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Abstract—The trustworthy operation of the DNS service is a 

very important precondition for a secure Internet. As we point it 

out, DNS cache poisoning could be even more dangerous if it is 

performed against DNS64 servers. Based on RFC 5452, we give an 

introduction to the three main components of DNS cache 

poisoning vulnerability, namely Transaction ID prediction, source 

port number prediction, and a birthday paradox based attack, 

which is possible if a DNS or DNS64 server sends out multiple 

equivalent queries (with identical QNAME, QTYPE, and 

QCLASS fields) concurrently. We design and implement a 

methodology and a testbed, which can be used for the systematic 

testing of DNS or DNS64 implementations, whether they are 

susceptible to these three vulnerabilities. We perform the tests 

with the following DNS64 implementations: BIND, PowerDNS, 

Unbound, TOTD (two versions) and mtd64-ng. As for the testbed, 

we use three virtual Linux machines executed by a Windows 7 

host. As for tools, we use VMware Workstation 12 Player for 

virtualization, Wireshark and tshark for monitoring, dns64perf 

for Transaction ID and source port predictability tests, and our 

currently developed “birthday-test” program for concurrently 

sent multiple equivalent queries testing. Our methodology can be 

used for DNS cache poisoning vulnerability analysis of further 

DNS or DNS64 implementations. A testbed with the same 

structure may be used for security vulnerability analysis of DNS 

or DNS64 servers and also NAT64 gateways concerning further 

threats. 

 

Index Terms—DNS cache poisoning, DNS64, IPv6 transition 

technologies, NAT64, security, testbed, virtualization.  

 

I. INTRODUCTION 

EVERAL IPv6 transition technologies [1] were developed 

 to support the transition from IPv4 to IPv6, which we are 

currently faced with, and which is expected to last for several 

years or even decades.  On the one hand, IPv6 transition 

technologies are important solutions for several different 

problems, which arise from the incompatibility of IPv4 and 

IPv6: they can enable communication in various scenarios [2]. 

However, on the other hand, they also involve a high number of 

security issues [3]. We have surveyed 26 IPv6 transition 

technologies, and prioritized them in order to be able to analyze 

the security vulnerabilities of the most important ones first [2]. 

DNS64 [4] and stateful NAT [5] were classified as having 

utmost importance, because they together provide the only 

solution for a communication scenario, which is very important 

now because of the exhaustion of the public IPv4 address pool, 

namely, they enable IPv6-only clients to communicate with 

IPv4-only servers. 

We have also developed a methodology for the identification 

of potential security issues of different IPv6 transition 

technologies [6]. Ref. [3] follows the STRIDE approach, which 

is a general software security solution and it uses the DFD (Data 

Flow Diagram) model of the systems to facilitate the discovery 

of various threats. We have found this approach useful and 

amended the method in [6], where we have also shown that it is 

necessary to examine the most important implementations of 

the given IPv6 transition technologies, whether they are 

susceptible to the various threats that were discovered by using 

the STRIDE approach. We have pointed out that DNS64 is 

theoretically susceptible to DNS cache poisoning [7], and now 

the important practical question is, whether its different 

implementations are actually susceptible to DNS cache 

poisoning or not. 

The purpose of this paper is to develop a simple and efficient 

methodology for DNS cache poisoning vulnerability analysis of 

DNS64 implementations. This paper is based on our workshop 

paper [8], in which we have presented our testbed and our 

method for Transaction ID prediction attack as well as our 

results for some specific DNS64 implementations. Now we 

give a more detailed introduction to cache poisoning including 

its further two components (source port number prediction, and 

the birthday paradox based attack), and also design and carry 

out their testing methods. Besides the DNS64 implementations 

included in our workshop paper, now we also include Unbound, 

because it showed much better performance than BIND [9]. 

The remainder of this paper is organized as follows. In 

section II, we examine, why DNS cache poisoning is so crucial 
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concerning the DNS64 technology and we also elaborate the 

attack model of DNS cache poisoning. In section III, we survey 

the available test tools for DNS cache poisoning analysis and 

point out that they are not suitable for our purposes. In section 

IV, we design and implement a testbed for security analysis of 

DNS64 implementations. In section V, we select the DNS64 

implementations to be tested and also present their setup. In 

sections VI, VII, and VIII, we design and carry out different 

tests for the possible components of the DNS cache poisoning 

vulnerability, namely, we test Transaction ID and source port 

predictability, as well as whether the DNS64 implementations 

send out multiple equivalent queries simultaneously, which 

would give an opportunity for an attack based on the birthday 

paradox. In section IX, we summarize and discuss our results, 

as well as we make suggestions for the elimination of the 

uncovered vulnerabilities. Section X concludes our paper. 

II. CACHE POISONING VULNERABILITY OF DNS64 

The trustworthy operation of the DNS service is a very 

important precondition for a secure Internet. The ultimate 

mitigation for DNS cache poisoning, as well as for all other 

tampering type attacks against DNS, is DNSSEC [10]. 

However, concerning the cache poisoning vulnerability of 

DNS64 servers we cannot rely on DNSSEC for two reasons. 

First of all, its deployment rate is still very low. (As of 2016, it 

was 1.7% among the Alexa top 1 million web servers [11].) The 

other reason is DNS64 specific. The task of a DNS64 server is 

to synthesize an IPv4-embedded IPv6 address [12] for the 

domain names that do not have a AAAA record (IPv6 address). 

However, this a forged address from the DNSSEC point of 

view. Thus, a security aware and validating DNS client has to 

discard it. The best possible mode of operation is, when a 

security aware client asks the DNS64 server to perform the 

validation, see section 3 of [4]. In this case, the client has to 

trust in the DNS64 server. (And of course, tampering may 

happen while the packet travels from the DNS64 server to the 

client.) 

Thus for protecting our DNS64 servers from DNS cache 

poisoning, we need to rely on the guidelines laid down in RFC 

5452 [13]. Before addressing them, we need to clarify the attack 

model, that is, the conditions of a DNS cache poisoning attack. 

We always consider blind spoofing, which means that the 

attacker may not intercept the DNS requests from the attacked 

DNS server to the authoritative DNS server. The attacker may 

send DNS requests (for any domain name) and forged replies to 

the attacked DNS server. 

Now, we first quote the most important conditions from RFC 

5452, when a DNS server (called as “resolver” in the text) may 

accept information from a DNS reply packet, and then interpret 

them for our situation. 

“DNS data is to be accepted by a resolver if and only if: 

1. The question section of the reply packet is equivalent to 

that of a question packet currently waiting for a 

response. 

2. The ID field of the reply packet matches that of the 

question packet. 

3. The response comes from the same network address to 

which the question was sent. 

4. The response comes in on the same network address, 

including port number, from which the question was 

sent. 

In general, the first response matching these four conditions 

is accepted.” (from section 3 of [13]) 

Condition 1 gives a very important protection against 

spoofed answers by setting up a time limit. This time interval is 

equal to the round trip time between the given DNS server and 

the authoritative DNS server plus the response time of the 

authoritative DNS server. (The latter may be increased by the 

attacker by a DoS attack against the authoritative DNS server.) 

In its calculations, the RFC uses 100ms as a typical value for 

the length of this time interval. Of course, an attacker may 

attempt to initiate the opening of this time window at any time 

by sending a request for an arbitrarily chosen domain name. 

However, if a domain name is already cached, it is usually 

protected, until its TTL expires. 

Condition 2 significantly hardens the task of the attacker: the 

attacker has to guess the Transaction ID for a successful attack. 

To support guessing, the attacker may send DNS resolution 

requests to the DNS server for any domain names, including 

domain names, the authoritative DNS servers of which is under 

the control of the attacker, thus the attacker may observe an 

arbitrarily long sequence of the Transaction IDs generated by 

the attacked DNS server. Therefore, DNS servers must use hard 

to predict (cryptographic) random number generators to prevent 

the attacker from being able to predict the Transaction IDs. 

Thus, on average, a number of 215 trials are necessary for a 

successful guess for the 16 bit long Transaction ID (within the 

given time period of about 100ms). 

Condition 3 further hardens the task of the attacker, but not 

very significantly. There may be a few authoritative DNS 

servers for a domain, the IP address of which are known for the 

attacker, and the DNS server may use them in a round robin 

manner. The attacker needs to spoof exactly the right one. As 

their number is usually small, this condition contributes only 

with a small multiplication factor. As for the spoofing itself, 

there are some countermeasures against source IP address 

spoofing, such as reverse path checking by routers or firewalls. 

However, we may not rely on this optional protection: we 

suppose that it is not switched on, or the attacker is able to send 

the forged replies from the “right” direction. 

Condition 4 has two contributions. The attacked DNS server 

may have more than one network interfaces (or more than one 

IP addresses may be assigned to the same interface), but this 

number is limited, thus it may be only a small factor. The source 

port number can be another significant factor, if the DNS server 

uses different, hard to predict source port numbers for sending 

out its every single request. As port numbers from 0 to 1023 

cannot be used, the entropy is somewhat less than 16 bits. 

We note that NAT (more exactly: NAPT) devices may 

remove the entropy of the source port numbers, thus DNS 

servers should never be placed behind NAPT devices unless the 

NAPT devices are known to comply with RFC 6056 [14], 
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which requires randomized source port number selection. 

RFC 5452 [13] describes another form of attack, which is 

based on the birthday paradox. If the attacker may achieve that 

the DNS server sends out multiple equivalent queries, that is 

queries with identical QNAME, QTYPE, and QCLASS fields, 

concurrently (a new query is sent while another one still waits 

for an answer) then the forged replies of the attacker may match 

any of them, which significantly eases the attack. For further 

details, please refer to the CERT vulnerability note [15]. 

To sum up the essence of the above conditions, we need to 

check whether the analyzed DNS64 server implementations use 

hard to predict random numbers for both Transaction IDs and 

source port numbers and they do not send multiple equivalent 

queries concurrently. 

III. TOOLS FOR CACHE POISONING VULNERABILITY 

TESTING 

Although Daniel J. Bernstein already disclosed the 

vulnerability of the DNS system as well as the possible solution 

in 1999 [16], and there was a CERT notification about the 

possibility of the birthday paradox based attacks in 2002 [15], 

some mainstream DNS servers implementations including 

BIND did not address the issue properly until the CERT 

notification in 2008 [17], which was triggered by Dan 

Kaminsky, who invented a more powerful cache poisoning 

method. His attack is built upon two ideas: it bypasses the 

protection of the TTL by using different random names from 

the attacked domain, and goes one hierarchy level higher: 

instead of trying to insert a forged “A” record into the cache of 

the attacked DNS server, it hijacks the whole attacked zone by 

including the IP address of a DNS server controlled by the 

attacker as an IP address of a DNS server for the attacked 

domain into an Authority record of a forged answer for a query 

for a random name from the attacked zone (to trick the bailiwick 

rule), see [18] for an in depth and well-illustrated description of 

the attack.  

Then the alert was taken seriously, and patches were 

prepared for all those major DNS implementations that were 

still vulnerable. Also vulnerability testing tools were prepared 

and released. 

A contemporary web based Transaction ID and source port 

randomness tester by DNS-OARC is still available [19]. It is 

documented and highly suggested by [20]. Although the 

demonstration screen at the documentation does not seem to be 

so bad, see Fig. 1, our experience was rather poor. When we 

tried it out, among others, we received the results shown in 

Fig. 2. We contend that it is not enough to test only five 

Transaction IDs. But we do not have an opportunity to tune the 

tests. 

Another web-based testing tool is mentioned in the ICANN 

presentation of Kim Davies [21], but the tool is no more 

available at the URL mentioned on slide 33 of the presentation: 

http://recursive.iana.org/. 

And there is another problem with these web-based tools: 

they require that the DNS server is configured in a live system. 

We rather decided to build a testbed, that is, an isolated 

environment, where we can check whether the examined 

DNS64 implementations indeed have the presumed 

vulnerabilities by using any kind of tests with any parameters 

we consider necessary. 

IV. TESTBED DESIGN AND IMPLEMENTATION 

A. General Considerations 

Although we intended to design a testbed for the security 

analysis of DNS64 server implementations, we made our 

considerations with a broader mindset, so that the testbed may 

also be used for the security analysis of other IPv6 transition 

technologies, especially NAT64. 

In general, the requirements for such a testbed usually 

include the following: 

1. isolated environment, where attacks may be performed 

2. ease of use 

3. low cost. 

A testbed for the security analysis of different IPv6 transition 

technologies should contain the fundamental basic blocks of the 

systems in which the given solutions are used. Practically it 

means that we need a few computers which are interconnected 

by IPv4 and/or IPv6 network(s). Such systems can be built in 

Fig. 1. Sample Transaction ID randomness testing results of the DNS-OARC 
DNS entropy testing tool. [20] 

 

Fig. 2. Our Transaction ID randomness test result produced by the DNS-

OARC DNS entropy testing tool. 
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several ways, including the usage of: 

1. server computers 

2. desktop or laptop computers 

3. single-board computers [22] 

4. virtual machines. 

We contend that the consecutive solutions result in less cost 

and higher comfort in use including easy mobility. Our decision 

was also influenced by the fact that we have been successfully 

using virtual Linux boxes (executed under Windows 7) for the 

practical education of DNS64 and NAT64 IPv6 transition 

technologies at the Budapest University of Technology and 

Economics since 2015. 

As the existing virtual machine images were suitable for our 

current testing purposes, it was a convenient solution to reuse 

them. The virtual machine images were prepared by a script 

called debian-vm, written by Dániel Bakai [23]. (This script 

creates a small, low memory usage, user-defined Debian virtual 

machine disk image, which can be used in various hypervisors 

including VMware and KVM.) They contain Debian 8 

distributions, which were now updated to Debian version 8.9. 

They were executed by VMware Workstation 12 Player. 

B. Topology of the Test Network 

We propose the structure of a simple testbed suitable for the 

security analysis of the DNS64 and the stateful NAT64 IPv6 

transition technologies. Similar testbeds can be built for the 

security analysis of other IPv6 transition technologies. 

The testing of DNS64 or NAT64 requires a network of three 

hosts. As for DNS64, they are: client, DNS64 server and 

authoritative DNS server, where the DNS64 server should be 

interconnected with both the client and the authoritative DNS 

server. As for NAT64, only the roles are different: client, 

NAT64 gateway and IPv4-only server; the topology is the 

same. Thus the same network can be used for the testing of the 

different implementations of both IPv6 transition technologies, 

only some software components need to be changed. 

As for the attacker, two further hosts could have been added, 

one for tampering with each connections, but we eliminated 

them with a trick. First of all, we used a single shared medium 

to interconnect the three computers, see Fig. 3, thus only one 

extra device would have been enough. However, as in our 

current tests we used only wiretapping, it could be done at any 

of the three computers, thus no further computer was necessary. 

C. Implementation of the Test Network 

We have implemented the test network shown in Fig. 3 by 

three virtual machines, each of which had a single CPU core, 

128MB of RAM, and (theoretically) 40GB of hard disks, but 

the starting size of the images were under 1GB. (They were 

growing during the experiments, but remained under 3GB.) 

Table 1 shows the Linux and WMware settings used for the 

virtual machines. 

We note that the IP version between the client, which is an 

IPv6-only client, and the DNS64 server must be 6. There is no 

restriction for the IP version between the DNS64 server and the 

DNS server, but when testing NAT64, IPv4 must be used 

 

Fig. 3. Topology of the test network. 

Table 1.  Linux and VMware Network Settings for Virtual Machines. 

Virtual machine name client  dns64 dns 

Role IPv6-only client  DNS64 server Authoritative DNS server 

eth0 Linux settings  IPv6 static: fd00::1/64  IPv6 static: fd00::2/64 

IPv4 static 10.0.0.2/24 

IPv6 static: fd00::3/64 

IPv4 static: 10.0.0.3/24 

eth1 Linux settings IPv4 DHCP  IPv4 DHCP IPv4 DHCP 

eth0 VMware settings VMnet1  VMnet1 VMnet1 

eth1 VMware settings NAT  NAT NAT 
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between the NAT64 gateway and the IPv4-only server. 

Although we used IPv4 between the DNS64 server and the 

authoritative DNS server during our DNS64 vulnerability tests, 

we set also an IPv6 address at the authoritative DNS server to 

be able to reach it directly from the client for testing its 

operability. 

We also note that the eth1 interfaces were not necessary for 

the tests, we used them for providing the virtual machines with 

Internet access, which was sometimes necessary, e.g. for 

installing various packages under Debian Linux. We have 

separated this communication from the testing communication, 

which happened always through the eth0 interfaces of the 

virtual computers. 

D. Setup of a Basic DNS64 Testbed 

The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 

dns64 and the dns virtual machines. 

1) 1. Setup of the DNS64 Server 

The /etc/bind/named.conf.options file was used 

to set up the DNS64 function. The relevant settings were: 

dns64 2001:db8:1::/96 { }; 
forwarders { 10.0.0.3;}; 
dnssec-validation no 

2) 2. Setup of the Authoritative DNS Server 

The /etc/bind/named.conf.local file was used to 

set up the authoritative DNS server. The relevant settings were: 

zone "dns64.test" { 
  type master; 
  file "/etc/bind/db.dns64.test"; 
}; 

The content of the db.dns64.test file was: 

$ORIGIN dns64.test. 
$TTL 86400 
@  IN  SOA  localhost.  root.localhost.  ( 
            2017090702    ; Serial 
                 14400    ; Refresh 
                  7200    ; Retry 
                 72000    ; Expire 
                  3600  ) ; Negative Cache TTL 
; 
@       IN      NS      localhost. 
 
kanga   IN      A       192.0.2.1 
owl     IN      A       192.0.2.2 
piglet  IN      A       192.0.2.3 
rabbit  IN      A       192.0.2.4 
winnie  IN      A       192.0.2.5 

E. Functional Checking of the Test Network 

In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  

We tested the operation of the testbed by issuing the 

following command on the client computer: 

host -t AAAA piglet.dns64.test dns64 

The host Linux command was used to request a AAAA 

record for the piglet.dns64.test domain name from the 

DNS64 server executed by the host named dns64. 

The DNS messages were captured by Wireshark on the 

VMnet1 interface using the port 53 capture filter. The six 

captured packets are shown in Fig. 4. Now we shall identify the 

six messages and observe their Transaction IDs, which are used 

to match the answer with the query. We will experiment with 

them later. 

1. Request for a AAAA record from the client to the 

DNS64 server with Transaction ID 0x7c4a, generated by 

the host command. 

2. Request for a AAAA record from the DNS64 server to 

the authoritative DNS server with a different Transaction 

ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 

the authoritative DNS server to the DNS64 server, and 

its Transaction ID is the same as that of the 

corresponding request. 

4. Request for an A record from the DNS64 server to the 

authoritative DNS server with a different Transaction ID, 

0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 

DNS server to the DNS64 server, and its Transaction ID 

is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 

the synthesized IPv4-embedded IPv6 address [12] with 

the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 

ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 

We have laid down our implementations selection guidelines 

in [2] as follows: 

“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 

reasons: 

• The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 

publication of benchmarking results is prohibited. 

• Free software can be used by anyone for any purposes 

thus our results can be helpful for anyone. 

• Free software is available free of charge for us, too. 

Within the category of the free software implementations, we 

 

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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give further priority to those, which are used widespread and/or 

are known to be stable and high performance (if such 

information is available).” [2] 

Although several DNS implementations exist, only very few 

of them can do DNS64, thus finding such DNS64 

implementations was not an easy task. We selected the 

following DNS64 implementations for testing: 

1. BIND 9.9.5-9+deb8u12-Debian [24] 

2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 

3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 

4. mtd64-ng 1.1.0 [31] 

5. PowerDNS Recursor 3.6.2 [32] 

6. Unbound 1.6.0 [33] 

Remarks: 

• Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide-

spread used for DNS64 purposes, too. 

• Some years before we have prepared a patch for TOTD, 

which resolved some security issues [30], and now we 

tested its both patched and unpatched versions.  

• We also have a new tiny DNS64 proxy called mtd64-ng 

[31], which is currently developed in an ongoing 

university project. Although it is not yet ready for 

deployment, we have also included it. 

We have already introduced the DNS64 configuration of 

BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 

/usr/local/etc/totd.conf file, the relevant settings 

were: 

forwarder 10.0.0.3 
prefix 2001:db8:404d:: 

The configuration of the mtd64-ng DNS proxy was done in 

the /etc/mtd64-ng.conf file, where the relevant settings 

were: 

nameserver 10.0.0.3 
prefix 2001:db8::/96 
num-threads 1 

The DNS64 configuration of PowerDNS was a bit more 

complex. 

In the /etc/powerdns/recursor.conf file, we made 

the following relevant settings: 

allow from=::/0 
forward-zones=dns64perf.test=10.0.0.3 
local-address=fd00::2 
lua-dns-script=/etc/powerdns/dns64.lua 

The content of the /etc/powerdns/dns64.lua file 

was: 

function nodata ( remoteip, domain, qtype, records ) 
if qtype ~= pdns.AAAA then return pdns.PASS, {} end 
setvariable() 
return "getFakeAAAARecords", domain, "2001:db8::" 
end 

As for Unbound, its 1.4.22 version distributed in Debian 8.9 

did not contain the DNS64 module, which was included from 

its next version, namely 1.5.0. Therefore we upgraded the 

dns64 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  

As for its configuration, we have added the following lines 

to the /etc/unbound/unbound.conf file: 

access-control: ::/0 allow 
module-config: "dns64 iterator" 
dns64-prefix: 2001:db8:bd::/96 
forward-zone: 
  name: dns64perf.test. 
  forward-addr: 10.0.0.3 
server: 
  interface: fd00::2 

VI. TRANSACTION ID PREDICTION VULNERABILITY 

TESTING 

A. Details of the Measurements 

We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 

even if the examined DNS64 implementations use caching. 

1) Name Space and Configuration for Testing 

To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 

found that the name space used in our earlier DNS64 tests [34] 

would be appropriate. It was the following name space: 

10-a-b-c.dns64perf.test, where a, b, c are integers from the 

[0, 255] interval. 

We have used only the 10-0-{0..255}-{0..225} part of it. For 

generating the zone file, we used the modified version of the 

zone file generator script called gen-zonefile, which is 

shipped together with the dns64perf program (documented 

in [34] and available from [35]). 

The /etc/bind/named.conf.local file of the 

authoritative DNS server was modified as follows: 

zone "dns64perf.test" { 
  type master; 
  file "/etc/bind/db.dns64perf.test"; 
}; 

Thus, BIND used our newly generated zone file after its 

being restarted. 

2) Execution of the Measurements 

The measurements were performed by the dns64perf [34] 

program, which used sequential Transaction IDs from 0 to 

65535. The command line of the test program was: 

./dns64perf 0 1 1 dns64 

The first argument specified the “a” parameter described 

above, the second argument meant that the test program needed 

to use only one thread, the third one specified the timeout of 1 

second, and the last one was the host name of the DNS64 server 

to be tested. 

The traffic was captured by the tshark program executed 

by the dns64 host, the memory size of which was raised to 

256MB, because 128MB was not enough and the tshark 

program exited during the measurement. All the packets from 

the eth0 interface that matched the port 53 capture filter 

were saved to a file. The following command line was used: 

tshark -i eht0 -f "port 53" > imp-full 
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where the imp string was replaced by the name of the tested 

DNS64 implementation. 

B. Evaluation Method 

Predictability of the Transaction IDs is a hard question. E.g. 

if pseudorandom numbers are used that were generated by a 

linear congruential generator (LCG), then they are predictable. 

There are a high number of methods described for testing 

randomness both in university lecture notes [36] and research 

papers [37]. 

Since our solution of using a testbed ensures us full control 

of the testing method, and gives us access to the raw results, we 

have the possibility to use multiple methods for evaluation if 

needed. We decided to use first a simple, graphical method, 

which is somewhat similar to that of the earlier mentioned 

entropy tester of DNS-OARC [19], but we contend that our 

method is more thorough than that. 

We have checked two kinds of correlations using 

visualization. Before introducing them, let us define some 

notations first. Let i denote the ordinal number of a message in 

the message sequence introduced in section IV.E, where i is in 

[1, 6]. Let j denote the ordinal number of the AAAA record 

request sent by the dns64perf program, where j is in [0, 

65535]. Let Tij denote the Transaction ID of the i-th message 

from the six messages used to resolve the j-th query of the 

dns64perf program. As the test program uses sequential 

Transaction IDs from 0, it is sure that: T1j = T6j = j. 

We use two graphs. An (x, y) plot of the (T1j, T2j) pairs may 

reveal correlation between the Transaction ID used by the 

dns64perf program and the first Transaction ID generated 

by the DNS64 program. An (x, y) plot of the (T2j, T4j) pairs may 

 

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right) 

 

 

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right) 



8 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

reveal correlation between the consecutive Transaction IDs 

generated by the DNS64 program. For simplicity, we will refer 

to the first one as input correlation, and the second one as 

autocorrelation. 

We used awk scripts to extract the appropriate Transaction 

IDs from the text file output of the tshark program, and the 

graphs were prepared by gnuplot.  

C. Measurement Results 

Fig. 5 shows the input correlation and the autocorrelation of 

the Transaction IDs of BIND. They seem to be like noise, thus 

we can say that no predictability problems were revealed by our 

simple evaluation method. 

The left graph of Fig. 6 shows the input correlation of the 

Transaction IDs of OLDTOTD. The regular patterns indicate 

that there is a problem with the predictability of the Transaction 

IDs. Before giving the explanation, let us have a look at the 

autocorrelation of the Transaction IDs of OLDTOTD on the 

right side of Fig. 6. Now, the predictability is even more 

deliberate. Let us look into the CSV file containing the (T1j, T2j) 

pairs for input correlation checking: 

0, 55745 

1, 56257 

2, 56769 

3, 57281 

4, 57793 

Whereas the T1j Transaction IDs start from 0 and increase by 

1, the T2j Transaction IDs start from a different number and 

increase by 512. The CSV file containing the (T2j, T4j) pairs for 

autocorrelation checking can give us further help: 

55745, 56001 

56257, 56513 

 

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 

Fig. 8. mtd64-ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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56769, 57025 

57281, 57537 

57793, 58049 

It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 

disclosed it in [30], the old version of TOTD generated 

sequential numbers as Transaction IDs. The increase of 256 is 

the result of the facts that the notebook used for testing has an 

Intel CPU, which uses LSB byte order (least significant byte 

first), whereas the network byte order is MSB (most significant 

byte first). The programmer could have been used the standard 

htons() function for the conversion, but omitting it is just a 

feature and not a bug, as Transaction IDs are just identifiers and 

they do not convey any special meaning. For more information 

about the bug, which randomly caused an unresponsiveness of 

the old version of TOTD, and for its correction, please refer to 

[30], where we have also described the elimination of its 

vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 

Transaction IDs of NEWTOTD. They seem to be like noise, 

which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 

Transaction IDs of mtd64-ng. They are two completely 

identical graphs, as the two CSV files were found also 

completely identical. It is visibly the graph of y=x function, 

because mtd64-ng reuses the Transaction ID of the received 

query and sends both of its own queries with the same 

Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64-ng is a result of an ongoing 

university project and it not yet ready to be used in production 

systems [31]. 

As for PowerDNS and Unbound, we have also performed the 

tests and evaluated the results. All their plots looked like the 

plots of BIND or NEWTOTD, thus we can state that we found 

no signs of Transaction ID predictability. (We omit the four 

plots, because we see no point in including further four “random 

art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 

The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but tshark 

did not include the port numbers in its output. (Its default output 

contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 

measurements using a different command line for tshark as 

follows: 

tshark -i eth0 -f "src host 10.0.0.2 and 
udp dst port 53" -T fields -e udp.srcport 
> imp-srcports 

The capture filter ensured that only IPv4 packets sent from 

the DNS64 server program at dns64 (with source IP address 

10.0.0.2) to the authoritative DNS server program (listening at 

port 53 of dns) be included. The output file contained only the 

source port numbers. As expected, the result files contained 

131072 numbers, except for BIND, in the case of which there 

were 131073 numbers in the file. We have investigated the case 

and found that it was so because BIND also sent a query for the 

IP addresses of the root DNS servers. None of the other 

implementations did so. 

We have summarized our results in Table 2. BIND, 

PowerDNS and Unbound follow the guidelines of RFC 5452 

[13] and choose a source port number randomly from the largest 

available range of [1024, 65535]. Both versions of TOTD use 

source port 53 for all outgoing queries. This is trivially 

predictable. As for mtd64-ng, what can be seen from Table 2, 

is that the source port number range is [32768, 61000]. What 

cannot be seen from the table is that the same source ports are 

used for querying the AAAA record and the A record for the 

same domain name.  This is deliberate from the raw 

measurement results, we show only the first 6 lines: 

48926 

48926 

41556 

41556 

42713 

42713 

And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 

spoofing attack model, we recommend the usage of different 

source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64-ng 

entrusts the source port selection to the operating system. It can 

be satisfactory, if the operating system complies with RFC 6056 

[14], but we contend that is safer if source port randomization 

is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 

TESTING 

To be able to test, whether the examined DNS64 

implementations send multiple equivalent queries concurrently, 

we had to modify the test program so that it can send multiple 

queries for the same domain name. 

A. Test Program for Checking Birthday Attack 

Vulnerability 

The dns64perf [35] test program was used as a starting 

point of our new birthday-test program. Its arguments 

are: b, n, timeout, IPv6Addr and port. Parameter b can 

Table 2.  Source Port Randomness Test Results 

DNS64 

Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64-ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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be used to perform multiple tests with a different domain name 

in each test. It is for convenience: when multiple tests are done, 

the DNS64 server may cache the previously used domain names 

and it is easier to use a different one for a new test, than 

restarting the DNS64 server. Parameter n specifies the number 

of queries to be sent. The rest of the parameters are to be 

interpreted as that of the original test program, that is, 

timeout, IPv6Addr and port specify the timeout value of 

the receive function, the IPv6 address (or host name) of the 

DNS64 server to be tested and the port number, where the 

DNS64 server listens, respectively. (The port number is 

optional, its default value is 53.)  

The program sends n number of AAAA record requests for 

the 10-0-b-0.dns64perf.test domain name, where n and b 

should be in the [0, 255] interval. After sending all the queries, 

it also receives the replies, but it does not use them for any 

purposes. It receives them only to avoid the annoying 

“Destination Unreachable (Port Unreachable)” ICMP error 

messages. 

The source code of the test program is available from [39]. 

B. Measurements and Results 

The concurrently sent multiple equivalent queries 

vulnerability tests were performed in the same testbed as the 

previous two measurements. Wireshark (executed on the host 

computer under Windows) was used to monitor the behavior of 

the DNS64 implementations. We captured the packets on the 

VMnet1 interface using the port 53 capture filter. 

The usual command line was: 

./birthday-test 0 2 1 dns64 

(However, sometimes different values were used for b, e.g. 

3 instead of 0 in the case shown in Fig. 9.) 

The results produced by BIND can be seen in Fig. 9. 

Although we sent two queries for the AAAA record of the same 

domain name, BIND sent only one request to the authoritative 

DNS server for the AAAA record of the given domain name. 

(Its next query is for the A record.) Thus BIND is not vulnerable 

to the “birthday attack”. 

The results produced by OLDTOTD can be seen in Fig. 10. 

It sent two equivalent queries for the same resource records 

(first for AAAA records and then for A records). It can be also 

observed that the Transaction IDs were incremented by 0x100, 

as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9. 

We note that none of them is a serious problem, because 

TOTD does not use caching. Thus no cache poisoning attack 

against TOTD is possible. The attacker can at most achieve that 

a single client receives forged answer. 

The results produced by NEWTOTD can be seen in Fig. 11. 

The only improvement over OLDTOTD is the proper 

Transaction ID randomization. 

We performed two measurements with mtd64-ng because of 

the following reasons. As only one CPU core was assigned to 

the dns64 virtual machine in the testbed, originally we set the 

 

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND. 

 

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD. 

 

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD. 
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number of working threads of mtd64-ng to 1. Due to this 

setting, mtd64-ng serialized the processing of the requests from 

our test program, as shown in Fig. 12. However, the DNS64 

server of a large network with a high number of users should 

use multiple threads, therefore we executed the test also with 

two threads. The results in Fig. 13 reveal that mtd64-ng sends 

separate AAAA and A record requests for each client request. 

Although mtd64-ng currently does not support caching, thus it 

is not a serious vulnerability, the problem must be addressed 

later, because including caching is among the midterm 

development plans of mtd64-ng. 

The results of PowerDNS and Unbound are shown in Fig. 14 

and Fig. 15, respectively. None of them send out multiple 

equivalent queries, thus they are not vulnerable to birthday 

attacks. 

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION 

We have summarized the results of the three kind of 

measurements in Table 3. As for BIND, PowerDNS, and 

Unbound, we have not found any vulnerabilities that could lead 

to cache poisoning. Although TOTD and mtd64-ng have 

several vulnerabilities that could lead to cache poisoning, they 

do not implement caching, thus cache poisoning is not possible 

in their cases.  

As the implementation of caching is included in the midterm 

development plans of mtd64-ng, the protection against all three 

vulnerabilities must also be included. We recommend the usage 

of cryptographically secure random number generators [40] for 

generating Transaction IDs and source port numbers. The 

elimination of the vulnerability to birthday attacks seems to be 

a more difficult problem, as now the performance of mtd64-ng 

benefits from the solution that the requests from the clients are 

not stored in a central database, but they are distributed to the 

working threads. However, it will be necessary to centrally keep 

track of the queries sent by mtd64-ng to the authoritative DNS 

servers and are currently awaiting for an answer, in order to 

 

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64-ng with 1 working thread. 

 

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64-ng with 2 working threads. 

 

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS. 

 

 

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound. 
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eliminate the possibility of sending out multiple equivalent 

queries concurrently. 

We note that all the examined DNS64 implementations are 

free software [25] (also called open source [26]), thus their 

source code may also be studied, as we did it in the case of 

TOTD [30]. The significance of our testing method is that it 

may also be used for closed source software, or in the cases 

when the subject of the study also includes the interaction with 

the random number generator of the operating system. 

The very same framework could be used for the analysis of 

NAT64 gateways. 

X. CONCLUSION 

We have shown that DNS cache poisoning may be a crucial 

vulnerability of DNS64 servers and we have given an 

introduction to the three main components of DNS cache 

poisoning vulnerability, namely Transaction ID prediction, 

source port number prediction, and a birthday paradox based 

attack, which is possible if a DNS or DNS64 server sends out 

multiple equivalent queries concurrently. 

After surveying the available test tools for DNS cache 

poisoning vulnerability analysis and pointing out that they are 

not suitable for our purposes, we have designed a methodology 

and implemented it in a testbed, which can be used for the 

systematic testing of DNS or DNS64 implementations, whether 

they are susceptible to the above mentioned three 

vulnerabilities. 

We have selected BIND, PowerDNS, Unbound two versions 

of TOTD, and mtd64-ng for testing and also presented their 

setup. We have carried out their testing concerning the three 

possible components of the DNS cache poisoning vulnerability. 

We have pointed out several vulnerabilities in TOTD and 

mtd64-ng. As they do not currently support caching, thus, cache 

poisoning is not possible in their cases. As the implementation 

of caching is included in the midterm development plans of 

mtd64-ng, we have also given recommendations for the 

elimination of its uncovered vulnerabilities. 

As for BIND, PowerDNS, and Unbound, we have not found 

any vulnerabilities that could lead to cache poisoning. 
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