
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

1

POSITION PAPER

Design and Implementation of a Test Program for Benchmarking

DNS64 Servers

Gábor LENCSE†a), Member and Dániel BAKAI†b), Nonmember

SUMMARY A new Internet Draft on benchmarking methodologies for

IPv6 transition technologies including DNS64 was adopted by the Bench-

marking Working Group of IETF. The aim of our effort is to design and

implement a test program that complies with the draft and thus to create the

world’s first standard DNS64 benchmarking tool. In this paper, we disclose

our design considerations and high-level implementation decisions. The

precision of our special timing method is tested and found to be excellent.

Due to the prudent design, the performance of our test program is also

excellent: it can send more than 200,000 AAAA record requests using a

single core of a desktop computer with a 3.2GHz Intel Core i5-4570 CPU.

Its operation comprises all the functionalities required by the draft includ-

ing checking the timeliness and validity of the answers of the tested DNS64

server. Our DNS64 benchmarking program, dns64perf++, is distributed

as free software under GNU GPL v2 license for the benefit of the research,

benchmarking and networking communities.

key words: benchmarking, DNS64, IPv6 transition technology, perfor-

mance analysis

1. Introduction

DNS64 [1] and NAT64 [2] IPv6 transition technologies will

play an important role in the following years by enabling

IPv6-only clients to communicate with IPv4-only servers.

There are several well-known DNS64 implementations, e.g.

BIND, TOTD, Unbound and PowerDNS, which we have al-

ready tested to determine their stability and performance [3]

and we have shown that their performances are significantly

different for various reasons, e.g. some of them can benefit

from a multi-core environment and some of them cannot. We

have also created a small test program, dns64perf, which is

suitable for examining the performances of DNS64 servers

[4]. This program is feasible for both testing the stability of

the DNS64 implementations (by themselves) and comparing

their performances. However, this program is not suitable

for benchmarking their performance. By “benchmarking”

we mean accurately measuring some standardized perfor-

mance characteristics and obtaining reasonable and compa-

rable results. To be more specific, e.g. the benchmarking

methodology for network interconnect devices described in

[5] includes a throughput test that requires the Tester to be

able to send packets (of given size) at a predefined rate

and decide if the DUT (Device Under Test) can forward the

Manuscript received May 23, 2016.
Manuscript revised October 22, 2016.

†The author is with the Department of Networked Systems
and Services, Budapest University of Technology and Economics,
Magyar tudósok körútja 2, H-1117 Budapest, Hungary.

a) E-mail: lencse@hit.bme.hu
b) E-mail: bakaid@kszk.bme.hu

DOI: 10.1587/transcom.E0.B.1

packets at that rate or not. Unfortunately, dns64perf is not

suitable for this type of measurement because it waits for

the reply of its current query† before sending the next one.

Although its query rate may be somewhat tuned by the ap-

propriate setting of the number of threads, it is not able to

send queries at a predefined rate. Another problem is that the

speed of the Tester computer (used to execute dns64perf)

also influences the results. This is not a problem if our

aim is to compare multiple DNS64 implementations, but it

is unacceptable if one would like to benchmark (that is to

objectively quantify) a given DNS64 server.

As for the methodology of DNS64 server testing, a

later RFC was prepared for addressing IPv6 specificities [6],

but it explicitly states that IPv6 transition mechanisms are

outside of its scope. There is a new Internet Draft to cover

benchmarking methodology for IPv6 transition technologies

including DNS64 servers [7]. The aim of our current efforts

is to design and implement a test program which complies

with the draft and thus to create the world’s first standard

DNS64 benchmarking tool. In this paper, we disclose the

design considerations and implementation decisions of our

test program.

Our new test program, dns64perf++ is a free software

for the benefit of the research, benchmarking and networking

communities and it is available under the GNU GPL v2

license from GitHub [8].

The remainder of this paper is organized as follows.

Section 2 contains the basic operation requirements based on

the Internet Draft. Section 3 discloses our most important

design considerations. Section 4 presents our high-level

implementation decisions. Section 5 is a case study for the

justification of our timing algorithm. Section 6 mentions a

paper (in making) about our experience with dns64perf++

and highlights our plans for its further development. Section

7 gives our conclusions.

2. Basic Operation Requirements

2.1 Test and Traffic Setup

The Internet Draft [7] adopted our basic operation step which

we used in our previous works (including [3] and [4]) namely

the test program should send queries for AAAA records of

domain names which have actually no AAAA records but

†The words query and request, as well as reply and answer are
used with the same meaning throughout the paper.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Authoritative 

DNS server 
DNS64 server

DUT Tester/AuthDNS

Client 

dns64perf++

Tester/Measurer

2: AAAA query

3: empty AAAA 

4: A query

5: valid A 

1: AAAA query

6: synthesized AAAA

Fig. 1 Test setup for benchmarking DNS64 servers.

only A records in the DNS system.

Section 9.1 of the Internet Draft [7] describes the test

and traffic setup. Although the draft follows the traditional

two devices setup containing the Tester and the DUT (Device

Under Test) only, now we use three devices for clarity: the

two sub-functions of the Tester are realized by two physical

devices, they are Tester/Measurer and Tester/AuthDNS, see

Fig. 1. Let us follow there what happens during one testing

step. First, the client sends a query for an AAAA record of

a particular domain name to the DNS64 server. The DNS64

server has to use the DNS system to find out if an AAAA

record for the given domain name exists. During the tests, the

DNS64 server acts as a forwarder (and not a DNS recursor),

thus it simply asks the authoritative DNS server (located on

the right side of the figure) by sending message 2. Third, the

authoritative DNS server sends and empty reply because no

AAAA record exists for the queried domain name. Fourth,

the DNS64 server asks the authoritative DNS server for an

A record for the same domain name. Fifth, the authoritative

DNS server sends a valid A record, which one is used by

the DNS64 server to synthesize an IPv4-embedded IPv6

address. Sixth, the DNS64 server returns the synthesized

AAAA record to the client.

2.2 Requirements for the Tester

Using the above detailed basic operation step, the draft re-

quires to measure the number of successfully processed

AAAA record requests per second by the DNS64 server.

For this purpose, the measurement program MUST† be able

to send the DNS queries at any predefined rate and decide if

the DNS64 server is able to reply them in time or not.

First, different domain names MUST be used. (Either

they are all different during the measurement, or at least they

MUST NOT be repeated until the cache of the DNS64 server

still contains them.) In addition to that, measurements MAY

be done with domain names, 20%, 40%, 60%, etc. of which

are cached. We note that if the information is cached, then

messages from 2 to 5 are omitted.

Similarly, first, measurements MUST be done with do-

main names, which have no AAAA records, and then mea-

surements MAY be done with domain names, 20%, 40%,

60%, etc. of which have AAAA records. We note that if

†The key words written "MUST", "MUST NOT", "RE-
QUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [9].

a domain name has an AAAA record then message 3 is not

empty but contains a valid answer, messages 4 and 5 are

omitted and the native IPv6 address is returned in message

6.

The draft also mentions the timeout: if the test program

does not receive a reply from the DNS64 server within a

predefined time interval (default value is 1 second) then the

request is considered to be lost and it is interpreted that the

DNS64 server cannot serve the given rate of requests.

We note that Tester/Measurer, that is, dns64perf++

has no responsibility for messages other than number 1 and 6

during a DNS64 benchmarking measurement. Section 9.2.1

of the Internet Draft mentions some requirements for the

Tester and describes a preliminary self-test. To summarize

the self-test in a nutshell, a Tester (including both Measurer

and AuthDNS subsystems) can be certified for benchmarking

up to rate r with timeout t, if it is looped back (that is

Measurer is connected immediately to AuthDNS leaving out

the DUT) and the Tester can achieve 2 ∗ (r + δ) rate with

timeout t/4, where δ ≥ 0.1. (See the Internet Draft for

more details and explanation.) We note that this self-test

gives a guarantee for the sending ability of the Measurer,

the replying ability of AuthDNS, the receiving ability of

the Measurer as well as the speed of the interconnection.

These measurements may be performed using AAAA record

requests, thus no further requirements arise.

3. Design Considerations

3.1 Choice of the Namespace

The most important requirements concerning the namespace

were already defined in [10]. We need a namespace that:

• can be described systematically

• can be resolved to IPv4 only

• can be resolved without delay

Now, we add one more requirement: the test program should

be able to generate the AAAA record requests in a computa-

tionally efficient way. We consider that the namespace used

in [4] can be used with two modifications:

1. The numbers in it should always contain 3 digits.

2. Its potential size should be extended to 232.

Thus it will look as follows:

{000..255}-{000..255}-{000..255}-{000..255}.dns64perf.test.



LENCSE and BAKAI: DESIGN AND IMPLEMENTATION OF A TEST PROGRAM FOR BENCHMARKING DNS64 SERVERS

3

Or with a different notation:

k-l-m-n.dns64perf.test., where k, l,m, n ∈ [000, 255]

This is an independent namespace, which can be effi-

ciently resolved to IPv4 by a local authoritative DNS server.

Why do we need the two modifications above? Writing

the numbers always in three digits fixes the length of the first

label to 15 (4 times 3 digits and 3 dashes) thus it will not be

necessary to perform the special encoding (called message

compression) applied in DNS messages (see [11] for details)

for every single domain name.

The potential size of the namespace should be extended

because we know from Carsten Strotmann† that a good DNS

server executed by a modern hardware may resolve more

than one million queries per second. To be future proof,

we decided to allow potentially four billion different domain

names and made it possible for the user to specify the re-

quired part of the namespace (see more details in subsection

4.1).

3.2 Timing of the AAAA Requests

Perfect timing is necessary to ensure the predefined rate of

AAAA record requests. In order to produce requests at

frequency f , the program must send a request at every T
interval, where T = 1/ f . If the preparation and sending of

a request last TR long time then the program should wait for

TW = T − TR time before preparing and sending the next

request. However, this approach would result in cumulative

timing error for multiple reasons:

• the execution of the calculations require non zero time

• the solution of the timed waiting is imprecise

• the time measurement itself is imprecise

To keep the cumulative error marginal, we use an improved

algorithm. Instead of calculating the waiting time indepen-

dently for each message, we always consider the remaining

time until the end of the testing. We calculate the wait-

ing time before starting to prepare the (n + 1)-th request as

follows:

TW (n + 1) =
NT − (tB(n) − tB(0))

N − n
− TR(n) (1)

where N is the total number of requests to be sent, tB(n) de-

notes the timestamp when the preparation of the n-th request

started and TR(n) denotes the time it took to prepare and send

the n-th request (n takes the values from 0 to N − 1). This

way, the timing is self-correcting.

We note that this method guarantees only the “global”

accuracy of timing. There may be “local” inaccuracies, and

they will surely occur if the request rate is high enough.

Modern computer hardware support the efficiency of pro-

gram execution by several solutions such as caching, branch

†He wrote us by e-mail: “For BIND 9, I currently see a peak
of around 500,000 queries/second on modern hardware (limited to
6-8 cores due to BIND 9 cache locking issues with more cores),
and Unbound up to 1,200,000 queries per second (using cores − 2
for Unbound, e.g. 34 cores on a 36 core machine).”

prediction or prefetching data/instructions. Some high re-

quest rates can only be achieved after these solutions provide

full benefits (program code and data are loaded into the

cache, the branch predictors have already learnt the behavior

of the program, etc.). Thus, a given number of requests may

be sent somewhat late in the beginning of the test.

3.3 Tracking the AAAA Requests

The program has to decide about every AAAA record re-

quest if it was answered within the timeout interval or not.

Therefore, it must store every request (not the whole DNS

message but enough information for the identification††) and

the sending timestamp. When a DNS reply message is re-

ceived then the program has to find the corresponding request

and check the difference between the sending and receiving

timestamps.

We note that our choice of the namespace makes it

possible to identify the requests by using only 32 bits. See

implementation details in subsection 4.5.

3.4 Consideration of Having an AAAA Record – Trivial

This is not an issue for the test program. It can be easily

solved at the authoritative DNS server. When the zone file is

generated, first, it should contain A records only. After that

20% of the domain names should also have AAAA records

(in a uniform distribution) and the measurements should be

repeated. Later 40%, 60%, etc. of the domain names should

have AAAA records.

3.5 Consideration of Caching – Not Supported

We view the DUT (Device Under Test) as a black box. The

potential namespace is large enough to ensure that AAAA

record requests are not repeated at all.

To support the testing of the efficiency of caching, we

would need to repeat some of the requests. We considered

the trivial algorithm that for achieving 20%, 40%, 60%, etc.

cache hit rates, we might send the first of every 10 requests

three times, five times, seven times, etc. instead of send-

ing the consecutive request(s). However, when requests are

sent at a high enough rate, the DNS64 server does not yet

have the answer for a request when it receives the next one.

Therefore, the requests should be repeated not promptly but

rather a “certain” amount of time later. However, if this de-

lay is too high then the information may be deleted from the

cache of the DNS64 server. The appropriate choice would

require special knowledge of the tested DNS64 implementa-

tion. Using an inappropriate method would result in unfair

††It is possible theoretically that the program mistakenly accepts
a reply from an earlier experiment. If different domain names are
used in every execution of the program (to eliminate the effect
of caching) then this mistake may not happen; otherwise it is the
responsibility of the user to avoid it by using a long enough gap (or
restarting the DNS64 server) between the consecutive executions
of dns64perf++.



4
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

testing.

As the testing of the effect of caching is OPTIONAL in

the draft, we do not include this feature in the first version of

the test program, but we plan to include it in a later version.

4. High-Level Implementation Decisions

4.1 Specifying the Actual Namespace

The required part of the potential namespace can be eas-

ily identified by the specification of the corresponding IPv4

address range (to which it is mapped by the authoritative

DNS server) using the CIDR notation. For example, the

10.0.0.0/12 range means the range with 220 number of ele-

ments which can be described also as:

010-{000..015}-{000..255}-{000..255}.dns64perf.test.

In addition to that, it is not necessary to use all the

elements of the given range, the user must specify the number

of requests to send, which must be less than or equal with

the size of the range.

4.2 Implementation of Timing

The test program is intended to be executed under Linux,

where the scheduling frequency of the timer interrupt is one

millisecond. If the calculated waiting time is significantly

higher than 1ms, than it may be worth using the sleep† func-

tion to spare CPU capacity. Though its precision is rough,

the timing error can be always be compensated at the next re-

quest. (For time measurement, nanosecond precision clocks

are used.) If the waiting time is less, then busy waiting is

used: the current time is tested in a loop.

Though this combined method produced good results,

later we completely abandoned using the sleep function to

achieve excellent precision timing, see section 5 for details.

4.3 Threads and CPU Cores

The current implementation uses two threads. The main

thread is responsible for receiving the replies and a thread

is started for timely sending of the queries. Thus having at

least two CPU cores is a prerequisite for the execution of the

test program. It is planned that later versions will be able to

utilize all available CPU cores.

4.4 Adding Burst Mode

The exact timing requires additional work, and thus the high-

est AAAA record request sending rate of our test program is

less than it could be if the requests were sent without timing.

On the one hand, this is natural (this is the price of exact

timing), but on the other hand, sometimes it is desirable to

be able to send requests at a higher rate than our hardware is

able to do it with proper timing. (For example, if we want to

†Actually, the std::this_thread::sleep_for() function
is called if waiting time is higher than 5ms.

compare two very good DNS64 implementations and we do

not have a fast enough tester device compared to the DUT we

use.) To implement this feature, we added the “burst size”

parameter. Within a burst, the packets are sent as soon as

possible without timing.

The burst size of 1 results in the original algorithm

providing exact timing of all the requests. Higher burst sizes

enable higher average rate of requests but with less precise

timing. Of course, results produced in this way, are not to

be considered as trustworthy benchmarking results but they

can be useful as an estimation.

4.5 Storing Requests and Validating Answers

The sent AAAA record requests can be unambiguously iden-

tified by the prefix of the actual namespace and the number

of the given request. The latter one is identical with the bits

of the corresponding IPv4 address after the prefix. (That is

the last 20 bits in the example of subsection 4.1.) Therefore,

we do not store this information at all, rather it is used for

indexing in an array which contains important information

(including the sending time) about each sent AAAA record

requests.

When a reply is received, it contains the request in the

“Question” section (see [11]). The first label of the domain

name is read from it, the corresponding IPv4 address is

calculated and its appropriate part is used for indexing the

array. In the appropriate element of the array, the received

flag is set to true and the receiving time is stored. It is also

registered if the reply contained at least one answer.

The measurement ends when the specified timeout ex-

pires for the lastly send request. Then the program processes

the array containing information about the DNS requests and

replies. If a query was answered then the RTT (Round Trip

Time) is calculated by subtracting the sending time of the

query from the receiving time of the reply. If the reply con-

tained at least one answer then it is checked if the calculated

RTT is not more than the timeout value. If yes, then the

answer is qualified as valid.

4.6 Output of the Program

The output of the program contains the number of sent

queries, the number of received answered, the number of

valid answers as well as the average and standard devia-

tion of the RTT of the received answers. In addition to

that, all the results are dumped in CSV format (into the file

dns64perf.csv).

4.7 Usage of Command Line Positional Parameters

Our test program is designed for being executed by a script

several times with different parameters. (The script is likely

to perform a binary search to determine the highest AAAA

query rate at which a DNS64 implementation can answer.)

We considered the application of positional command line



LENCSE and BAKAI: DESIGN AND IMPLEMENTATION OF A TEST PROGRAM FOR BENCHMARKING DNS64 SERVERS

5

Table 1 Accuracy of the individual waiting time calculation method.

Required frequency (req/s) 10 100 1000 10000 100000

Number of requests 10 100 1000 10000 100000

Sending time of the specified number of request (ms)

average 1001.04 1010.65 1000.11 1002.02 1022.72

standard deviation 0.07 0.23 0.01 0.18 2.66

minimum 1000.86 1010.02 1000.10 1001.73 1019.01

maximum 1001.10 1010.86 1000.12 1002.28 1027.12

Real frequency (req/s) 9.99 98.95 999.89 9979.81 97778.13

Table 2 Accuracy of the waiting time calculation method using remaining time.

Required frequency (req/s) 10 100 1000 10000 100000

Number of requests 10 100 1000 10000 100000

Sending time of the specified number of request (ms)

average 1000.10 1000.11 1000.00 1000.00 1000.00

standard deviation 0.01 0.00 0.00 0.00 0.00

minimum 1000.08 1000.11 1000.00 1000.00 1000.00

maximum 1000.11 1000.11 1000.00 1000.00 1000.00

Real frequency (req/s) 10.00 99.99 1000.00 10000.00 99999.99

Table 3 Accuracy of the final waiting time calculation method.

Required frequency (req/s) 10 100 1000 10000 100000

Number of requests 10 100 1000 10000 100000

Sending time of the specified number of request (ms)

average 1000.00 1000.00 1000.00 1000.00 1000.00

standard deviation 0.00 0.00 0.00 0.00 0.00

minimum 1000.00 1000.00 1000.00 1000.00 1000.00

maximum 1000.00 1000.00 1000.00 1000.00 1000.00

Real frequency (req/s) 10.00 100.00 1000.00 10000.00 99999.99

arguments a natural and easy way of specifying the neces-

sary parameters. See the accompanying documentation for

details [8].

5. Investigation of the Precision of Timing Methods

In this section, first, we compare the precision of the two be-

fore mentioned timing methods: the one using independent

waiting time calculation and the one using remaining time

for waiting time calculation. Next, we modify the second

one to achieve even higher accuracy. Then, we provide and

initial performance estimation of dns64perf++. Finally, we

consider the limitations of our test program.

5.1 Testing Method and Test Environment

We requested the test program to send AAAA record requests

at different frequencies. The number of the requests was set

so that their sending last exactly 1 second and we measured

the actual time of their sending. All the experiments were

executed 11 times, average, standard deviation, minimum

and maximum values of the sending times were calculated.

The actual frequency of the requests was calculated from the

average time.

Unlike the old dns64perf, dns64perf++ sends

AAAA record requests independently from the responses.

Therefore, now we have to specify only the parameters of

the computer, which executed the dns64perf++ test pro-

gram: the rest of the test network is redundant.

A desktop computer was used with the following pa-

rameters: 3200MHz Intel Core i5-4570 CPU (4 cores, 6MB

L3 cache), 16GB 1600MHz DDR3 SDRAM, 250GB SSD;

Debian GNU/Linux 8.2 operating system.

5.2 Results

The results produced by using individual waiting time cal-

culation are presented in Table 1. We can observe that the

inaccuracy is about 0.1% at 10Hz, and it grows to about 1%

at 100Hz. It happens because the sleep function of the oper-

ating system is used (please recall the 1ms resolution of the

timer interrupt frequency). The inaccuracy is about 0.01%

and 0.2% at 1,000Hz and 10,000Hz, respectively. We con-

sider all these values acceptable. However, the inaccuracy

is about 2.2% at 100,000Hz. As dns64perf++ is intended

to be a standard benchmarking program for producing trust-

worthy results, we can no way tolerate an inaccuracy over

1%. Therefore, we decided to replace the individual waiting

time calculation method by the one that uses the remain-

ing time for the calculation of the waiting time before the

generation of the next request. Table 2 shows the results

produced by our improved algorithm. The results are con-

vincing. The highest inaccuracy, which occurred ad 100Hz,

was only 0.01%.

5.3 Removal of the Sleep Function

We have completely removed the usage of the sleep func-

tion from the program to achieve always the best possible

accuracy. Table 3 shows the results of the final version of

dns64perf++. They are unexceptionable.

Thus, we have shown that dns64perf++ is a precise



6
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Table 4 Performance limit estimation.

Required frequency (req/s) 200000 250000 300000

Number of requests 200000 250000 300000

Sending time of the specified number of request (ms)

average 1000.00 1000.56 1176.69

standard deviation 0.00 0.94 2.50

minimum 1000.00 1000.00 1172.25

maximum 1000.00 1002.97 1181.83

Real frequency (req/s) 199999.99 249860.07 254951.59

measurement tool for benchmarking DNS64 servers.

5.4 Performance Testing

Although the performance analysis of dns64perf++ is not

an aim of this paper, the approximate performance of the

program was checked. Table 4 shows that the accuracy

of timing starts degrading at 250,000 requests per second.

As for the performance of dns64perf++, its more than

200,000 AAAA requests per second performance is expected

to be enough for testing DNS64 implementations executed

by commonly used servers, as our experienced highest rate

by which a DNS64 server (executed by a quad-core Sun

server) could work was less than 8,000 requests/s [3].

5.5 Hardware Performance Warning

Please note that we tested only the sending performance of

dns64perf++. To be suitable for benchmarking up to a

given frequency, it is also necessary that the hardware used

for the execution of dns64perf++ be able to receive and

process all the packets. Otherwise, e.g. missed interrupts

may cause that the replies are lost and the queries are con-

sidered by dns64perf++ to be unanswered. The program

can no way find out why it did not receive a reply.

5.6 Considering the Jitter of the Queries

We have shown that the final timing algorithm provides high

accuracy concerning the average frequency calculated as the

overall number of queries per the overall testing time. How-

ever, there are certain unavoidable situations when timing

will not be precise locally. This is a consequence of the fact

that we designed a software-based generator executed by a

computer under a given operating system, namely Linux.

For example, it may happen that the CPU core executing the

sender thread receives an interrupt during the busy waiting

cycle of the timing algorithm and the processing of the inter-

rupt lasts too long and therefore the next request will be sent

too late. The timing algorithm is self-correcting in the sense

that the average frequency will be precise, but there will be

some jitter in the sequence of the queries. Another typical

situation can happen when the required frequency is so high

that the CPU can still cope with the sending task when the

code is already loaded into its cache memory but it will be

lagging behind the required timing in the beginning. Again,

the self-correcting nature of the timing algorithm will set

the average frequency precisely, but the inter-arrival time of

the first queries will be significantly higher than it should

be. (Similarly, the branch predictors of the CPU may make

some wrong decisions until they learn the behavior of the

program, etc.)

Although it is theoretically possible that the jitter of the

requests impairs the performance of the DNS64 servers, we

do not think that it can significantly influence the results,

because the DNS64 servers should be able to store the re-

quests to some extent to be able to serve the real life requests

with bursts. Moreover, the draft [7] requires at least 60 sec-

onds long test duration, which is long enough to iron out the

consequences of the local timing inaccuracies.

Although we cannot eliminate the jitter, we provide all

the jitter information to the user, as dns64perf++ stores the

nanosecond precision sending timestamps of the requests.

It also writes the timestamps (with other raw data) into

the dns64perf.csv file after finishing the measurements.

Thus, by processing this file, the user may calculate the jitter

values and decide if it is acceptable for his/her purposes or

not. (In the latter case, the measurement may be invalidated

and repeated.)

6. Experience and Future Plans

We are using dns64perf++ in an ongoing project for a

case study and demonstration of the DNS64 benchmarking

method described in [7]. Our experiences and results will

be published in [12].

As of our current implementation, dns64perf++ uses

two threads: one for sending the requests and one for receiv-

ing the replies. Thus, it can utilize two cores of a computer.

Therefore it leaves several cores free if it is executed by

a modern multi-core computer having four or more cores,

which may be used to execute the authoritative DNS server

if the test setup of the draft [7] is followed, which contains

only two devices: the Tester and the DUT.

For testing very high performance DNS64 servers, it

may be necessary to use three devices instead, by dedicat-

ing two high performance computers for Tester: one for

the execution of the authoritative DNS server and one for

executing dns64perf++. We plan to make dns64perf++

multi-threaded to be able to utilize all the cores of a modern

multi-core server.

We also plan to make the second version of

dns64perf++ capable of testing the effect of caching. How-

ever, currently we cannot see a suitable method yet. (We

note that it is a general DNS server benchmarking issue, not

DNS64 specific.) We welcome any experiences or sugges-

tions concerning the benchmarking method for DNS caching



LENCSE and BAKAI: DESIGN AND IMPLEMENTATION OF A TEST PROGRAM FOR BENCHMARKING DNS64 SERVERS

7

from the research community.

We consider that our design principles may be used

for the design of other benchmarking tools e.g. for testing

NAT64 [2] implementations, too. Being dns64perf++ a

free software, our C++11 source code [8] may also be reused.

7. Conclusions

We conclude that our efforts were successful in creat-

ing the world’s first standard DNS64 benchmarking tool,

dns64perf++. Tests proved that it offers both high preci-

sion and high performance (concerning sending queries for

different AAAA records).

Our further plans include: testing its limits for bench-

marking (being executed by some particular hardware),

adding the capability of utilizing the computing power of

arbitrary number of CPU cores, and extending it for to test

the effect of caching.

References

[1] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS

extensions for network address translation from IPv6 clients to IPv4

servers”, RFC 6147, April 2011.

[2] M. Bagnulo, and P. Matthews, and I. Beijnum, “Stateful NAT64:

network address and protocol translation from IPv6 clients to IPv4

servers”, RFC 6146, April 2011.

[3] G. Lencse and S. Répás, “Performance analysis and comparison

of four DNS64 implementations under different free operating sys-

tems”, Telecommunication Systems, in press, DOI: 10.1007/s11235-

016-0142-x

[4] G. Lencse, “Test program for the performance analysis of DNS64

Servers”, Internat. J. of Advances in Telecommunications, Elec-

trotechnics, Signals and Systems, vol. 4, no. 3, pp.60–65, September

2015. DOI: 10.11601/ijates.v4i3.121

[5] S. Bradner, J. McQuaid, “Benchmarking methodology for network

interconnect devices”, RFC 2544, March 1999.

[6] C. Popoviciu, A. Hamza, G. Van de Velde, D. Dugatkin, “IPv6

benchmarking methodology for network interconnect devices”, RFC

5180, May 2008.

[7] M. Georgescu, L. Pislaru and G. Lencse, “Benchmarking methodol-

ogy for IPv6 transition technologies”, IETF Benchmarking Working

Group, Internet Draft, https://tools.ietf.org/html/draft-ietf-bmwg-

ipv6-tran-tech-benchmarking-03

[8] D. Bakai, “A C++11 DNS64 performance tester”, source code,

https://github.com/bakaid/dns64perfpp/

[9] S. Bradner, “Key words for use in RFCs to indicate requirement

levels”, RFC 2119, March 1997.

[10] G. Lencse and G. Takács, “Performance analysis of DNS64 and

NAT64 solutions”, Infocommunications Journal, vol. 4, no. 2.

pp.29–36, June 2012.

[11] P. Mockapetris, “Domain names – implementation and specifica-

tion”, RFC 1035, November 1987.

[12] G. Lencse, M. Georgescu and Y. Kadobayashi, “Benchmarking

methodology for DNS64 servers”, unpublished, review version will

be available: http://www.hit.bme.hu/people/lencse/publications

Gábor Lencse received his M.Sc. and Ph.D.

degrees in computer science from the Budapest

University of Technology and Economics, Bu-

dapest, Hungary in 1994 and 2001, respectively.

He works for the Department of Telecommuni-

cations, Széchenyi István University, Győr, Hun-

gary Since 1997. Now, he is an associate pro-

fessor. He is also a part time senior research

fellow at the Department of Networked Systems

and Services, Budapest University of Technol-

ogy and Economics since 2005. His research

interests include the performance analysis of communication systems, par-

allel discrete event simulation methodology and IPv6 transition methods.

Dániel Bakai is a BSc student studying

computer science at the Budapest University of

Technology and Economics, Budapest, Hungary.

He does project work for the Department of Net-

worked Systems and Services, Budapest Univer-

sity of Technology and Economics since Febru-

ary 2015. He is also the author of the mtd64-ng

DNS64 implementation, a successor of MTD64.


