
Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

1



Abstract—Even though the present form of IPv6 has been

existing since 1998, the adoption of the new protocol has been

very slow until recently. To help the adoption of the IPv6

protocol, several transition technologies were introduced. The

6to4 protocol is one of them, and it can be used when an IPv6

enabled host resides in an IPv4 only environment and needs to

communicate with other hosts in such circumstances or with

native IPv6 hosts. Five open source 6to4 relay implementations

were investigated: Debian Linux – sit, Debian Linux – v4tunnel,

OpenWrt – sit, FreeBSD – stf, NetBSD – stf. The measurement

method is fully described including our measurement scripts and

the results of the measurements are disclosed in detail. The

measurements have shown that there are major differences

between the different types of implementations.

Index Terms—6to4 relay, IPv6 transition, network

communication, performance evaluation, stability analysis

I. INTRODUCTION

OR more than two decades it is a known fact, that the size

of the IPv4 address space is insufficient [1-2]. The lack of

the IP addresses withholds the spread of the Internet and

causes social and economic damage.

To prevent the IP address exhaustion, a new version of the

Internet Protocol, IPv6 has been developed. IPv6 was

standardized in 1998 and published in RFC 2460 [3], but it has

not been widespread adopted. According to the statistics, less

than 8% of the total amount of the traffic reached the Google

servers used IPv6 protocol in December 10, 2015 [4]. Several

tools and solutions have been developed to slow down the

process of the address exhaustion. The Dynamic IPv4

allocation [5], the Classless Inter-Domain Routing (CIDR) [6],

the Network Address Translation (NAT) [7], the Carrier-grade

NAT (also called NAT444) [8], different type of proxies or

Application Level Gateways (ALG), new policies of the IPv4

address transfers [9] successfully delayed the problems

generated by the IP address exhaustion, but all of them

generated other problems [5].

Three of the five Regional Internet Registries (RIR) already

run out of their IPv4 address spaces [10]. The five RIRs have

Manuscript received December 21, 2015, revised May 18, 2016.

S. Répás is with the Széchenyi István University, Győr, 9026 Hungary

(phone: 36-30-459-9292; e-mail: repas.sandor@sze.hu).
V. Horváth was with the Széchenyi István University, Győr, 9026 Hungary

(e-mail: vhorvath@biztributor.hu).

G. Lencse is with the Széchenyi István University, Győr, 9026 Hungary
(E-mail: lencse@sze.hu).

only 5.2 /8 ranges in total, whereas the IANA does not have

more address space to assign to the five RIRs since 3 February

2011 [11]. The RIRs work according to strict policies and for

a service provider, it is a harder task than ever to get IPv4

address spaces. The speed up of the transition to the new

protocol is inevitable. Several IPv6 transition techniques have

been developed, which can help the process in different phases

of the adoption of the new protocol on the Internet.

There are different situations to solve during the

coexistence of the two versions of the IP protocol in the

different phases of the transition process:

In theory, the best solution is the Dual Stack (DS) transition

method [12], but with the requirements that the two

communicating hosts and the network between them have to

support a common version of the IP protocol, and because of

the IPv4 exhaustion, there is not enough IPv4 address to use

this solution. The communicating hosts need both version of

the IP addresses and it is almost impossible to provide enough

public IPv4 addresses for the clients. Thus, even though it

could have been the best solution, now it is too late for using

DS as an IPv6 transition method.

In a situation where an IPv6 only client computer needs to

communicate with an IPv4 only server, the DNS64 [13] and

NAT64 [14] combination is a good solution. The performance,

the stability and the application compatibility of some open

source implementations of DNS64/NAT64 are examined and

proved in [15-17].

If two IPv6 enabled hosts need to communicate with each

other over an IPv4 network, they can use different tunneling

methods. The 6in4 (also called manual tunnel) [18] with

tunnel brokers [19-20], 6rd [21], Teredo [22] ISATAP [23]

and 6to4 [24] have different requirements, benefits and

drawbacks.

The above list is not exhaustive and a good survey of the

different transition techniques can be found in [25].

In this paper, we deal with the 6to4 IPv6 transition solution.

The remainder of this paper is organized as follows: first,

some properties of the 6to4 transition technique are

introduced, second, a short survey of the results of the most

current publications is given, third, the selected 6to4 relay

implementations are introduced, fourth, our test environment

is described, fifth, the performance measurement method of

the different implementations is detailed, sixth, the results are

presented and discussed, seventh, the comparison of our

results is presented, finally, our conclusions are given.

Stability Analysis and Performance Comparison

of Five 6to4 Relay Implementations

Sándor Répás, Member, IEEE, Viktor Horváth, and Gábor Lencse, Member, IEEE

F

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

2

II. THE 6TO4 TRANSITION TECHNIQUE

The 6to4 transition technique uses automatic tunnels,

encapsulates the IPv6 packets into IPv4 packets (using

protocol number 41, as the configured IPv6 over IPv4 tunnel

[26]) [24]. The main advantage of the automatic tunneling is

the unnecessity of the manual configuration of the endpoint

address of the tunnel. Automatic IPv6-over-IPv4 tunneling

determines the IPv4 tunnel endpoint address from the IPv4

address embedded in the destination address of the IPv6

packet being tunneled. 6to4 protocol uses the reserved

2002::/16 6to4 prefix to determine if a 6to4 tunnel creation is

necessary [27]. A 6to4 address is an IPv6 address constructed

using a 6to4 prefix. The first 16 bits of the 6to4 address

contain the 2002 hexadecimal value, whereas the next 32 bits

contain the IPv4 address of the 6to4 tunnel endpoint. The next

16 bits can be used to create subnets, and the final 64 bits of

the 6to4 address contain the interface ID.

A 6to4 router is an IPv6 router supporting a 6to4 pseudo-

interface. It is normally the border router between an IPv6 site

and a wide-area IPv4 network, whereas the 6to4 pseudo-

interface is the point of the encapsulation of IPv6 packets in

IPv4 packets (with other words: the tunnel end-point) [24]. If a

6to4 host has to communicate with a non 6to4 host (for

example: native IPv6, Teredo) it needs to use a 6to4 relay

router.

Several operating systems can work as a 6to4 router or 6to4

relay router, but for the correct operation, the 6to4 routers and

relay routers need public IPv4 addresses.

A 6to4 relay router can be private or public. Public 6to4

relays use the 192.88.99.1 anycast address [28] from the

192.88.99.0/24 6to4 Relay anycast address range [29]. An

estimation of the 6to4 relay routers published in 2006 [30].

According to the publication, 8 autonomous systems (AS-es)

advertised the 192.88.99.0/24, whereas 6 AS-es advertised the

2002::/16 networks. At the end of the year 2014 these values

were 14 and 11, according to the RIPEstat database [31].

It is a good practice, if an Internet Service Provider (ISP)

provides a 6to4 relay for its customers in addition to other

transition solutions. In this case the relay does not have to be

public, and it can use the well-known anycast address, or a

network specific address.

Though some security weaknesses are known of the 6to4

transition technique [32], its advantage is that it helps the

implementation of the IPv6 protocol without the cooperation

of the ISP. This is the reason why we insist that 6to4 is still

indispensable in several countries including Hungary.

Although 6rd [33] eliminated some of the weaknesses of 6to4,

the price of the improvements was that 6rd can only be

implemented by the ISPs, and it cannot be used without the

cooperation of the ISP of the user at all. We note that the

second author of the RFC defining 6rd [33] recommended to

move 6to4 to historic status in 2011 [34] and his efforts were

only partially successful after several years because not 6to4

itself, but only the anycast prefix for 6to4 relay routers was

deprecated in 2015 [35]. Whereas this seems to be a good

decision considering the rapid deployment of IPv6 in certain

countries (e.g. USA, China), we contend that it was done way

too early considering the slow deployment of IPv6 in some

other countries including Hungary, too. Despite the depletion

of the public IPv4 address pool, the most ISPs in Hungary are

rather reluctant to step forward towards IPv6. (What is even

worse, it became a common practice that ISPs take away the

public IPv4 address from their customers, and give private

ones instead. The average user is OK with using CGN, and

those who do not like it, will get back a public IPv4 address.)

Thus an average countryside home user (one residing not in

Budapest) is not able to get IPv6 Internet access. How can this

user get access to the IPv6 Internet? We see the following

possibilities:

 Use an explicit tunnel with a tunnel broker,

however it requires registration and configuration.

 Use 6to4, which is a kind of automatic tunnel and

is supported by several operating systems and

SOHO routers and thus the user can access IPv6

only sites without any effort.

 Use Teredo as last resort. (But it is intended to be

used as a last resort only.)

We agree that 6to4 is not a good solution, but as there is no

real replacement, we consider it is still to be kept as working

in those areas where the IPv6 deployment is still in its infancy

and there is no other way for the clients to reach IPv6 internet

without tunnel registration and explicit configuration.

Therefore the performance analysis of 6to4 relays is still

interesting for those network administrators who are willing to

help these clients. We note that dimensioning a 6to4 relay is

not an easy task because it is hard to predict where the return

traffic will cross the border of the IPv6 Internet and IPv4

Internet. This is why it is crucial to have information about the

performance and stability of different free software 6to4 relay

implementations.

We also admit that many users of 6to4 may experience

operational problems. Section 3 of RFC 6343 [36] mentions

measurements reporting high TCP connection failure rate.

There are 9 possible reasons were identified. We mention only

two of them: e.g. firewalls may filter out protocol number 41,

or some ISP may advertise 192.88.99.0/24 but not forward

6to4 traffic for “alien” networks, etc. Section 4 provides

appropriate guidelines for vendors, network operators, and

ISPs to eliminate the particular issues. Thus 6to4 may be used

if all parties take enough care. Unfortunately, the communica-

tion of two computers may fail due to the malpractice of a

third party because of asymmetric routing.

More details of the operation of the 6to4 technique can be

found in the publication [37], and in the related RFCs ([24],

[29] and [32]).

III. A SHORT SURVEY OF CURRENT RESEARCH RESULTS

There are a lot of publications about IPv6 and several of

them related to the transition to the IPv6 protocol.

There is a very good survey about the state of IPv6 adoption

with measurement methods in [38]. The authors of the article

used excellent methods for the survey, but the data in it is a

little outdated today. A newer, and also very good survey can

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

3

be found in [39]. The two papers give a good overview about

the progress of the transition process.

There are several publications about comparison of different

tunneling based transition methods.

In [40] the performance of both the ISATAP and the 6to4

tunneling solution is compared on a Windows XP and

Windows Server 2003 based test-bed network. The authors

used UDP streaming and ICMP to measure and compare the

throughput, the End to End Delay (E2ED), the jitter and the

Round Trip Time (RTT) performance characteristics. The

final conclusion found the ISATAP protocol significantly

more efficient.

Sans and Gamess carried out a performance comparison of

the native IPv6 protocol and the following tunneling methods:

ISATAP, 6to4, 6rd and Teredo on a test network was built on

Linux computers and different numbers of Cisco routers [41].

The authors tested the throughput and the RTT with UDP and

TCP protocol both on Ethernet and fast Ethernet network.

They concluded, the best choice is native IPv6 but if native

IPv6 cannot be used, ISATAP, 6to4, and 6rd are good

possibilities. Selecting one tunneling technology over the

other depends on many factors. Teredo was presented as the

less good solution, whereas, Teredo is the only choice when

the hosts to be connected are using private IPv4 addresses and

are helped by a NAT server to reach the Internet.

Shah and Parvez performed simulations about the

performance of native IPv6, dual stack, 6in4 and 6to4 [42].

The authors used OPNET Modeler (now Riverbed Modeler

[43]) to investigate the TCP delay, throughput and response

time of the different methods. Naturally, the native IPv6

produced the best results, whereas the second one was the

6to4.

There is a good comparison of the performance of the

Windows Server 2008 and 2012 6to4 and 6in4 tunnels in [44].

The authors used UDP and TCP and three games to compare

the throughput, the jitter and the delay of the two tunneling

methods, but they did not collect data about the resource usage

on the computers.

The comparison of the TCP and UDP throughput, RTT, and

tunneling overhead with native IPv4, native IPv6 and 6to4

tunneling can be found in [45]. The authors concluded that the

6to4 tunneling mechanism is a suitable method in the early

part of the transition period.

The characteristics of the tunneled IPv6 traffic on the border

of the Czech national research and education network

(CESNET) were investigated in [46], whereas the traffic of the

FUNET operated public 6to4 relay was analyzed in [47].

Narayan and Tauch investigated the 6to4 and configured

tunnel performance characteristics on two different Linux and

Windows operating system [44-46] in a test network.

The performance characteristics of Linux sit, FreeBSD stf,

and NetBSD stf based 6to4 relay implementations were

investigated in [37].

The performance of and stability of Debian Linux sit,

OpenWRT sit and FreeBSD stf were analyzed in our

conference paper [51], which is now extended by Debian

Linux v4tunnel and NetBSD stf.

D-Link DGS-1100-24

3com Baseline 2948-SFP
Plus 3CBLSG48

Dell Precision 490

10 x Dell Precision 490

debianhost1

6to4 clients

IPv6
responder

IPv4: 193.225.151.66/28

IPv4: 193.225.151.65/28

IPv4: 193.225.151.75/28

6to4: 2002:c1e1:9741::1/64

6to4: 2002:c1e1:9742::1/64 6to4: 2002:c1e1:974b::1/64

Native IPv6:

babe:b00b::2/64

Pentium
III

6to4 relay
router

IPv4: 193.225.151.78/28

6to4: 2002:c1e1:974e::1/64

Native IPv6: babe:b00b::1/64

Fig. 1. Topology of the test network.

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

4

IV. TESTED IMPLEMENTATIONS

The following widely used open source [52] (also called

free software [53]) operating systems and their 6to4

implementations were chosen for the tests: Debian Linux sit

and v4tunnel [54], OpenBSD gif interface [55], FreeBSD stf

interface [56], NetBSD stf interface [57], OpenWRT 6to4 plus

kmod-sit packages [58]. The open source software can be

freely used by anyone, and their licenses allow the

performance benchmarks. These two arguments were the most

important ones in our selection of the implementations for

testing.

The following software versions were used:

 Debian 7.1.0_x86 – sit

 Debian 7.1.0_x86 – v4tunnel

 OpenWRT (Attitude Adjustment) 12.09_x86 – sit

 FreeBSD 9.1_x86 – stf

 NetBSD 6.1.2_x86 – stf

It was found during the preliminary tests that the OpenBSD

system does not support the 6to4 transition mechanism.

V. TEST ENVIRONMENT

A. Topology of the network

An isolated test network was built for the performance and

the stability measurements. The topology of the network can

be seen in Fig. 1. Due to the isolation, any IPv4 and IPv6

addresses could be used on the network. The computer on the

top of the figure played the role of the “internet” and

responded all of the queries, and the queries were generated by

the 10 client computers which can be seen on the bottom of

the figure. These computers played the role of the large

number of the clients. The clients sent their queries by 6to4

through the 6to4 relay router to the “internet” computer. These

queries were generated different levels of load on the 6to4

relay computer during the measurement process. The load was

tuned by the number of the active clients. The laptop and the

connecting switch on the right side of the figure were used to

control the experiments.

B. Hardware configurations

1000Base-TX connections were used on all of the network

segments.

A specially low performance computer was built for the

6to4 relay computer so that the client computers could

produce high enough load for overloading it. The main goal of

the measurements was the comparison of the different

implementations and not any hardware related investigation.

The configuration of the 6to4 relay computer was:

 Intel D815EE2U motherboard

 800MHz Intel Pentium III (Coppermine) processor

 128MB, 100MHz SDRAM

 Two TP-LINK TG-3269 REV 3.0 Gigabit PCI

Ethernet NICs

All of the ten clients and the responder computer were Dell

Precision 490 workstations with same configuration:

 DELL 0GU083 motherboard with Intel 5000X

chip-set

 Two Intel Xeon 5140 2.33GHz dual core

processors (in the responder: Intel Xeon 5160

3GHz)

 4x1GB 533MHz DDR2 SDRAM (accessed quad

channel)

 Broadcom NetXtreme BCM5752 Gigabit Ethernet

controller (PCI Express)

C. Software configurations

Debian Linux 6.0.7 with 2.6.32-5-amd64 kernel and

OpenBSD 5.3 64 bit version were installed on the clients, and

the responder, respectively.

On the responder, NAT66 was used to simulate server

computers with different IPv6 addresses. The following

commands were used in the /etc/pf.conf file on the responder:
set timeout interval 2
set limit states 400000
pass in on bge0 inet6 from any to \
 2001:738:2c01:8000::/64 rdr-to babe:b00b::2

All of the client computers used sit or stf interfaces with the

following setting in the /etc/network/interfaces file:
auto sit0
iface sit0 inet6 static
address 2002:c1e1:9742::1- …974b::1
netmask 64

gateway ::193.225.151.78

VI. MEASUREMENT METHOD

The load was generated by ping6 commands with the

following Bash shell script:
#!/bin/bash
i=`cat /etc/hostname | grep -o '[0-9]'`
for b in {0..255}
do
 rm -rf $b
 mkdir $b
 for c in {0..252..4}
 do
 ping6 2001:738:2c01:8000::193.$i.$b.$c \

-c8 -i0 >> $b/6to4-193-$i-$b-$c &
 ping6 2001:738:2c01:8000::193.$i.$b.$c \

-c8 -i0 >> $b/6to4-193-$i-$b-$c &
 ping6 2001:738:2c01:8000::193.$i.$b.$((c+1)) \

-c8 -i0 >> $b/6to4-193-$i-$b-$((c+1)) &
ping6 2001:738:2c01:8000::193.$i.$b.$((c+1)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+1)) &

 ping6 2001:738:2c01:8000::193.$i.$b.$((c+2)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+2)) &

 ping6 2001:738:2c01:8000::193.$i.$b.$((c+2)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+2)) &

 ping6 2001:738:2c01:8000::193.$i.$b.$((c+3)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+3)) &

 ping6 2001:738:2c01:8000::193.$i.$b.$((c+3)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+3))

 done
done

During the preliminary measurements, the script was tuned

to generate about 100% load on the CPU of the 6to4 relay

computer with 10 clients.

The variable i contains the serial number of the actual

client. The script contains two nested for cycles. The outer

cycle with variable b from 0 to 255 runs 256 times, while the

inner cycle with variable c from 0 to 252 (with stepping

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

5

interval 4) runs 64 times. The core of the script contains 4

pairs of concurrent ping6 commands. Each pair of them send

out 8 ICMPv6 echo requests with almost zero interval, in

parallel, whereas the first 7 of them are started asynchronously

with the & parameter. The last ping6 command at the end of

the cycle is started normally thus the cycle waits for the

execution of it. In a measurement, one client sends out

256*64*8*8= 1048576 ICMP echo requests in total to

256*64*4= 65536 different IP addresses.

In the series of measurements, the number of the clients was

increased from one to ten. On the 6to4 relay computer, the

vmstat command was used to log the CPU and memory

consumption. For proper operation of the vmstat, -10 nice

value was used.

We note that having no timeout specified, the ping command

waited two RTTs and then it considered the missing replies as

lost. As the RTTs were small, our packet loss rate can be

considered as an upper bound of rate of the ultimately lost

packets.

VII. MEASUREMENT RESULTS

The results are presented in similar tables for all the tested

6to4 implementations. A detailed explanation is given for the

first table only – the others are to be interpreted in the same

way.

A. Debian 7.1.0_x86 – sit

The results have been listed in Table I. The first row shows

the number of clients that executed the test script at the same

time. The potential load on the 6to4 relay was proportional

with the number of the clients, but the actual number of the

packets was less than that, because the measurement script

does not start a new iteration until the 8th ping6 command is

finished. The second row contains the packet loss ratio. Rows

3, 4 and 5 show the average, the standard deviation and the

maximum value of the response time, respectively. The

average and the standard deviation of the CPU utilization of

the 6to4 relay computer are shown in the Rows 6 and 7. Row

8 contains the memory consumption of the 6to4 process on the

relay computer. (This parameter can be measured with high

uncertainty, because its value is very low and other processes

than the 6to4 relay implementation may also influence the size

of the used memory of the computer.) The last row shows the

number of forwarded packets per seconds.

The graphical representation of the forwarded packets per

second and the CPU utilization are shown in Fig. 2.

Evaluation of the results:

Despite the fact that packet loss occurred in all cases, the

proportion of it was always very low and it increased with

more clients. (The maximum value of it was 0.061% with ten

clients, which means about 6 packets from 10.000 packets

were lost.)

The average, the standard deviation and the maximum value

of the response times were increasing with higher load on the

6to4 relay computer, but the average value did not exceed 1.63

milliseconds with ten clients.

The CPU utilization were increasing continuously, but not

linearly.

The deviation of the CPU utilization were higher with 4, 5,

6 and 7 clients than with other number of clients, which

TABLE I

DEBIAN LINUX – SIT 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10

Packet loss (%) 0.002 0.006 0.008 0.013 0.020 0.035 0.035 0.037 0.048 0.061

Response time

(ms)

Average 0.287 0.353 0.445 0.566 0.710 0.868 1.043 1.209 1.411 1.626

Std. dev. 0.174 0.248 0.353 0.423 0.509 0.588 0.685 0.722 0.832 0.864

Maximum 27.900 28.400 28.500 28.900 29.400 30.700 31.100 34.100 32.800 39.600

CPU Utilization

(%)

Average 1.756 4.821 12.933 31.243 52.964 69.049 81.319 88.941 93.206 96.132

Std. dev. 1.944 2.811 5.619 12.215 16.379 16.493 12.690 9.817 5.289 7.388

Memory consumption (kB) 10.855 10.418 10.363 10.594 10.824 10.996 10.855 10.994 10.828 11.137

Traffic volume (packets/sec) 18051 33953 46856 56534 62853 66947 69663 72304 73129 73050

TABLE II

DEBIAN LINUX – V4TUNNEL 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10

Packet loss (%) 0.003 0.006 0.008 0.011 0.018 0.033 0.036 0.039 0.047 0.060

Response time

(ms)

Average 0.287 0.351 0.444 0.579 0.709 0.865 1.007 1.198 1.389 1.632

Std. dev. 0.174 0.251 0.334 0.428 0.508 0.588 0.690 0.776 0.842 0.887

Maximum 27.800 27.700 28.700 29.920 24.000 30.100 31.300 35.100 33.900 32.800

CPU Utilization

(%)

Average 1.915 4.886 14.202 30.927 51.121 69.555 80.392 89.042 93.441 96.444

Std. dev. 1.727 3.037 6.871 12.412 16.664 14.790 13.807 10.084 7.934 5.461

Memory consumption (kB) 10.664 10.559 10.910 10.555 10.855 10.728 10.730 10.602 11.102 11.438

Traffic volume (packets/sec) 18083 34062 47079 55828 62788 67181 71315 72759 74025 72792

Fig. 2. Linux sit forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)

No. of
forwarded

packets/sec

No. of clients

Linux - sit performance

No. of forwarded packets/sec CPU util. (%)

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

6

indicates some fluctuation in the utilization.

The memory consumption was almost constant and very

low, and the maximum value of it was 11.14kB with ten

clients.

The traffic volume increased until the system reached its limit

with 9 clients. With 10 clients, the number of transferred

packets were slightly decreased from 73129 to 73050.

B. Debian 7.1.0_x86 – v4tunnel

The results have been listed in Table II, whereas the

graphical representation of the forwarded packets per second

and the CPU utilization are shown in Fig. 3.

Evaluation of the results:

The packet loss ratio was always very low and it strictly

increased with the number of clients.

The average and the standard deviation value of the

response times were increasing with higher load on the 6to4

relay computer, and the average value reached its maximum

value with ten clients (1.632 ms).

The CPU utilization were increasing continuously, but not

linearly.

The standard deviation of the CPU utilization were higher

with 4, 5, 6 and 7 clients than with other number of clients,

which indicates some fluctuation in the utilization.

The memory consumption was almost constant and very

low, and the maximum value of it was 11.44kB with ten

clients.

The traffic volume increased until the system reached its

limit with 9 clients. With 10 clients, the number of transferred

packets were decreased from 74025 to 72792.

C. OpenWRT (Attitude Adjustment) 12.09_x86 – sit

The results have been listed in Table III., whereas the

graphical representation of the forwarded packets per second

and the CPU utilization are shown in Fig. 4.

Evaluation of the results:

The packet loss ratio was always very low and it strictly

increased with the number of clients. The maximum value of it

was 0.089% with ten clients.

The average and the standard deviation value of the

response times were increasing with higher load on the 6to4

relay computer, but the average value did not exceed 2.16

milliseconds with ten clients.

The CPU utilization with two clients was 4.5 times greater

TABLE III
OPENWRT (ATTITUDE ADJUSTMENT) 12.09_X86 – SIT 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10

Packet loss (%) 0.004 0.006 0.007 0.013 0.018 0.026 0.036 0.064 0.079 0.089

Response time

(ms)

Average 0.314 0.402 0.568 0.733 0.909 1.118 1.358 1.616 1.873 2.160

Std. dev. 0.161 0.239 0.330 0.420 0.508 0.583 0.652 0.705 0.773 0.829

Maximum 25.000 25.300 25.500 25.500 26.500 27.100 27.000 27.100 27.300 28.100

CPU Utilization

(%)

Average 10.067 45.015 70.713 87.188 94.979 97.540 98.467 98.916 99.066 99.288

Std. dev. 3.188 5.593 5.828 9.376 7.954 7.462 4.991 4.567 4.824 4.410

Memory consumption (kB) 10.316 10.414 10.359 10.727 10.469 10.324 10.746 10.492 10.066 10.469

Traffic volume (packets/sec) 17595 32488 41906 49270 54196 56920 58272 58928 59332 58763

TABLE IV

FREEBSD 9.1_X86 – STF 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10

Packet loss (%) 0.013 0.008 0.010 0.012 0.013 0.015 0.017 0.018 0.019 0.019

Response time

(ms)

Average 0.315 0.456 0.681 0.941 1.268 1.637 2.011 2.385 2.740 3.126

Std. dev. 0.111 0.171 0.314 0.404 0.450 0.457 0.463 0.466 0.480 0.490

Maximum 22.200 9.220 12.800 15.400 17.600 18.100 18.800 18.500 19.600 19.400

CPU Utilization

(%)

Average 51.525 77.110 88.994 96.380 98.482 99.435 99.395 99.371 99.462 99.859

Std. dev. 6.899 5.140 6.465 7.398 7.593 3.447 5.336 6.445 5.971 0.475

Memory consumption (kB) 0.008 0.012 0.012 0.273 0.395 0.398 0.445 0.406 0.500 0.492

Traffic volume (packets/sec) 17594 30656 37613 41982 43681 43892 43875 43819 43970 43737

Fig. 3. Linux v4tunnel forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)

No. of
forwarded

packets/sec

No. of clients

Linux - v4tunnel performance

No. of forwarded packets/sec CPU util. (%)

Fig. 4. OpenWrt sit forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)

No. of
forwarded

packets/sec

No. of clients

OpenWrt - sit performance

No. of forwarded packets/sec CPU util. (%)

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

7

than the value with one client. Then the slope was reduced,

until the CPU approached its maximum capacity with 6

clients.

The standard deviation of the CPU utilization were under

10% in each case, which indicates consistent utilization of the

CPU.

The memory consumption was almost constant and very

low.

The traffic volume increased until the system reached its

limit with 9 clients. With 10 clients, the number of transferred

packets were decreased by 0.97% from 59332 to 58763.

D. FreeBSD 9.1_x86 – stf

The results have been listed in Table IV., whereas the

graphical representation of the forwarded packets per seconds

and the CPU utilization are shown in Fig. 5.

Evaluation of the results:

The packet loss ratio was always very low and starting from

two clients it increased with the number of clients, whereas the

value of it was the same with one and five clients. The

maximum value of it was 0.019% with ten clients.

The average and the standard deviation value of the

response times were increasing with higher load on the 6to4

relay computer, but the average value did not exceed 3.13

milliseconds with ten clients. The maximum value of the

response times showed some fluctuation

One client could generate 51.53% load on the CPU. The

CPU utilization was increasing continuously, but not linearly,

until the CPU reached its almost maximum capacity (99.44%)

with 6 clients.

The standard deviation of the CPU utilization was under

10% in each case, whereas it was very small (0.46%) with ten

clients. This phenomenon indicates consistent utilization of

the CPU.

The memory consumption was extremely low and it was

growing almost continuously.

The traffic volume increased until the system reached its

limit with 6 clients. From this point the throughput of the

system started very slightly fluctuating. The maximum value

of the number of transferred packets per second was 43970

with 9 clients.

The relay did not show significant decrease in its

throughput even in serious overload situations thus it complied

with the graceful degradation principles [59].

E. NetBSD 6.1.2_x86 – stf

The results have been listed in Table V., whereas the

graphical representation of the forwarded packets per seconds

and the CPU utilization are shown in Fig. 6.

Evaluation of the results:

The proportion of the packet loss ratio strictly increased

until 5 clients, where it started to decrease monotonically. This

phenomenon is strange, but the packet loss ratio was always

very low.

The average, the standard deviation and the maximum value

of the response times were increasing with some fluctuation,

but the average value did not exceed 2.52 milliseconds with

ten clients.

One client could generate 38.96% load on the CPU. The

CPU utilization was increasing continuously, but only by

smaller and smaller value.

The standard deviation of the CPU utilization was under

10% in each case, which indicates consistent utilization of the

CPU.

TABLE V
NETBSD 6.1.2_X86 – STF 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10

Packet loss (%) 0.011 0.016 0.028 0.047 0.056 0.051 0.044 0.038 0.031 0.031

Response time

(ms)

Average 0.301 0.418 0.603 0.823 1.061 1.326 1.620 1.908 2.210 2.519

Std. dev. 0.186 0.236 0.319 0.403 0.499 0.571 0.631 0.681 0.707 0.712

Maximum 5.760 11.500 13.600 16.900 18.900 21.400 21.100 21.700 22.200 24.300

CPU Utilization

(%)

Average 38.957 65.382 80.290 89.055 94.130 96.671 98.259 98.435 99.020 99.306

Std. dev. 4.519 6.229 9.771 3.769 5.878 6.664 3.759 5.751 6.243 4.642

Memory consumption (kB) 0.016 0.027 0.055 0.148 0.191 0.203 0.695 0.336 0.480 0.180

Traffic volume (packets/sec) 17797 31937 40639 45745 48913 50686 51345 51750 52062 52202

Fig. 5. FreeBSD stf forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)

No. of
forwarded

packets/sec

No. of clients

FreeBSD - stf performance

No. of forwarded packets/sec CPU util. (%)

Fig. 6. NetBSD stf forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)

No. of
forwarded

packets/sec

No. of clients

NetBSD - stf performance

No. of forwarded packets/sec CPU util. (%)

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

8

The memory consumption was extremely low and it was

growing with some fluctuation.

The traffic volume strictly increased.

VIII. COMPARISON OF THE RESULTS

To facilitate the comparison of the properties of the

different 6to4 relay implementations, we represented the

packet loss ratio, the response time, number of forwarded

packets per second and the average value of the CPU

utilization in graphical form in Figures 7, 8, 9 and 10,

respectively.

It is visible at first sight that the Linux sit and v4tunnel

produced almost the same results in all of the four represented

areas.

All of the tested implementations proved to be reliable and

the packet loss ratios of the different implementations were

always low. The packet loss ratio of the Linux and OpenWrt

implementations increased with the number of clients,

whereas the NetBSD stf produced the highest packet loss with

5 clients. We note that even these low packet loss rates may

cause significant loss of TCP performance. For example

0.08% packet loss may result in about 50% decrease of TCP

performance at 80ms RTT, see the calculations of [60].

All of the implementations proved their stability under

overload situations.

Linux v4 tunnel forwarded the most packets per second, but

the performance of it started to visibly decrease in overload

situation, whereas the Linux sit system only differs slightly.

The OpenWrt sit performance is the next one, and the two

BSD systems are the last competitors in the performance

comparison. FreeBSD stf produced 43970 maximum

throughput, whereas Linux v4tunnel had 74025 maximum

packets per second. This means Linux outperformed the

FreeBSD system by 1.68 times.

All of the implementations use negligibly small amount of

memory, which is usually proportional to the generated load.

With one client, all of the implementations forwarded

similar number of packets, but with significantly different

CPU utilization, which property can explain the high degree of

difference in the performance with more clients. Linux sit 6to4

relay implementation used 1.76% of CPU with one client,

whereas FreeBSD stf used 51.53%, which means about 29

times difference.

IX. CONCLUSION

The 6to4 protocol is a useful transition technique in a

situation, where two IPv6 enabled hosts have to communicate

over an IPv4 only network. All of the tested open source 6to4

relay implementations are reliable solutions in production

networks, but the two Linux based ones showed the best

Fig. 9. Performance of the different 6to4 implementations.

0

20000

40000

60000

80000

1 2 3 4 5 6 7 8 9 10

forwarded
packets/sec

number of clients

Performance

Linux - sit Linux - v4tunnel OpenWrt - sit

FreeBSD - stf NetBSD - stf

Fig. 10. Average CPU utilization of the different 6to4 implementations.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

avg. CPU util.
(%)

number of clients

CPU utilization

Linux - sit Linux - v4tunnel OpenWrt - sit

FreeBSD - stf NetBSD - stf

Fig. 7. Packet loss ratio of the different 6to4 implementations.

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10

packet loss(%)

number of clients

Packet loss ratio

Linux - sit Linux - v4tunnel OpenWrt - sit

FreeBSD - stf NetBSD - stf

Fig. 8. Response time of the different 6to4 implementations.

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10

response time
(ms)

number of clients

Response time

Linux - sit Linux - v4tunnel OpenWrt - sit

FreeBSD - stf NetBSD - stf

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

9

performance characteristics, whereas the OpenWrt based one

was the second to them. In an environment, where BSD

systems are preferred, the two BSD based implementations are

usable solutions as well.

The authors hope that their work has contributed to the

early adoption of the IPv6 protocol and the published results

and methodology are valuable for both researchers and

network professionals.

REFERENCES

[1] S. Bradner and A. Mankin, “The recommendation for the IP next

generation protocol”, IETF, January 1995. (RFC 1752) Available:
https://tools.ietf.org/html/rfc1752

[2] M. Waiser, “Whatever happened to the Next-Generation Internet?”,

Communications of the ACM, vol. 44, no. 9. pp. 61-69, 2001.
[3] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6)

specification”, IETF, December 1998. (RFC 2460) Available:

https://tools.ietf.org/html/rfc2460

[4] Google, “IPv6 statistics”, Available:

http://www.google.com/ipv6/statistics.html

[5] IEEE-USA, “Next generation internet: IPv4 address exhaustion,
mitigation strategies and implications for the U.S.”, IEEE-USA White

Paper, 2009. Available:

http://www.ieeeusa.org/policy/whitepapers/IEEEUSAWP-IPv62009.pdf
[6] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The

internet address assignment and aggregation plan”, IETF, August 2006.

(RFC 4632) Available: https://tools.ietf.org/html/rfc4632
[7] P. Srisuresh and K. Egevang, “Traditional IP network address translator

(Traditional NAT)”, IETF, January 2001. (RFC 3022) Available:

https://tools.ietf.org/html/rfc3022
[8] S. Jiang, D. Guo, and B. Carpenter, “An incremental carrier-grade NAT

(CGN) for IPv6 transition”, IETF, June 2011. (RFC 6264) Available:

http://tools.ietf.org/html/rfc6264
[9] M. Mueller, “Scarcity in IP addresses: IPv4 address transfer markets and

the regional internet address registries”, Internet Governance Project,

July 2008. Available: http://www.internetgovernance.org/wordpress/wp-
content/uploads/IPAddress_TransferMarkets.pdf

[10] G. Huston, “IPv4 address report”, Available:

http://www.potaroo.net/tools/ipv4/index.html
[11] L. Smith and I. Lipner, “Free pool of IPv4 address space depleted”,

Number Resource Organization, February 2011. Available:

https://www.nro.net/news/ipv4-free-pool-depleted
[12] E. Nordmark and R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers”, IETF, October 2005. (RFC 4213) Available:

https://tools.ietf.org/html/rfc4213
[13] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS

extensions for network address translation from IPv6 clients to IPv4

servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147) Available:
https://tools.ietf.org/html/rfc6147

[14] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: network
address and protocol translation from IPv6 clients to IPv4 servers”,

IETF, April 2011. ISSN: 2070-1721 (RFC 6146) Available:

https://tools.ietf.org/html/rfc6146
[15] G. Lencse and S. Répás, “Performance analysis and comparison of

different DNS64 implementations for Linux, OpenBSD and FreeBSD”

in Proc. 27th IEEE International Conference on Advanced Information

Networking and Applications (AINA-2013), Barcelona, 2013, pp. 877-

884, doi: 10.1109/AINA.2013.80

[16] G. Lencse and S. Répás, "Performance analysis and comparison of the
TAYGA and of the PF NAT64 implementations" in Proc. 36th

International Conference on Telecommunications and Signal Processing

(TSP-2013), Rome, 2013, pp. 71-76, doi: 10.1109/TSP.2013.6613894
[17] S. Répás, T. Hajas and G. Lencse, “Application compatibility of the

NAT64 IPv6 transition technology” in Proc. 37th International

Conference on Telecommunications and Signal Processing (TSP-2014),
Berlin, 2014, pp. 49-55, DOI: 10.1109/TSP.2015.7296383

[18] A. Conta and S. Deering, “Generic packet tunneling in IPv6

specification”, IETF, December 1998. (RFC 2473) Available:
http://tools.ietf.org/html/rfc2473

[19] SixXS - IPv6 Deployment & Tunnel Broker,

https://www.sixxs.net/main/

[20] Hurricane Electric Free IPv6 Tunnel Broker, https://tunnelbroker.net/

[21] R. Despres, “IPv6 rapid deployment on IPv4 infrastructures (6rd)”,
IETF, January 2010. ISSN: 2070-1721 (RFC 5569) Available:

https://tools.ietf.org/html/rfc5569

[22] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs)”, IETF, February 2006. (RFC 4380)

Available: https://tools.ietf.org/html/rfc4380

[23] F. Templin, T. Gleeson and D. Thaler, “Intra-Site Automatic Tunnel
Addressing Protocol (ISATAP)”, IETF, March 2008. (RFC 5214)

Available: https://tools.ietf.org/html/rfc5214

[24] B. Carpenter and K. Moore, “Connection of IPv6 domains via IPv4
clouds”, IETF, February 2001. (RFC 3056) Available:

https://tools.ietf.org/html/rfc3056

[25] P. Wu, Y. Cui, J. Wu, J. Liu, and C. Metz, “Transition from IPv4 to
IPv6: A state-of-the-art survey”, IEEE Communications Surveys &

Tutorials, vol. 15, no. 3. pp. 1407-1424, 2013, doi:

10.1109/SURV.2012.110112.00200
[26] R. Gilligan and E. Nordmark, “Transition mechanisms for IPv6 hosts

and routers”, IETF, August 2000. (RFC 2893) Available:

https://tools.ietf.org/html/rfc2893
[27] M. Cotton, L. Vegoda, R. Bonica and B. Haberman, “Special-purpose IP

address registries”, IETF, April 2013. ISSN: 2070-1721 (RFC 6890)

Available: https://tools.ietf.org/html/rfc6890
[28] C. Partridge, T. Mendez and W. Milliken, “Host anycasting service”,

IETF, November 1993. (RFC 1546), Available:

https://tools.ietf.org/html/rfc1546
[29] C. Huitema, “An anycast prefix for 6to4 relay routers”, IETF, June

2001. (RFC 3068) Available: https://tools.ietf.org/html/rfc3068
[30] D. Malone, “Counting 6to4 relay routers”, SIGCOMM Computer

Communication Review, vol. 36, no. 1. pp. 79-82, 2006, doi:

10.1145/1111322.1111340
[31] RIPEstat, https://stat.ripe.net

[32] P. Savola and C. Patel, “Security considerations for 6to4”, IETF,

December 2004. (RFC 3964), Available:
https://tools.ietf.org/html/rfc3964

[33] W. Townsley and O. Troan, “IPv6 Rapid Deployment on IPv4

Infrastructures (6rd)”, IETF, August 2010, (RFC 5969), Available:
https://tools.ietf.org/html/rfc5969

[34] O. Troan and G. Van de Velde, “Request to move connection of IPv6

domains via IPv4 clouds (6to4) to historic status”, February, 2011,
(expired internet draft), Available: https://tools.ietf.org/html/draft-troan-

v6ops-6to4-to-historic-00

[35] O. Troan and B. Carpenter, ed, “Deprecating the anycast prefix for 6to4
relay routers”, May 2015, (RFC 7526), Available:

https://tools.ietf.org/html/rfc7526

[36] B. Carpenter, “Advisory Guidelines for 6to4 Deployment”, August
2011, (RFC 6343), Available: https://tools.ietf.org/html/rfc6343

[37] G. Lencse and S. Répás, “Performance analysis and comparison of 6to4

relay implementations”, International Journal of Advanced Computer
Science and Applications, vol. 4, no. 9. pp. 13-21, 2013, doi:

10.14569/IJACSA.2013.040903

[38] M. Nikkhah, R. Guérin, Y. Lee and R. Woundy, “Assessing IPv6
through web access a measurement study and its findings” in Proc.

Seventh Conference on emerging Networking EXperiments and

Technologies (CoNEXT '11), Tokyo, 2011, doi:
10.1145/2079296.2079322

[39] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil and M.

Bailey, “Measuring IPv6 adoption” in Proc. ACM conference on
SIGCOMM (SIGCOMM '14), Chicago, 2014, pp. 87-98. doi:

10.1145/2619239.2626295

[40] M. Aazam, A.M. Syed, S.A.H. Shah, I. Khan and M. Alam, “Evaluation
of 6to4 and ISATAP on a test LAN” in Proc. IEEE Symposium on

Computers & Informatics (ISCSI 2011), Kuala Lumpur, 2011, pp. 46-50.

doi: 10.1109/ISCI.2011.5958881
[41] F. Sans and E. Gamess, “Analytical performance evaluation of native

IPv6 and several tunneling technics using benchmarking tools” in Proc.

XXXIX Latin American Computing Conference (CLEI 2013), Naiguata,
2013, pp. 1-9. doi: 10.1109/CLEI.2013.6670610

[42] J. L. Shah and J. Parvez, “An examination of next generation IP

migration techniques: Constraints and evaluation” in Proc. International
Conference on Control, Instrumentation, Communication and

Computational Technologies (ICCICCT-2014), Kanyakumari District,

2014, pp. 776-781. doi: 10.1109/ICCICCT.2014.6993064

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

10

[43] Riverbed Modeler, http://www.riverbed.com/products/performance-

management-control/network-performance-management/network-
simulation.html

[44] D. Hadiya, R. Save and G. Geetu, “Network performance evaluation of

6to4 and configured tunnel transition mechanisms: An empirical test-bed
analysis” in Proc. 6th International Conference on Emerging Trends in

Engineering and Technology (ICETET-13), Nagpur, 2013, pp. 56-60.

doi: 10.1109/ICETET.2013.14
[45] N. Bahaman, E. Hamid and A.S. Prabuwono, “Network performance

evaluation of 6to4 tunneling” in Proc. 2012 International Conference

on Innovation Management and Technology Research ((ICIMTR),
Malacca, 2012, pp. 263-268. doi: 10.1109/ICIMTR.2012.6236400

[46] M. Elich, P. Velan, T. Jirsik and P. Celeda, “An investigation into teredo

and 6to4 transition mechanisms: Traffic analysis” in Proc. IEEE 38th
Conference on Local Computer Networks Workshops (LCN 2013

Workshops), Sydney, 2013, pp. 1018-1024. doi:

10.1109/LCNW.2013.6758546
[47] S. Pekka,” Observations of IPv6 traffic on a 6to4 relay”, SIGCOMM

Computer Communication Review, vol. 35, no. 1. pp. 23-28, 2005. doi:

10.1145/1052812.1052821
[48] S. Narayan and S. Tauch, “Network performance evaluation of IPv4-v6

configured tunnel and 6to4 transition mechanisms on windows server

operating systems” in Proc. 2010 International Conference on Computer
Design and Applications (ICCDA 2010), Qinhuangdao, 2010, pp. V5-

435-V5-440. doi: 10.1109/ICCDA.2010.5540939

[49] S. Narayan and S. Tauch, “IPv4-v6 configured tunnel and 6to4 transition
mechanisms network performance evaluation on Linux operating

systems” in Proc. 2nd International Conference on Signal Processing
Systems (ICSPS 2010), Dalian, 2010, pp. V2-113-V2-117. doi:

10.1109/ICSPS.2010.5555209

[50] S. Narayan and S. Tauch, “IPv4-v6 transition mechanisms network
performance evaluation on operating systems” in Proc. 3rd IEEE

International Conference on Computer Science and Information

Technology (ICCSIT 2010), Chengdu, 2010, pp. 664-668. doi:
10.1109/ICCSIT.2010.5564141

[51] S. Répás, V. Horváth and G. Lencse, "Stability Analysis and

Performance Comparison of Three 6to4 Relay Implementations" in
Proc. 38th International Conference on Telecommunications and Signal

Processing (TSP 2015), Prague, July 9-11, 2015, pp. 82-87. DOI:

10.1109/TSP.2015.7296228
[52] Open Source Initiative, “The open source definition”,

http://opensource.org/docs/osd

[53] Free Software Fundation, “The free software definition”,
http://www.gnu.org/philosophy/free-sw.en.html

[54] Debian, http://www.debian.org/

[55] OpenBSD, http://www.openbsd.org/
[56] FreeBSD, http://www.freebsd.org/

[57] NetBSD, http://www.netbsd.org/

[58] OpenWrt, https://openwrt.org/
[59] NTIA ITS, “Definition of ‘graceful degradation’ ”, Available:

http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm

[60] Network Throughput Calculator, http://wintelguy.com/wanperf.pl

Sándor Répás received his BA in

business administration and

management from the Corvinus

University of Budapest in 2009 and

MSc in electrical engineering from the

Széchenyi István University, Győr in

2013.

He is a full time PhD student in

information technology at the

Széchenyi István University. The main field of his research is

the IPv6 implementation technologies. His other favorite

topics are computer networking, information security, and

critical information infrastructure protection. He has several

certificates from Cisco, ISACA, Microsoft, MikroTik, Novell,

and other vendors.

Mr. Répás is a student member of the Association for

Computer Machinery (ACM), and member of the Information

Scientific Association for Infocommunications Hungary

(HTE), and the John von Neumann Computer Society.

Viktor Horváth received his BSc in

electrical engineering at Széchenyi

István University in Győr in 2014. He

had been working at the Department of

Telecommunications as a graduate

student during his thesis research. The

area of his research included

performance analysis of IPv6

transition technologies, router boards

and several Linux and BSD operating system. Nowadays he is

mostly interested in computer security field. He is an IT

security engineer at one of the most professional value added

security distributor company in Hungary. Horváth's other

favorite topics are computer networking, wireless networking

and secure mobile device management. He has several vendor

specific certificate from MobileIron, SafeNet, Unitrends,

Opswat and others.

During his work he got familiar with several IT security

vendor and solution. His main responsibilities include

professional enterprise level IT support, IT Infrastructure

Management and administration, trainings, technical

presentations, site surveys and security infrastructure

integration.

He took part in most of the reasonable IT security focused

events in Hungary where he was responsible for the IT

infrastructure behind the "scene". These days he is involved in

several project at multinational companies.

Gábor Lencse received his MSc in

electrical engineering and computer

systems from the Technical

University of Budapest in 1994, and

his PhD in 2001.

He has been working for the

Department of Telecommunications,

Széchenyi István University in Győr

since 1997. Now, he is an Associate

Professor. He teaches Computer

networks and the Linux operating

system. He is responsible for the specialization of the

information and communication technology of the BSc level

electrical engineering education. He is a founding member and

also a core member of the Multidisciplinary Doctoral School

of Engineering Sciences, Széchenyi István University. The

area of his research includes discrete-event simulation

methodology, performance analysis of computer networks and

IPv6 transition technologies. He has been working part time

for the Department of Networked Systems and Services,

Budapest University of Technology and Economics (the

former Technical University of Budapest) since 2005. There

he teaches Computer architectures and Computer networks.

Dr. Lencse is a member of the Institute of Electronics,

Information and Communication Engineers (IEICE).

Infocommunications Journal, vol. 8. no. 2. pp. 1-10. (June 2016) See last page for copyright!

11

© HTE 2016. This is the author’s version of the work. It is

posted here by permission of HTE for personal use. Not for

redistribution. The definitive version was published in

Infocommunications Journal, vol. VIII, no. 2. (June, 2016)

