
1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

 POSITION PAPER

Design and Implementation of a Software Tester for Benchmarking

Stateless NAT64 Gateways

Gábor LENCSE†a), Member

SUMMARY The Benchmarking Working Group of IETF has defined a

benchmarking methodology for IPv6 transition technologies including

stateless NAT64 (also called SIIT) in RFC 8219. The aim of our effort

is to design and implement a test program for SIIT gateways, which

complies with RFC 8219, and thus to create the world’s first standard

free software SIIT benchmarking tool. In this paper, we overview the

requirements for the tester on the basis of RFC 8219, and make scope

decisions: throughput, frame loss rate, latency and packet delay

variation (PDV) tests are implemented. We fully disclose our design

considerations and the most important implementation decisions. Our

tester, siitperf, was written in C++ and it uses the Intel Data Plane

Development Kit (DPDK). We also document its functional tests and

initial performance estimation. Our tester is distributed as free software

under GPL v3 license for the benefit of the research, benchmarking and

networking communities.

key words: benchmarking, IPv6 transition technology, NAT64,

performance analysis, SIIT

1. Introduction

Several IPv6 transition technologies have been invented

to facilitate communication in various communication

scenarios despite the incompatibility of IPv4 and IPv6

[1]. RFC 8219 [2] has defined a comprehensive

benchmarking methodology for IPv6 transition

technologies by classifying the high number of

technologies into a small number of categories: dual

stack, single translation, double translation and

encapsulation. (Plus DNS64 [3], which did not fit into

any of the categories.) Dual stack means that both IPv4

and IPv6 are present and thus benchmarking of network

interconnect devices is possible with the existing RFC

2544 [4] and RFC 5180 [5] compliant measurement tools.

The elements of the double translation solutions as well

as the encapsulation solutions can also be benchmarked

according to the Dual DUT Setup in pairs (e.g. NAT46 +

NAT64, or encapsulation + de-encapsulation) using the

existing measurement tools [2], too.

However, the Dual DUT Setup is unable to reflect the

asymmetric behavior, e.g. 464XLAT [6] is a combination

of stateless NAT (in CLAT) and stateful NAT (in PLAT).

Therefore, they should also be tested separately using the

Single DUT Setup [2]. Single translation technologies

may only be benchmarked according to the Single DUT

Setup.

Existing measurement tools assume that IP version does

not change, when a packet traverses a network

interconnect device, however, this condition is not

satisfied in measurements according to the Single DUT

Setup. Therefore, new measurement tools are needed.

Due to the depletion of the public IPv4 address pool,

DNS64 [3] and stateful NAT64 [7] IPv6 transition

technologies have a high importance, because they

enable IPv6-only clients to communicate with IPv4-only

servers. For DNS64, Dániel Bakai has already created an

RFC 8219 compliant benchmarking tool, dns64perf++

[8]. 464XLAT [6] is also very important as it is widely

used in IPv6-only mobile networks to support legacy

IPv4-only applications, thus providing IPv4aaS (IPv4 as

a Service) [1].

The aim of our current effort is to create a Tester for

stateless NAT64 gateways (including NAT46 operations,

too). The scope of the tests is the most important ones

from among the measurements described in Section 7 of

RFC 8219, namely: throughput, latency, PDV (packet

delay variation), and frame loss rate tests.

We note that measurement procedures for stateful

NAT64 implementations include the stateless tests plus

two further ones, please refer to Section 8 of RFC 8219

[2] for more details.

Our new test program, siitperf, is a free software for

the benefit of the research, benchmarking and

networking communities and it is available under the

GPL v3 license from GitHub [9].

The remainder of this paper is organized as follows.

Section 2 contains the basic operation requirements for

the Tester based on RFC 8219. Section 3 discloses our

most important design considerations and

implementation decisions. Section 4 presents our

functional and performance tests and their results.

Section 5 highlights our plans for further tests,

development, performance optimization and research on

benchmarking methodology issues. Section 6 gives our

conclusions.

 Manuscript received November 28, 2019.

 † The author is with the Department of Networked Systems

and Services, Budapest University of Technology and
Economics, Magyar tudósok körútja 2, H-1117 Budapest,
Hungary.

 a) E-mail: lencse@hit.bme.hu

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

2

2. Operation Requirements and Scope Decisions

Now, we give a high-level overview of the requirements

for the tester, and disclose our considerations behind the

scope decisions.

2.1 Test and Traffic Setup

Section 4.1 of RFC 8219 [2] describes the single DUT

setup (see Fig. 1), which is similar to the test setup of

RFC 2544 [4], but here the IP versions of the left and

right side interfaces are different (IPvX and IPvY, where

X≠Y, and X,Y∈{4,6}). In both RFCs, unidirectional

arrows are used, but they mean bidirectional traffic. In

one direction, the Tester needs to be able to send IPvX

packets to the DUT and receive IPvY traffic from the

DUT, whereas in the other direction, it needs to send

IPvY packets to the DUT and receive IPvX packets from

the DUT at the same time.

We note that whereas bidirectional testing is required,

unidirectional tests may also be used.

Although RFC 8219 mentions other media types, it relies

on Ethernet and we deal exclusively with Ethernet.

RFC 2544 specifies frame sizes to be used over Ethernet.

RFC 8219 explains that they have to be modified, e.g. 84

bytes long frames should be used on the IPv6 side to

achieve 64 bytes on the IPv4 side, since the size of an

IPv6 header is 40 bytes, whereas that of IPv4 is 20 bytes.

As for transport layer protocol, UDP should be used.

RFC 8219 also requires that besides the traffic that is

translated, tests should also use non-translated traffic (we

call it “background traffic”), and different proportions of

the two types of traffic have to be used.

2.2 Scope of Measurements

RFC 8219 requires the measurement of different

quantities. In practice, some of them are actually

measured when benchmarking tests are performed with

RFC 2544 testers, and some of them are omitted or

rarely used. We intend to support those that we find

important. The measurement procedures selected to be

supported result in various requirements for the Tester.

Now, we overview the procedures and their requirements.

2.2.1 Throughput

Measuring throughput is unavoidable both because it is

important for the users and because it is needed for

several other measurement procedures. Throughput is

defined as the highest frame rate, at which the number of

frames received from the DUT by the Tester is equal

with the number of frames sent to the DUT by the Tester,

that is, no frame loss occurs. This implies that the Tester

must be able to send frames at any constant rate for a

given time period and count the sent and received frames.

(In practice, binary search is used to find the highest

rate.)

2.2.2 Latency

Latency is an important characteristic of a NAT64

gateway, thus its measurement must be supported. Its

measurement procedure is redefined in RFC 8219 as

follows. The Tester must send a stream that is at least

120s long, mark at least 500 frames after 60s and

measure the time elapsed from their sending by the

Tester to their receiving by the Tester. (Although it is not

specified how the marked frames should be distributed,

we suppose that an even distribution is desirable.) Then

two quantities are calculated, Typical Latency (TL) is

their median and Worst Case Latency (WCL) is their

99.9th percentile. This test must be performed at least 20

times, and the final results are the medians of the 20

values for both TL and WCL.

2.2.3 PDV

PDV (Packet Delay Variation) and IPDV (Inter Packet

Delay Variation) as defined in RFC 5481 [10] play an

important role in the quality of real-time applications. As

PDV is recommended and IPDV is optional in RFC 8219,

we included only PDV, however, our measurement

program may be easily extended to be able to measure

also IPDV, as the core of their measurement procedure is

the same, and only their calculation is done differently.

Their measurement requires to measure the one-way

delay for all frames in an at least 60s long stream. Unlike

the latency measurement, which requires to store only a

small number of timestamps (500 is enough), this

measurement may be challenging by means of the

storage capacity required and also the CPU performance

required to handle two time stamps for each frame.

2.2.4 Frame Loss Rate

Because of the strict definition of the throughput (no

frame loss is allowed) and the fact that there are many

software based NAT64 implementations, which probably

loose packets, when their performance limits are

 +--------------------+
 | |
 +--------|IPvX Tester IPvY|<-------+
 | | | |
 | +--------------------+ |
 | |
 | +--------------------+ |
 | | | |
 +------->|IPvX DUT IPvY|--------+
 | |
 +--------------------+

Fig. 1 Single DUT test setup [2].

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

3

approached, we consider that measuring frame loss is

very important. For example, if we determine the

maximum lossless frame rate by the throughput test as r,

it makes a significant difference whether the packet loss

rate is 0.01% or 50% at 2*r rate, as the first one can be

used for communication unlike the second one.

The elementary step of the frame loss rate measurement

is the same as that of the throughput measurement: send

frames at a given rate and count the number of sent and

received frames. The frame loss rate is defined by (1).

 (sent-received) / sent * 100% (1)

The difference from the throughput measurement is that

here, the first frame rate to be used is the maximum

frame rate of the media, and then the frame rate is

decreased to 90%, 80%, 70%, etc. of the maximum

frame rate. The measurement can be finished, when no

frame loss occurs during two consecutive measurements.

We note that depending on the performance of the

available hardware, a software tester my not be able to

transmit frames at the maximum frame rate of the media.

In such cases, the Tester still can be used for

measurements in the range it supports, but then some

frame loss rates will be missing. In this case, the

supported ranges should be preliminary determined by a

self-test, please refer to Section 4.2 for details.

2.2.4 Not Supported Measurements

We decided not to implement the remaining three tests,

namely back-to-back frames, system recovery and reset.

Our primary argument is that they are rarely used.

Besides that, the first two would require the Tester to be

able to transmit at the maximum frame rate of the media,

which is not necessarily met by various devices the users

would like to use for executing our test program. The

third one would need the ability to cause (or the ability to

sense) a reset of the DUT, which would also require

additional hardware.

2.2.5 Number of Flows

Section 12 of RFC 2544 requires that first, the tests are

performed using a single source and destination address

pair and then the destination addresses should be random

and uniformly distributed over a range of 256 networks.

3. Design and Implementation of the Tester

3.1 General Design Considerations

3.1.1. Performance Deliberation

Our benchmarking program for DNS64 servers,

dns64perf++, uses standard socket API and it can

send or receive about 250,000 packets per second per

CPU core [8]. We considered this performance

unsatisfactory on the basis of our previous benchmarking

experience. Using the same old 800MHz Pentium III

computer as DUT, our DNS64 performance

measurement results were under 500 resolved queries per

second [11], whereas our stateful NAT64 test results

exceeded 21,000 packets per second [12]. Therefore, we

decided to use DPDK [13] to ensure the highest possible

performance.

3.1.2 Integration or Separation

A fully integrated Tester, which automatically performs

all measurements, may be an attractive solution if we

need a commodity Tester for routine tests. However, our

tester is designed primarily for research purposes. Even

the benchmarking methodology described in RFC 8219

is subject to research, because the described

measurement procedures have not yet been validated by

real measurements due to lack of compliant Testers.

Therefore, we decided to develop a flexible tool, which

enables the user to access all intermediate results, and

experiment easily by executing only certain sub-

functions, when required. To that end, we use high

performance programs for the elementary functions,

which are made flexible by using input parameters

instead of built in constants even if RFC 8219 would

allow using a constant (e.g. 60s or 500 timestamps, etc.)

and by using easy to modify bash shell scripts to execute

these programs.

3.2. High-level Implementation Decisions

3.2.1 Software Architecture and Hardware Requirements

In the general case, bidirectional traffic is required by

RFC 8219. To achieve a clear program structure and high

enough performance, we use one thread pair for the

forward 1 direction (one thread for sending and one

thread for receiving) and another thread pair for the

reverse direction. Each thread is executed by its own

CPU core, thus, in the general case, four CPU cores are

required to be reserved for their execution (in addition to

the core, where the program is started). We note that

either of the two directions may be inactive.

Both the Tester and the DUT need two NICs each for

testing purposes and a third one for network

communication (unless the user wants to work locally on

console).

3.2.2 Input and Output

The above decision for separation also means that the

1 Following the reading direction of English texts, we call the left to

right direction on Fig 1 as “forward” and the right to left direction as

“reverse” direction.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

4

shell script executes the programs multiple times. Those

parameters that change from time to time (e.g. frame size,

frame rate, etc.), can be easily supplied as command line

arguments. Those parameters that do not change (e.g. IP

addresses, MAC addresses, etc.) may be comfortably

supplied in a configuration file.

Those results that are to be used by the script for making

decisions (e.g. number of frames sent, number of frames

received, etc.) are printed to the standard output using a

simple format (separate line for each result and

unambiguous identification string) so that they can be

easily extracted for processing. Those results that are

longer and not to be further processed by the script might

be written into a result file (we did not use this solution).

3.3. Implementation of the Tests

3.3.1 General Considerations and Input Parameters

The four supported measurements are implemented by

three programs (with some overlaps). The first one of

them, siitperf-tp measures throughput and frame

loss rate. The second one siitperf-lat measures

latency. The third one, siitperf-pdv measures PDV,

whereas it can also be used for the throughput and the

frame loss rate measurements according to more

elaborated criteria, which are currently not required by

RFC 8219, but are recommended by our paper [14]. For

the differences, please refer to Section 3.3.2 and Section

3.3.4.

All three programs use positional command line

parameters. The common ones are to be specified in the

following order:

 IPv6 frame size (in bytes, 84-1518), IPv4

frames are automatically 20 bytes shorter

(please refer to Section 3.5.2 for the extension

of the range to 84-1538)

 frame rate (in frames per second)

 duration of testing (in seconds, 1-3600)

 global timeout (in milliseconds), the tester stops

receiving, when this global timeout elapsed

after sending has finished

 n and m, two relative prime numbers for

specifying the proportion of foreground and

background traffic (see below).

Traffic proportion is expressed by two relative prime

numbers n and m, where m packets form every n packets

belong to the foreground traffic and the rest (n-m)

packets belong to the background traffic. Please refer to

Section 3.4.2 for the details.

Besides the parameters above, which are common for all

tester programs, siitperf-lat uses two further ones:

 delay before the first frame with timestamp is

sent (in seconds, 0-3600)

 number of frames with timestamp (1-50,000)

Besides the common ones, siitperf-pdv uses one

further parameter:

 frame timeout (in milliseconds), if the value of

this parameter is higher than zero, then the

tester checks this timeout for each frame

individually. Please refer to section 3.3.4 for

more details.

As for output, if the string “Input Error:” occurs in the

standard output, it means that no test was performed due

to one or more error in the input (including the command

line arguments and the input file, too).

3.3.2 Throughput and Packet Loss Rate Measurements

The siitperf-tp program transmits the frames for

the required duration and continues receiving until the

global timeout time expires after the completion of

sending (see more details below). It reports the number

of the transmitted frames and the received frames for the

active directions (one direction may be missing):
Forward frames sent:

Forward frames received:

Reverse frames sent:

Reverse frames received:

The pass condition for the throughput test is that the

number of received frames is equal with the number of

sent frames for the active directions. Our Tester simply

reports these numbers, the pass or failure of the test as

well as the actions to be taken must be decided by the

shell script, which calls the Tester.

The shell script for packet loss test calculates the packet

loss rate for the active directions using the output of the

program.

We note that siitperf-tp uses the global timeout

parameter solely to determine, when to stop receiving.

This operation complies with the relevant RFCs, as RFC

8219 has taken the throughput test verbatim from RFC

2544, which requires such operation and sets this type of

global timeout to 2 seconds in its Section 23 about the

general trial description. It says that after running a

particular test trial, one should “wait for two seconds for

any residual frames to be received”. We have challenged

this approach and recommended the checking of the

timeout individually for each frame in our paper [14]. We

have implemented our recommended solution in

siitperf-pdv as described in section 3.3.4.

3.3.3 Latency Measurements

First, siitperf-lat transmits the frames without

inserting identifying tags until the specified delay elapses,

then for the remaining test time (that is: duration - delay)

it inserts the required number of identifying tags using

uniform time distribution and it continues receiving until

the global timeout time expires after the completion of

sending. As RFC 8219 requires, it records sending and

receiving time of the tagged frames. (More precisely, the

actual time right after the sending of the tagged frames

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

5

finished and the actual time right after the receiving of

the tagged frames finished.) It reports the TL (typical

latency) and WCL (worst-case latency) values for the

active directions using the following strings for their

identification:
Forward TL:

Forward WCL:

Reverse TL:

Reverse WCL:

The above values are displayed in milliseconds.

Frames with identifying tags are also subject to frame

loss. The latency of a lost frame is set to the highest

possible value, that is: duration - delay + global timeout.

3.3.4 PDV

The siitperf-pdv program transmits the frames

with unique identifiers for the required duration and

continues receiving until the global timeout time expires

after the completion of sending. It records the sending

time and receiving time of all frames. If frame loss

occurs, post processing sets the delay value of the lost

frame to duration + global timeout.

In fact, siitperf-pdv is a two in one tester, as its

behavior during post processing depends on the value of

the frame timeout.

If the value of the frame timeout is 0, then it calculates

and reports the PDV values (in milliseconds) for the

active directions as required by RFC 8219.

If the value of the frame timeout is higher than 0, then no

PDV calculation is done, rather the Tester checks the

delay for every single frame during post processing, and

if the delay of a frame exceeds the specified frame

timeout, then the frame is re-qualified as “lost” for the

report of the number of received frames. Thus, it can be

used as a very precise throughput and packet loss

measurement program, which complies with our

recommendation in [14]. Its price is the performance

penalty. We are aware that the handling of timestamps

may cause higher memory consumption and some extra

CPU load (similarly to the usage of individual identifiers

for every single frame). Therefore, siitperf-pdv, is

expected to perform up to lower rates than siitperf-

tp on the same hardware.

3.4. Measurement Traffic

In this section, we examine how the measurement traffic

required by RFC 8219 can be provided. These

considerations are essential for the design of the traffic

generation of the Tester.

3.4.1 Traffic for Stateless NAT64 Translation

Fig. 2 shows a test and traffic setup for stateless NAT64

measurements. IPv6 is used on the left side of the Tester

and of the DUT, which is actually a stateless NAT64

gateway, and IPv4 is used on their right sides.

Now, let us examine how the nodes from one address

family (IPv4 or IPv6) can be identified in the other

domain (IPv6 or IPv4). When stateful NAT64 is used,

IPv4 nodes are identified in the IPv6 network by using

IPv4-embedded IPv6 addresses. For stateless NAT64,

explicit address mapping can also be used, and this is

what we have chosen now. Please refer to the static

mapping table of the DUT at the bottom of Fig. 2. Thus,

in the forward (left to right) direction, the Tester sends an

IPv6 packet with its own IPv6 address 2001:2::2, as

source address and the destination address will be

2001:2:0:1000::2, which is mapped to 198.19.0.2.

Let us consider what IPv4 addresses should be used after

the stateless NAT64 translation. The destination address

will be simply 198.19.0.2. Unlike in the case of stateful

NAT64, when the NAT64 gateway uses its own IPv4

address as source address (many to one mapping), the

stateless NAT64 gateway uses one to one mapping. The

mapping is described by the before mentioned static

mapping rules. Thus, in our case, 2001:2::2 is mapped to

198.18.0.2.

In the reverse direction (traffic from right to left), the

source and destination IP addresses are simply swapped

in the “reverse traffic” compared to the “forward traffic”.

3.4.2 Background Traffic

RFC 8219 requires that the tests be performed using

different proportions of the traffic to be translated (we

call it foreground traffic) and some background traffic,

which is not translated, but only routed. The background

traffic is native IPv6 traffic. To be able to implement

198.19.0.1/24
not assigned: 2001:2:0:1000::1

2001:2::2/64
not assigned: 198.18.0.2

IPv4 – IPv6 static mapping:
198.18.0.1 – 2001:2::1
198.18.0.2 – 2001:2::2
198.19.0.1 – 2001:2:0:1000::1
198.19.0.2 – 2001:2:0:1000::2

2001:2::1/64
not assigned: 198.18.0.1

Tester

198.19.0.2/24
not assigned: 2001:2:0:1000::2

DUT

“forward” traffic from Tester:
2001:2::2 --> 2001:2:0:1000::2

“forward” traffic through DUT:
198.18.0.2 --> 198.19.0.2“reverse” traffic through DUT:

2001:2:0:1000::2 --> 2001:2::2

“reverse” traffic from Tester:
198.19.0.2 --> 198.18.0.2

(stateless NAT64
gateway)

(executing siitperf)

Fig. 2 Traffic for benchmarking stateless NAT64 gateways [14].

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

6

background traffic, we need to assign IPv6 addresses to

the right side ports of the Tester and of the DUT. Fig. 3

shows the background traffic.

The Tester must be able to provide both kinds of traffics

simultaneously.

RFC 8219 recommends various test cases using different

proportions of foreground and background traffic. Please

refer to Section 3.6.2 for the details of the required

proportions and how it is implemented.

3.5. Further Design Considerations

3.5.1 Generalization

So far, we have considered, what is required to satisfy

the requirements of RFC 8219. Following the

requirements above as our design specifications, would

result in an asymmetric design: for example, the left side

sender would send IPv6 traffic as foreground traffic, and

the right side sender would send IPv4 traffic as

foreground traffic. Writing two similar but different

sender functions would not be a very efficient solution

regarding coding efforts. Therefore, we decided to design

only one general sending function, which can be

parametrized to be able to perform both as left side and

as right side sender function. The same considerations

apply to the receiver functions, too.

3.5.2 Support for Legacy Tests

We wanted to be able to calibrate out test program in the

way that we use it for RFC 2544 / RFC 5180

measurements and benchmark the same DUT with both

our test program and a legacy RFC 2544 / RFC 5180

Tester. Setting 100% background traffic results in pure

IPv6 traffic, but we also wanted to be able to provide

bidirectional pure IPv4 traffic. Therefore, we decided to

assign IPv4 addresses to both sides of the Tester and of

the DUT. To support all possible frame sizes in the IPv4

only tests, it was necessary to extend the IPv6 frame size

range from 84-1518 to 84-1538, which means 64-1518

for IPv4 frame sizes.

It also means that it is the responsibility of the user to

control what traffic should be actually used during a

given test. Out test program provides a handy way for it

in the configuration file (see below).

3.5.3 Parameters Specified in the Configuration File

The Tester requires a high number of parameters that do

not change during consecutive executions. Therefore,

they are placed into the configuration file.

We have designed an easy to use orthogonal format,

which we demonstrate by the following example

specifying the same test setup used in Fig. 2 and Fig. 3.

IP-L-Vers 6 # Left Sender fg. IP ver.

IP-R-Vers 4 # Right Sender fg. IP ver.

IPv6-L-Real 2001:2::2

IPv6-L-Virt :: # currently not used

IPv6-R-Real 2001:2::0:8000::2

IPv6-R-Virt 2001:2:0:1000::2

IPv4-L-Real 0.0.0.0 # currently unused

IPv4-L-Virt 192.18.0.2

IPv4-R-Real 192.19.0.2

IPv4-R-Virt 0.0.0.0 # currently unused

MAC-L-Tester a0:36:9f:c5:fa:1c

MAC-R-Tester a0:36:9f:c5:fa:1e

MAC-L-DUT a0:36:9f:c5:e6:58

MAC-R-DUT a0:36:9f:c5:e6:5a

Forward 1 # Left to Right is active

Reverse 1 # Right to Left is active

The first two lines control the IP versions of the

foreground traffic. Any combination of 4 and 6 is

acceptable, but if the IP versions of both sides are 6, then

there is no difference between the foreground traffic and

the background traffic.

The last two lines specify the active directions. (At least

one of the directions has to be active, otherwise an

“Input Error:” error message will be generated.)

We note that the receiver function was designed to be

resilient: it can recognize the IP version from the Type

field of the Ethernet frame and then handle the rest of the

frame accordingly.

Although RFC 2544 requires to use fixed source and

destination IP addresses first, and then 256 destination

networks, we decided to let the number of the networks

on left and right side to be set independently to any value

from 1 to 256 to support experimentation (to be able to

examine, how their number influences performance).

The settings apply for both background and foreground

2001:2::2/64

Concerning the background traffic, the
stateless NAT64 gateway acts as a router.

2001:2::1/64

Tester

2001:2:0:8000::2/64

2001:2:0:8000::1/64

DUT

forward traffic from Tester:
2001:2::2 --> 2001:2:0:8000::2

forward traffic through DUT:
2001:2::2 --> 2001:2:0:8000::2reverse traffic through DUT:

2001:2:0:8000::2 --> 2001:2::2

reverse traffic from Tester:
2001:2:0:8000::2 --> 2001:2::2

(stateless NAT64
gateway)

Fig. 3 Background traffic for benchmarking stateless NAT64

gateways [14].

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

7

traffic.

Num-L-Nets 1 # No. of Left side netw.

Num-R-Nets 1 # No. of Right side netw.

In the case of IPv4 addresses, the program counts the

networks using the 8 bits from 16 to 23, like 198.18.0.1,

198.18.1.1, …, 198.18.255.1. In the case of IPv6

addresses, bits from 56 to 63 are used like 2001:2:0:0::1,

2001:2:0:1::1, …, 2001:2:0:ff::1.

The DPDK environment also needs to identify the CPU

cores to be used. Please see the following example.

CPU-L-Send 2 # Left Sender

CPU-R-Recv 4 # Right Receiver

CPU-R-Send 6 # Right Sender

CPU-L-Recv 8 # Left Receiver

The specification of the number of memory channels is

optional, if it is not specified the program sets it to 1. It

can be specified by the following line:

MEM-Channels 2 # Number of Memory Ch.

Finally, there is a kind of convenience setting:

Promisc 0 # use promiscuous mode if !0

This setting puts the NICs into promiscuous mode. It was

used for testing, and it was kept for the convenient self-

test of the tester (the user does not have to set the correct

MAC addresses).

Throughout the configuration file, missing critical

specifications, which would result in program crash, will

result an “Input Error:” error message. A “#” sign means

that the rest of the line is to be ignored. (Empty lines are

also ignored.)

3.6. Implementation Details

3.6.1 Time Handling

We have chosen TSC (Time Stamp Counter) for time

measurement, because it is both high precision and

computationally inexpensive. It is a 64-bit register,

which is increased with the CPU clock and it can be read

by a single CPU instruction, RDTSC [15].

The TSC of the logical cores (called “lcore”-s in DPDK

terminology) of the same CPU is the same, but

synchronization is not guaranteed among the TSCs of

cores belonging to different physical CPUs. We expect

that the four CPU cores used for the execution of the

four threads of the program and the main core, on which

the program is started, belong to the same physical CPU,

and thus the local times of the four threads and the main

program are synchronized.

Important warning: the user of the program is advised to

check the constant_tsc flag in the output of cat

/proc/cpuinfo command, otherwise siitperf

may not work correctly.

All the input parameters specified in seconds or

milliseconds are converted to TSC and all time related

quantities are handled inside in TSC. For output, TSC is

converted to seconds or milliseconds.

3.6.2 Specification of Traffic Proportion

RFC 8219 recommends four test cases using different

proportions of foreground and background traffic. The

test cases could be simply identified e.g. by their ordinal

numbers. However, we would like to enable the user to

test any other proportions, too. Moreover, it is also

important for us to implement this feature in a

computationally cost efficient way and to interleave the

foreground and background frames well enough.

Therefore, we have chosen the same solution, which we

originally designed for specifying the proportion of the

domain names to be repeated, when we enabled

dns64perf++ for measuring the efficiency of caching

of DNS64 servers [16]. Let N denote the ordinal number

of the current packet, let n and m be relative prime

numbers. The current packet belongs to the foreground

traffic, if and only if:

 N % n < m (2)

(Otherwise, the current packet belongs to background

traffic.)

Table 1 shows how different traffic proportions can be

set by using n and m. Please refer to Section 6.1 of [16]

for the advantages of this solution.

We note that 100% background traffic means that the

NAT64 gateway is used as an IPv6 router.

Table 1 How different traffic proportions can be set by using n and m.
RFC 8219 foreground traffic background traffic n m

i) 100% 0% 2 2

ii) 90% 10% 10 9

(missing) 75% 25% 4 3

iii) 50% 50% 2 1

(missing) 25% 75% 4 1

iv) 10% 90% 10 1

(missing) 0% 100% 2 0

3.6.3 Frame Format for Test Frames

We have followed the frame format for test frames

defined in Appendix C.2.6.4 of RFC 2544. However, the

value of the “identifying tags” to be used for marking at

least 500 frames has not been specified in any of RFC

2544, RFC 5180 and RFC 8219.

To be able to distinguish our test frames from any other

frames, which might appear in the test network, we use

the 64-bit integer, which is encoded using the same 8

octets as the ASCII codes of the string “IDENTIFY”. It

is placed at the beginning of the data field of the UDP

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

8

datagram. When siitperf-lat tags a frame for

latency measurement, then another 64-bit integer is used,

which reflects “Identify”, and the next 16 bits contain the

serial number starting from 0. (All other frames, as well

as all the frames generated by siitperf-tp are not

numbered to speed up testing. However, the third

program, siitperf-pdv, numbers all its test frames

using 64-bit integers.)

The unused space of the UDP data is always filled up by

increasing octets starting from 0 and repeated if required

by the frame sizes (as required by Appendix C.2.6.4 of

RFC 2544).

3.6.4 Object Oriented Design and its Limitations

The C++ language was chosen to support code reuse,

because the operation of the three test programs is fairly

similar, but there are some deviations. We wanted to

avoid writing three very similar programs, which would

make our source code hard to maintain, therefore we

used an object oriented design. The Throughput class

served as the base class for the Delay and the Pdv

classes. We wanted to implement the most important

functionalities as member functions, but we were able to

do it only partially, due to a limitation of DPDK. This

limitation is that the rte_eal_remote_launch()

function, which is used to start the sender and receiver

functions on the appropriate cores, does not allow

execution of non-static member functions.

As for the details, the readConfigFile() function,

which reads the parameters from the siitperf.conf

configuration file was defined in the base class, and it

was not redefined in the derived classes. Although the

readCmdLine() function, which reads the command

line parameters, was redefined in the derived classes, but

they call the readCmdLine() function of the base

class, which does the lion’s share of the work, and only a

few further parameters are needed to be read. The

implementation of the init() function, which

initializes the DPDK EAL (Environment Abstraction

Layer) as well as the hardware (the network interfaces),

was even more successful: it is not redefined in the

derived classes, and works properly due to using a virtual

member function senderPoolSize() for the

calculation of the appropriate sizes of the packet pools of

the sender functions.

Unfortunately, the sender and receiver functions, which

are not member functions, as well as the measure()

member function, which starts them, are different for all

three classes.

The rte_eal_remote_launch() function uses a

void *arg pointer for its arguments, which are packed

into an appropriate structure. We used classes and

inheritance to reduce the programming work needed to

pack the parameters.

3.6.5 Reuse of Test Frames

In order to increase the maximum achievable frame rate

of the Tester, we were striving to reuse a few number of

pre-generated test frames.

As for the single flow throughput test, each sender uses

only two frames: one for the foreground traffic and

another one for the background traffic. As for the multi

flow throughput test, foreground and background frames

are pre-generated for each destination network and are

stored in two arrays: they are randomly chosen for

sending during testing.

As for latency measurements, all the tagged frames are

also pre-generated and stored in an array. It is also

predetermined concerning each tagged frame, if the

given frame belongs to the foreground or the background

traffic, as well as its destination network, when multi

flow test is performed. All the remaining non-tagged

frames are handled in the same way as with the

throughput test.

As for PDV measurements, our original plan was to use

the same number of pre-generated test frames as with the

throughput tests, and update them concerning the unique

64-bit serial number and the UDP checksum. However it

turned out, that rte_eth_tx_burst() function

reports the frames as sent, when they are still in the

transmit buffer. (We have experienced that no frame 0

arrived, but two frames arrived with the highest serial

number.) Therefore, we use N copies of each frame and

an index from 0 to N-1 is used to select the actual one

(for updating and sending). Our measurements using a

self-test setup (it means that the Tester is looped back,

please refer to Section 4.2 for details) shown some frame

loss even with N=20, thus we set N to 40, which

completely eliminated frame loss.

// Main sending cycle

for (sent_frames = 0; sent_frames < frames_to_send; sent_frames++){

 while (rte_rdtsc() < start_tsc+sent_frames*hz/frame_rate); // Beware: an "empty" loop!

 if (sent_frames % n < m)

 while (!rte_eth_tx_burst(eth_id, 0, &fg_pkt_mbuf, 1)); // send foreground frame

 else

 while (!rte_eth_tx_burst(eth_id, 0, &bg_pkt_mbuf, 1)); // send background frame

} // this is the end of the sending cycle

Fig. 4 Code fragment from the single flow sender of siitperf-tp.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

9

3.6.6 Main Sending Cycle and its Accuracy

Both the sending and receiving functions were designed

to be as fast (and simple) as possible. Fig. 4 shows the

main sending cycle of the throughput tester used for

single flow testing. It waits until the sending time of the

current frame arrives, then it makes a decision whether a

foreground or background frame is to be sent, and

(re)tries sending the frame, until DPDK reports that it

was sent.

We note that using the current algorithm, some of the

frames may be sent late, and it definitely occurs, when

the frame rate is close to the limits of the hardware,

because some mechanisms of the contemporary CPUs,

like caching or branch prediction, ensure their maximum

speed only after the first (or first few) steps. Therefore,

there is no guarantee for the minimum inter-frame time,

and in the worst case, a few frames may be sent out close

to full line rate (called back-to-back frames in RFC 2544

terminology).

The elapsed time during sending is checked and printed

out as an “Info: ” message after the sending cycle.

According to current settings2, 0.001% extra time is

allowed to tolerate some very small random delay (e.g.

due to an interrupt or anything else) even during the

sending of the latest few frames. When the tolerated

delay is exceeded, the sender exits with an error message,

stating that the test is invalid.

3.6.7 Choice of Random Number Generator

We have chosen the 64-bit Mersenne Twister random

number generator (std::mt19937_64) on the basis

of the results of Oscar David Arbeláez [17].

3.6.8 Correction of Negative Delay to Zero

As the delay of a frame is measured in the way that the

current time is stored after its sending (and not before

2 Please refer to the definition of TOLERANCE in defines.h as

1.00001.

that), it might happen that an interrupt occurs after

sending out the frame and before getting the current TSC

by rte_rdtsc(). The processing time of the interrupt

may be longer than the actual one-way delay of the

frame. Thus, in this case the measured delay of the frame

might be a negative number. It may more easily happen

in a self-test setup, when the actual delay is very short.

This phenomenon causes no problem, when latency tests

are done, because only the typical latency (TL) and the

worst-case latency (WCL) values are reported. However,

the PDV measurement is more sensitive to this

phenomenon, because it uses the minimum one-way

delay for calculating the final result. PDV is defined by

(3), where Dmin is the minimum of the measured one-

way delay values, and D99.9thPerc is their 99.9th

percentile.

 PDV = D99.9thPerc - Dmin (3)

We have mitigated the problem by correcting “negative”

delays to 0. If such correction happens, the Tester prints

out the number of corrections in a “Debug: ” message at

the end of post processing.

We note that this mitigation is not perfect, as it can

handle only a negative delay value, and it can not help if

the delay is only decreased somewhat, but remains

positive.

The other possible case, when an interrupt falsifies the

receiving timestamp, which may increase the measured

delay. Thus, it can influence the final result through the

99.9th percentile (if it is frequent enough).

The good news is that this rare phenomenon always

increases the PDV, thus one can be sure that the real

value of PDV is surely not higher than the measurement

result produced by siitperf-pdv.

4. Functional and Performance Tests

The aim of this section is to demonstrate the operation of

siitperf and to make an initial performance

assessment.

/sbin/modprobe jool_siit

jool_siit instance add "benchmarking" --iptables

for ((i=0; i<256; i++))

do

 H=$(printf "%.2x" $i)

 jool_siit -i "benchmarking" eamt add 2001:2:0:$H::/120 198.18.$i.0/24

 jool_siit -i "benchmarking" eamt add 2001:2:0:10$H::/120 198.19.$i.0/24

done

jool_siit -i "benchmarking" eamt display

ip6tables -t mangle -A PREROUTING -s 2001:2::/120 -d 2001:2:0:1000::/56 -j JOOL_SIIT --

instance "benchmarking"

iptables -t mangle -A PREROUTING -s 198.19.0.0/24 -d 198.18.0.0/16 -j JOOL_SIIT --instance

"benchmarking"

Fig. 5 Bash shell script for setting up Jool with 256 networks for multi flow tests.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

10

Measurements were carried out using the resources of

the NICT StarBED, Japan. All used computers were Dell

PowerEdge R430 servers with two 2.1GHz Intel Xeon

E5-2683 v4 CPUs having 16 cores each, 384GB

2400MHz DDR4 RAM and Intel 10G dual port X540

network adapters.

Debian Linux 9.9 operating system with 4.9.0-8-amd64

kernel was used, and the DPDK version was 16.11.9-

1+deb9u1.

Hyper-threading was switched off on all servers. The

CPU clock frequency of the computers could vary from

1.2GHz to 3GHz, but power budget limited it to 2.6GHz,

when all cores were loaded. Using the cpufrequtils

package, the CPU frequency scaling governor was set to

“performance” in all servers.

All three tester programs were compiled with g++ 6.3.0

using the -O3 flag.

4.1 Functional Tests

On the basis of our previous experience in [14], we have

chosen the Jool 4.0.1 [18] SIIT implementation for

testing.

For the functional tests, nodes p094 and p095 were used

as Tester and DUT, respectively. Their 10Gbps Ethernet

interfaces were interconnected by direct cabling.

As siitperf is currently not able to reply to ARP or

ND requests, address resolution was done by manual

addition of static entries.

The network interfaces and Jool was set up according to

Fig. 2 and Fig. 3 for the single flow tests. As for the

multi-flow tests, Jool was set up by the script shown in

Fig. 5. The static ARP and Neighbor Table entries as well

as the IP addresses for all the networks were set by the

scripts, too.

The content of the siitperf.conf file was shown in

Section 3.5.3 as an example.

We have performed only a few tests as samples, and we

note that performing all possible tests would have

required a lot of time and the analysis of the results could

be a subject of a complete paper.

4.1.1 Throughput Tests

The measurements were executed 20 times, then median,

1st and 99th percentiles were calculated. To reflect the

consistent or scattered nature of the results, we have also

calculated a further quantity, dispersion (Disp):

%100
median

percentile1percentile99
Disp

stth

 (3)

The throughput results of Jool using bidirectional traffic

are shown in Table 2. We note that the results are to be

interpreted that the same rates were used in both

directions, thus the cumulative number of frames per

second forwarded by the DUT was the double of what is

shown in the table.

As we expected, the change of the frame size made no

significant difference in the case of the single flow tests

(426,576 fps vs. 415,741 fps), this results complies with

our earlier experience [14]. As for the multi flow test, the

difference is higher (898,559 fps vs. 812,784 fps),

because the frame rate of the 1518 bytes long frames

achieved (and it was limited by) the maximum frame rate

of the 10Gbps Ethernet.

Considering the results of tests with 84 bytes frames, the

multi flow throughput (898,559 fps) is somewhat higher

than the double of the single flow throughput (426,576

fps). We note that this growth is the resultant of two

effects, which are working against each other. On the one

hand, the handling of 256 networks requires more

computation than the handling of a single network. On

the other hand, the different destination addresses

distributed the load nearly evenly among (the half of the)

the CPU cores. As Jool works in kernel space, we could

observe only the software interrupts using the top

command. Cores 0-15 were nearly fully utilized by the

software interrupts, and cores 16-31 were shown to be

idle. The detailed analysis of the situation is beyond the

limits of this paper.

Table 2 Throughput of Jool using bidirectional traffic.

IPv6 frame size (bytes) 84 1518 84 1518

num. destination nets 1 1 256 256

median (fps) 426576 415741 898559 812784

1st percentile (fps) 412499 399999 896653 812780

99th percentile (fps) 428138 417191 900004 812787

dispersion (%) 3.67 4.14 0.37 0.00

4.1.2 Frame Loss Rate Test

Although RFC 2544 requires that frame loss rate tests

should be performed for different frame rates starting

from the maximum frame rate of the media, decreased in

not more than 10% steps until two consecutive

measurements show zero frame loss, we have shown in

[14] that there was not much point in using such high

rates, when the throughput was rather far from the

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

Fr
am

e
 lo

ss
 r

at
e

(%
)

Frame rate (kfps)

Jool Frame Loss Rate

84bytes 1518bytes

Fig. 6 Frame loss rate of Jool using bidirectional single flow traffic.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

11

maximum frame rate of the media. Following the same

approach, we performed frame loss test for those frame

rates, which we believed to provide meaningful results.

Fig. 6 shows the frame loss rate of Jool using

bidirectional, single flow traffic, 84 bytes and 1518 bytes

frame sizes for frames containing IPv6 datagrams (and

64 bytes and 1498 bytes frame sizes for IPv4). The color

bars show the median values of the 20 measurements,

whereas the error bars show the 1st and 99th percentiles.

4.1.3 Latency Measurements

As our aim is not the investigation of Jool, but the

demonstration of the operation of siitperf-lat, we

have performed the latency measurements only with 84

byte IPv6 frame size, using bidirectional single flow

traffic at 426,576 fps frame rate determined by the

throughput test.

As for latency measurements, the duration of the tests

was 120 seconds and 50,000 identifying tags were

inserted after 60 seconds using uniform time distribution.

The test was performed 20 times and the results are

shown in Table 3.

Table 3 Latency of Jool using 84 bytes IPv6 frame size, single flow,

bidirectional traffic, 426,576 fps frame rate.

 Fwd TL Fwd WCL Rev TL Rev WCL

median (ms) 0.027 0.058 0.020 0.152

1st perc. (ms) 0.027 0.056 0.019 0.140

99th perc. (ms) 0.028 0.761 0.020 62000

There is a visible asymmetry between latency values of

the IPv6 to IPv4 translation in the Forward direction and

that of the IPv4 to IPv6 translation in the Reverse

direction. The 62,000ms 99th the percentile value of the

Reverse direction worst case latency is the result of the

loss of several tagged frames and the handling of the

situation described in Section 3.3.3.

4.1.3 PDV Measurements

As for PDV measurements, the duration of the tests was

60s, the test was performed 20 times and the results are

shown in Table 4.

Table 4 PDV of Jool using 84 bytes IPv6 frame size, single flow,

bidirectional traffic, 426,576 fps frame rate.

 Forward PDV Reverse PDV

median (ms) 0.058 2.727

1st percentile (ms) 0.057 0.159

99th percentile (ms) 0.068 10.044

4.2 Performance Estimation

For the self-test of the Tester, the p096 server was used

and its two 10Gbps network interfaces were

interconnected by a direct cable. We disclose the result of

the multi flow tests, where siitperf had to generate

random numbers for every single frame. Besides

siitperf-tp, we have also tested siitperf-pdv

using 10ms frame timeout. Their results are shown in

Table 5. They are definitely more than enough for

benchmarking SIIT implementations, like Jool.

Table 5 Maximum frame rate achieved by siitperf-tp/pdv,

using multi flow test, bidirectional traffic, 84 bytes IPv6 frame size and

10ms frame timeout for siitperf-pdv.

 siitperf-tp siitperf-pdv

median (fps) 7205039 6430908

1st percentile (fps) 7174546 6430651

99th percentile (fps) 7241211 6430928

dispersion (%) 0.93 0.00

5. Plans for Future Research and Development

5.1. Comprehensive Testing

5.1.1 Checking the Accuracy of the Sending Algorithm

As we mentioned in Section 3.6.6, currently there is no

guarantee for the minimum inter-frame time. As

siitperf-pdv stores all sending and receiving

timestamps, the uniformity of the inter-frame times can

be easily examined.

As for how this inaccuracy may effect measurement

results, please refer to Section 5.1.2.

As for possible mitigation, we have experimented with

using e.g. 90% of the calculated inter-frame time as the

allowed minimum inter-frame time, and found that this

method significantly decreased the achievable maximum

frame rate. Therefore, we plan to use this method only in

the case, if it proves to be necessary.

5.1.2. Validation of Siitperf with a Standard Tester

We plan to validate siitperf by measuring the IPv4

routing performance of the Linux kernel with it and also

with a legacy commercial RFC 2544 compliant Tester

and then comparing their results.

If the results of siitperf will be lower than that of the

commercial tester, it will probably indicate that the non-

uniformity of the inter-frame times influences the results.

5.1.3. Complete Benchmarking of Jool

We plan to perform all possible benchmarking

measurements with the Jool SIIT implementation.

By doing so, our primary aim is to test all the

functionalities of siitperf thoroughly. As a byproduct,

we also provide network operators with ready to use

performance data of Jool.

5.2. Adding Further Functionalities

Our current aim was to create a working Tester as soon

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

12

as possible. Later we plan to add further functionalities,

including the following ones.

5.2.1 Support for Overload Scalability Tests

Section 10 of RFC 8219 explains the need for testing

with and increasing number of network flows and to

observe the resulting performance degradation. Currently,

siitperf supports testing with up to 256 destination

networks. The support for significantly higher number of

network flows would need to use further bits than the

currently used 8 bits from 16 to 23. Potential candidates

are bits from 24 to 29 (as bits 31 and 31 are needed to

express the proper ending of the IPv4 addresses, which

are currently “.1” and “.2” for the DUT and for the Tester,

respectively. If the further 6 bits prove not to be enough,

then larger IPv4 address ranges are needed than those

reserved for benchmarking (198.18.0.0/24 and

198.19.0.0/24).

5.2.2 Implementation of ARP and ND

We plan to make the usage of siitperf more

comfortable by adding the ability of replying ARP

requests (for IPv4) and Neighbor Solicitation (for IPv6),

thus eliminate the need for manual settings of the these

mappings in the DUT.

5.2.3 Implementation of IPDV Measurements

We also plan to add this optional functionality. The

source code for PDV can be easily extended to support

IPDV measurements.

5.3. Performance Optimization

5.3.1 Parallel Post-Processing in PDV Measurements

Currently, the timestamps of the PDV measurements are

post processed after the measurements by the main core,

and if a bidirectional test is performed, then they are

processed for the Forward and Reverse directions

sequentially. They could be executed in parallel, by two

cores. Its price is to write the code that packs all

necessary information to an appropriate structure for the

rte_eal_remote_launch() function.

5.3.2 Using Multiple Senders

Currently, the maximum frame rate is limited by the

performance of the senders. (Whereas the senders send

the frames one by one, the receivers receive multiple

frames by a single call of the rte_eth_rx_burst()

function.)

The sending performance could be increased by using

multiple senders. However, this solution has a practical

problem. Whereas theoretically the two frame flows can

be perfectly interleaved, in practice, the timing

inaccuracy could result in improper inter-frames times,

which could not even be corrected using the method

mentioned in Section 5.1.1.

5.4. Developing the Benchmarking Methodology

5.4.1 Global Timeout vs. Frame Timeout

In [14], we aimed to check the viability of the RFC 8219

benchmarking measurements. We have pointed out

different possible issues including the problem that

throughput and frame loss rate measurements use a

single global timeout, and we recommended the

checking of the timeout individually for each frame. Now,

this solution can be implemented by using siitperf-

pdv for throughput and frame loss rate measurements.

We plan to check, if the classic RFC 2544 measurement

result and the results of our recommended tests are

significantly different, and if so, then which one is closer

to the users’ experience.

5.4.2 Methodology for Benchmarking Stateful NAT64

RFC 8219 recommends the same measurements for

stateless and stateful NAT64, plus some extra tests for

the latter one. Namely, it recommends the measurement

of “concurrent TCP connection capacity” and “maximum

TCP connection establishment rate” in its Section 8.

Whereas we believe that they are important and

meaningful, we surmise that further tests are needed. We

are especially concerned, how the number of connections

(that is the size of the state table) influences the

performance. Many people think that stateful solutions

do not scale up well. Others think that hashing reduces

the lookup cost in the state table efficiently. In Section

3.2 of our Internet Draft [19], we promised to address

this question by benchmarking measurements.

Our results may also lead to the amendment of RFC

8219 with further tests.

6. Conclusions

We conclude that our efforts were successful in creating

the world’s first standard free software stateless NAT64

benchmarking tool, siitperf. Our tests proved that it

works correctly and it has high enough performance for

benchmarking SIIT implementations.

Our further plans include its comprehensive testing,

adding further functionalities and its performance

optimization. We also plan to use our new Tester for

research in benchmarking methodology issues.

Acknowledgments

The development of siitperf and the measurements

were carried out by remotely using the resources of

NICT StarBED, 2-12 Asahidai, Nomi-City, Ishikawa

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

13

923-1211, Japan. The author would like to thank Shuuhei

Takimoto for the possibility to use StarBED, as well as to

Satoru Gonno for his help and advice in StarBED usage

related issues.

The author thanks Keiichi Shima, Marius Georgescu,

Tamás Budai and Alexandru Moise for their reading and

commenting the manuscript.

Péter Bálint, a PhD student at the Széchenyi István

University has reported the implementation of a stateless

NAT64 tester in 2017 [20]. However, he told that its

performance was unsatisfactory. For this reason, he re-

implemented the tester using DPDK (and the C

programming language) under the supervision of Gábor

Lencse on the basis of the design described in an earlier

version of this paper. Unfortunately, his program was

unusable for measurements, and Gábor Lencse has

corrected it to the extent that it could be used for

throughput and packet loss rate measurements with

single flow, and it was used for [14], but that program

has not been publicly released. This is why we can state

that siitperf is world’s first standard free software

stateless NAT64 benchmarking tool. On the one hand,

siitperf is a completely new implementation from

scratch in C++ to avoid copyright issues, but, on the

other hand, we would like to acknowledge our learning

from the C source code of Péter Bálint, especially

concerning the DPDK functions used.

References

[1] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6

transition technologies: A subjective classification for security

analysis”, IEICE Trans. Commun., vol. E102-B, no.10, pp. 2021-

2035, DOI: 10.1587/transcom.2018EBR0002

[2] M. Georgescu, L. Pislaru and G. Lencse, “Benchmarking

Methodology for IPv6 Transition Technologies”, IETF RFC 8219,

Aug. 2017, DOI: 10.17487/RFC8219

[3] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64:

DNS extensions for network address translation from IPv6 clients

to IPv4 servers”, RFC 6147, April 2011.

[4] S. Bradner, J. McQuaid, “Benchmarking methodology for network

interconnect devices”, RFC 2544, March 1999.

[5] C. Popoviciu, A. Hamza, G. Van de Velde, D. Dugatkin, “IPv6

benchmarking methodology for network interconnect devices”,

RFC 5180, May 2008.

[6] M. Mawatari, M. Kawashima, C. Byrne, “464XLAT: Combination

of stateful and stateless translation”, IETF RFC 6877, Apr. 2013.

[7] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:

Network address and protocol translation from IPv6 clients to

IPv4 servers”, RFC 6146, April 2011.

[8] G. Lencse and D. Bakai, “Design and implementation of a test

program for benchmarking DNS64 servers”, IEICE Transactions

on Communications, vol. E100-B, no. 6. pp. 948–954, Jun. 2017.

DOI: 10.1587/transcom.2016EBN0007

[9] G. Lencse, “Siitperf: an RFC 8219 compliant SIIT (stateless

NAT64) tester written in C++ using DPDK”, source code,

https://github.com/lencsegabor/siitperf

[10] A. Morton and B. Claise, “Packet delay variation applicability

statement", IETF RFC 5481, Mar. 2009, DOI 10.17487/RFC5481

[11] G. Lencse and S. Répás, “Performance analysis and comparison of

different DNS64 implementations for Linux, OpenBSD and

FreeBSD”, Proc. IEEE 27th International Conference on

Advanced Information Networking and Applications (AINA 2013),

Barcelona, Spain, Mar. 2013, pp. 877-884. DOI:

10.1109/AINA.2013.80

[12] G. Lencse and S. Répás, “Performance analysis and comparison of

the TAYGA and of the PF NAT64 implementations”, Proc. 36th

International Conference on Telecommunications and Signal

Processing (TSP 2013), Rome, Italy, Jul. 2013, pp. 71-76. DOI:

10.1109/TSP.2013.6613894

[13] D. Scholz, “A look at Intel’s dataplane development kit”, Proc.

Seminars Future Internet (FI) and Innovative Internet

Technologies and Mobile Communications (IITM), Munich,

Germany, Aug. 2014, pp. 115–122, DOI: 10.2313/NET-2014-08-

1_15

[14] G. Lencse, K. Shima, “Performance analysis of SIIT

implementations: Theory and practice”, currently under review in

Elsevier Computer Communications, review version is available:

http://www.hit.bme.hu/~lencse/publications/ECC-2019-SIIT-

Performance-for-review.pdf

[15] Intel, “Intel 64 and IA-32 Architectures Software Developer’s

Manual”, Volume 2B: Instruction Set Reference, M-U, Order

Number: 253667-060US, September 2016,

https://www.intel.com/content/dam/www/public/us/en/documents

/manuals/64-ia-32-architectures-software-developer-vol-2b-

manual.pdf

[16] G. Lencse, “Enabling Dns64perf++ for Benchmarking the Caching

Performance of DNS64 Servers”, Journal of Computing and

Information Technology, vol. 26, no 1, pp. 19-28. July 2018, DOI:

10.20532/cit.2018.1004078

[17] Oscar David Arbeláez, “How competitive are C++ standard

random number generators”,

https://medium.com/@odarbelaeze/how-competitive-are-c-

standard-random-number-generators-f3de98d973f0

[18] NIC Mexico, (2019). “Jool: SIIT and NAT64”,

http://www.jool.mx/en/about.html

[19] G. Lencse, J. Palet Martinez, L. Howard, R. Patterson, “Pros and

cons of IPv6 transition technologies for IPv4aaS”, Jul. 2019,

active Internet Draft, https://tools.ietf.org/html/draft-lmhp-v6ops-

transition-comparison-03

[20] P. Bálint, “Test software design and implementation for

benchmarking of stateless IPv4/IPv6 translation implementations”,

in Proc. 40th International Conference on Telecommunications

and Signal Processing (TSP 2017), Barcelona, Spain, Jul. 5-7,

2017, pp. 74–78.

 Gábor Lencse received his M.Sc. and Ph.D.

degrees in computer science from the

Budapest University of Technology and

Economics, Budapest, Hungary in 1994 and

2001, respectively. He works for the

Department of Telecommunications,

Széchenyi István University, Győr, Hungary

Since 1997. Now, he is a professor. He is

also a part time senior research fellow at the

Department of Networked Systems and

Services, Budapest University of Technology

and Economics since 2005. His research

interests include the performance and

security analysis of IPv6 transition

technologies. He is a co-author of RFC

8219.

https://github.com/lencsegabor/siitperf
http://www.hit.bme.hu/~lencse/publications/ECC-2019-SIIT-Performance-for-review.pdf
http://www.hit.bme.hu/~lencse/publications/ECC-2019-SIIT-Performance-for-review.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf
https://medium.com/@odarbelaeze/how-competitive-are-c-standard-random-number-generators-f3de98d973f0
https://medium.com/@odarbelaeze/how-competitive-are-c-standard-random-number-generators-f3de98d973f0
http://www.jool.mx/en/about.html
https://tools.ietf.org/html/draft-lmhp-v6ops-transition-comparison-03
https://tools.ietf.org/html/draft-lmhp-v6ops-transition-comparison-03

