954. doi:10.1587/
transcom.2016EBN0007.

[40] G. Lencse, Enabling dns64perf++ for benchmarking the caching
performance of DNS64 servers, review version is available.
URL http://www.hit.bme.hu/˜lencse/publications/

[41] G. Lencse, Y. Kadobayashi, Benchmarking DNS64 implemen-
tations: Theory and practice, review version will be available.
URL http://www.hit.bme.hu/˜lencse/publications/

[42] G. Lencse, S. Répás, Improving the performance and security of
the TOTD DNS64 implementation, Journal of Computer Sci-
ence & Technology 14 (1) (2014) 9–15.
URL http://sedici.unlp.edu.ar/handle/10915/34537

[43] F. W. Dillema, DNS proxy and translator for IPv6 and IPv4,
TOTD source code at GitHub.
URL https://github.com/fwdillema/totd/tree/1.5.3

[44] M. S. Ferdous, F. Chowdhury, J. C. Acharjee, An extended al-
gorithm to enhance the performance of the current NAPT, in:
Proc. International Conference on Information and Communi-
cation Technology 2007 (ICICT’07), Dhaka, Bangladesh, 2007,

pp. 315–318. doi:10.1109/ICICT.2007.375401.
[45] G. Lencse, S. Répás, Performance analysis and comparison of

the TAYGA and of the PF NAT64 implementations, in: Proc.
36th International Conference on Telecommunications and Sig-
nal Processing (TSP 2013), Rome, Italy, 2013, pp. 71–76.
doi:10.1109/TSP.2013.6613894.

[46] S. Répás, P. Farnadi, G. Lencse, Performance and stability
analysis of free NAT64 implementations with different proto-
cols, Acta Technica Jaurinensis 7 (4) (2014) 404–427. doi:
10.14513/actatechjaur.v7.n4.340.

[47] G. Lencse, S. Répás, Performance analysis and comparison
of different DNS64 implementations for Linux, OpenBSD and
FreeBSD, in: Proc. IEEE 27th International Conference on
Advanced Information Networking and Applications (AINA
2013), Barcelona, Catalonia, Spain, 2013, pp. 877–884. doi:
10.1109/AINA.2013.80.

[48] P. Bálint, Test software design and implementation for bench-
marking of stateless IPv4/IPv6 translation implementations,
in: Proc. 40th International Conference on Telecommunications
and Signal Processing (TSP 2017), Barcelona, Catalonia, Spain,
2017, pp. 74–78. doi:10.1109/TSP.2017.8075940.

[49] G. Lencse, Estimation of the port number consumption of web
browsing, IEICE Transactions on Communications E98-B (8)
(2015) 1580–1588. doi:10.1587/transcom.E98.B.1580.

[50] P. Savola, C. Patel, Security considerations for 6to4, IETF RFC
3964 (2004). doi:10.17487/RFC3964.

[51] P. Wu, Y. Cui, J. Wu, J. Liu, C. Metz, Transition from IPv4 to
IPv6: A state-of-the-art survey, IEEE Communications Surveys
and Tutorials 15 (3) (2013) 1407–1424. doi:10.1109/SURV.
2012.110112.00200.

[52] M. Bagnulo, A. Garcia-Martinez, I. V. Beijnum, The
NAT64/DNS64 tool suite for IPv6 transition, IEEE Communi-
cations Magazine 50 (7) (2012) 177–183. doi:10.1109/MCOM.
2012.6231295.

[53] T. Savolainen, J. Korhonen, D. Wing, Discovery of the IPv6
prefix used for IPv6 address synthesis, IETF RFC 7050 (2013).
doi:10.17487/RFC7050.

[54] R. Penno, T. Saxena, M. Boucadair, S. Sivakumar, Analysis
of stateful 64 translation, IETF RFC 6889 (2013). doi:10.
17487/RFC6889.

[55] K. Chittimaneni, M. Kaeo, E. Vyncky, Operational security
considerations for IPv6 networks, IETF OPSEC WG Internet
Draft (2017).
URL https://tools.ietf.org/html/
draft-ietf-opsec-v6-12

[56] J. Korhonen, T. Savolainen, Analysis of solution proposals for
hosts to learn NAT64 prefix, IETF RFC 7051 (2013). doi:
10.17487/RFC7051.

[57] J.-Y. Bisiaux, DNS threats and mitigation strategies, Network
Security 2014 (7) (2014) 5–9. doi:10.1016/S1353-4858(14)
70068-6.

[58] C. Marrison, DNS as an attack vector – and how businesses
can keep it secure, Network Security 2014 (6) (2014) 17–20.
doi:10.1016/S1353-4858(14)70061-3.

[59] A. Chakrabarti, G. Manimaran, Internet infrastructure secu-
rity: A taxonomy, IEEE Network 16 (6) (2002) 13–21. doi:
10.1109/MNET.2002.1081761.

[60] R. Rasmussen, P. Vixie, Surveying the DNS threat landscape,
Infoblox white paper (2016).
URL https://www.infoblox.com/wp-content/uploads/
infoblox-white-paper-surveying-the-dns-threat-landscape.
pdf

[61] D. Atkins, R. Austein, Threat analysis of the domain name sys-
tem (DNS), IETF RFC 3833 (2004). doi:10.17487/RFC3833.

[62] K. J. O. Llanto, W. E. S. Yu, Performance of NAT64 versus
NAT44 in the context of IPv6 migration, in: Proc. International
Multiconference of Engineers and Computer Scientists 2012
(IMECS 2012), Hong Kong, Hongkong, 2012, pp. 638–645.
URL http://www.iaeng.org/publication/IMECS2012/
IMECS2012_pp638-645.pdf

[63] C. P. Monte, M. I. Robles, G. Mercado, C. Taffernaberry, M. Or-

15

https://kb.isc.org/article/AA-01304
https://kb.isc.org/article/AA-01304
https://kb.isc.org/article/AA-01304
http://dx.doi.org/10.1007/s11235-016-0142-x
http://dx.doi.org/10.17487/RFC1035
https://www.kb.cert.org/vuls/id/23495
https://www.kb.cert.org/vuls/id/23495
https://www.kb.cert.org/vuls/id/23495
http://dx.doi.org/10.1007/978-1-4419-5906-5_502
http://dx.doi.org/10.1007/978-1-4419-5906-5_502
http://phrack.org/issues/49/14.html#article
http://phrack.org/issues/49/14.html#article
http://dx.doi.org/10.1007/978-3-642-16161-2_27
http://dx.doi.org/10.1007/978-3-642-16161-2_27
http://dx.doi.org/10.17487/RFC2181
https://blog.apnic.net/2016/06/09/lets-talk-ipv6-dns64-dnssec/
https://blog.apnic.net/2016/06/09/lets-talk-ipv6-dns64-dnssec/
https://blog.apnic.net/2016/06/09/lets-talk-ipv6-dns64-dnssec/
https://www.isc.org/downloads/bind
https://www.isc.org/downloads/bind
https://www.isc.org/downloads/bind
http://www.6net.org/book/deployment-guide.pdf
http://www.6net.org/book/deployment-guide.pdf
http://www.6net.org/book/deployment-guide.pdf
http://unbound.net
http://unbound.net
http://www.powerdns.com
http://www.powerdns.com
http://dx.doi.org/10.1016/j.comcom.2017.06.004
http://dx.doi.org/10.1016/j.comcom.2017.06.004
http://dx.doi.org/10.17487/RFC8219
http://dx.doi.org/10.1587/transcom.2016EBN0007
http://dx.doi.org/10.1587/transcom.2016EBN0007
http://www.hit.bme.hu/~lencse/publications/
http://www.hit.bme.hu/~lencse/publications/
http://www.hit.bme.hu/~lencse/publications/
http://www.hit.bme.hu/~lencse/publications/
http://www.hit.bme.hu/~lencse/publications/
http://www.hit.bme.hu/~lencse/publications/
http://sedici.unlp.edu.ar/handle/10915/34537
http://sedici.unlp.edu.ar/handle/10915/34537
http://sedici.unlp.edu.ar/handle/10915/34537
https://github.com/fwdillema/totd/tree/1.5.3
https://github.com/fwdillema/totd/tree/1.5.3
http://dx.doi.org/10.1109/ICICT.2007.375401
http://dx.doi.org/10.1109/TSP.2013.6613894
http://dx.doi.org/10.14513/actatechjaur.v7.n4.340
http://dx.doi.org/10.14513/actatechjaur.v7.n4.340
http://dx.doi.org/10.1109/AINA.2013.80
http://dx.doi.org/10.1109/AINA.2013.80
http://dx.doi.org/10.1109/TSP.2017.8075940
http://dx.doi.org/10.1587/transcom.E98.B.1580
http://dx.doi.org/10.17487/RFC3964
http://dx.doi.org/10.1109/SURV.2012.110112.00200
http://dx.doi.org/10.1109/SURV.2012.110112.00200
http://dx.doi.org/10.1109/MCOM.2012.6231295
http://dx.doi.org/10.1109/MCOM.2012.6231295
http://dx.doi.org/10.17487/RFC7050
http://dx.doi.org/10.17487/RFC6889
http://dx.doi.org/10.17487/RFC6889
https://tools.ietf.org/html/draft-ietf-opsec-v6-12
https://tools.ietf.org/html/draft-ietf-opsec-v6-12
https://tools.ietf.org/html/draft-ietf-opsec-v6-12
https://tools.ietf.org/html/draft-ietf-opsec-v6-12
http://dx.doi.org/10.17487/RFC7051
http://dx.doi.org/10.17487/RFC7051
http://dx.doi.org/10.1016/S1353-4858(14)70068-6
http://dx.doi.org/10.1016/S1353-4858(14)70068-6
http://dx.doi.org/10.1016/S1353-4858(14)70061-3
http://dx.doi.org/10.1109/MNET.2002.1081761
http://dx.doi.org/10.1109/MNET.2002.1081761
https://www.infoblox.com/wp-content/uploads/infoblox-white-paper-surveying-the-dns-threat-landscape.pdf
https://www.infoblox.com/wp-content/uploads/infoblox-white-paper-surveying-the-dns-threat-landscape.pdf
https://www.infoblox.com/wp-content/uploads/infoblox-white-paper-surveying-the-dns-threat-landscape.pdf
https://www.infoblox.com/wp-content/uploads/infoblox-white-paper-surveying-the-dns-threat-landscape.pdf
http://dx.doi.org/10.17487/RFC3833
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp638-645.pdf
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp638-645.pdf
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp638-645.pdf
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp638-645.pdf

biscay, S. Tobar, R. Moralejo, S. Pérez, Implementation and
evaluation of protocols translating methods for IPv4 to IPv6
transition, Journal of Computer Science & Technology 12 (2)
(2012) 64–70.
URL http://sedici.unlp.edu.ar/handle/10915/19702

[64] S. Yu, B. E. Carpenter, Measuring IPv4 – IPv6 translation tech-
niques, Tech. Rep. 2012-001, Dept. of Computer Science, Univ.
of Auckland, Auckland, New Zeeland.
URL http://hdl.handle.net/2292/13586

[65] M. Mawatari, M. Kawashima, C. Byrne, 464XLAT: Combi-
nation of stateful and stateless translation, IETF RFC 6877
(2013). doi:10.17487/RFC6877.

[66] G. Lencse, Y. Kadobayashi, Methodology for DNS cache poi-
soning vulnerability analysis of DNS64 implementations, review
version will be available.
URL http://www.hit.bme.hu/˜lencse/publications/

[67] A. Hubert, R. van Mook, Measures for making DNS more re-
silient against forged answers, IETF RFC 5452 (2009). doi:
10.17487/RFC5452.

[68] G. Lencse, D. Bakai, Design, implementation and performance
estimation of mtd64-ng a new tiny DNS64 proxy, Journal of
Computing and Information Technology 25 (2) (2017) 91–102.
doi:DOI:10.20532/cit.2017.1003419.

About authors

Gábor Lencse received MSc and
PhD in computer science from the Bu-
dapest University of Technology and
Economics, Budapest, Hungary in 1994
and 2001, respectively.

He has been working full time
for the Department of Telecommuni-
cations, Széchenyi István University,
Győr, Hungary since 1997. Now, he
is an Associate Professor. He has been

working part time for the Department of Networked Sys-
tems and Services, Budapest University of Technology and
Economics, Budapest, Hungary since 2005. Currently he
is a Guest Researcher at the Laboratory for Cyber Re-
silience, Nara Institute of Science and Technology, Japan,
where his research area is the security analysis of IPv6
transition technologies.

Dr. Lencse is a member of IEICE (Institute of Electron-
ics, Information and Communication Engineers), Japan.

Youki Kadobayashi received his
Ph.D. degree in computer science from
Osaka University, Japan, in 1997.

He is currently a Professor in the
Graduate School of Information Sci-
ence, Nara Institute of Science and
Technology, Japan. Since 2013, he has
also been working as the Rapporteur of
ITU-T Q.4/17 for cybersecurity stan-
dardization. His research interests in-

clude cybersecurity, web security, and distributed systems.
Dr. Kadobayashi is a member of IEEE Communications

society.

16

http://sedici.unlp.edu.ar/handle/10915/19702
http://sedici.unlp.edu.ar/handle/10915/19702
http://sedici.unlp.edu.ar/handle/10915/19702
http://sedici.unlp.edu.ar/handle/10915/19702
http://hdl.handle.net/2292/13586
http://hdl.handle.net/2292/13586
http://hdl.handle.net/2292/13586
http://dx.doi.org/10.17487/RFC6877
http://www.hit.bme.hu/~lencse/publications/
http://www.hit.bme.hu/~lencse/publications/
http://www.hit.bme.hu/~lencse/publications/
http://dx.doi.org/10.17487/RFC5452
http://dx.doi.org/10.17487/RFC5452
http://dx.doi.org/DOI:10.20532/cit.2017.1003419

	Introduction
	Our Threat Analysis Model
	Introduction to DNS64 and Stateful NAT64
	Threat Analysis for DNS64
	DNS64 Client
	Spoofing
	Repudiation

	Data flow from DNS64 client to DNS64 server
	Tampering
	Information Disclosure
	Denial of Service

	Data flow from DNS64 server to DNS client
	Tampering
	Information Disclosure
	Denial of Service

	DNS64 server
	Spoofing, Tampering, Information Disclosure
	Repudiation
	Denial of Service
	Elevation of Privilege

	Data flow from DNS64 server to DNS system
	Tampering
	Information Disclosure
	Denial of Service

	Data flow from DNS system to DNS64 server
	Tampering
	Information Disclosure
	Denial of Service

	DNS System
	Spoofing
	Repudiation

	Internal Cache of DNS64 Server
	DNS64 and DNSSEC
	Going to Implementation Level
	Performance comparison of DNS64 implementations
	Popularity of DNS64 server implementations
	Transaction ID prediction attack

	Stateful NAT64 in a Nutshell
	Possible DoS Attacks Against Stateful NAT64
	Exhaustion of the connection tracking table
	Exhaustion of the source port number and public IPv4 address pool
	Brute force DoS attacks

	Implementations
	Performance analysis
	Results concerning port number exhaustion

	Related Work
	Security issues of DNS64
	DNS64 threats in the literature
	Expressly DNS64 threats covered by our results
	General DNS threats in the literature
	DNS threats covered by our results

	Security issues of NAT64
	Threats in the literature
	Threats covered by our results

	Discussion

	Cache Poisoning Vulnerability Analysis of DNS64 Implementations
	Plans for Future Research
	Conclusion

