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ABSTRACT 

A novel approach based on inflation and deflation is 
proposed for managing the resolution of simulation 
models. Different methods are proposed for manual or 
automatic deflation. An example is given how a topology 
description language can be extended to support the 
inflation/deflation concept. Dynamic management of the 
model resolution is introduced using the method called 
inflate-the-next and also two of its possible improve-
ments. 

INTRODUCTION 

Resolution of the Models 

Discrete-Event Simulation (DES) is a widely used method 
for the performance analysis (Jain 1991; Pidd 1991) of 
Information and Communication Technology (ICT) 
systems and Business Process (BP) systems. There is a 
large number of various methods used to describe the 
behaviour of complex systems (Banks et al. 1996; Bratley 
et al. 1986; Jávor 1985; Jávor 1993). The simulation of 
large and complex systems requires a large amount of 
memory and computing power that is often available only 
on a supercomputer or on computer grid. The resolution 
of the models is an important factor from the point of 
view of efficiency of simulation: if the resolution is too 
low the necessary results cannot be reached but if the 
resolution is too high then we loose both modelling work 
and computing time. It seems to be logical that the most 
efficient resolution of a model is a compromise between 
these two requirements. Time decomposition method 
described in (Muka and Lencse 2007) may help the 
modeller to choose the relevant systems to be modelled, 
to manage the appropriate model resolution and to 
support the decision about parallel and sequential 
simulation. The appropriate level of resolution may be 
found by applying a set of transformations to the different 
parts of the model. However, it is many times desirable 
that the resolution of the model can be adjusted 
dynamically. Why? On the one hand, the modeller may 
not have enough information for determining the optimal 
resolution in the model building stage – the situation may 
improve later during experimenting with the model. On 

the other hand, the different experiments performed on 
the model may require different resolution of the different 
parts of the model.  

In this paper, it is shown how the resolution of the 
simulation models can be made volatile giving freedom to 
the modeller to set the appropriate resolution for each part 
of the model for each experiment individually. 

The remainder of this paper is organised as follows: first, 
the idea of inflating and deflating is presented, second, 
some methods for deflation are presented, third, an 
example is given how a topology description language 
can be extended to support the inflation/deflation concept, 
fourth, the dynamic management of the resolution is 
introduced. 

THE IDEA OF INFLATION AND DEFLATION 

Before presenting the inflation/deflation concept, we briefly 
consider the possible elements of the models we deal with. 

Modelling Concept 

In order that our results can be widely used in the world of 
modelling and simulation of information and communica-
tion technology (ICT) and business process (BP) systems, 
we do not intend to make any unnecessary restrictions on 
the models. We believe that it is a rational expectation that 
a contemporary modelling and simulation environment 
should give the possibility of hierarchical system descrip-
tion. We call the key element of the hierarchical description 
Compound Module. A compound module may contain 
further compound or simple (that is: not compound) 
modules and other elements depending on the modelling 
and simulation environment. 

Changing the resolution by inflation/deflation 

To support the flexibility of the resolution of our models, 
we simply add a new attribute (some modelling systems 
call it parameter) named Resolution to all the compound 
modules. This attribute is of an enumerated type and may 
take the values either Deflated or Inflated. These are the 
states of the compound module. How do we interpret these 
states? If a compound module is inflated, its internal 
structure as well as the operation of its parts are modelled in 
detail. (In the same way as it is done without the resolution 
attribute.) If it is deflated, we ignore its internal structure 
and operation and imitate its behaviour for the outside 
world by a simpler algorithm that acts similarly but of 
course not completely the same as the original compound 



module. As a compound module may contain several 
elements – even compound modules of arbitrary hier-
archical levels –, we expect that the simulation of a 
compound module in the deflated state requires much less 
computing power and models the real world system less 
precisely than in its inflated state. The advantage of the 
flexibility is that the modeller may decide experiment by 
experiment how much precision is necessary in the 
modelling of the given compound module. In this way we 
must pay the price (in computing power) of the necessary 
precision only. 

The concept above means that at a given hierarchical level 
the modeller may decide about all the compound modules 
to be inflated/deflated as he/she wishes, but if a compound 
module is deflated, no more decision can be made about the 
contained compound modules. However, if a compound 
module is inflated, some of its contained compound 
modules may still be deflated, as due to encapsulation the 
compound module “knows” nothing about them. Thus, it is 
meaningful to define a new expression: a compound 
module is fully inflated if it is inflated and all the contained 
compound modules are fully inflated. (Illustrated in Fig. 1.) 

 

Figure 1.  CM1 is: a) Fully Inflated,  b) Inflated,  c) Deflated 

Manual or automatic deflation 

In the simplest case, the modeller has to write two 
descriptions (codes) for each compound module: one for its 
inflated state and one for its deflated state. We call this 
approach manual deflation and it has the following 
advantages: the modeller has full control over the model in 
both states and no extra features are required from the 
modelling and simulation system. The price is that the 
modeller has to make two models for each compound 
module. 
It is possible that the modeller prepares the model of the 
compound module for the inflated case only. We will show 
different methods that may be suitable for automatic 

deflation, where the model of the compound module in the 
deflated state is generated automatically. The advantage of 
this approach is that the modeller does not have to work on 
the model of the compound module in the deflated state. 
This approach requires either support from the modelling 
and simulation system or some extra work from the 
modeller, however this extra work probably may be 
automated quite well. The details depend on the methods 
used for automatic deflation. 

METHODS FOR DEFLATION 

The methods presented here are based on our previous 
research results in modelling and simulation. Even though 
the essence of these results will be briefly summarized (as 
space permits) the reader is encouraged to read the original 
papers to get deeper understanding of the methods used 
here. 

Substitution by Statistical Interfaces 

The basic idea of this solution has its roots in the Statistical 
Synchronisation Method (SSM) invented by György 
Pongor (Pongor 1992) and further developed under the 
name SSM-T by Gábor Lencse (Lencse 1998a). 
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Figure 2.  An OIF - IIF Pair 

Statistical Synchronisation Method 
SSM is a Synchronisation Method for Parallel Discrete 
Event Simulation (PDES). A synchronisation method is 
responsible for keeping causality between the virtual times 
of the segments. More well-known methods for this task are 
the conservative and the optimistic methods – more 
information on them can be found in (Fujimoto 1990). 
Now, we summarize the essentials of SSM in a nutshell. 
Similarly to other parallel discrete-event simulation 
methods, the model to be simulated — which is more or 
less a precise representation of a real system — is divided 
into segments, where the segments usually describe the 
behaviour of functional units of the real system. The 
communication of the segments can be represented by 
sending and receiving various messages. For SSM, each 
segment is equipped with one or more input and output 
interfaces. The messages generated in a given segment and 
to be processed in a different segment are not transmitted 
there but the output interfaces (OIF) collect statistical data 
of them. The input interfaces (IIF) generate messages for 
the segments according to the statistical characteristics of 
the messages collected by the proper output interfaces. (See 
Figure 2.) The segments with their input and output 
interfaces can be simulated separately on separate 
processors, giving statistically correct results. The events in 
one segment do not have the same effect in other segments 
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as in the original model, so the results collected during 
SSM are not exact. The precision depends on the 
partitioning of the model, on the accuracy of statistics 
collection and regeneration, and on the frequency of the 
statistics exchange among the processors. 

Deflation with Statistical Interfaces 
It is natural that SSM can be applied in the following way: 
the contents of the compound module will create one 
segment and all the other parts of the model will create the 
other segment. In this way SSM is applied at the boundaries 
of the compound module. Let us consider the message 
routes that lead from inside the compound module to the 
outside world. Let us wait until all the OIFs collect enough 
data for their first statistics. They send the statistics to the 
proper IIF that will regenerate the message flow for the 
outside world. Now the simulation of the inside part of the 
compound module may be stopped and the IIFs will still 
sustain the message flow. Of course, this approach works 
only in the steady state of the modelled system. This is 
what the original SSM can be used for. 

Non-steady State Behaviour 
Here, SSM should be replaced by SSM-T. Besides the one 
that was mentioned before, we have published a number of 
papers on the different issues of this method, such as 
dealing with its statistics collection methods (1998b) 
applicability criteria (Lencse 1999a) and statistics exchange 
control algorithm (Lencse 1999b). Using these results, it 
seems to be possible both to automatically stop the detailed 
simulation of the inside parts of the compound module and 
to sustain the message flow, and also automatically restart it 
when necessary. This topic can be a subject of further 
research. 

Substitution by Flow-based Methods 

By flow-based methods we mean the Traffic-Flow Analysis 
(Lencse 2001) for ICT systems and the Entity Flow-Phase 
Analysis (Lencse and Muka 2006) for BP systems. 

Traffic-Flow Analysis 
The Traffic-Flow Analysis (TFA) is a simulation-like 
method for fast performance analysis of communication 
systems. TFA uses statistics to model the networking load 
of applications. 
In the first part, the method distributes the traffic (the statis-
tics) in the network, using routing rules and routing units.  
In the second part, the influences of the finite line and 
switching-node capacities are calculated. 
The important features of TFA: 

• The results are approximate but the absence or the 
place of bottlenecks is shown by the method. 

• The execution time of TFA is expected to be sig-
nificantly less than the execution time of the de-
tailed simulation of the system. 

• TFA describes the steady state behaviour of the 
network. 

As TFA is a less well-known method, it has only one partial 
implementation, which is a part of the ImiNet network ex-
pert system (Elassys 2008). 

Entity Flow-Phase Analysis 
The Entity Flow-phase Analysis has been derived from 
TFA. This derivation is based on the formal similarity of 
the ICT and BP models. EFA uses the same two phase 
method as TFA, only the interpretation of the model ele-
ments is different. The statistics represent entities (not mes-
sages) and the interpretation of the routing is also different. 
While the packets of a network usually do not multiply, the 
entities may fork (and the descendants must meet some-
where) or split (and the descendants live their own life 
separately); see more details in the aforementioned paper. 
An implementation of EFA is planned as an extension for 
the ImiFlow system (Elassys 2008). 

Deflation with TFA or EFA 
On the basis of our results presented in (Lencse and Muka 
2007) it is trivial that the detailed simulation of the internal 
parts of a compound module can be replaced by TFA for 
ICT systems and by EFA for BP systems. The different 
modelling methods still should work together. Thus the 
manual deflation seems to be quite simple. For the 
automatic deflation, we need a method to automate the 
transformation of the detailed ICT or BP models to TFA or 
EFA models, respectively. This topic seems to be a very 
interesting and promising research area. 

TOPOLOGY DESCRIPTION LANGUAGE SUPPORT 

We show an example how a network topology description 
language can be extended to support the inflation/deflation 
concept. We selected the NeD language1 (Varga and 
Pongor 1997) for this purpose. The EBNF description of 
the compound module is the following: 

moduledefinition ::= 
    module compoundmoduletype 
     [ paramblock ] 
     [ gateblock ] 
     [ submodblock ] 
     [ connblock ] 
    endmodule [ compoundmoduletype ] 

Now we extend it in the following way: 

moduledefinition ::= 
    module compoundmoduletype 
     [ paramblock ] 
     [ gateblock ] 
     [ submodblock ] 
     [ connblock ] 
     [ deflatedblock ] 
    endmodule [ compoundmoduletype ] 
 
                                                 
1 The EBNF grammar of the NeD language can be found in 
the User Manual of OMNeT++ (http://www.omnetpp.org). 



deflatedblock ::= 
    deflated:  
     [ paramblock ] 
     [ gateblock ] 
     [ submodblock ] 
     [ connblock ] 
    enddeflated 

In simple words, the EBNF description above means that 
after the optional keyword “deflated:” the modeller 
may give the description of the compound module for the 
deflated case by the same way (using the same types of 
blocks) as he/she could describe the contents of the 
compound module for the inflated case. (And the 
description for the inflated case remained the same as it was 
originally.) As for the Resolution attribute, the NeD 
grammar requires no modification, the modeller can 
provide a parameter with this name. Let us see the EBNF of 
the parameter description: 

paramblock ::= 
    parameters: { parameter ,,, } ; 
 
parameter ::= 
    parametername 
    | parametername : const [ numeric ] 
    | parametername : string 
    | parametername : bool 
    | parametername : char 
    | parametername : anytype 
If we do not insist on the enumerated type with the values 
Deflated, Inflated, it seems to be a very simple solution to 
implement these values by logical values of the Boolean 
type: false and true respectively.  
 
RESOLUTION MANAGEMENT 

Now, we introduce a highly cost effective solution for 
simulation of large and complex systems. Let us suppose 
that we have the detailed model of the system containing 
many elements that would require a huge cluster of 
processors for simulation experiments, but we have only 
limited computing capacity.  

Inflate-the-next Method 

At the highest hierarchy level of the model, we divide the 
set of modules into two parts: the set of inflated modules 
and the set of deflated modules. The set of inflated modules 
should contain all the modules that we focus on at a given 
step of the given experiment. And all the rest of the 
modules are deflated and put in the deflated set of modules. 
In a simple case, we assign the two sets of modules to two 
separate processors for execution. (Of course, an arbitrary 
number of processors may be used.) Between the 
processors we may use any synchronisation methods for 
PDES mentioned before. For the next step of the 
experiment, we deflate the contents of the inflated set of 
modules and move them into the deflated set of modules 
and we select to inflate the next set of modules from the 

deflated set of modules and inflate them and put them into 
the inflated set of modules. This is why we call this 
algorithm inflate-the-next. The experiment ends when all 
the relevant sets of modules have been inflated and 
executed. See Figure 3. 

 

Figure 3.  Inflate-the-next Method  

The Order of Selection 

We may have two approaches: 

• If we choose a set of compound modules to be 
inflated with a minimum number of connections to 
the rest of the modules then hopefully we will get 
relatively precise results for the inflated set. 

• If we choose a set of compound modules to be 
inflated with the maximum number of connections 
to the rest of the modules then the results of 
execution can be better used to model them when 
they are deflated. 

Using these considerations, the inflate-the-next algorithm 
can be improved in the following way. All the experiments 
should contain two phases: in the first phase we use the 
approach with maximum number of connections to improve 
the precision of the model, in the second phase we use the 
approach with the minimum number of connections to 
increase the precision of the simulation results. 

The Size of the Inflated Set 

On the one hand, the size of the inflated set is limited by 
memory and computing power; on the other hand, possibly 
all the modules with intensive communication with each 
other should be put into a single inflated set of modules. 
This idea has at least two advantages:  

• It eliminates the problem of decreasing precision 
that would be caused by putting modules with 
intense communication with each other into 
separate inflated set of modules. 
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• It speeds up the parallel simulation of the two sets 
by decreasing the number of messages between 
them. 

This consideration should be used together with the 
previous one. 

Directions of Future Research 

The ideas presented in this paper seem to be promising. 
Both the research of further algorithms for deflation and the 
investigation of the presented ones can be a hot research 
topic. The resolution management algorithm and its 
improvements should be tested and refined. 

CONCLUSIONS 

We have introduced a concept based on inflation and 
deflation for maintaining the optimal resolution of 
simulation models. 

We have presented different methods for manual and 
automatic deflation. 

We have shown a way how the grammar of a typical 
topology description language can be modified to support 
the inflation/deflation concept. 

We have given a resolution management method called 
inflate-the-next as well as two possible improvements for 
this method. 

We conclude that both the topic of resolution management 
and the methods we presented deserve further research. 
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