
CIT. Journal of Computing and Information Technology – review version 1

Enabling Dns64perf++ for Benchmarking

the Caching Performance of DNS64

Servers

Gábor Lencse1

1 Department of Networked Systems and Services, Budapest University of Technology and Economics,
Budapest, Hungary

The dns64perf++ DNS64 benchmarking program is the

world’s first standard DNS64 benchmarking tool, which

complies with the compulsory requirements of RFC

8219 on benchmarking methodology for IPv6 transition

technologies including DNS64. The aim of our current

effort is to enable dns64perf++ for benchmarking the

caching performance of DNS64 servers, which was

qualified as optional by the RFC, but can be important

in practice, and thus make dns64perf++ the world’s first

standard DNS64 benchmarking tool that provides all the

features described in the RFC. In this paper, we disclose

our goals, design considerations as well as implementa-

tion decisions. We also provide a simple case study to

demonstrate the operability of the new feature.

ACM CCS (2012) Classification: Software and its engi-

neering → Software creation and management → De-

signing software → Software design engineering;

Networks → Network services → Naming and address-

ing;

Networks → Network performance evaluation → Net-

work performance analysis

Keywords: DNS64, Internet, IPv6 deployment, IPv6

transition solutions, performance analysis

1. Introduction

DNS64 [1] and NAT64 [2] are important IPv6

transition technologies, which can be used by

network operators for enabling IPv6-only cli-

ents to communicate with IPv4-only servers.

Performance is an important factor when se-

lecting the implementations to be used and

there is a new RFC on benchmarking method-

ology for IPv6 transition technologies includ-

ing DNS64 servers [3]. The compulsory re-

quirements of RFC 8219 for benchmarking

DNS64 servers were satisfied by the

dns64perf++ measurement program [4],

but the optional feature of being able to test

the efficiency of the caching performance of

DNS64 servers was not included [5].

As caching may significantly improve the per-

formance of a DNS64 server, their caching

performance is worth measuring. The aim of

our current effort is to extend dns64perf++

to be able to measure the caching performance

of DNS64 servers and thus comply with all the

features of RFC 8219 and therefore be the

world’s first standard full featured DNS64

benchmarking tool. In this paper, we disclose

our goals, design considerations and imple-

mentation decisions for the extension of the

test program.

We contend that dns64perf++ can be a

useful tool for several class of people. Re-

searchers may use it to compare the perfor-

mances of different DNS64 implementations,

and investigate, how their performance scales

up in the function of the number of CPU cores

(as it was done in [6]). Developers of DNS64

servers may use it to check how the perfor-

mance of their product improved. Network

operators may compare the performance of

different DNS64 implementations in order to

find out, which suits their needs the best.

2 G. Lencse

The remainder of this paper is organized as

follows. Section 2 contains the requirements

for testing the caching performance of DNS64

servers based on RFC 8219. Section 3 recalls

the operation of the dns64perf++ program

in a nutshell. Section 4 summarizes our goals

and restrictions for the possible modifications

of the program. Section 5 discloses our most

important design considerations. Section 6

presents our implementation decisions. Section

7 considers the limitations of the extended

program. Section 8 is a case study that demon-

strates the operability of the new feature. Sec-

tion 9 gives our conclusions.

2. Requirements for Testing Cach-
ing

2.1. Test and Traffic Setup

A detailed description of the test and traffic

setup of DNS64 performance measurements

was given in [5], which is open access, there-

fore, now we give only a short summary of it.

Figure 1 shows three devices: the client, the

DNS64 server and the authoritative DNS serv-

er. When neither a cache hit occurs nor a

AAAA record exists, then all the following six

messages are used.

1. Query for the AAAA record of a do-

main name

2. Query for the AAAA record of the

same domain name

3. Empty AAAA record answer

4. Query for the A record of the same

domain name

5. Valid A record answer

6. Synthesized AAAA record answer [3]

When there is a cache hit at the DNS64 server,

then message 1 is followed by message 6 and

no other DNS messages are used [3].

2.2. Requirements for the Tester

RFC 8219 requires that first, different domain

names MUST1 be used and then measurements

MAY be done with domain names, 20%, 40%,

60%, 80% and 100% of which are cached. It is

noted in the RFC that “ensuring a record being

cached requires repeating it both late enough

after the first query to be already resolved and

be present in the cache and early enough to be

still present in the cache” [3].

3. Operation of Dns64perf++ in a
Nutshell

A detailed description of the operation of the

dns64perf++ program can be found in [5],

now we give a short summary2 of it including

only the parts relevant to our topic. The pro-

gram executes in two threads: one of them

sends queries for AAAA records of different

domain names at a specified rate and the other

one receives the answers and decides about

every single answer if it is arrived in time

(within a given timeout) and if it contains a

AAAA record. If both conditions are met, then

the program qualifies the answer as “valid”.

1 In this document, the key words "MUST" and

"MAY", are to be interpreted as described in [7].
2 The text of [5] is reused throughout the summary.

Authoritative
DNS server

DNS64 server

DUT Tester/AuthDNS

Client
dns64perf++

Tester/Measurer

2: AAAA query

3: empty AAAA

4: A query

5: valid A

1: AAAA query

6: synthesized AAAA

Figure 1. Test and traffic setup for benchmarking DNS64 servers [5].

Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers 3

For being able to perform these tasks, the

sending thread stores a nanosecond precision

timestamp of the sending time of each queries

and, similarly, the receiving thread stores a

nanosecond precision timestamp of the receiv-

ing time of the answers. The program uses a

special method for matching the queries and

the answers. It is done so because DNS clients

use the Transaction ID to identify the reply3 a

of DNS server [8] and it is enough for them,

but during benchmarking of DNS or DNS64

servers the query rates may be so high that the

same Transaction ID is repeated within

timeout time, as the Transaction ID is only 16

bits long. Therefore, dns64perf++ uses a

different solution for the identification of the

replies. To understand this method, we need to

dig somewhat deeper into the operation of the

program. It is designed to be able to use the

following potential name space:

{000..255}-{000..255}-{000..255}-{000..255}.dns64perf.test.

Or with a different notation:

k-l-m-n.dns64perf.test., where k, l, m, n are in

[000, 255].

This is an independent namespace, which is

resolved to IPv4 by a local authoritative DNS

server. During a particular execution of the test

program, the required part of this namespace is

identified by the specification of the corre-

sponding IPv4 address range (to which it is

mapped by the authoritative DNS server) using

the CIDR notation. For example, the

10.0.0.0/10 range means the range with 222

number of elements, which can also be de-

scribed as:

010-{000..063}-{000..255}-{000..255}.dns64perf.test.

We note that it is not necessary to use all the

elements of the given range, the user must

specify the number of requests to send, which

must be less than or equal with the size of the

range.

The sent AAAA record requests, which refer

to all different domain names during the com-

3The words query and request, as well as reply and

answer are used with the same meaning throughout the

paper.

pulsory DNS64 test of RFC 8219, can be un-

ambiguously identified by the first label of the

contained domain name. When a reply is re-

ceived, it contains the request in the “Ques-

tion” section (see [8]). The first label of the

domain name is read from it, and it is used to

find the corresponding query.

As for implementations details, during the

generation of the queries, a counter is used: its

value is increased from 0 to the number of

queries to be sent minus one. The bits of the

counter are appended to the common prefix of

all the queries. For example if the before men-

tioned range of 10.0.0.0/10 is used, then the

common prefix of all queries is the binary se-

quence of 0000101000 (encoding the decimal

number 10 by the first 8 bits followed by two 0

bits) and counter may take the values from 0

up to maximum 222-1. (In practice, less ele-

ments are used, their number is specified by

the user.) The counter is also used for indexing

the array of queries, where the sending and

receiving timestamps and validation infor-

mation are stored. Later we will refer to it as

counter.

4. Goals and Constraints

The aim of our current effort is to enable

dns64perf++ for benchmarking the caching

performance of DNS64 servers.

However, we have another, long term goal,

which results in several constraints for our

current design. It was shown in [5] that

dns64perf++ can be used for benchmark-

ing DNS64 servers up to 200,000 queries per

second. We aim to increase its performance

about one order of magnitude. We have set

this goal because we expect that this would be

the performance requirement of the Testers

testing high performance DNS64 servers. For

example, Google Public DNS server served 70

billon requests per day in 2012 [9], which is

about 810,000 requests per second on average.

This number is likely growing, and RFC 8219

requires about 220% query rate for the self-test

of the tester [3], thus our goal is to achieve a

4 G. Lencse

few times a million requests per second. Since

dns64perf++ uses only two threads, one for

sending queries and another one for receiving

the replies, we expect that this goal can be

achieved easily by using n thread pairs. (For

example 10 thread pairs would achieve 10

times higher performance than that of a single

thread pair and would use the computing pow-

er of 20 cores of a 24-core CPU leaving 4

cores free for the operating system.) Accord-

ing to our planned high-level design, each

thread pair should work independently from

the other thread pairs so that our solution can

scale up well. Independence requires that the

data structures are multiplied: each thread pair

must have their own array of queries to avoid

locking issues, as well as each thread pair must

use their own socket (bound to their own UDP

port). Therefore, the restriction is, that all the

changes of the source code of dns64perf++

made for the interest of enabling it for bench-

marking the caching performance of DNS64

servers, should be carefully examined, whether

they hinder the parallelization of the program.

We also plan to keep the original structure of

the program and limit the changes to as few

files as possible.

It is also one of our goals, that the test program

be fine tunable, e.g. it should be able to per-

form measurements not only at the required

levels of 0%, 20%, 40%, 60%, 80% and 100%

cache hit ratios, but e.g. at 10%, 90% or 99%,

too.

Finally, the program must keep its high per-

formance, which is especially critical when it

is used at high cache hit rates (resulting in high

DNS64 performance).

5. Design Considerations

5.1. General Considerations

The actually achieved cache hit rate of a real

life DNS64 server depends on different factors

such as the repetition pattern of user requests,

the cache size and the cache control algorithm

of the DNS64 server. All these questions may

be important when one examines the gain of

caching, but they are out of scope from the

viewpoint of RFC 8219, which recommends

only the testing of the efficiency of caching at

given cache hit rates from 20% to 100%.

Therefore, the task of the benchmarking pro-

gram is to ensure the required cache hit rate

regardless of the internal parameters and/or

behavior of the tested DNS64 server (e.g.

cache size, cache control algorithm, etc.) han-

dling the DUT as a black box.

5.2. What and How to Repeat to Achieve
Cache Hits?

As RFC 8219 does not say anything about how

many different domain names have to be re-

peated, we decided to repeat only a single one.

This choice has two advantages:

 Simplicity. Both when the repeated

queries are generated and when they

have to be recognized. The latter will

be very important is section 6.2.

 Ensures cache hits even if the cache

size is very small.

If a single domain name is repeated frequently

enough then it will be still present in the cache

of the DNS64 server at any low but realistic

cache size, thus the “early enough” condition

can be easily satisfied. (The lowest non-zero

cache hit rate to be tested is 20%, which means

that every fifth domain names should be the

one that is being repeated.) To satisfy the “late

enough” condition, we decided to use a pre-

liminary measurement step. It can be done by

either the standard host Linux command or

by using the dns64perf++ program for

sending a single request for the domain name

intended to be loaded into the cache of the

DNS64 server.

5.3. How to Identify the Replies?

Repeating domain names in queries, which is

absolutely necessary to achieve cache hits,

destroys the operation of the original method

designed for the unambiguous identification of

requests and replies. The replies of queries

Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers 5

containing the same domain name can only be

distinguished by their Transaction IDs (when

they are different).

We decided to keep the original identification

method for the non-repeated domain names,

and “fall back” to the usage of Transaction IDs

for the repeated ones. Though it is not trivial,

the two methods for identification can be used

together. We present the details among the

implementation decisions (in subsection 6.2),

because the knowledge of some implementa-

tion details are needed for its understanding.

6. Implementation Decisions

6.1. Program Arguments and Generation
of the Queries

Several solutions are possible to inform the

test program about the required proportion of

the cached domain names, e.g. their proportion

can be given using an additional parameter. It

could be 0, 1, 2, 3, 4 and 5 to express 0%,

20%, 40%, 60%, 80% and 100% cache hit

ratio, but we aimed to be able to fine tune the

testing. It could also be a floating point value

e.g. 0.2 for 20% and 0.99 for 99% but wanted

to avoid additional floating point operations in

the sending a receiving cycles. Instead, we

have chosen to use two parameters because we

considered that this solution better fits to our

goals. These are modulo and threshold. If

the value of threshold is zero then no do-

main names are repeated. Otherwise if condi-

tion (1) is met then instead of the value of the

counter, only the appropriate number of zero

bits are appended to the common prefix.

counter % modulo < threshold (1)

See the code fragment containing the modifi-

cation in Figure 2.

We note that it is the responsibility of the user

to specify relative prime numbers e.g. 5 as

modulo and 1 as threshold to achieve 20%

cache hit ratio (instead of using 100 and 20) in

order to achieve the best possible interleaving

of the cached and non-cached queries.

6.2. New Method for Matching the Re-
plies

First, we introduce the operation of the identi-

fication method based on Transaction IDs. For

simplicity, let us consider the case when 100%

of the domain names are cached, thus this

method can be used exclusively for all the re-

plies. Due to the method used for generating

the requests, the Transaction ID always takes

the low order 16 bits of the counter. Thus,

the Transaction ID could be used for indexing

the array of queries if we had no more than

64k number of messages. However, the num-

ber of messages is significantly larger than

that.

We have considered the usage of multiple

UDP ports and sending maximum 65,535 que-

ries pert port. This solution would require that

multiple ports be kept open simultaneously

and the receiver should check them in a round

robin manner (using non-blocking receive

function) until all the replies are received or

the timeout for the lastly sent request elapsed.

(As we have mentioned before, the usage of

multiple threads had been reserved for increas-

ing the performance of the benchmarking pro-

gram, thus it is not an option here to start a

uint32_t ip = ip_ | num_sent_; // old code: ip_ is the common prefix, num_sent_ is the counter

// modification for testing caching begins here

if (threshold_ && ip % modulo_ < threshold_) { // threshold_ is the threshold

 ip = ip_; // use the common prefix to achieve a cache hit

}

// modification for testing caching ends here

snprintf(label, sizeof(label), dns64_addr_format_string, (ip >> 24) & 0xff, (ip >> 16) & 0xff, \

 (ip >> 8) & 0xff, ip & 0xff); // old code: the first label is generated in this way.

Figure 2. Code fragment: the modification of the query generation in function DnsTester::test(), source

file: dnstester.cpp.

6 G. Lencse

separate thread for each port.) We have identi-

fied several potential issues of this approach:

1. The opening of several sockets during

the measurements may take unknown

time and thus may cause undesirable

delay between some consecutive que-

ries.

2. The opening of all the sockets before

the measurements might result in unde-

sirable limitations regarding the maxi-

mum number of queries sent. (The

namespace allows maximum 232 num-

ber of queries, 216 number of queries

per socket can be sent, but the operat-

ing system would not let open 216

number of sockets simultaneously.

Although the number of queries seems

to be abundant, significantly longer

than 60s test at high rates may require

all of them.)

3. Let us estimate the magnitude of the

number of concurrently active sockets,

which are to be polled by the receiver.

Although the practically used timeout

value is 1 second, the program should

work with any reasonable timeout val-

ue, e.g. 10 seconds. If both the timeout

value and the query rate are high

enough it may happen that a receiving

thread of the benchmarking program

have to test hundreds of sockets, of

which the majority of them is not re-

sulting in receiving of packets (only

still open due to large timeout value).

Therefore, the implementation of the

receiver may come inefficient.

In addition to the above, our final argument

against this approach (and any other different

solutions) is that the operation of the

dns64perf++ program is based on the array

of queries. We contend that this data structure

is fundamental for keeping the high perfor-

mance of the test program, because it facili-

tates that only very little work has to be done

during the test. Only the sending and

timestamps plus two flags signaling whether

there was a reply and if it contained a valid

answer are stored during the test. All the pro-

cessing and reporting functions are performed

after the test. Therefore, we decided to keep

the concept of the program. Conforming to our

before mentioned constraints, we intended to

make only as little changes in the source code

as it was possible.

To address the 64k problem, we have intro-

duced the array of counters (containing 64k

number of elements), which is initialized in the

way that the value of its i-th element is set to i.

The value of the i-th element of the coun-

ters array is used to find the position in the

array of queries, where the timestamps belong-

ing to the cached domain name with the

Transaction ID i are stored. Whenever an ele-

ment of the counters array is used, its value

is increased by 64k, thus it is ready for the

next usage.

If the proportion of the cached domain names

is less than 100% but higher than 0% then both

identification methods must be used. How can

we decide, which of them is to be used for a

given reply? When a reply is received, the

domain name is read from the question section

of the reply. If it is not the cached domain

name then the appropriate part of the corre-

sponding IP address is used for indexing the

array of queries as it was done in the original

program. If it is the cached domain name then

the Transaction ID is extracted from the reply.

When a position in the array of queries is de-

termined by the above described method using

the Transaction ID and the array of coun-

ters then it must be checked that according

to condition (1) the given position is used for

storing a query with the cached or with a non-

cached domain name. In the first case we have

found it, thus the receiving timestamp and val-

idation information are stored and the used

element of the array of counters is in-

creased by 64k. However, in the second case

the given position of the array of queries stores

the timestamps for a non-cached domain name

having the same Transaction ID as the current-

ly received query has. Therefore, the next po-

sition of the array of queries with the same

Transaction ID should be checked, which is

Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers 7

located at 64k farther position. This search

must be continued until condition (1) is satis-

fied. Then the receiving timestamp and valida-

tion information are stored and the used ele-

ment of the counters array is set for the

position of the next candidate with the same

Transaction ID (that is the current position

+64k). See the most relevant changes to the

source code in Figure 3.

7. Discussion of the Limitations of
our Solution

7.1. Correctness

The original method can unambiguously iden-

tify the replies of the DNS64 server, distin-

guishing them by the unique domain names

included in the “Question” section. Testing

caching inherently eliminates this solution. As

Transaction IDs are only 16 bits long, they are

repeated within timeout time (1 second), if the

tested rate is higher than 65,536 queries per

second, which may happen if a fast enough

DNS64 server is being tested. Thus, it may

happen that a DNS64 server does not answer a

query with the cached domain name due to

overload and the test program mistakenly ac-

cepts the answer of a later query for the cached

domain name with the same Transaction ID

arriving within timeout time. Although the

reply will be falsely accounted in this case, but

the reply of the later query will be missing,

thus the test will fail. The other kind of slip is

also possible: if a query with the cached do-

main name is answered after timeout, the late

reply may be accepted as a valid reply of a

later query for the cached domain name having

the same Transaction ID. The test will still fail

because the earlier query was not replied in

time. Therefore, we can conclude that although

some messages may be accounted mistakenly,

which is the consequence of the fact that some

messages are indistinguishable, the final deci-

sion will be still correct.

7.2. Performance

As for query generation, we have chosen the

computationally inexpensive modulo operation

// the following line is added to the variable declarations:

char cachedlabel[64]; // for testing caching: the first label of the query which is cached

// then the cached label is produced from the common prefix (= base IP address):

snprintf(cachedlabel, sizeof(cachedlabel), dns64_addr_format_string, \

 (ip_ >> 24) & 0xff, (ip_ >> 16) & 0xff, (ip_ >> 8) & 0xff, ip_ & 0xff);

//

// several lines of the old code are unquoted here

//

// Due to testing caching, it is a bit more complicated to find the query in the array

// The old code was the following simple line:

// DnsQuery& query = tests_[(ip & (((uint64_t) 1 << (32-netmask_))-1))];

// new code begins here:

uint64_t index;

if (!threshold_ || strcmp(label,cachedlabel)) {

 // we are not testing caching OR NOT the critical label is found

 index = (ip & (((uint64_t) 1 << (32-netmask_))-1)); // index is from the label

}

else { // we are testing caching AND the critical label is found

 // index should be prepared from Transaction ID and receving history

 uint16_t transactionID=answer.header_->id(); // called 'DNS Query identifier' in "dns.h"

 index = counters_[transactionID];

 while (index % modulo_ >= threshold_) {

 // this is NOT a place of a query which is cached

 index += 65536 ; // try 64k further

 }

 counters_[transactionID] = index + 65536; // point to the next one

}

DnsQuery& query = tests_[index]; // this is the query

// this is the end of the new code

Figure 3 Code fragments: the most significant modifications of the processing of received queries query generation

in function DnsTester::start(), source file dnstester.cpp.

8 G. Lencse

for making a decision whether the cached do-

main name is to be used for the current query,

thus the query sending performance of the

program expected to remain high.

As for receiving the queries, there is an addi-

tional string comparison of short (15 character

long) strings, and a variable number of modulo

and integer operations. Their number may be

high, if the ratio of the required cache hits is

very low, e.g. 1% or even less. As the smallest

positive cache hit ratio recommended by RFC

8219 is 20%, in that case the modulo value is 5

and therefore no more than 5 executions of test

(1) per reply is necessary, thus we forecast no

performance problems.

We note that non-standard low cache hit rates

(e.g. 10% and below) cause only small per-

formance increase and thus are very likely out

of interests. (Please refer to our measurement

results at 0% and 20% cache hit rates in Ta-

ble 1.) The testing of non-standard high cache

hit rates (e.g. 90% and above) will not cause

performance problems and they may be worth

testing: the results at 80% and 100% cache hit

rates are significantly differ. Someone may

wish to test the performance of a DNS64 im-

plementation e.g. at 90%, 95% or 99% cache

hit rates.

8. Case Study: Demonstration of
the Benchmarking of Caching
Performance of DNS64 Servers

Although RFC 8219 follows the traditional

benchmarking setup, which uses only two de-

vices, the Tester and the DUT, it was elaborat-

ed in the relavant paper about benchmarking

methodology for DNS64 servers [10] that the

two functions of the Tester (Measurer and

AuthDNS) may be implemented by two sepa-

rate devices. This approach was followed in

the setup of the test system. Its topology is

shown in Figure 4, which also contains the

CPU parameters of the computers to reflect

their approximate performances. We note that

the Huawei FusionServer E9000 resides in a

different building than the two other comput-

ers and its compute nodes are available only

through the CX310 internal switch module, the

10GBaseT port of which had to be connected

to the two other computers having 1000BaseT

ports, thus we had to use another element,

which was actually a router used as a switch.

For the repeatability of our measurements, we

briefly summarize the most important parame-

ters of the computers.

Tester/Measurer: Dell Precision Workstation

490 with two dual-core Intel Xeon 5160 3GHz

CPUs, 4x1GB 533MHz DDR2 SDRAM (ac-

cessed quad-channel), Intel PT Quad 1000

type four port Gigabit Ethernet controller (PCI

Express). Debian 8.6 GNU/Linux operating

system with 3.16.0-4-amd64 kernel.

Tester/AuthDNS: SunFire X4150 server with

two quad-core Intel Xeon E5440 2.83GHz

CPUs, 4x2GB 667MHz DDR2 SDRAM, four

integrated Intel 82571EB Gigabit Ethernet

controllers. Debian 8.6 GNU/Linux operating

Dell Precision Worksation 490
(4x 3GHz CPU cores)

198.19.0.2

Tester/Measurer
dns64perfppc

2001:2::2

DUT: DNS64 Server
PowerDNS 4.0.0

using 4 threads

Tester/AuthDNS
BIND 9.9.5

198.19.0.12001:2::1

Sun Fire X4150 server
(8x 2.83GHz CPU cores)

Huawei CH140 V3
compute node in a
Huawei FusionServer E9000
(24x 2.3GHz CPU cores)

Huawei CX310
switch module

Cisco 7606
(used as a switch)

1000BaseT1000BaseT

1x10GBaseT

1x10GBaseT
VLAN 72-73

VLAN 72 VLAN 73

Figure 4. Topology of the test network for benchmark-

ing the caching performance of the PowerDNS DNS64

server.

Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers 9

system with 3.16.0-4-amd64 kernel and BIND

9.9.5-9+deb8u7-Debian as authoritative DNS

server.

DUT: Huawei FusionServer E9000, CH140

V3 compute node with two 12-core Intel Xeon

E5-2670 v3 2.30GHz CPUs, 8x16GB

2133MHz DDR4 SDRAM, Two Intel Corpo-

ration 82599 10 Gigabit Dual Port Backplane

Connection (rev 01). Ubuntu 16.04.2 LTS

GNU/Linux operating system with 4.4.0-45-

generic x86_64 kernel and PowerDNS 4.0.0-

alpha2 as DNS64 server.

We used PowerDNS as DNS64 server pro-

gram, because earlier experiments showed that

PowerDNS scaled up better than BIND [6].

We present the changes made to its default

configuration file named recursor.conf

in Figure 5. The number of threads were lim-

ited to 4 in order to make the DUT the perfor-

mance bottleneck and to avoid that the Author-

itative DNS server be a performance bottle-

neck. The operation of the DNS64 function

was described in the dns64.lua file as

shown in Figure 6.

At the authoritative DNS server, a zone file

was generated to resolve the queries for the

10.0.0.0/8 range. We included the generator

script called gen-zonefile-A.sh in the

directory of the modified source code of the

dns64perf++ program [11].

We note that an inaccuracy of the original tim-

ing algorithm of the dns64perf++ program

was discovered. The correction is only a single

change (in line 49 of source file timer.cpp)

as documented in [12]. We used the corrected

version for our measurements.

We have tested all six cache hit rates recom-

mended by RFC 8219. The duration of the

measurements was 60 seconds and the timeout

value was 1 second. The maximum number of

processed DNS queries per second was deter-

mined by using binary search. The binary

search script was executed 20 times for each

cache hit rate, to receive reliable results. For

the detailed explanation of the measurement

method, please refer to [10]. These steps were

performed by the measure.sh bash shell

script, which is also included in [11].

allow-from=::/0, 0.0.0.0/0

forward-zones=dns64perf.test=198.19.0.2

local-address=127.0.0.1,::1,2001:2::1

lua-dns-script=/etc/powerdns/dns64.lua

threads=4

Figure 5. Changes made to the recursor.conf configuration file of PowerDNS.

prefix = "2001:db8:ffff:ffff:ffff:ffff::"

function nodata (dq)

 if dq.qtype ~= pdns.AAAA then

 return false

 end -- only AAAA records

 dq.followupFunction = "getFakeAAAARecords"

 dq.followupPrefix = prefix

 dq.followupName = dq.qname

 return true

end

Figure 6. The contents of the dns64.lua file.

10 G. Lencse

The median as well as the minimum and max-

imum values were determined and they can be

found in Table 1. Row 1 shows the cache hit

ratio, whereas rows 2, 3 and 4 show the medi-

an, minimum and maximum values of the

number of successfully serviced AAAA record

requests per second (calculated from the 20

repetitions of the experiments for each cache

hit ratio). The results show similar tendency to

that of shown in Table 7 of [10], but now they

are significantly higher due to several factors

including the usage of a different DNS64 serv-

er program, higher number of working threads,

faster CPU and faster memory. We plan to

analyze how these factors influence the results,

but this analysis is beyond the scope of our

current paper. Now, our aim was to demon-

strate that the modified test program works

properly at higher than 65,536qps rates, in

which we were successful.

9. Conclusions

We conclude that our efforts were successful

in making the existing dns64perf++

DNS64 benchmarking tool the world’s first

full functional DNS64 tester that provides all

the features described in RFC 8219 including

the testing of caching performance. We have

demonstrated the operability of the new fea-

ture in a case study.

References

[1] M. Bagnulo, A Sullivan, P. Matthews and I.

Beijnum, “DNS64: DNS extensions for network

address translation from IPv6 clients to IPv4

servers”, IETF RFC 6147, April 2011.

https://doi.org/10.17487/RFC6147

[2] M. Bagnulo, P. Matthews and I. Beijnum, “State-

ful NAT64: Network address and protocol trans-

lation from IPv6 clients to IPv4 servers”, IETF

RFC 6146, April 2011.

https://doi.org/10.17487/RFC6146

[3] M. Georgescu, L. Pislaru and G. Lencse,

“Benchmarking methodology for IPv6 transition

technologies”, IETF RFC 8219.

https://doi.org/10.17487/RFC8219

[4] D. Bakai, “A C++11 DNS64 performance tester”,

source code,

https://github.com/bakaid/dns64perfpp/

[5] G. Lencse and D. Bakai, “Design and implemen-

tation of a test program for benchmarking

DNS64 servers”, IEICE Transactions on Com-

munications, vol. E100-B, no. 6. pp. 948-954,

Jun. 2017.

https://doi.org/10.1587/transcom.2016EBN0007

[6] G. Lencse and S. Répás, “Performance analysis

and comparison of four DNS64 implementations

under different free operating systems”, Tele-

communication Systems, vol 63, no 4, pp. 557-

577.

https://doi.org/10.1007/s11235-016-0142-x

[7] S. Bradner, “Key words for use in RFCs to indi-

cate requirement levels”, IETF RFC 2119, March

1997.

https://doi.org/10.17487/RFC2119

[8] P. Mockapetris, “Domain names – implementa-

tion and specification”, IETF RFC 1035, No-

vember 1987.

https://doi.org/10.17487/RFC1035

[9] J. K. Chen, “Google public DNS: 70 billion re-

quests a day and counting”, Google Official

Blog,

Table 1. Caching performance of the PowerDNS DNS64 server as a function of cache hit rate, executed by a

Huawei CH140 v3 compute node in 4 threads.

Cache hit rate (%) 0 20 40 60 80 100

Number of requests

per second

median 14166 17445 22218 29997 45714 88090

minimum 13807 17103 21759 27647 42991 87035

maximum 14593 17689 22657 30913 49153 88677

Enabling Dns64perf++ for Benchmarking the Caching Performance of DNS64 Servers 11

https://googleblog.blogspot.hu/2012/02/google-

public-dns-70-billion-requests.html

[10] G. Lencse, M. Georgescu, and Y. Kadobayashi,

“Benchmarking Methodology for DNS64 Serv-

ers”, Computer Communications, vol. 109, no. 1,

pp. 162-175, September 1, 2017.

https://doi.org/10.1016/j.comcom.2017.06.004

[11] G. Lencse, Modified source code of the

dns64perfpp program, available:

http://www.hit.bme.hu/~lencse/dns64perfppc/

[12] G. Lencse and A. Pivoda, “Checking and Increas-

ing the Accuracy of the Dns64perf++ Measure-

ment Tool for Benchmarking DNS64 Servers”,

submitted for review: International Journal of

Advances in Telecommunications, Electrotech-

nics, Signals and Systems, review version is

available:

http://www.hit.bme.hu/~lencse/publications/IJAT

ES2-2018-dns64perfpp-accuracy-for-review.pdf

Received: March 24, 2018

Contact address:

Gábor Lencse

Department of Networked Systems and Services

Budapest University of Technology and Economics

2 Magyar tudósok körútja

H-1117 Budapest

Hungary

e-mail: lencse@hit.bme.hu

GÁBOR LENCSE received MSc and PhD in computer

science from the Budapest University of Technology

and Economics, Budapest, Hungary in 1994 and 2001,

respectively. He works for the Department of Telecom-

munications, Széchenyi István University, Győr, Hun-

gary since 1997. Now, he is an Associate Professor. He

is also a part time Senior Research Fellow at the De-

partment of Networked Systems and Services, Budapest

University of Technology and Economics since 2005.

His research interests include the performance analysis

of communication systems, parallel discrete event simu-

lation methodology and IPv6 transition methods.

