

SPEEDING UP THE PERFORMANCE ANALYSIS OF COMMUNICATION
SYSTEMS

Gábor Lencse
Department of Telecommunications

Széchenyi István University
Egyetem tér 1.

H-9026 Győr, Hungary
E-mail: lencse@sze.hu

KEYWORDS

traffic-flow analysis, discrete event simulation, communi-
cation networks, performance analysis, parallel simulation

ABSTRACT

The methods for the performance analysis of communica-
tion networks are reviewed. Different ways are shown how
the combination of DES and TFA can be made faster by
using parallelism. An efficient algorithm for the parallel
execution of the combined DES and TFA is presented.

INTRODUCTION

Because of the rapid development and growth of communi-
cation networks in the last decades, the analysis of their
performance is an important issue. Event-driven discrete
event simulation (DES) is a powerful tool for this task.
Nevertheless, the systems are often so large and complex
and the number of events is so high that the execution re-
quires unacceptably long time even using a supercomputer.
Let us review first, what solutions were proposed for this
problem so far.

Parallelisation can be a natural solution. But it is not an
easy task and the achievable speed-up is often limited. The
reason is the algorithm of the event-driven DES. When
doing parallel discrete event simulation (PDES), the model
of the system is divided into segments, and the segments
are assigned to processors that are executing them. To
maintain causality, the virtual times of the segments must
be synchronised. There are 3 different methods. The first
two are described in (Fujimoto 1990). The conservative
method ensures that causality is never violated. An event
can be executed only if we know it for sure, that no events
with smaller timestamp exist (and also will not be gener-
ated) anywhere in the model. Unless the simulated system
has a special property that the so called look-ahead is large
enough, the processors executing the segments need to wait
for each other in the majority of time, so the achievable
speed-up is poor. The optimistic method allows and detects
causality errors and uses roll-backs to recover from them.
The resource consumption of the roll-backs may hinder the
good speed-up. The third one is the statistical synchronisa-
tion method (SSM) proposed by György Pongor. (Pongor
1992) This one does not exchange individual messages but

rather the statistical characteristics of the message flow
between the segments. In its original form, SSM was appli-
cable for the analysis of steady state behaviour of systems.
It was further developed (as SSM-T) by Gábor Lencse
(Lencse 1998). The method can produce excellent speed-
up, but has a limited area of application (Lencse 1999). For
more information about the three methods, see (Lencse
2002) and its references.

The traffic-flow analysis (TFA) (Lencse 2001) is a differ-
ent approach for the performance analysis of communica-
tion networks. Unlike discrete event simulation, TFA does
not model the travelling of each packet through the network
individually, but it rather uses statistics to model the
networking load of applications. The method distributes the
traffic (the statistics) in the network first, and calculates the
specific traffic conditions for each line and switching node
in the second step. The results are approximate but may
characterize the traffic conditions of the network satisfacto-
rily.

The combination of DES and TFA (Lencse 2004) is an-
other promising idea. The combined method can be applied
especially well for the performance analysis of the critical
parts of communication networks. DES should be used for
the precise analysis of the critical part only, and TFA is to
be applied for the rest of the network. This solution has the
following justification: the critical part is modelled accu-
rately enough, but the computing power is not wasted for
the execution of large number of events that individually
are irrelevant for us, only their certain statistical conse-
quences influence the behaviour of the critical part of the
network.

Is it possible to speed up the combined TFA and DES by
using parallelism? Is it worth doing so? How can it be done
so that we gain satisfactory information of the traffic condi-
tions of the network examined, in the shortest possible
time? What can be done in parallel? What are the applica-
bility criteria? How many processors should we use? The
recent paper deals with similar questions.

WHAT TO DO IN PARALLEL?

There are a number of possibilities where we can put paral-
lelism into our model. For the first sight there seem to be
three main cases:

1. Execute the DES and the TFA segments parallel

2. Execute multiple DES segments parallel

3. Execute multiple TFA segments parallel

During our studies we shall refine these cases and consider
their possible combinations, too.

Considering the parallel execution of the DES and the
TFA segments

To examine the first case, let us recall the combination of
DES and TFA (Lencse 2004). Between the DES segment
and the TFA segment there is a bidirectional conversion
between their traffic representations (messages and statis-
tics) so that the traffic flow between the two segments can
be modelled. In the aforementioned paper, we have shown
three different possible ways for the implementation. We
recommended the one where TFA is a set of functions
within the DES program and it is called sometimes, and it
uses the virtual time of the DES engine (and some of its
services) for its internal purposes. In this way we can say
that the whole thing is nothing else, but discrete event
simulation. If we examine the time stamps of the events
executed in this simulation, we see that they are growing
while the DES part is executed, and are equal while the
TFA part is executed and growing again while the DES part
runs, etc. It is so because TFA is done at a given point of
virtual time, and later at another given point of virtual time,
and so on… In this way, if we want to execute the DES part
and the TFA part by two processors parallel, we shall no-
tice that always only one of the processors is working and
the other is just waiting. This is a good negative example,
how the parallel execution will result in no speed-up at all.
It is not surprising, as the combination of DES and TFA
was designed for sequential execution by a single proces-
sor. Now, we shall redesign it!

Designing the parallel execution of the DES segment
and the TFA segment for two processors

Let us recall the original example application of combina-
tion of DES and TFA, to see what can be changed in the
implementation. We have an X.25 network servicing ATM
and POS terminals, and we would like to check what hap-
pens if an important link to the server fails. The basic idea
of the suggested solution was the following: DES should be
used for the precise analysis of the critical part only, and
TFA is to be applied for the rest of the network. The com-
mon characteristic feature of these types of problems is that
there is a critical part of the network (like the immediate
neighbourhood of the server in the example above) that
should be modelled accurately and there is all the rest of the
network that cannot be omitted because it gives the load for
the critical part. This observation is the key for the paral-
lelisation. In the original model, bidirectional data flow was
allowed between the DES segment and the TFA segment.
It is general enough but not always necessary. If only the
TFA part gives the load for the DES part and the traffic
from the DES part to the TFA part is negligible, then the

parallel implementation becomes very easy. (We shall see
soon that the applicability criteria will not be so strict.)

Proc. 2. Proc. 1.

DES TFA

Figure 1. The execution of the combined DES and TFA by

two processors

The parallel simulation works as follows:

 At t0 the DES segment sends a message to the TFA
segment that contains the timestamp t1 and the parame-
ters for the TFA segment that are valid at t1 (and may
also contain information about the traffic from DES
segment to the TFA segment at t1 – but it can only be a
prediction based on the information available at t0 vir-
tual time)

 From t0 to t1 the two segments run independently.

 At t1 the TFA segment sends a message to the DES
segment containing the traffic information from the
TFA segment to the DES segment, and then the DES
segment sends a message to the TFA segment contain-
ing a new timestamp t2, the parameters for the TFA
segment valid at t2 and possibly the approximation of
the DES→TFA traffic at t2 as predictable at t1.

 From t1 to t2 the two segments run independently.

In the general step:

 At ti the TFA segment sends a message to the DES
segment containing the traffic information from the
TFA segment to the DES segment, and then the DES
segment sends a message to the TFA segment contain-
ing a new timestamp ti+1, the parameters for the TFA
segment valid at ti+1 and possibly the approximation of
the DES→TFA traffic at ti+1 as predictable at ti.

 From ti to ti+1 the two segments run independently.

This algorithm makes it possible, that the virtual times of
the two segments must meet only at the t0, t1, t2, ti, … syn-
chronisation points of virtual time and the processors may
work independently in any other time. This is the same
freedom that SSM-T offers. Recall, how good results we
could achieve with that! (Lencse 1998) Of course the
method just gives the potential for the speed-up. Good
speed-up can be achieved only if the loads of the processors
are balanced.

Designing the parallel execution of the DES segment
and the TFA segment for more than two processors

If we consider that the DES segment is responsible for a
small part of the network only (e.g. 1%) and the TFA part

analyses all the remaining part (e.g. 99%) then even if TFA
is much faster then DES (e.g. 10 times) the execution of the
TFA part may last significantly longer then the execution of
the DES part (e.g. 9.9 to 1). This observation gives us an
idea for producing excellent speed-up: let us use n number
of processors that are parallelly executing the evaluation of
the TFA part for the consecutive t1, t2, … ti, … tn points of
virtual time. This means that altogether n+1 number of
processors are used, one for the DES part and n for the
TFA part.

Proc. 0

Proc. 2

Proc. 1

Proc. 3

DES TFA

TFA

TFA

for t3k+1

for t3k+2

for t3k+3

Note: the same
TFA segment is
executed parallel
for different ti
points of virtual
time.

Figure 2. The execution of the combined DES and TFA by

3+1 processors

Out of the n+1 processors p0 executes the DES segment. At
the t0 point of virtual time it schedules for the p1, p2, … pi,
… pn processors the execution of the TFA segment for the
t1, t2, … ti, … tn points of virtual time, respectively. When
p0 reaches t1, it has to wait for p1 for the results of the TFA.
(The processors p2 to pn are going to be ready with their
task at the same wall clock time as p11 and they have to wait
for p0 until it reaches the appropriate ti to poll them for the
result of TFA. See Figure 3. This way some processor time
is wasted in the initial transient.) When p0 receives the re-
sult of TFA from p1, then p0 schedules for p1 the execution
of TFA for the tn+1 point of virtual time, and in the same
way when p0 receives the result of TFA from pi, then p0
schedules for pi the execution of TFA for the tn+i point of
virtual time (i=1..n).

In the next round there will be no significant waiting, let us
see, why. When p0 reaches the tn+1 point of virtual time p1
must be ready with the TFA for tn+1, as p1 received this task
at t1 so it had enough time. Similarly, when p0 reaches the
tn+i point of virtual time, pi must be ready with the TFA for
tn+i, as pi received this task at ti so it had enough time
(i=1..n). Of course p0 always schedules the next task for the
pi processor, when it gets the result from pi.

In the general step, let k denote the number of the round
(k=0, 1, 2, 3, …). Now, p0 gets the results TFA from pi at
tkn+i, and asks pi to run TFA for the tkn+i+n≡t(k+1)n+i point of
virtual time (i=1..n).

virtual time

wall clock time2TT

Proc. 0

t0 t1 t1
’ t6 t5 t4 t3 t2

Proc. 3

Proc. 2

Proc. 1

0 3T 4T 5T 6T 7T 8T

Figure 3. The operation of the combined DES and TFA,

running parallelly, using 3+1 processors

Compared to the case where the combination of DES and
TFA is executed in a sequential way, the applicability cri-
teria for the parallel execution are stronger:

1. The results of TFA produced at ti characterize the
TFA→DES traffic well until ti+1. (old criterion)

2. The DES→TFA traffic is either negligible, or predict-
able for the ti+n point of virtual time at ti point of virtual
time. (new criterion)

For determining the optimal value of n, let us use the fol-
lowing simplifications. (They are used for the easy calcula-
tion of n and do not have to stand for the system always –
they are not part of the applicability criteria.) For simplic-
ity, let ti=t0+i*T. Let wDES

i denote the computational work
of the DES part from ti-1 to ti. Again, for simplicity, let:

wDES
i = wDES for all i (that is: constant)

And for the TFA part, let wTFA
i denote the computational

work necessary for the analysis at ti virtual time. Again, let:

wTFA
i = wTFA for all i (that is: constant)

Then n can be expressed as:

DES

TFA

x w
wn = ,  xnn =

Note: we use  xnn = to be able to utilise all possible par-
allelism. We consider n optimal in the sense that we can
utilise all the available parallelism, and the speed-up is
nearly linear (the processors do not have to wait for each
other). If we have m < n+1 number processors only, we
shall experience less speed-up than it is potentially avail-
able (and achievable using n+1 processors).

If wDES
i is not constant (wTFA

i is still constant) and it has
wDES

A average value, we can use that for the calculation of
nA. (This consideration covers also the case if ti=t0+i*T
does not stand.)









=

A
DES

TFA

A w
wn

If wDES
i < wDES

A for a given i, than p0 has to wait for the
results of TFA, and if wDES

i > wDES
A occurs for another i,

then the appropriate processor working on TFA has to wait
for p0.

If wTFA
i is not constant (but wDES

i is constant) we can use its
maximum value wTFA

M for the calculation of nM to ensure
that p0 never has to wait.









= DES

M
TFA

M w
wn

The problem deserves further discussion (e.g. dynamic
scheduling of the n+1 processes that have different work-
loads to be executed by m<n+1 number of processors), but
it exceeds the space limitations of this paper.

Multiple DES segments are executed parallelly

Another possible way of parallelisation is that the DES part
is partitioned and the partitions are executed parallel. Any
of the before mentioned PDES synchronization methods
can be used; the choice must depend on the system we
model and of course on the simulation environment we use
(which method is supported). In the basic case only one of
the DES partitions has immediate connection to the TFA
part, and it is executed in one process with the TFA part.

Proc 1.

Proc 2.

DES1 TFA

DES2

Figure 4. The DES part of the combined DES and TFA is

further divided and executed by two processors

Of course the DES part can be cut into more than two parti-
tions. And there are further possibilities. Using our previ-
ous results, the TFA part can be executed parallelly by a
different processor, then the DES part that is connected to
it.

Multiple TFA segments are executed parallelly

We may have a system, where the TFA part can be cut into
partitions that do not have cross traffic between each other.
For example let us imagine the network of a company. It
has a firewall, some servers, intranet PC-s and an outside
internet connection. If we would like to examine the per-
formance of the web server, we can set up the following
model: the DES part contains the firewall and the web
server, the TFA1 part is the intranet and the TFA2 part is
the public internet.

Proc 1.

Proc 2.

Proc 3.

DES

TFA1

TFA2

Figure 5. The execution of multiple TFA segments parallel

Using our previous results on how to execute the DES
segment and one TFA segment parallel, we can do it with
multiple TFA segments, too. Note, that this case is different
from Figure 2, where the same TFA segment was executed
parallelly for different points of virtual time. Of course the
two solutions can even be combined!

And we have even more possibilities. We can combine the
multiple TFA segments and the multiple DES segments,
too.

Proc 2.

Proc 4.

Proc 1.

Proc 3.

TFA1

TFA2

DES1

DES1

Figure 6. Parallel execution of multiple DES and multiple

TFA segments

And this solution still can be made even faster with the
trick of executing the same TFA segments in multiple in-
stances by separate processors for the consecutive ti points
of virtual time.

THE METHODS WE DO NOT RECOMMEND

Until now, we put parallelism into TFA by two ways:

1. Executing the same TFA segment parallelly for differ-
ent ti points of virtual time (Figure 2)

2. Executing multiple TFA segments parallelly if there
was no cross traffic between these segments (Figure 5)

Why do not we cut the TFA segment into smaller parts?
(Note: we do the very thing with the DES model when we
use PDES.) The reason is the operation of TFA. For its first
step (the spatial distribution of the traffic) it has to know
the whole topology that is relevant for its routing algorithm.
There might be a point in parallelisation for special topolo-
gies (e.g. hierarchical or tree structured networks) neverthe-
less the commonly used large networks would probably not
fit into these categories.

Another possible way would be to use multiple processors
for the second step (correction for the finite capacities)
only, as this could be done independently. So the first step
should be done centralized and the second one distributed.
This solution would require more experience with TFA
than we now have (to decide if it worth doing so).

FUTURE WORK

The recommended methods should be tested by applying
them to real life problems, to be able to see whether they
produce reliable data about the examined network and if
they show good enough speed-up.

TFA was developed for the Elassys Consulting Ltd. as a
part of the Iminet Network Expert System. (Elassys 2005)
The company plans to apply TFA, its combination with
DES and some of the parallel versions described above to
test both the reliability of the results and the speed-up pro-
duced by these methods.

As for the Iminet kernel, it does not need any modification,
because it supports the parallel execution by multiple proc-
essors (it uses PVM) and it provides a very simple mecha-
nism for the inter-segment synchronization. The user (the
implementer of the simulation model) may send a synch-
point(time) message from one segment to another.
The target segment’s local virtual time may not pass time
(and its execution is suspended if it has no more events
with less or equal timestamp than time) until a message
from the source segment arrives. The first synchronization
points are sent at the beginning of the simulation and the
user must take care to send the next synchronization point
always before he sends the expected message that deletes
the actual synchronization point. This mechanism can be
used for conservative or statistical synchronization, too.

CONCLUSIONS

We have reviewed the PDES methods and other similar
performance analysis methods for communication net-
works.

We found that even more efficient methods can be devel-
oped by the combination of the known methods.

We have analysed the different ways for inserting parallel-
ism into the combined DES + TFA method. We have
shown several solutions. We have presented an algorithm
how the same TFA segment can be run in multiple in-
stances analysing the same system for different points of
virtual time.

We have also mentioned some ways we do not think prom-
ising hence we do not recommend, though we do not state
they would be surely useless.

We conclude that the recommended methods are worth
further studying and testing, and it is planned to be done so.

ACKNOWLEDGEMENT

This research was financed by the Hungarian Academy of
Sciences under the János Bolyai research grant.

This paper was supported by the Elassys Consulting Ltd.

REFERENCES

Elassys Consulting Ltd. 2005. "Iminet Network Expert System"
http://www.elassys.hu

Fujimoto, R. M. 1990. Parallel Discrete Event Simulation. Com-
munications of the ACM 33 no. 10, 31-53

Lencse, G. 1998. "Efficient Parallel Simulation with the Statistical
Synchronization Method" Proceedings of the Communication
Networks and Distributed Systems Modeling and Simulation
(CNDS'98) (San Diego, CA. Jan. 11-14). SCS International, 3-
8.

Lencse, G. 1999. "Applicability Criteria of the Statistical Syn-
chronization Method" Proceedings of the Communication Net-
works and Distributed Systems Modeling and Simulation
(CNDS'99) (San Francisco, CA. Jan. 17-20). SCS International,
159-164.

Lencse, G. 2001. "Traffic-Flow Analysis for Fast Performance
Estimation of Communication Systems" Journal of Comput-
ing and Information Technology 9, No. 1, 15-27

Lencse, G. 2002. "Parallel Simulation with OMNeT++ using the
Statistical Synchronization Method" Proceedings of the 2nd In-
ternational OMNeT++ Workshop (Jan. 8-9, 2002, Technical
University Berlin, Berlin, Germany) 24-32.

Lencse, G. 2004. "Combination and Interworking of Traffic-Flow
Analysis and Event-Driven Discrete Event Simulation" Pro-
ceedings of the 2004 European Simulation and Modelling
Conference (ESM®'2004) (Paris, France, Oct. 25-27.)
EUROSIS-ETI, 89-93.

Lencse, G; L. Muka 2005. (expected) "Convergence of the Key
Algorithm of Traffic-Flow Analysis" Journal of Computing
and Information Technology, - accepted for publication

Pongor, Gy. 1992. "Statistical Synchronization: a Different Ap-
proach of Parallel Discrete Event Simulation". Proceedings of
the 1992 European Simulation Symposium (ESS'92) (Nov. 5-
8, 1992, The Blockhaus, Dresden, Germany.) SCS Europe,
125-129.

AUTHOR BIOGRAPHY

GÁBOR LENCSE received his M.Sc. in electrical engi-
neering and computer systems from the Technical Univer-
sity of Budapest in 1994 and his Ph.D. in 2000. The area
of his research is (parallel) discrete event simulation meth-
odology. He is interested in the acceleration of the simula-
tion of communication systems. Since 1997, he has worked
for the Széchenyi István University in Győr. He teaches
computer networks, networking protocols, network security
and Linux. At the moment, he is an associate professor.

He has been doing research and development in the field of
the simulation of communication systems for Elassys Con-
sulting Ltd since 1998.

