
Performance Analysis of DNS64 and NAT64 Solutions INFOCOMMUNICATIONS JOURNAL, JUNE 2012, VOL. IV, NO. 2, PP. 29-36.

Performance Analysis of DNS64 and NAT64

Solutions

Gábor Lencse, Gábor Takács

Abstract—The need for DNS64 and NAT64 solutions is

introduced and their operation is presented. A test environment

for the performance analysis of DNS64 and NAT64 implementa-

tions is described. The resource requirements of the implementa-

tions are measured. The performance of DNS64 and NAT64

solutions is measured under heavy load conditions to determine if

they are safe to be used in a production environment, like the

network of an internet service provider.

Index Terms—IPv6 deployment, DNS64, NAT64, performance

analysis.

I. INTRODUCTION

As the Internet Assigned Numbers Authority (IANA)
delegated the last five “/8” IPv4 address blocks to the
Regional Internet Registries in 2011 [1], and the depletion of
the IPv4 address pool of the RIPE NCC (which is responsible
for the IPv4 address allocations in Europe) is expected to
happen in 2012 [2], the deployment of the IPv6 became
inevitable in Europe, too. Internet service providers (ISPs)
must urgently take preparations for both providing IPv6
services and the co-existence of the two versions of IP. (Of
course, not only ISPs, but also customers (including both
private and business customers) have to manage this complex
change carefully [10]; and because of its complexity they have
to use some integrated approach for the evaluation of all
aspects concerning their activities and networks [11].)

In the past years a lot of research was done in the field of
IPv6 and important theoretical results were achieved.
However, if an ISP plans to introduce IPv6, it is crucial to test
the performance and the stability of the different published
solutions and choose the ones that are proven to be suitable.

The co-existence of IPv4 and IPv6 raises many different
issues. In the beginning of the deployment of IPv6, the
following situation is found to be the most typical: there will
be customers that have IPv6 addresses only, and they want to
connect to servers still having IPv4 addresses only. (The case
of the IPv4 only clients and the IPv6 only servers will be a
typical situation in a later phase of the deployment of IPv6.)

Even though the use of dual stack by any of the parties
(client or server) would solve the problem, it is not a feasible
solution for ISPs because, on the one hand, they will not be
able to provide their customers with IPv4 addresses as they are
running out of them soon, and on the other hand, they cannot
force third party server operators to use dual stack instead of
IPv4 only.

The techniques that an ISP can use for solving the problem
of IPv6 only clients and IPv4 only servers are DNS64 [3] and
NAT64 [4]. These well-known methods have several imple-
mentations and we have carefully chosen some of them to
investigate their performance and stability.

The rest of this paper is organized as follows: first, the
operation of DNS64 and NAT64 is introduced, second, the
selection of the implementations is discussed, third, our test
environment is described, fourth, the performance measure-
ment method of DNS64 is detailed, fifth, the DNS64 results
are presented and discussed, sixth, the performance measure-
ment method of NAT64 is described, seventh, the NAT64
results are presented and discussed, and finally, our conclu-
sions are given.

II. THE OPERATION OF DNS64 AND NAT64

To enable an IPv6 only client to connect to an IPv4 only
server, one needs DNS64 service and a NAT64 gateway. The
operation of the solution is introduced using the following
network as an example.

Fig. 1. DNS64 and NAT64 (source: [5], corrected by the authors)

The IPv6 only client (symbolized by a PC on the left side
of Fig. 1) wants to connect to an IPv4 only server (symbolized
by a web server on the right side of the figure). The IPv4 only
server means that the DNS system has only an “A” record for
the server and no “AAAA” records. A precondition for the
operation of the method is that the DNS64 server should be set
as the DNS server of the IPv6 only client. When the IPv6 only

Manuscript received May 11, 2012. This work was financed by Telenor

Hungary.

Gábor Lencse is with the Department of Telecommunications, Széchenyi

István University, 9026 Győr, Egyetem tér 1, Hungary. phone: +36-30-409-

56-60; fax: +36-96-613-646, e-mail: lencse@sze.hu

Gábor Takács was with the Department of Telecommunications,

Széchenyi István University

Performance Analysis of DNS64 and NAT64 Solutions INFOCOMMUNICATIONS JOURNAL, JUNE 2012, VOL. IV, NO. 2, PP. 29-36.

client tries to connect to the web server, it sends a recursive
query to the DNS64 server to find the IPv6 address of the web
server. The DNS64 server uses the normal DNS system to find
out the IP address of the web server.

 If the answer contains an IPv6 address (also) then the
DNS64 server returns the IPv6 address as its answer to
the recursive query.

 If the answer contains only an IPv4 address then the
DNS64 server returns a special IPv6 address; in our
example this is the 64:ff9b::/96 prefix plus the 32 bits
of the IPv4 address of the web server.

The route towards the network with given IPv6 prefix (in
our example, it is 64:ff9b::/96) should be set in the IPv6 only
client (and in all of the routers along the route from the client
to the NAT64 gateway) to go through the NAT64 gateway.

The IPv6 only client uses the received IPv6 address to set
up a connection to the desired (IPv4 only) web server. The
client sends a SYN packet to the received IPv6 address. When
its SYN packet arrives to the NAT64 gateway, the gateway
builds an IPv4 packet using the payload (and some header
fields) of the IPv6 packet and it sets the destination address of
the IPv4 packet according to the rightmost 32 bits of the
destination address of the IPv6 packet. These 32 bits contain
exactly the IPv4 address of the desired web server. The source
address of the IPv4 packet is set to be the IPv4 address of the
NAT64 gateway. The NAT64 gateway sends out the IPv4
packet and it arrives to the IPv4 only server. The IPv4 only
server responds the normal way using the source address of
the IPv4 packet, that is, the server sends its response to the
NAT64 gateway. The gateway receives the IPv4 packet and
builds an IPv6 packet using the payload (and some header
fields) of the IPv4 packet. The NAT64 gateway sends the IPv6
packet back to the client. (To be able to do this, the NAT64
gateway uses stateful NAT or some other method to track the
IPv6 – IPv4 mapping.)

The short example above used the well-known prefix
described in [6]. In practice, the worldwide use of this prefix
has a number of hindrances, see points 3.1 and 3.2 of [6]. For
this reason, when implementing a NAT64 gateway, a given
size of the subnet is reserved from the actually used IPv6
network. This solution is called network specific prefix. In this
way, the Infocommunications Laboratory of the Department of
Telecommunications, Széchenyi István University has got the
2001:738:2c01:8001::/64 network out of which we have
reserved 2001:738:2c01:8001:ffff:ffff::/96 as the network
specific prefix.

Note that for NAT64, we embed IPv4 addresses into IPv6
addresses: the last 32 bits of the IPv6 address hold the
embedded IPv4 address. These kinds of IPv6 addresses are
called IPv4-embedded IPv6 addresses [6]. There is a further
naming convention. Even though their structure and the way
of their generation is identical, the IPv4-embedded IPv6
addressed have two further subgroups distinguished on the
basis of the purpose of their usage: IPv6 addresses used to
represent IPv4 hosts in the IPv6 network are called IPv4-
converted IPv6 addresses. (They are used in this paper.) The
term IPv4-translatable IPv6 address is used for an IPv6

address that belongs to an IPv6 host and the purpose of the
address translation is to be able to connect to an IPv4 only
host. (We are not dealing with this case in this paper.)

III. THE SELECTION OF DNS64 AND NAT64

IMPLEMENTATIONS

As BIND, the most widely used DNS implementation,
contains native DNS64 support from version 9.8, there was no
reason to consider anything else.

As for NAT64 gateways, there are a number of imple-
mentations [5]:

 TAYGA is a stateless NAT64 implementation for
Linux

 Ecdysis is a NAT64 gateway containing also DNS64

 Microsoft Forefront Unified Access Gateway is a
reverse proxy and VPN solution that implements
DNS64 and NAT64

 Stateless Network Address Translation 64 runs on
Cisco ASR 1000 router

 Stateful NAT64 feature on Juniper MX Series 3D
Universal Edge router

 OpenBSD PF packet filter is promised to be NAT64
capable in OpenBSD 5.1

From this seemingly wide selection, finally we were able
to test the stability and performance of TAYGA only. Why?

 Ecdysis contains a non official Linux kernel module
and it is unfortunately not stable. Ecdysis was tested
with version 2.6.32, 2.6.35, 2.6.37 and 3.0.1 kernels
and it froze many times. In addition to that, the home
page of the project does not reflect any development in
the last 15 months [7].

 The Microsoft solution is a small part of a multi
function product; the whole product is not at all needed
and would be too expensive and resource consuming.

 The solutions running on Cisco or Juniper routers
require special hardware that we did not have.

 At the time of our measurements the current OpenBSD
release was 5.0.

TAYGA is a free software under GPLv2 license and
according to its developers it was intended to provide
production quality NAT64 service [8]. TAYGA is a stateless
NAT64 solution. It means that by itself it can create only a
one-to-one mapping between IPv6 and IPv4 addresses. For
this reason TAYGA is used together with a stateful NAT44
packet filter (iptables under Linux): TAYGA maps the
source IPv6 addresses to different IPv4 addresses from a
suitable size of private IPv4 address range, and from the
private IPv4 addresses the stateful NAT44 packet filter
performs an SNAT to the IPv4 address of the NAT64 gateway.
In the reverse direction, the stateful NAT44 packet filter
“knows” which private IPv4 address belongs to the reply
packet arriving to the IPv4 interface of the NAT64 gateway.

Performance Analysis of DNS64 and NAT64 Solutions INFOCOMMUNICATIONS JOURNAL, JUNE 2012, VOL. IV, NO. 2, PP. 29-36.

After the NAT44 translation TAYGA can determine the
appropriate IPv6 address using its one-to-one address mapping
and then it rewrites the packet to IPv6.

Note that TAYGA is able to store the one-to-one IPv6 –
IPv4 address mappings on disk, therefore, in case of a system
crash TAYGA can continue using these after restart. On the
basis of our experiences with TAYGA we do not think this
functionality would be much used.

When configuring TAYGA, a suitably large private IPv4
address range should be provided.

IV. THE TEST SYSTEM FOR DNS64 AND NAT64

PERFORMANCE MEASUREMENTS

The aim of our tests was to examine the selected programs
regarding stability and behaviour under heavy load conditions.
(For testing the software, some hardware had to be used, but
our aim was not the performance analysis of any hardware.)

A. The Structure of the System

A test network was set up in the Infocommunications
Laboratory of the Department of Telecommunications,
Széchenyi István University. The logical topology of the
network is shown in Fig. 2. The central element of the network
is the DNS64/NAT64 computer. This Linux box played the
role of both the DNS64 server and the NAT64 gateway but not
simultaneously, but rather one after the other, as we measured
the performance of the two systems separately.

For the measurements, we needed a namespace that:

 can be described systematically

 can be resolved to IPv4 only

 can be resolved without delay

The 10-{0..10}-{0..255}-{0..255}.zonat.tilb.sze.hu name-
space was used for this purpose. This name space was mapped
to the 10.0.0.0 – 10.10.255.255 IPv4 address by the name
server at 192.168.100.105. The DNS64 server mapped these
IPv4 addresses to the 2001:738:2c01:8001:ffff:ffff:0a00:0000
– 2001:738:2c01:8001:ffff:ffff:0a0a:ffff IPv6 address range.

The IPv6 only workstations at the bottom left corner of the
figure played the role of the clients for both the DNS64 and
the NAT64 measurements.

During the NAT64 measurements, the TAYGA NAT64
gateway used the 172.16.0.0/12 private IPv4 address range
that was SNAT-ed to the 193.224.129.170 IPv4 address.

At the NAT64 gateway, the address of the next hop router
towards the 10.0.0.0/8 network was set to 193.224.129.172.
(The PC with this IP address responded instead of all of the
hosts with IP addresses from the 10.0.0.0/8 network, see more
details later on.)

8×Dell Precision 490 Workstation

University
 Core Network

193.224.129.172/28

Next hop for 10.0.0.0/8

192.168.100.105/24

Master of

„zonat.tilb.sze.hu” domain.

193.224.129.170/28

2001:738:2c01:8000::170/64

DNS64
NAT64

2001:738:2c01:8001::1/64

172.16.0.1/32

2001:738:2c01:8001:ffff:ffff::1/128

TAYGA

Dual Stack Network
VLANID:10

193.224.129.160/28
2001:738:2c01:8000::/64

IPv4-only Network
VLANID:11

192.168.100.0/24

172.16.0.0/12
2001:738:2c01:8001:ffff:ffff::/96

IPv6-only Network
VLANID:64
2001:738:2c01:8001::/64

Fig. 2. Logical Topology of the DNS64 and NAT64 Test Network

Performance Analysis of DNS64 and NAT64 Solutions INFOCOMMUNICATIONS JOURNAL, JUNE 2012, VOL. IV, NO. 2, PP. 29-36.

The physical topology of the system is shown in Fig. 3. It
is provided for the purpose that our measurements can be
reconstructed and verified. Due to the infrastructural reasons
that the client workstations and the DNS64/NAT64 Linux box
were in two neighbouring rooms, they were interconnected by
two Gigabit Ethernet switches using VLANs. (The VLAN IDs
are written to the network in circles.)

B. The Configuration of the Computers

A test computer with special configuration was put
together for the purposes of the DNS64 server and the NAT64
gateway in order that the clients will able to produce high
enough load for overloading it. The CPU and memory
parameters were chosen to be as little as possible from our
available hardware base in order to be able to create an
overload situation with a finite number of clients, and only the
network cards were chosen to be fast enough. The configura-
tion of the test computer was:

 Intel D815EE2U motherboard

 800 MHz Intel Pentium III (Coppermine) processor

 128 MB, 133 MHz SDRAM

 Two 3Com 3c940 Gigabit Ethernet NICs

Note that the speed of the Gigabit Ethernet could not be
fully utilized due to the limitations of the PCI bus of the
motherboard, but the speed was still enough to overload the
CPU.

For all the other purposes (the 8 client computers, the IPv4
DNS server and the next hop router towards the 10.0.0.0/8
network) standard DELL Precision Workstation 490 comput-
ers were used with the following configuration:

 DELL 0GU083 motherboard with Intel 5000X chipset

 Two Intel Xeon 5130 2 GHz dual core processors

 4x1 GB 533 MHz DDR2 SDRAM (Quad Channel)

 Broadcom NetXtreme BCM5752 Gigabit Ethernet
controller (PCI Express)

Debian Squeeze 6.0.3 GNU/Linux operating system was
installed on all the computers (including the Pentium III test
computer, too).

8×Dell Precision 490 Workstation

3Com 3824 3Com 2948 SFP-Plus

2001:738:2c01:8001::1/64

193.224.129.170/28

2001:738:2c01:8000::170/64

192.168.100.105/24
193.224.129.172/28

2001:738:2c01:8001::/64

64 10

64

11

10

64

11

10

10

11

University Core
Network

DNS64
NAT64

Intel Pentium III
800MHz

Fig. 3. Physical Topology of the DNS64 and NAT64 Test Network

Performance Analysis of DNS64 and NAT64 Solutions INFOCOMMUNICATIONS JOURNAL, JUNE 2012, VOL. IV, NO. 2, PP. 29-36.

V. DNS64 PERFORMANCE MEASUREMENT METHOD

A. IPv4 DNS Server Settings

The DNS server was a standard DELL Linux workstation
using the 192.168.100.105 IP address and the symbolic name
teacherb.tilb.sze.hu. The version of BIND was 9.7.3 as
this one can be found in the Debian Squeeze distribution and
there was no need for special functions (unlike in the case of
the DNS64 server).

The 10.0.0.0/16-10.10.0.0/16 IP address range was
registered into the zonat.tilb.sze.hu zone with the appro-
priate symbolic names. The zone file was generated by the
following script:

#!/bin/bash
cat > db.zonat.tilb.sze.hu << EOF
\$ORIGIN zonat.tilb.sze.hu.
\$TTL 1
@ IN SOA teacherb.tilb.sze.hu. kt.tilb.sze.hu. (
 2012012201 ; Serial
 28800 ; Refresh
 7200 ; Retry
 604800 ; Expire
 2) ; Min TTL

@ 86400 IN NS teacherb.tilb.sze.hu.

EOF

for a in {0..10}
do
 for b in {0..255}
 do
 echo '$'GENERATE 0-255 10-$a-$b-$ IN A \
 10.$a.$b.$ >> db.zonat.tilb.sze.hu
 done
done

echo "" >> db.zonat.tilb.sze.hu

The first general line of the zone file (describing the
symbolic name resolution) was the following one:

$GENERATE 0-255 10-0-0-$ IN A 10.0.0.$

A line of this kind is equivalent with 256 traditional “IN
A” lines; the $GENERATE directive was used for shorthand
purposes.

As it can be seen from the script above and as it has been
mentioned earlier, these symbolic names have only “A”
records and no “AAAA” records, so the generation of the IPv6
addresses is the task of the DNS64 server.

B. DNS64 Server Settings

The network interfaces of the freshly installed Debian
Squeeze Linux operating system on the Pentium III computer
were set according to the logical topology shown in Fig. 2.

For the purposes of the DNS64 server, the BIND 9.8 was
compiled from source (as the Debian Squeeze did not contain
this version yet).

The 2001:738:2c01:8001:ffff:ffff::/96 prefix was set to
BIND for the DNS64 function using the dns64 option in the
file /etc/bind/named.conf.options.

In order to facilitate the IPv6 SLAAC (Stateless Address
Autoconfiguration) of the clients, radvd (Router Advertise-
ment Daemon) was installed on the NAT64 gateway.

The settings in the file /etc/radvd.conf were the
following:

interface eth2
{
 AdvSendAdvert on;
 AdvManagedFlag off;
 AdvSendAdvert on;
 prefix 2001:738:2c01:8001::/64
 {
 AdvOnLink off;
 };
 RDNSS 2001:738:2c01:8001::1 {};
};

C. Client Settings

Debian Squeeze was installed for the DELL computers
used for client purposes, too. On these computers, the DNS64
server was set as name server in the following way:

echo "nameserver 2001:738:2c01:8001::1" > \
 /etc/resolv.conf

D. DNS64 Performance Measurements

The CPU and memory consumption of the DNS64 server
was measured in the function of the number of requests
served. The measure of the load was set by starting test scripts
on different number of client computers (1, 2, 4 and 8). In
order to avoid the overlapping of the namespaces of the client
requests (to eliminate the effect of the DNS caching), the
requests from the number i client used target addresses from
the 10.$i.0.0/16 network. In this way, every client could
request 2

16
 different address resolutions. For the appropriate

measurement of the execution time, 256 experiments were
done and in every single experiment 256 address resolutions
were performed using the standard host Linux command. The
execution time of the experiments was measured by the GNU
time command. (Note that this command is different from the
time command of the bash shell.)

The clients used the following script to execute the 256
experiments:

#!/bin/bash
i=`cat /etc/hostname|grep -o .$`
rm dns64-$i.txt
do
 for b in {0..255}
 do
 /usr/bin/time -f "%E" -o dns64-$i.txt \
 –a ./dns-st-c.sh $i $b
 done
done

The synchronized start of the client scripts was done by
using the “Send Input to All Sessions” function of the terminal
program of KDE (called Konsole).

Performance Analysis of DNS64 and NAT64 Solutions INFOCOMMUNICATIONS JOURNAL, JUNE 2012, VOL. IV, NO. 2, PP. 29-36.

The dns-st-c.sh script (taking two parameters) was
responsible for executing a single experiment with the resolu-
tion of 256 symbolic names:

#!/bin/bash
for c in {0..252..4} # that is 64 iterations.
do
 host 10-$1-$2-$c.zonat.tilb.sze.hu &
 host 10-$1-$2-$((c+1)).zonat.tilb.sze.hu &
 host 10-$1-$2-$((c+2)).zonat.tilb.sze.hu &
 host 10-$1-$2-$((c+3)).zonat.tilb.sze.hu
done

In every iteration of the for cycle, four host commands
were started, out of which the first three were started
asynchronously (“in the background”) that is, the four
commands were running in parallel; and the core of the cycle
was executed 64 times, so altogether 256 host commands were
executed. (The client computers had two dual core CPUs that
is why four commands were executed in parallel to generate
higher load.)

First, a test was performed with one client only. After a
while, the conntrack table of the netfilter of the test computer
running DNS64 became full and the name resolution stopped
functioning. As DNS64 does not require netfilter, the netfilter
module was removed from the kernel of the computer. After
this, the test was completed with no errors.

As a production system may require the presence of
iptables for security reasons

1
, a different solution may be

needed. One may increase the size of the conntrack table (it is
necessary to increase the value of the hashsize parameter
proportionally, too), or decrease the value of the timeout. As
the first one has a resource (memory) requirement, the second
one was chosen. The timeout for the UDP packets was
decreased from 30s to 1s. The exact name of the changed
kernel parameter is:

/proc/sys/net/netfilter/nf_conntrack_udp_timeout

With this setting, the test was completed with no errors
even with 8 clients (that produce much higher load).

Next, the number of clients was increased from one to
eight (the used values were: 1, 2, 4 and 8) and the time of the
DNS resolution was measured. The CPU and memory
utilization were also measured on the test computer running
DNS64. The following command line was used:

dstat -t -c -m -l -p --unix --output load.csv

VI. DNS64 PERFORMANCE RESULTS

The most important results were summarized in Table 1.
The first row of the table shows the number of clients. (The
load of the DNS64 server was increasing in the function of this
parameter.) The second row shows the execution time of one
experiment (that is the execution of 256 host commands).
Even though the results showed little deviation, the standard
deviation is included in the third row.

1
Firewalls often use stateful packet inspection today (that requires a

conntrack table); however this solution is highly susceptible to DDoS attacks.

The proliferation of DDoS attacks reported in [12] may require the use of the
stateless packet inspection instead of the stateful one.

Rows number four and five show the CPU utilization and
the standard deviation of the CPU utilization, respectively.

Row number six shows the estimated memory consump-
tion of DNS64. (This parameter can be measured with high
uncertainty, as its value is quite low and other processes than
DNS64 may also influence the size of free/used memory of the
Linux box.) Fortunately, it can be seen, that its value was
always really low.

The size of the conntrack table was also logged during the
experiments using the nf_conntrack_count kernel parameter.
Its maximum is displayed in row 7.

The number of DNS64 requests per second, served by the
test computer, was calculated using the number of clients (in
row 1) and the execution time values (in row 2) and it is
displayed in the last row of the table.

TABLE 1. DNS64 PERFORMANCE RESULTS

1 Number of clients 1 2 4 8

2 Exec. time of 256 host
commands [s]

1,195 1,746 3,643 7,287

3 (standard deviation) 0,074 0,040 0,031 0,050

4 CPU utilization [%] 66,9 97,0 100,0 100,0

5 (standard deviation) 3,8 2,0 0,0 0,0

6 DNS64 memory
consumption [MB]

0,5 1,4 2,0 2,4

7 Maximum size of the
conntrack table

2347 4989 6474 7493

8 Number of requests
served [request/s]

214 293 281 281

On the basis of the results above, we can state that:

 The increase of the load does not cause serious
performance degradation and the system does not at all
tend to collapse due to overload. Even when the CPU
utilization is about 100% the response time increases
approximately linearly with the load (that is, with the
number of clients)

 We cannot give an exact estimation for the memory
consumption of DNS64, but it is visibly very low even
for extremely high loads.

 It can be seen from the last row of the table that the
maximum of the number of requests served was
achieved using two clients. The further increase in the
number of clients caused only increase in the response
time, but the number of requests per second could not
increase. It was so, because the test program did not
send a new request until all the four host commands
(running in parallel) received an answer.

 The maximum size of the conntrack table increased
with the load; it means that one must be aware of the
size of the conntrack table in the case of a production
system.

Performance Analysis of DNS64 and NAT64 Solutions INFOCOMMUNICATIONS JOURNAL, JUNE 2012, VOL. IV, NO. 2, PP. 29-36.

The results presented above are very important, because
they show that the behaviour of the DNS64 system complies
with the so called graceful degradation [9] principle; if there
are not enough resources for serving the requests then the
response time of the system increases only linearly with the
load.

To compare the performance of the DNS64 to the
performance of a caching-only DNS server, the same series of
experiments were performed with the only difference that the
DNS64 was switched off in the BIND, so the test computer
was functioning as a caching-only DNS server. The results
showed that DNS64 needs only a very little more computing
power than a caching-only name server. E.g. the DNS64 test
with 8 clients (each clients executed 256 host commands)
lasted 7,287s (std. dev.: 0,050), and the same experiment with
the caching-only DNS server lasted 7,009s (std. dev.: 0,036).

VII. NAT64 PERFORMANCE MEASUREMENT METHOD

A. NAT64 Gateway Settings

The TAYGA system was installed on the Pentium III test
computer and it was configured as a NAT64 gateway. The
following modifications were done in the /etc/tayga.conf

file:

tun-device nat64
ipv4-addr 172.16.0.1
dynamic-pool 172.16.0.0/12
prefix 2001:738:2c01:8001:ffff:ffff::/96

The next hop address for the 10.0.0.0/8 IPv4 network was
set to 193.224.129.172.

B. The Settings of the ‘Responder’ Computer

For the testing of the NAT64 gateway, „someone‟ had to
answer in the name of the IPv4 only hosts. A DELL computer
(the same configuration as the clients) was used for this
purpose. This host had the 193.224.129.172 IP address. At the
DELL computer, the packets towards the 10.0.0.0/8 network
were redirected to the computer itself by the following
iptables rule:

iptables -t nat -A PREROUTING -d 10.0.0.0/8 \
 -j DNAT --to-destination 193.224.129.172

As the DELL computer had much more computing power
than that of the Pentium III test computer, it was able to
answer easily instead of the IPv4 only computers. E.g. in the
case of the ping6 test with 8 clients, the CPU utilization of the
DELL computer was under 4%.

C. Client Settings

The DELL computers were used as clients. No DNS server
was used, but the clients prepared the necessary IPv4-
converted IPv6 addresses for themselves by concatenating the
2001:738:2c01:8001:ffff:ffff::/96 prefix and the appropriate
IPv4 addresses from 10.0.0.0/8. At the client computers, the
next hop towards the 2001:738:2c01:8001:ffff:ffff::/96 net-
work was set to the IPv6 address of the NAT64 gateway:

route add -A inet6 2001:738:2c01:8001:ffff:ffff::/96 \
 gw 2001:738:2c01:8001::1

D. NAT64 Performance Measurements

The following script was executed by 1, 2, 4 and 8 clients:

#!/bin/bash
i=`cat /etc/hostname | grep -o .$`
for b in {0..255}
do
 rm -r $b
 mkdir $b
 for c in {0..255}
 do
 ping6 -c11 -i0 -q \
 2001:738:2c01:8001:ffff:ffff:10.$i.$b.$c \
 >> $b/nat64p-10-$i-$b-$c
 done
done

Using the ping6 -c11 command, eleven echo request
ICMPv6 messages were sent to all of the generated IPv6
addresses.

During the preliminary tests the kernel of the NAT64
gateway sent “Neighbour table overflow” messages. (The
neighbour table is the IPv6 counterpart of the IPv4 ARP
cache.) The different limits for the size of the neighbour table
were raised as follows:

cd /proc/sys/net/ipv6/neigh/default/
echo 4096 > gc_thresh1
echo 8196 > gc_thresh2
echo 16384 > gc_thresh3

VIII. NAT64 PERFORMANCE RESULTS

The results can be found in Table 2. Row 1 shows the
number of clients that executed the test script. Rows 2, 3 and 4
show the packet loss ratio, the response time, and the standard
deviation of the response time, respectively. The following
two rows show the CPU utilization of the test computer and its
standard deviation. Row 7 shows the number of packets per
seconds that was calculated from the average traffic arriving to
the test computer from the direction of the clients measured in
bytes. (In the calculations, the size of the messages carrying
the ICMPv6 echo requests was always 100 bytes.) The last
line show the memory consumption measured at the test
computer.

TABLE 2. NAT64 PERFORMANCE RESULTS

1 number of clients 1 2 4 8

2 packet loss [%] 0,025 0,020 0,008 0,025

3 average response
time of ping6 [ms]

0,36 0,37 0,52 1,11

4 (std. deviation) 0,20 0,06 0,11 0,20

5 CPU utilization [%] 26,1 49,6 79,2 93,9

6 (std. deviation) 4,1 5,0 5,6 3,0

7 measure of the
traffic [packets/s]

2207 4322 6804 7491

8 NAT64 memory
consumption [MB]

4,6 6,2 5,8 3,1

Performance Analysis of DNS64 and NAT64 Solutions INFOCOMMUNICATIONS JOURNAL, JUNE 2012, VOL. IV, NO. 2, PP. 29-36.

Evaluation of the results:

 Though packet loss occurred even for a single client,
the packet loss ratio was always very low (under 0.03
percent).

 The response time showed no increase while the CPU
utilization was far from 100% (0.36 and 0.37 for one
and two clients, respectively). Later it started growing
and for eight clients it was nearly twice as much as it
was for four clients.

 The behaviour of the response time is in a good
agreement with the changes that can be seen in the
number of packets: when the number of clients was
increased from one to two, the number of packets were
also nearly doubled, the next doubling of the number of
clients could cause only 50% increase in the number of
packets, and for 8 clients the number of packets grew
only a little from 6804 to 7491 as TAYGA could not
serve more packets due to the lack of CPU capacity.

 The memory consumption does not show correlation
with the load, but it is very low again.

To sum up the findings above, we can lay down that
TAYGA performed well, its memory consumption was found
to be very low and its response time started growing at high
CPU utilization but still remained proportional only with the
load, that is, TAYGA also complied with the graceful
degradation principle.

IX. CONCLUSIONS

A test environment and the methods for the performance
analysis of DNS64 and NAT64 solutions were described.

The resource requirements and the performance of the
DNS64 support of BIND 9.8 and of the stateful NAT64 solu-
tion achieved by the combination of the stateless TAYGA plus
iptables NAT44 were measured.

It was found that these implementations are stable even
under heavy load conditions and their performance complies
with the graceful degradation principle under serious overload.

We conclude that they are safe to be used in a production
environment like the network of an internet service provider.

REFERENCES

[1] The Number Resource Organization, “Free pool of IPv4 address space
depleted” http://www.nro.net/news/ipv4-free-pool-depleted

[2] Geoff Huston, “IPv4 address exhaustion: A progress report”, in:
NANOG 53, Philadelphia, PA, USA, October 9-12. 2011.
http://www.nanog.org/meetings/nanog53/presentations/Wednesday/Huston.pdf

[3] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147)

[4] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF, April 2011. ISSN: 2070-1721 (RFC 6146)

[5] “NAT64” http://en.wikipedia.org/wiki/NAT64

[6] C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6 ad-
dressing of IPv4/IPv6 translators”, IETF, October 2010. ISSN: 2070-
1721 (RFC 6052)

[7] “Ecdysis: open-source implementation of a NAT64 gateway”
http://ecdysis.viagenie.ca/news.html

[8] “TAYGA: Simple, no-fuss NAT64 for Linux”
http://www.litech.org/tayga/

[9] NTIA ITS: “Definition of „graceful degradation‟”
http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm

[10] J. Mohácsi, “IPv6 deployments strategies for enterprises and ISPs”, in
“IPv6 in a nutshell”, Hungarian IPv6 Forum Conference, Budapest,
Hungary, May 3, 2012. (in Hungarian)
http://ipv6forum.hu/sites/ipv6forum.hu/files/03.Mohacsi_Janos_ipv6_diohej.pdf

[11] L. Muka and G. Muka, “Creating and using key network-performance
indicators to support the design and change of enterprise info-commu-
nication infrastructure”, 2012 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS
2012), Genoa, Italy, July 8-11, 2012. Volume 44, Book 12, ISBN: 978-
1-61839-982-3. pp. 737-742.

[12] Arbor Networks, “Worldwide Infrastructure Security Report”, Volume
VII, 2011. http://www.arbornetworks.com/report

Gábor Lencse received his MSc in electrical
engineering and computer systems at the Technical

University of Budapest in 1994, and his PhD in 2001.

He has been working for the Department of
Telecommunications, Széchenyi István University in

Győr since 1997. He teaches Computer networks,

Networking protocols and the Linux operating sys-

tem. Now, he is an Associate Professor. He is respon-

sible for the specialization of information and

communication technology of the BSc level electrical
engineering education. He is a founding member of

the Multidisciplinary Doctoral School of Engineering Sciences, Széchenyi

István University. The area of his research includes discrete-event simulation
methodology and performance analysis of computer networks. Dr. Lencse has

been working part time for the Department of Telecommunications, Budapest

University of Technology and Economics (the former Technical University of
Budapest) since 2005. There he teaches Computer architectures and Media

communication networks. He was the leader of the “IPv6 deployment strategy

for the Telenor Hungary” R&D project of the Department of Telecommunica-
tions, Széchenyi István University.

Gábor Takács received his BSc in electrical
engineering with specialisation in information and

communication technology at the Széchenyi István

University in January 2012. His thesis was promoted
to the “HTE Thesis Competition 2012”.

He has five year experience in Linux administra-
tion. He worked in the Electromagnetic Field Lab-

oratory at the University. His job was to keep

running the high performance computers (e.g. IBM
BladeCenter) and the network administration. He

played an important role in the “IPv6 deployment

strategy for the Telenor Hungary” R&D project of the Department of
Telecommunications, Széchenyi István University.

© HTE 2012. This is the author‟s version of the work. It is

posted here by permission of HTE for personal use. Not for

redistribution. The definitive version was published in

Infocommunications Journal, Vol. IV, No. 2. (June, 2012)

http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm

