
MANAGING THE RESOLUTION OF SIMULATION MODELS

Gábor Lencse László Muka
Department of Telecommunications Elassys Consulting Ltd.

Széchenyi István University
Egyetem tér 1.

H-9026 Győr, Hungary
e-mail: lencse@sze.hu

Bég utca 3-5.
H-1022 Budapest, Hungary

e-mail: muka.laszlo@elassys.hu

KEYWORDS

discrete-event simulation, model resolution management,
information and communication technology systems,
business process systems

ABSTRACT

A novel approach based on inflation and deflation is
proposed for managing the resolution of simulation
models. Different methods are proposed for manual or
automatic deflation. An example is given how a topology
description language can be extended to support the
inflation/deflation concept. Dynamic management of the
model resolution is introduced using the method called
inflate-the-next and also two of its possible improve-
ments.

INTRODUCTION

Resolution of the Models

Discrete-Event Simulation (DES) is a widely used method
for the performance analysis (Jain 1991; Pidd 1991) of
Information and Communication Technology (ICT)
systems and Business Process (BP) systems. There is a
large number of various methods used to describe the
behaviour of complex systems (Banks et al. 1996; Bratley
et al. 1986; Jávor 1985; Jávor 1993). The simulation of
large and complex systems requires a large amount of
memory and computing power that is often available only
on a supercomputer or on computer grid. The resolution
of the models is an important factor from the point of
view of efficiency of simulation: if the resolution is too
low the necessary results cannot be reached but if the
resolution is too high then we loose both modelling work
and computing time. It seems to be logical that the most
efficient resolution of a model is a compromise between
these two requirements. Time decomposition method
described in (Muka and Lencse 2007) may help the
modeller to choose the relevant systems to be modelled,
to manage the appropriate model resolution and to
support the decision about parallel and sequential
simulation. The appropriate level of resolution may be
found by applying a set of transformations to the different
parts of the model. However, it is many times desirable
that the resolution of the model can be adjusted
dynamically. Why? On the one hand, the modeller may
not have enough information for determining the optimal
resolution in the model building stage – the situation may
improve later during experimenting with the model. On

the other hand, the different experiments performed on
the model may require different resolution of the different
parts of the model.

In this paper, it is shown how the resolution of the
simulation models can be made volatile giving freedom to
the modeller to set the appropriate resolution for each part
of the model for each experiment individually.

The remainder of this paper is organised as follows: first,
the idea of inflating and deflating is presented, second,
some methods for deflation are presented, third, an
example is given how a topology description language
can be extended to support the inflation/deflation concept,
fourth, the dynamic management of the resolution is
introduced.

THE IDEA OF INFLATION AND DEFLATION

Before presenting the inflation/deflation concept, we briefly
consider the possible elements of the models we deal with.

Modelling Concept

In order that our results can be widely used in the world of
modelling and simulation of information and communica-
tion technology (ICT) and business process (BP) systems,
we do not intend to make any unnecessary restrictions on
the models. We believe that it is a rational expectation that
a contemporary modelling and simulation environment
should give the possibility of hierarchical system descrip-
tion. We call the key element of the hierarchical description
Compound Module. A compound module may contain
further compound or simple (that is: not compound)
modules and other elements depending on the modelling
and simulation environment.

Changing the resolution by inflation/deflation

To support the flexibility of the resolution of our models,
we simply add a new attribute (some modelling systems
call it parameter) named Resolution to all the compound
modules. This attribute is of an enumerated type and may
take the values either Deflated or Inflated. These are the
states of the compound module. How do we interpret these
states? If a compound module is inflated, its internal
structure as well as the operation of its parts are modelled in
detail. (In the same way as it is done without the resolution
attribute.) If it is deflated, we ignore its internal structure
and operation and imitate its behaviour for the outside
world by a simpler algorithm that acts similarly but of
course not completely the same as the original compound

module. As a compound module may contain several
elements – even compound modules of arbitrary hier-
archical levels –, we expect that the simulation of a
compound module in the deflated state requires much less
computing power and models the real world system less
precisely than in its inflated state. The advantage of the
flexibility is that the modeller may decide experiment by
experiment how much precision is necessary in the
modelling of the given compound module. In this way we
must pay the price (in computing power) of the necessary
precision only.

The concept above means that at a given hierarchical level
the modeller may decide about all the compound modules
to be inflated/deflated as he/she wishes, but if a compound
module is deflated, no more decision can be made about the
contained compound modules. However, if a compound
module is inflated, some of its contained compound
modules may still be deflated, as due to encapsulation the
compound module “knows” nothing about them. Thus, it is
meaningful to define a new expression: a compound
module is fully inflated if it is inflated and all the contained
compound modules are fully inflated. (Illustrated in Fig. 1.)

Figure 1. CM1 is: a) Fully Inflated, b) Inflated, c) Deflated

Manual or automatic deflation

In the simplest case, the modeller has to write two
descriptions (codes) for each compound module: one for its
inflated state and one for its deflated state. We call this
approach manual deflation and it has the following
advantages: the modeller has full control over the model in
both states and no extra features are required from the
modelling and simulation system. The price is that the
modeller has to make two models for each compound
module.
It is possible that the modeller prepares the model of the
compound module for the inflated case only. We will show
different methods that may be suitable for automatic

deflation, where the model of the compound module in the
deflated state is generated automatically. The advantage of
this approach is that the modeller does not have to work on
the model of the compound module in the deflated state.
This approach requires either support from the modelling
and simulation system or some extra work from the
modeller, however this extra work probably may be
automated quite well. The details depend on the methods
used for automatic deflation.

METHODS FOR DEFLATION

The methods presented here are based on our previous
research results in modelling and simulation. Even though
the essence of these results will be briefly summarized (as
space permits) the reader is encouraged to read the original
papers to get deeper understanding of the methods used
here.

Substitution by Statistical Interfaces

The basic idea of this solution has its roots in the Statistical
Synchronisation Method (SSM) invented by György
Pongor (Pongor 1992) and further developed under the
name SSM-T by Gábor Lencse (Lencse 1998a).

segment A segment B

messages
OIF IIF

statistics messages
re-generated

Figure 2. An OIF - IIF Pair

Statistical Synchronisation Method
SSM is a Synchronisation Method for Parallel Discrete
Event Simulation (PDES). A synchronisation method is
responsible for keeping causality between the virtual times
of the segments. More well-known methods for this task are
the conservative and the optimistic methods – more
information on them can be found in (Fujimoto 1990).
Now, we summarize the essentials of SSM in a nutshell.
Similarly to other parallel discrete-event simulation
methods, the model to be simulated — which is more or
less a precise representation of a real system — is divided
into segments, where the segments usually describe the
behaviour of functional units of the real system. The
communication of the segments can be represented by
sending and receiving various messages. For SSM, each
segment is equipped with one or more input and output
interfaces. The messages generated in a given segment and
to be processed in a different segment are not transmitted
there but the output interfaces (OIF) collect statistical data
of them. The input interfaces (IIF) generate messages for
the segments according to the statistical characteristics of
the messages collected by the proper output interfaces. (See
Figure 2.) The segments with their input and output
interfaces can be simulated separately on separate
processors, giving statistically correct results. The events in
one segment do not have the same effect in other segments

CM1 State: Inflated

CM2 State: Deflated
SM3

CM1 State: Inflated

CM2 State: Inflated

SM1 SM2 SM3

CM1 State: Deflated

as in the original model, so the results collected during
SSM are not exact. The precision depends on the
partitioning of the model, on the accuracy of statistics
collection and regeneration, and on the frequency of the
statistics exchange among the processors.

Deflation with Statistical Interfaces
It is natural that SSM can be applied in the following way:
the contents of the compound module will create one
segment and all the other parts of the model will create the
other segment. In this way SSM is applied at the boundaries
of the compound module. Let us consider the message
routes that lead from inside the compound module to the
outside world. Let us wait until all the OIFs collect enough
data for their first statistics. They send the statistics to the
proper IIF that will regenerate the message flow for the
outside world. Now the simulation of the inside part of the
compound module may be stopped and the IIFs will still
sustain the message flow. Of course, this approach works
only in the steady state of the modelled system. This is
what the original SSM can be used for.

Non-steady State Behaviour
Here, SSM should be replaced by SSM-T. Besides the one
that was mentioned before, we have published a number of
papers on the different issues of this method, such as
dealing with its statistics collection methods (1998b)
applicability criteria (Lencse 1999a) and statistics exchange
control algorithm (Lencse 1999b). Using these results, it
seems to be possible both to automatically stop the detailed
simulation of the inside parts of the compound module and
to sustain the message flow, and also automatically restart it
when necessary. This topic can be a subject of further
research.

Substitution by Flow-based Methods

By flow-based methods we mean the Traffic-Flow Analysis
(Lencse 2001) for ICT systems and the Entity Flow-Phase
Analysis (Lencse and Muka 2006) for BP systems.

Traffic-Flow Analysis
The Traffic-Flow Analysis (TFA) is a simulation-like
method for fast performance analysis of communication
systems. TFA uses statistics to model the networking load
of applications.
In the first part, the method distributes the traffic (the statis-
tics) in the network, using routing rules and routing units.
In the second part, the influences of the finite line and
switching-node capacities are calculated.
The important features of TFA:

• The results are approximate but the absence or the
place of bottlenecks is shown by the method.

• The execution time of TFA is expected to be sig-
nificantly less than the execution time of the de-
tailed simulation of the system.

• TFA describes the steady state behaviour of the
network.

As TFA is a less well-known method, it has only one partial
implementation, which is a part of the ImiNet network ex-
pert system (Elassys 2008).

Entity Flow-Phase Analysis
The Entity Flow-phase Analysis has been derived from
TFA. This derivation is based on the formal similarity of
the ICT and BP models. EFA uses the same two phase
method as TFA, only the interpretation of the model ele-
ments is different. The statistics represent entities (not mes-
sages) and the interpretation of the routing is also different.
While the packets of a network usually do not multiply, the
entities may fork (and the descendants must meet some-
where) or split (and the descendants live their own life
separately); see more details in the aforementioned paper.
An implementation of EFA is planned as an extension for
the ImiFlow system (Elassys 2008).

Deflation with TFA or EFA
On the basis of our results presented in (Lencse and Muka
2007) it is trivial that the detailed simulation of the internal
parts of a compound module can be replaced by TFA for
ICT systems and by EFA for BP systems. The different
modelling methods still should work together. Thus the
manual deflation seems to be quite simple. For the
automatic deflation, we need a method to automate the
transformation of the detailed ICT or BP models to TFA or
EFA models, respectively. This topic seems to be a very
interesting and promising research area.

TOPOLOGY DESCRIPTION LANGUAGE SUPPORT

We show an example how a network topology description
language can be extended to support the inflation/deflation
concept. We selected the NeD language1 (Varga and
Pongor 1997) for this purpose. The EBNF description of
the compound module is the following:

moduledefinition ::=
 module compoundmoduletype
 [paramblock]
 [gateblock]
 [submodblock]
 [connblock]
 endmodule [compoundmoduletype]

Now we extend it in the following way:

moduledefinition ::=
 module compoundmoduletype
 [paramblock]
 [gateblock]
 [submodblock]
 [connblock]
 [deflatedblock]
 endmodule [compoundmoduletype]

1 The EBNF grammar of the NeD language can be found in
the User Manual of OMNeT++ (http://www.omnetpp.org).

deflatedblock ::=
 deflated:
 [paramblock]
 [gateblock]
 [submodblock]
 [connblock]
 enddeflated

In simple words, the EBNF description above means that
after the optional keyword “deflated:” the modeller
may give the description of the compound module for the
deflated case by the same way (using the same types of
blocks) as he/she could describe the contents of the
compound module for the inflated case. (And the
description for the inflated case remained the same as it was
originally.) As for the Resolution attribute, the NeD
grammar requires no modification, the modeller can
provide a parameter with this name. Let us see the EBNF of
the parameter description:

paramblock ::=
 parameters: { parameter ,,, } ;

parameter ::=
 parametername
 | parametername : const [numeric]
 | parametername : string
 | parametername : bool
 | parametername : char
 | parametername : anytype
If we do not insist on the enumerated type with the values
Deflated, Inflated, it seems to be a very simple solution to
implement these values by logical values of the Boolean
type: false and true respectively.

RESOLUTION MANAGEMENT

Now, we introduce a highly cost effective solution for
simulation of large and complex systems. Let us suppose
that we have the detailed model of the system containing
many elements that would require a huge cluster of
processors for simulation experiments, but we have only
limited computing capacity.

Inflate-the-next Method

At the highest hierarchy level of the model, we divide the
set of modules into two parts: the set of inflated modules
and the set of deflated modules. The set of inflated modules
should contain all the modules that we focus on at a given
step of the given experiment. And all the rest of the
modules are deflated and put in the deflated set of modules.
In a simple case, we assign the two sets of modules to two
separate processors for execution. (Of course, an arbitrary
number of processors may be used.) Between the
processors we may use any synchronisation methods for
PDES mentioned before. For the next step of the
experiment, we deflate the contents of the inflated set of
modules and move them into the deflated set of modules
and we select to inflate the next set of modules from the

deflated set of modules and inflate them and put them into
the inflated set of modules. This is why we call this
algorithm inflate-the-next. The experiment ends when all
the relevant sets of modules have been inflated and
executed. See Figure 3.

Figure 3. Inflate-the-next Method

The Order of Selection

We may have two approaches:

• If we choose a set of compound modules to be
inflated with a minimum number of connections to
the rest of the modules then hopefully we will get
relatively precise results for the inflated set.

• If we choose a set of compound modules to be
inflated with the maximum number of connections
to the rest of the modules then the results of
execution can be better used to model them when
they are deflated.

Using these considerations, the inflate-the-next algorithm
can be improved in the following way. All the experiments
should contain two phases: in the first phase we use the
approach with maximum number of connections to improve
the precision of the model, in the second phase we use the
approach with the minimum number of connections to
increase the precision of the simulation results.

The Size of the Inflated Set

On the one hand, the size of the inflated set is limited by
memory and computing power; on the other hand, possibly
all the modules with intensive communication with each
other should be put into a single inflated set of modules.
This idea has at least two advantages:

• It eliminates the problem of decreasing precision
that would be caused by putting modules with
intense communication with each other into
separate inflated set of modules.

selection
&

inflation

selection deflation

modules
(inflated)

set of inflated
modules

set of deflated
modules

set of
processors

set of
processors

deflation

• It speeds up the parallel simulation of the two sets
by decreasing the number of messages between
them.

This consideration should be used together with the
previous one.

Directions of Future Research

The ideas presented in this paper seem to be promising.
Both the research of further algorithms for deflation and the
investigation of the presented ones can be a hot research
topic. The resolution management algorithm and its
improvements should be tested and refined.

CONCLUSIONS

We have introduced a concept based on inflation and
deflation for maintaining the optimal resolution of
simulation models.

We have presented different methods for manual and
automatic deflation.

We have shown a way how the grammar of a typical
topology description language can be modified to support
the inflation/deflation concept.

We have given a resolution management method called
inflate-the-next as well as two possible improvements for
this method.

We conclude that both the topic of resolution management
and the methods we presented deserve further research.

REFERENCES
Banks, J.; J. S. Carson and B. L. Nelson. 1996. Discrete-Event

System Simulation Prentice Hall, Upper Saddle River, New
Jersey

Bratley P.; B. L. Fox and L. E. Schrage. 1986. A Guide to
Simulation. Springer-Verlag, New York

Elassys Consulting Ltd. 2008. ImiNet and ImiFlow Systems
http://www.elassys.hu

Fujimoto, R. M. 1990. “Parallel Discrete Event Simulation”
Communications of the ACM 33, no 10, 31-53

Jain, R. 1991. The Art of Computer Systems Performance
Analysis.. John Wiley & Sons, New York

Jávor, A. (editor) 1985. Simulation in Research and Development.
North-Holland, Amsterdam

Jávor, A. 1993. Petri Nets in Simulation EUROSIM Simulation
News Europe, 1993, no. 9, pp. 6-7.

Lencse, G. 1998a. “Efficient Parallel Simulation with the
Statistical Synchronization Method” Proceeding of the
Communication Networks and Distributed Systems
Conference (CNDS'98), (San Diego, CA, USA, January 11-
14) SCS, 3-8

Lencse, G. 1998b. “Statistics Collection for the Statistical
Synchronisation Method” Proceedings of the 10th European
Simulation Symposium (ESS'98) (Nottingham, England, Oct.
26-28.) SCS-Europe, 46-51

Lencse, G. 1999a. “Applicability Criteria of the Statistical
Synchronization Method” Proceedings of Communication
Networks and Distributed Systems Conference (CNDS'99),
(San Francisco, CA, USA, January 17-20.) SCS, 159-164

Lencse, G. 1999b. “Design Criterion for the Statistics Exchange
Control Algorithm used in the Statistical Synchronization

Method” Proceedings of the 32nd Annual Simulation
Symposium (San Diego, CA, USA, April 11-15.) IEEE
Computer Society, 138-144

Lencse, G. 2001. “Traffic-Flow Analysis for Fast Performance
Estimation of Communication Systems” Journal of
Computing and Information Technology 9, No. 1, 15-27.

Lencse, G. and L. Muka. 2006. “Expanded Scope of Traffic-Flow
Analysis: Entity Flow-Phase Analysis for Rapid Performance
Evaluation of Enterprise Process Systems” Proceedings of the
2006 European Simulation and Modelling Conference
(ESM'2006) (Toulouse, France, Oct. 23-25.) EUROSIS-ETI,
94-98.

Lencse, G. and L. Muka. 2007. “Combination and Interworking of
Four Modelling Methods for Infocommunications and
Business Process Systems” Proceedings of the 2007 Industrial
Simulation Conference (ISC'2007) (Delft, The Netherlands,
June 11-13.) EUROSIS-ETI, 350-354.

Muka, L. and G. Lencse. 2007. “Decision Support Method for
Efficient Sequential and Parallel Simulation: Time
Decomposition in Modified Conceptual Models” Proceedings
of the 2007 European Simulation and Modelling Conference
(ESM'2007) (Malta, Oct. 22-24.) EUROSIS-ETI, 574-581.

Littlechild, S. C. and M. F. Shutler. 1991. Operations Research in
Management Prentice Hall, London

Pidd, M. 1991. “Computer simulation methods” in Operations
Research in Management, Edited by Littlechild, S., and
Shutler. M., Prentice Hall, UK.

Pongor, Gy. 1992. “Statistical Synchronisation: a Different
Approach to Parallel Discrete Event Simulation” Proceedings
of the 1992 European Simulation Symposium (ESS’92),
(Dresden, Germany, Nov. 5-8) SCS Europe, 125-129.

Varga, A. and Gy. Pongor. 1997. “Flexible Topology Description
Language for Simulation Programs” Proceedings of the 9th
European Simulation Symposium (ESS'97) (Passau, Germany,
Oct. 19-22.) SCS Europe, 225-229.

BIOGRAPHIES

GÁBOR LENCSE received his M.Sc. in electrical engineering
and computer systems at the Technical University of Budapest in
1994 and his Ph.D. in 2000. The area of his research is (parallel)
discrete-event simulation methodology. He is interested in the
acceleration of the simulation of info-communication systems.
Since 1997, he has been working for the Széchenyi István
University in Győr. He teaches computer networks and
networking protocols. Now, he is an Associate Professor. He is a
founding member of the Multidisciplinary Doctoral School of
Engineering, Modelling and Development of Infrastructural
Systems at the Széchenyi István University. He does R&D in the
field of the simulation of communication systems for the Elassys
Consulting Ltd. since 1998. Dr Lencse has been working part time
at the Budapest University of Technology and Economics (the
former Technical University of Budapest) since 2005. There he
teaches computer architectures.

LÁSZLÓ MUKA graduated in electrical engineering at the
Technical University of Lvov in 1976. He got his special
engineering degree in digital electronics at the Technical
University of Budapest in 1981, and became a university level
doctor in architectures of CAD systems in 1987. Dr Muka finished
an MBA at Brunel University of London in 1996. Since 1996 he
has been working in the area of simulation modelling of
telecommunication systems, including human subsystems. He is a
regular invited lecturer in the topics of application of computer
simulation for performance analysis of telecommunication
systems at the Multidisciplinary Doctoral School of Engineering,
Modelling and Development of Infrastructural Systems at the
Széchenyi István University of Győr.

