
1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Abstract—The trustworthy operation of the DNS service is a

very important precondition for a secure Internet. As we point it

out, DNS cache poisoning could be even more dangerous if it is

performed against DNS64 servers. Based on RFC 5452, we give an

introduction to the three main components of DNS cache

poisoning vulnerability, namely Transaction ID prediction, source

port number prediction, and a birthday paradox based attack,

which is possible if a DNS or DNS64 server sends out multiple

equivalent queries (with identical QNAME, QTYPE, and

QCLASS fields) concurrently. We design and implement a

methodology and a testbed, which can be used for the systematic

testing of DNS or DNS64 implementations, whether they are

susceptible to these three vulnerabilities. We perform the tests

with the following DNS64 implementations: BIND, PowerDNS,

Unbound, TOTD (two versions) and mtd64-ng. As for the testbed,

we use three virtual Linux machines executed by a Windows 7

host. As for tools, we use VMware Workstation 12 Player for

virtualization, Wireshark and tshark for monitoring, dns64perf

for Transaction ID and source port predictability tests, and our

currently developed “birthday-test” program for concurrently

sent multiple equivalent queries testing. Our methodology can be

used for DNS cache poisoning vulnerability analysis of further

DNS or DNS64 implementations. A testbed with the same

structure may be used for security vulnerability analysis of DNS

or DNS64 servers and also NAT64 gateways concerning further

threats.

Index Terms—DNS cache poisoning, DNS64, IPv6 transition

technologies, NAT64, security, testbed, virtualization.

I. INTRODUCTION

EVERAL IPv6 transition technologies [1] were developed

 to support the transition from IPv4 to IPv6, which we are

currently faced with, and which is expected to last for several

years or even decades. On the one hand, IPv6 transition

technologies are important solutions for several different

problems, which arise from the incompatibility of IPv4 and

IPv6: they can enable communication in various scenarios [2].

However, on the other hand, they also involve a high number of

security issues [3]. We have surveyed 26 IPv6 transition

technologies, and prioritized them in order to be able to analyze

the security vulnerabilities of the most important ones first [2].

DNS64 [4] and stateful NAT [5] were classified as having

utmost importance, because they together provide the only

solution for a communication scenario, which is very important

now because of the exhaustion of the public IPv4 address pool,

namely, they enable IPv6-only clients to communicate with

IPv4-only servers.

We have also developed a methodology for the identification

of potential security issues of different IPv6 transition

technologies [6]. Ref. [3] follows the STRIDE approach, which

is a general software security solution and it uses the DFD (Data

Flow Diagram) model of the systems to facilitate the discovery

of various threats. We have found this approach useful and

amended the method in [6], where we have also shown that it is

necessary to examine the most important implementations of

the given IPv6 transition technologies, whether they are

susceptible to the various threats that were discovered by using

the STRIDE approach. We have pointed out that DNS64 is

theoretically susceptible to DNS cache poisoning [7], and now

the important practical question is, whether its different

implementations are actually susceptible to DNS cache

poisoning or not.

The purpose of this paper is to develop a simple and efficient

methodology for DNS cache poisoning vulnerability analysis of

DNS64 implementations. This paper is based on our workshop

paper [8], in which we have presented our testbed and our

method for Transaction ID prediction attack as well as our

results for some specific DNS64 implementations. Now we

give a more detailed introduction to cache poisoning including

its further two components (source port number prediction, and

the birthday paradox based attack), and also design and carry

out their testing methods. Besides the DNS64 implementations

included in our workshop paper, now we also include Unbound,

because it showed much better performance than BIND [9].

The remainder of this paper is organized as follows. In

section II, we examine, why DNS cache poisoning is so crucial

Methodology for DNS Cache Poisoning

Vulnerability Analysis of DNS64

Implementations

G. Lencse, and Y. Kadobayashi, Member, IEEE

S

Submitted: December 28, 2017. This work was supported by the

International Exchange Program of the National Institute of Information and

Communications Technology (NICT), Japan.

G. Lencse was with the Laboratory of Cyber Resilience, Nara Institute of

Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan. He

is permanently with the Széchenyi István University, Győr, H-9026, Hungary.

(e-mail: lencse@sze.hu)

Y. Kadobayashi, is with the Laboratory of Cyber Resilience, Nara Institute

of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan.

(e-mail: youki-k@is.naist.jp).

2

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

concerning the DNS64 technology and we also elaborate the

attack model of DNS cache poisoning. In section III, we survey

the available test tools for DNS cache poisoning analysis and

point out that they are not suitable for our purposes. In section

IV, we design and implement a testbed for security analysis of

DNS64 implementations. In section V, we select the DNS64

implementations to be tested and also present their setup. In

sections VI, VII, and VIII, we design and carry out different

tests for the possible components of the DNS cache poisoning

vulnerability, namely, we test Transaction ID and source port

predictability, as well as whether the DNS64 implementations

send out multiple equivalent queries simultaneously, which

would give an opportunity for an attack based on the birthday

paradox. In section IX, we summarize and discuss our results,

as well as we make suggestions for the elimination of the

uncovered vulnerabilities. Section X concludes our paper.

II. CACHE POISONING VULNERABILITY OF DNS64

The trustworthy operation of the DNS service is a very

important precondition for a secure Internet. The ultimate

mitigation for DNS cache poisoning, as well as for all other

tampering type attacks against DNS, is DNSSEC [10].

However, concerning the cache poisoning vulnerability of

DNS64 servers we cannot rely on DNSSEC for two reasons.

First of all, its deployment rate is still very low. (As of 2016, it

was 1.7% among the Alexa top 1 million web servers [11].) The

other reason is DNS64 specific. The task of a DNS64 server is

to synthesize an IPv4-embedded IPv6 address [12] for the

domain names that do not have a AAAA record (IPv6 address).

However, this a forged address from the DNSSEC point of

view. Thus, a security aware and validating DNS client has to

discard it. The best possible mode of operation is, when a

security aware client asks the DNS64 server to perform the

validation, see section 3 of [4]. In this case, the client has to

trust in the DNS64 server. (And of course, tampering may

happen while the packet travels from the DNS64 server to the

client.)

Thus for protecting our DNS64 servers from DNS cache

poisoning, we need to rely on the guidelines laid down in RFC

5452 [13]. Before addressing them, we need to clarify the attack

model, that is, the conditions of a DNS cache poisoning attack.

We always consider blind spoofing, which means that the

attacker may not intercept the DNS requests from the attacked

DNS server to the authoritative DNS server. The attacker may

send DNS requests (for any domain name) and forged replies to

the attacked DNS server.

Now, we first quote the most important conditions from RFC

5452, when a DNS server (called as “resolver” in the text) may

accept information from a DNS reply packet, and then interpret

them for our situation.

“DNS data is to be accepted by a resolver if and only if:

1. The question section of the reply packet is equivalent to

that of a question packet currently waiting for a

response.

2. The ID field of the reply packet matches that of the

question packet.

3. The response comes from the same network address to

which the question was sent.

4. The response comes in on the same network address,

including port number, from which the question was

sent.

In general, the first response matching these four conditions

is accepted.” (from section 3 of [13])

Condition 1 gives a very important protection against

spoofed answers by setting up a time limit. This time interval is

equal to the round trip time between the given DNS server and

the authoritative DNS server plus the response time of the

authoritative DNS server. (The latter may be increased by the

attacker by a DoS attack against the authoritative DNS server.)

In its calculations, the RFC uses 100ms as a typical value for

the length of this time interval. Of course, an attacker may

attempt to initiate the opening of this time window at any time

by sending a request for an arbitrarily chosen domain name.

However, if a domain name is already cached, it is usually

protected, until its TTL expires.

Condition 2 significantly hardens the task of the attacker: the

attacker has to guess the Transaction ID for a successful attack.

To support guessing, the attacker may send DNS resolution

requests to the DNS server for any domain names, including

domain names, the authoritative DNS servers of which is under

the control of the attacker, thus the attacker may observe an

arbitrarily long sequence of the Transaction IDs generated by

the attacked DNS server. Therefore, DNS servers must use hard

to predict (cryptographic) random number generators to prevent

the attacker from being able to predict the Transaction IDs.

Thus, on average, a number of 215 trials are necessary for a

successful guess for the 16 bit long Transaction ID (within the

given time period of about 100ms).

Condition 3 further hardens the task of the attacker, but not

very significantly. There may be a few authoritative DNS

servers for a domain, the IP address of which are known for the

attacker, and the DNS server may use them in a round robin

manner. The attacker needs to spoof exactly the right one. As

their number is usually small, this condition contributes only

with a small multiplication factor. As for the spoofing itself,

there are some countermeasures against source IP address

spoofing, such as reverse path checking by routers or firewalls.

However, we may not rely on this optional protection: we

suppose that it is not switched on, or the attacker is able to send

the forged replies from the “right” direction.

Condition 4 has two contributions. The attacked DNS server

may have more than one network interfaces (or more than one

IP addresses may be assigned to the same interface), but this

number is limited, thus it may be only a small factor. The source

port number can be another significant factor, if the DNS server

uses different, hard to predict source port numbers for sending

out its every single request. As port numbers from 0 to 1023

cannot be used, the entropy is somewhat less than 16 bits.

We note that NAT (more exactly: NAPT) devices may

remove the entropy of the source port numbers, thus DNS

servers should never be placed behind NAPT devices unless the

NAPT devices are known to comply with RFC 6056 [14],

3

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

which requires randomized source port number selection.

RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that

the DNS server sends out multiple equivalent queries, that is

queries with identical QNAME, QTYPE, and QCLASS fields,

concurrently (a new query is sent while another one still waits

for an answer) then the forged replies of the attacker may match

any of them, which significantly eases the attack. For further

details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to

check whether the analyzed DNS64 server implementations use

hard to predict random numbers for both Transaction IDs and

source port numbers and they do not send multiple equivalent

queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY

TESTING

Although Daniel J. Bernstein already disclosed the

vulnerability of the DNS system as well as the possible solution

in 1999 [16], and there was a CERT notification about the

possibility of the birthday paradox based attacks in 2002 [15],

some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT

notification in 2008 [17], which was triggered by Dan

Kaminsky, who invented a more powerful cache poisoning

method. His attack is built upon two ideas: it bypasses the

protection of the TTL by using different random names from

the attacked domain, and goes one hierarchy level higher:

instead of trying to insert a forged “A” record into the cache of

the attacked DNS server, it hijacks the whole attacked zone by

including the IP address of a DNS server controlled by the

attacker as an IP address of a DNS server for the attacked

domain into an Authority record of a forged answer for a query

for a random name from the attacked zone (to trick the bailiwick

rule), see [18] for an in depth and well-illustrated description of

the attack.

Then the alert was taken seriously, and patches were

prepared for all those major DNS implementations that were

still vulnerable. Also vulnerability testing tools were prepared

and released.

A contemporary web based Transaction ID and source port

randomness tester by DNS-OARC is still available [19]. It is

documented and highly suggested by [20]. Although the

demonstration screen at the documentation does not seem to be

so bad, see Fig. 1, our experience was rather poor. When we

tried it out, among others, we received the results shown in

Fig. 2. We contend that it is not enough to test only five

Transaction IDs. But we do not have an opportunity to tune the

tests.

Another web-based testing tool is mentioned in the ICANN

presentation of Kim Davies [21], but the tool is no more

available at the URL mentioned on slide 33 of the presentation:

http://recursive.iana.org/.

And there is another problem with these web-based tools:

they require that the DNS server is configured in a live system.

We rather decided to build a testbed, that is, an isolated

environment, where we can check whether the examined

DNS64 implementations indeed have the presumed

vulnerabilities by using any kind of tests with any parameters

we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

A. General Considerations

Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our

considerations with a broader mindset, so that the testbed may

also be used for the security analysis of other IPv6 transition

technologies, especially NAT64.

In general, the requirements for such a testbed usually

include the following:

1. isolated environment, where attacks may be performed

2. ease of use

3. low cost.

A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the

systems in which the given solutions are used. Practically it

means that we need a few computers which are interconnected

by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNS-OARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS-

OARC DNS entropy testing tool.

4

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

several ways, including the usage of:

1. server computers

2. desktop or laptop computers

3. single-board computers [22]

4. virtual machines.

We contend that the consecutive solutions result in less cost

and higher comfort in use including easy mobility. Our decision

was also influenced by the fact that we have been successfully

using virtual Linux boxes (executed under Windows 7) for the

practical education of DNS64 and NAT64 IPv6 transition

technologies at the Budapest University of Technology and

Economics since 2015.

As the existing virtual machine images were suitable for our

current testing purposes, it was a convenient solution to reuse

them. The virtual machine images were prepared by a script

called debian-vm, written by Dániel Bakai [23]. (This script

creates a small, low memory usage, user-defined Debian virtual

machine disk image, which can be used in various hypervisors

including VMware and KVM.) They contain Debian 8

distributions, which were now updated to Debian version 8.9.

They were executed by VMware Workstation 12 Player.

B. Topology of the Test Network

We propose the structure of a simple testbed suitable for the

security analysis of the DNS64 and the stateful NAT64 IPv6

transition technologies. Similar testbeds can be built for the

security analysis of other IPv6 transition technologies.

The testing of DNS64 or NAT64 requires a network of three

hosts. As for DNS64, they are: client, DNS64 server and

authoritative DNS server, where the DNS64 server should be

interconnected with both the client and the authoritative DNS

server. As for NAT64, only the roles are different: client,

NAT64 gateway and IPv4-only server; the topology is the

same. Thus the same network can be used for the testing of the

different implementations of both IPv6 transition technologies,

only some software components need to be changed.

As for the attacker, two further hosts could have been added,

one for tampering with each connections, but we eliminated

them with a trick. First of all, we used a single shared medium

to interconnect the three computers, see Fig. 3, thus only one

extra device would have been enough. However, as in our

current tests we used only wiretapping, it could be done at any

of the three computers, thus no further computer was necessary.

C. Implementation of the Test Network

We have implemented the test network shown in Fig. 3 by

three virtual machines, each of which had a single CPU core,

128MB of RAM, and (theoretically) 40GB of hard disks, but

the starting size of the images were under 1GB. (They were

growing during the experiments, but remained under 3GB.)

Table 1 shows the Linux and WMware settings used for the

virtual machines.

We note that the IP version between the client, which is an

IPv6-only client, and the DNS64 server must be 6. There is no

restriction for the IP version between the DNS64 server and the

DNS server, but when testing NAT64, IPv4 must be used

Fig. 3. Topology of the test network.

Table 1. Linux and VMware Network Settings for Virtual Machines.

Virtual machine name client dns64 dns

Role IPv6-only client DNS64 server Authoritative DNS server

eth0 Linux settings IPv6 static: fd00::1/64 IPv6 static: fd00::2/64

IPv4 static 10.0.0.2/24

IPv6 static: fd00::3/64

IPv4 static: 10.0.0.3/24

eth1 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP

eth0 VMware settings VMnet1 VMnet1 VMnet1

eth1 VMware settings NAT NAT NAT

5

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4-only server.

Although we used IPv4 between the DNS64 server and the

authoritative DNS server during our DNS64 vulnerability tests,

we set also an IPv6 address at the authoritative DNS server to

be able to reach it directly from the client for testing its

operability.

We also note that the eth1 interfaces were not necessary for

the tests, we used them for providing the virtual machines with

Internet access, which was sometimes necessary, e.g. for

installing various packages under Debian Linux. We have

separated this communication from the testing communication,

which happened always through the eth0 interfaces of the

virtual computers.

D. Setup of a Basic DNS64 Testbed

The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the

dns64 and the dns virtual machines.

1) 1. Setup of the DNS64 Server

The /etc/bind/named.conf.options file was used

to set up the DNS64 function. The relevant settings were:

dns64 2001:db8:1::/96 { };
forwarders { 10.0.0.3;};
dnssec-validation no

2) 2. Setup of the Authoritative DNS Server

The /etc/bind/named.conf.local file was used to

set up the authoritative DNS server. The relevant settings were:

zone "dns64.test" {
 type master;
 file "/etc/bind/db.dns64.test";
};

The content of the db.dns64.test file was:

$ORIGIN dns64.test.
$TTL 86400
@ IN SOA localhost. root.localhost. (
 2017090702 ; Serial
 14400 ; Refresh
 7200 ; Retry
 72000 ; Expire
 3600) ; Negative Cache TTL
;
@ IN NS localhost.

kanga IN A 192.0.2.1
owl IN A 192.0.2.2
piglet IN A 192.0.2.3
rabbit IN A 192.0.2.4
winnie IN A 192.0.2.5

E. Functional Checking of the Test Network

In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.

We tested the operation of the testbed by issuing the

following command on the client computer:

host -t AAAA piglet.dns64.test dns64

The host Linux command was used to request a AAAA

record for the piglet.dns64.test domain name from the

DNS64 server executed by the host named dns64.

The DNS messages were captured by Wireshark on the

VMnet1 interface using the port 53 capture filter. The six

captured packets are shown in Fig. 4. Now we shall identify the

six messages and observe their Transaction IDs, which are used

to match the answer with the query. We will experiment with

them later.

1. Request for a AAAA record from the client to the

DNS64 server with Transaction ID 0x7c4a, generated by

the host command.

2. Request for a AAAA record from the DNS64 server to

the authoritative DNS server with a different Transaction

ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by

the authoritative DNS server to the DNS64 server, and

its Transaction ID is the same as that of the

corresponding request.

4. Request for an A record from the DNS64 server to the

authoritative DNS server with a different Transaction ID,

0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative

DNS server to the DNS64 server, and its Transaction ID

is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing

the synthesized IPv4-embedded IPv6 address [12] with

the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was

ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP

We have laid down our implementations selection guidelines

in [2] as follows:

“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple

reasons:

• The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the

publication of benchmarking results is prohibited.

• Free software can be used by anyone for any purposes

thus our results can be helpful for anyone.

• Free software is available free of charge for us, too.

Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

6

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or

are known to be stable and high performance (if such

information is available).” [2]

Although several DNS implementations exist, only very few

of them can do DNS64, thus finding such DNS64

implementations was not an easy task. We selected the

following DNS64 implementations for testing:

1. BIND 9.9.5-9+deb8u12-Debian [24]

2. TOTD 1.5.2 (referred later as OLDTOTD) [29]

3. TOTD 1.5.3 (referred later as NEWTOTD) [30]

4. mtd64-ng 1.1.0 [31]

5. PowerDNS Recursor 3.6.2 [32]

6. Unbound 1.6.0 [33]

Remarks:

• Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide-

spread used for DNS64 purposes, too.

• Some years before we have prepared a patch for TOTD,

which resolved some security issues [30], and now we

tested its both patched and unpatched versions.

• We also have a new tiny DNS64 proxy called mtd64-ng

[31], which is currently developed in an ongoing

university project. Although it is not yet ready for

deployment, we have also included it.

We have already introduced the DNS64 configuration of

BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the

/usr/local/etc/totd.conf file, the relevant settings

were:

forwarder 10.0.0.3
prefix 2001:db8:404d::

The configuration of the mtd64-ng DNS proxy was done in

the /etc/mtd64-ng.conf file, where the relevant settings

were:

nameserver 10.0.0.3
prefix 2001:db8::/96
num-threads 1

The DNS64 configuration of PowerDNS was a bit more

complex.

In the /etc/powerdns/recursor.conf file, we made

the following relevant settings:

allow from=::/0
forward-zones=dns64perf.test=10.0.0.3
local-address=fd00::2
lua-dns-script=/etc/powerdns/dns64.lua

The content of the /etc/powerdns/dns64.lua file

was:

function nodata (remoteip, domain, qtype, records)
if qtype ~= pdns.AAAA then return pdns.PASS, {} end
setvariable()
return "getFakeAAAARecords", domain, "2001:db8::"
end

As for Unbound, its 1.4.22 version distributed in Debian 8.9

did not contain the DNS64 module, which was included from

its next version, namely 1.5.0. Therefore we upgraded the

dns64 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.

As for its configuration, we have added the following lines

to the /etc/unbound/unbound.conf file:

access-control: ::/0 allow
module-config: "dns64 iterator"
dns64-prefix: 2001:db8:bd::/96
forward-zone:
 name: dns64perf.test.
 forward-addr: 10.0.0.3
server:
 interface: fd00::2

VI. TRANSACTION ID PREDICTION VULNERABILITY

TESTING

A. Details of the Measurements

We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages

even if the examined DNS64 implementations use caching.

1) Name Space and Configuration for Testing

To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have

found that the name space used in our earlier DNS64 tests [34]

would be appropriate. It was the following name space:

10-a-b-c.dns64perf.test, where a, b, c are integers from the

[0, 255] interval.

We have used only the 10-0-{0..255}-{0..225} part of it. For

generating the zone file, we used the modified version of the

zone file generator script called gen-zonefile, which is

shipped together with the dns64perf program (documented

in [34] and available from [35]).

The /etc/bind/named.conf.local file of the

authoritative DNS server was modified as follows:

zone "dns64perf.test" {
 type master;
 file "/etc/bind/db.dns64perf.test";
};

Thus, BIND used our newly generated zone file after its

being restarted.

2) Execution of the Measurements

The measurements were performed by the dns64perf [34]

program, which used sequential Transaction IDs from 0 to

65535. The command line of the test program was:

./dns64perf 0 1 1 dns64

The first argument specified the “a” parameter described

above, the second argument meant that the test program needed

to use only one thread, the third one specified the timeout of 1

second, and the last one was the host name of the DNS64 server

to be tested.

The traffic was captured by the tshark program executed

by the dns64 host, the memory size of which was raised to

256MB, because 128MB was not enough and the tshark

program exited during the measurement. All the packets from

the eth0 interface that matched the port 53 capture filter

were saved to a file. The following command line was used:

tshark -i eht0 -f "port 53" > imp-full

7

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

where the imp string was replaced by the name of the tested

DNS64 implementation.

B. Evaluation Method

Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a

linear congruential generator (LCG), then they are predictable.

There are a high number of methods described for testing

randomness both in university lecture notes [36] and research

papers [37].

Since our solution of using a testbed ensures us full control

of the testing method, and gives us access to the raw results, we

have the possibility to use multiple methods for evaluation if

needed. We decided to use first a simple, graphical method,

which is somewhat similar to that of the earlier mentioned

entropy tester of DNS-OARC [19], but we contend that our

method is more thorough than that.

We have checked two kinds of correlations using

visualization. Before introducing them, let us define some

notations first. Let i denote the ordinal number of a message in

the message sequence introduced in section IV.E, where i is in

[1, 6]. Let j denote the ordinal number of the AAAA record

request sent by the dns64perf program, where j is in [0,

65535]. Let Tij denote the Transaction ID of the i-th message

from the six messages used to resolve the j-th query of the

dns64perf program. As the test program uses sequential

Transaction IDs from 0, it is sure that: T1j = T6j = j.

We use two graphs. An (x, y) plot of the (T1j, T2j) pairs may

reveal correlation between the Transaction ID used by the

dns64perf program and the first Transaction ID generated

by the DNS64 program. An (x, y) plot of the (T2j, T4j) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

8

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs

generated by the DNS64 program. For simplicity, we will refer

to the first one as input correlation, and the second one as

autocorrelation.

We used awk scripts to extract the appropriate Transaction

IDs from the text file output of the tshark program, and the

graphs were prepared by gnuplot.

C. Measurement Results

Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus

we can say that no predictability problems were revealed by our

simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the

Transaction IDs of OLDTOTD. The regular patterns indicate

that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the

autocorrelation of the Transaction IDs of OLDTOTD on the

right side of Fig. 6. Now, the predictability is even more

deliberate. Let us look into the CSV file containing the (T1j, T2j)

pairs for input correlation checking:

0, 55745

1, 56257

2, 56769

3, 57281

4, 57793

Whereas the T1j Transaction IDs start from 0 and increase by

1, the T2j Transaction IDs start from a different number and

increase by 512. The CSV file containing the (T2j, T4j) pairs for

autocorrelation checking can give us further help:

55745, 56001

56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64-ng, Transaction ID initial correlation (left) and autocorrelation (right)

9

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

56769, 57025

57281, 57537

57793, 58049

It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we

disclosed it in [30], the old version of TOTD generated

sequential numbers as Transaction IDs. The increase of 256 is

the result of the facts that the notebook used for testing has an

Intel CPU, which uses LSB byte order (least significant byte

first), whereas the network byte order is MSB (most significant

byte first). The programmer could have been used the standard

htons() function for the conversion, but omitting it is just a

feature and not a bug, as Transaction IDs are just identifiers and

they do not convey any special meaning. For more information

about the bug, which randomly caused an unresponsiveness of

the old version of TOTD, and for its correction, please refer to

[30], where we have also described the elimination of its

vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the

Transaction IDs of NEWTOTD. They seem to be like noise,

which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the

Transaction IDs of mtd64-ng. They are two completely

identical graphs, as the two CSV files were found also

completely identical. It is visibly the graph of y=x function,

because mtd64-ng reuses the Transaction ID of the received

query and sends both of its own queries with the same

Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64-ng is a result of an ongoing

university project and it not yet ready to be used in production

systems [31].

As for PowerDNS and Unbound, we have also performed the

tests and evaluated the results. All their plots looked like the

plots of BIND or NEWTOTD, thus we can state that we found

no signs of Transaction ID predictability. (We omit the four

plots, because we see no point in including further four “random

art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING

The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but tshark

did not include the port numbers in its output. (Its default output

contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of

measurements using a different command line for tshark as

follows:

tshark -i eth0 -f "src host 10.0.0.2 and
udp dst port 53" -T fields -e udp.srcport
> imp-srcports

The capture filter ensured that only IPv4 packets sent from

the DNS64 server program at dns64 (with source IP address

10.0.0.2) to the authoritative DNS server program (listening at

port 53 of dns) be included. The output file contained only the

source port numbers. As expected, the result files contained

131072 numbers, except for BIND, in the case of which there

were 131073 numbers in the file. We have investigated the case

and found that it was so because BIND also sent a query for the

IP addresses of the root DNS servers. None of the other

implementations did so.

We have summarized our results in Table 2. BIND,

PowerDNS and Unbound follow the guidelines of RFC 5452

[13] and choose a source port number randomly from the largest

available range of [1024, 65535]. Both versions of TOTD use

source port 53 for all outgoing queries. This is trivially

predictable. As for mtd64-ng, what can be seen from Table 2,

is that the source port number range is [32768, 61000]. What

cannot be seen from the table is that the same source ports are

used for querying the AAAA record and the A record for the

same domain name. This is deliberate from the raw

measurement results, we show only the first 6 lines:

48926

48926

41556

41556

42713

42713

And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind

spoofing attack model, we recommend the usage of different

source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64-ng

entrusts the source port selection to the operating system. It can

be satisfactory, if the operating system complies with RFC 6056

[14], but we contend that is safer if source port randomization

is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY

TESTING

To be able to test, whether the examined DNS64

implementations send multiple equivalent queries concurrently,

we had to modify the test program so that it can send multiple

queries for the same domain name.

A. Test Program for Checking Birthday Attack

Vulnerability

The dns64perf [35] test program was used as a starting

point of our new birthday-test program. Its arguments

are: b, n, timeout, IPv6Addr and port. Parameter b can

Table 2. Source Port Randomness Test Results

DNS64

Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64-ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

10

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

be used to perform multiple tests with a different domain name

in each test. It is for convenience: when multiple tests are done,

the DNS64 server may cache the previously used domain names

and it is easier to use a different one for a new test, than

restarting the DNS64 server. Parameter n specifies the number

of queries to be sent. The rest of the parameters are to be

interpreted as that of the original test program, that is,

timeout, IPv6Addr and port specify the timeout value of

the receive function, the IPv6 address (or host name) of the

DNS64 server to be tested and the port number, where the

DNS64 server listens, respectively. (The port number is

optional, its default value is 53.)

The program sends n number of AAAA record requests for

the 10-0-b-0.dns64perf.test domain name, where n and b

should be in the [0, 255] interval. After sending all the queries,

it also receives the replies, but it does not use them for any

purposes. It receives them only to avoid the annoying

“Destination Unreachable (Port Unreachable)” ICMP error

messages.

The source code of the test program is available from [39].

B. Measurements and Results

The concurrently sent multiple equivalent queries

vulnerability tests were performed in the same testbed as the

previous two measurements. Wireshark (executed on the host

computer under Windows) was used to monitor the behavior of

the DNS64 implementations. We captured the packets on the

VMnet1 interface using the port 53 capture filter.

The usual command line was:

./birthday-test 0 2 1 dns64

(However, sometimes different values were used for b, e.g.

3 instead of 0 in the case shown in Fig. 9.)

The results produced by BIND can be seen in Fig. 9.

Although we sent two queries for the AAAA record of the same

domain name, BIND sent only one request to the authoritative

DNS server for the AAAA record of the given domain name.

(Its next query is for the A record.) Thus BIND is not vulnerable

to the “birthday attack”.

The results produced by OLDTOTD can be seen in Fig. 10.

It sent two equivalent queries for the same resource records

(first for AAAA records and then for A records). It can be also

observed that the Transaction IDs were incremented by 0x100,

as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9.

We note that none of them is a serious problem, because

TOTD does not use caching. Thus no cache poisoning attack

against TOTD is possible. The attacker can at most achieve that

a single client receives forged answer.

The results produced by NEWTOTD can be seen in Fig. 11.

The only improvement over OLDTOTD is the proper

Transaction ID randomization.

We performed two measurements with mtd64-ng because of

the following reasons. As only one CPU core was assigned to

the dns64 virtual machine in the testbed, originally we set the

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND.

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD.

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD.

11

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

number of working threads of mtd64-ng to 1. Due to this

setting, mtd64-ng serialized the processing of the requests from

our test program, as shown in Fig. 12. However, the DNS64

server of a large network with a high number of users should

use multiple threads, therefore we executed the test also with

two threads. The results in Fig. 13 reveal that mtd64-ng sends

separate AAAA and A record requests for each client request.

Although mtd64-ng currently does not support caching, thus it

is not a serious vulnerability, the problem must be addressed

later, because including caching is among the midterm

development plans of mtd64-ng.

The results of PowerDNS and Unbound are shown in Fig. 14

and Fig. 15, respectively. None of them send out multiple

equivalent queries, thus they are not vulnerable to birthday

attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION

We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and

Unbound, we have not found any vulnerabilities that could lead

to cache poisoning. Although TOTD and mtd64-ng have

several vulnerabilities that could lead to cache poisoning, they

do not implement caching, thus cache poisoning is not possible

in their cases.

As the implementation of caching is included in the midterm

development plans of mtd64-ng, the protection against all three

vulnerabilities must also be included. We recommend the usage

of cryptographically secure random number generators [40] for

generating Transaction IDs and source port numbers. The

elimination of the vulnerability to birthday attacks seems to be

a more difficult problem, as now the performance of mtd64-ng

benefits from the solution that the requests from the clients are

not stored in a central database, but they are distributed to the

working threads. However, it will be necessary to centrally keep

track of the queries sent by mtd64-ng to the authoritative DNS

servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64-ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64-ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

12

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

eliminate the possibility of sending out multiple equivalent

queries concurrently.

We note that all the examined DNS64 implementations are

free software [25] (also called open source [26]), thus their

source code may also be studied, as we did it in the case of

TOTD [30]. The significance of our testing method is that it

may also be used for closed source software, or in the cases

when the subject of the study also includes the interaction with

the random number generator of the operating system.

The very same framework could be used for the analysis of

NAT64 gateways.

X. CONCLUSION

We have shown that DNS cache poisoning may be a crucial

vulnerability of DNS64 servers and we have given an

introduction to the three main components of DNS cache

poisoning vulnerability, namely Transaction ID prediction,

source port number prediction, and a birthday paradox based

attack, which is possible if a DNS or DNS64 server sends out

multiple equivalent queries concurrently.

After surveying the available test tools for DNS cache

poisoning vulnerability analysis and pointing out that they are

not suitable for our purposes, we have designed a methodology

and implemented it in a testbed, which can be used for the

systematic testing of DNS or DNS64 implementations, whether

they are susceptible to the above mentioned three

vulnerabilities.

We have selected BIND, PowerDNS, Unbound two versions

of TOTD, and mtd64-ng for testing and also presented their

setup. We have carried out their testing concerning the three

possible components of the DNS cache poisoning vulnerability.

We have pointed out several vulnerabilities in TOTD and

mtd64-ng. As they do not currently support caching, thus, cache

poisoning is not possible in their cases. As the implementation

of caching is included in the midterm development plans of

mtd64-ng, we have also given recommendations for the

elimination of its uncovered vulnerabilities.

As for BIND, PowerDNS, and Unbound, we have not found

any vulnerabilities that could lead to cache poisoning.

REFERENCES

[1] E. Nordmark, R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers”, IETF RFC 4213, October 2005. DOI:

10.17487/rfc4213

[2] G. Lencse, Y. Kadobayashi, “Survey of IPv6 transition

technologies for security analysis”, IEICE Technical Committee

on Internet Architecture (IA) Workshop, Tokyo Japan, Aug. 28,

2017, IEICE Tech. Rep. vol. 117, no. 187, pp. 19–24.

[3] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, and S.

Yamaguchi, “The STRIDE towards IPv6: A comprehensive

threat model for IPv6 transition technologies”, Proc. 2nd

International Conference on Information Systems Security and

Privacy, Rome, Feb. 2016. DOI: 10.13140/RG.2.1.2781.6085

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64:

DNS extensions for network address translation from IPv6 clients

to IPv4 servers”, RFC 6147, Apr. 2011. DOI: 10.17487/rfc6147

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:

Network address and protocol translation from IPv6 clients to

IPv4 servers”, IETF RFC 6146, Apr. 2011. DOI:

10.17487/rfc6146

[6] G. Lencse, Y. Kadobayashi, “Methodology for the identification

of potential security issues of different IPv6 transition

technologies: Threat analysis of DNS64 and stateful NAT64”,

Computers & Security, vol. 77, no. 1, pp. 397-411, August 1,

2018, DOI: 10.1016/j.cose.2018.04.012

[7] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache

poisoning”, in Proc. Security and Privacy in Communication

Networks - 6th International ICST Conference (SecureComm

2010), Singapore, Sep. 7–9, 2010, pp. 466–483, DOI:

10.1007/978-3-642-16161-2_27

[8] G. Lencse and Y. Kadobayashi, “Testbed for security analysis of

the DNS64 IPv6 transition technology in virtual environment”,

IEICE Communications Society Internet Architecture Workshop,

Tokyo, Japan, Oct. 13, 2017, IEICE Tech. Rep., vol. 117, no. 239,

pp. 19-24.

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64

Implementations: Theory and Practice”, Computer

Communications, vol. 127, no. 1, pp. 61-74, September 1, 2018,

DOI: 10.1016/j.comcom.2018.05.005

[10] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS

Security Introduction and Requirements”, IETF RFC 4033, Mar.

2005. DOI: 10.17487/rfc4033

[11] J. Linkova, “Let’s talk about IPv6 DNS64 & DNSSEC”, APNIC

Blog, 2016, https://blog.apnic.net/2016/06/09/lets-talk-ipv6-

dns64-dnssec/

[12] C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6

addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010.

DOI: 10.17487/rfc6052

[13] A. Hubert, R. van Mook, “Measures for making DNS more

resilient against forged answers”, IETF RFC 5452, Jan. 2009.

DOI: 10.17487/rfc5452

[14] M. Larsen, F. Gont, “Recommendations for transport-protocol

port randomization”, IETF RFC 6056, Jan. 2011. DOI:

10.17487/rfc6056

Table 3. Summary of the Vulnerability Test Results

DNS64 Implementation

Attack Type

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning

BIND 9.9.5 no problem found no problem found protected no problem found

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable

TOTD 1.5.3 protected vulnerable vulnerable not applicable

mtd64-ng 1.1.0 vulnerable vulnerable vulnerable not applicable

PowerDNS 3.6.2 no problem found no problem found protected no problem found

Unbound 1.6.0 no problem found no problem found protected no problem found

13

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[15] CERT, “Various DNS service implementations generate multiple

simultaneous queries for the same resource record”, Vulnerability

Note VU#457875, [Online]. Available:

https://www.kb.cert.org/vuls/id/457875

[16] D. J. Bernstein, “DNS forgery”, [Online]. Available:

http://cr.yp.to/djbdns/forgery.html

[17] CERT, “Multiple DNS implementations vulnerable to cache

poisoning”, Vulnerability Note VU#800113 [Online]. Available:

http://www.kb.cert.org/vuls/id/800113

[18] S. Friendl, “An Illustrated Guide to the Kaminsky DNS

Vulnerability”, Unixwiz.net, [Online]. Available:

http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

[19] DNS-OARC, “Test my DNS”, web based Transaction ID and

source port randomness tester, [Online]. Available:

https://www.dns-oarc.net/oarc/services/dnsentropy

[20] InfosecEvents, “More DNS cache poisoning testing tools”,

[Online]. Available: http://infosecevents.net/2008/07/24/more-

dns-cache-poisoning-testing-tools/

[21] Kim, Davies, “DNS cache poisoning vulnerability: Explanation

and remedies”, ICANN presentation, Viareggio, Italy, Oct. 2008,

[Online]. Available:

https://www.iana.org/about/presentations/davies-viareggio-

entropyvuln-081002.pdf

[22] G. Lencse, S. Répás, “Benchmarking further single board

computers for building a mini supercomputer for simulation of

telecommunication systems”, International Journal of Advances

in Telecommunications, Electrotechnics, Signals and Systems,

vol. 5. no. 1, 2016, pp. 29–36, DOI: 10.11601/ijates.v5i1.138

[23] D. Bakai, “Debian-VM”, [Online]. Available:

https://git.sch.bme.hu/bakaid/debian-vm

[24] Internet Systems Consortium, “BIND: Versatile, Classic,

Complete Name Server Software”, [Online]. Available:

https://www.isc.org/downloads/bind

[25] Free Software Foundation, “The free software definition”,

[Online]. Available: http://www.gnu.org/philosophy/free-

sw.en.html

[26] Open Source Initiative, “The open source definition”, [Online].

Available: http://opensource.org/docs/osd

[27] Cisco, “End user license agreement”, [Online]. Available:

http://www.cisco.com/c/en/us/products/end-user-license-

agreement.html

[28] Juniper Networks, “End user license agreement”, [Online].

Available: http://www.juniper.net/support/eula/

[29] The 6NET Consortium, Ed. M. Dunmore, “An IPv6 Deployment

Guide”, Sep. 2005. [Online]. Available:

http://www.6net.org/book/deployment-guide.pdf

[30] G. Lencse and S. Répás, “Improving the performance and security

of the TOTD DNS64 implementation”, Journal of Computer

Science and Technology (JCS&T, Argentina), vol. 14, no. 1, Apr.

2014, ISSN: 1666-6038, pp. 9–15.

http://journal.info.unlp.edu.ar/journal/

[31] G. Lencse and D. Bakai, “Design, implementation and

performance estimation of mtd64-ng a new tiny DNS64 proxy”,

Journal of Computing and Information Technology, vol. 25, no.

2, Jun. 2017, pp. 91–102, DOI:10.20532/cit.2017.1003419

[32] Powerdns.com BV, “PowerDNS”, [Online]. Available:

http://www.powerdns.com

[33] NLnet Labs, “Unbound”, [Online]. Available: http://unbound.net

[34] G. Lencse, “Test program for the performance analysis of DNS64

servers”, International Journal of Advances in

Telecommunications, Electrotechnics, Signals and Systems, vol.

4, no. 3, 2015, pp 60–65. DOI: 10.11601/ijates.v4i3.121

[35] G. Lencse, “dns64perf source code”,

http://ipv6.tilb.sze.hu/dns64perf/

[36] R. Jain, “Testing random number generators”, Washington

University, Saint Louis, lecture notes, 2008, [Online]. Available:

https://www.cse.wustl.edu/~jain/cse567-08/ftp/k_27trg.pdf

[37] I. Petrila, V. Manta, F. Ungureanu, “Uniformity and correlation

test parameters for random numbers generators”, Proc. 2014 18th

International Conference on System Theory, Control and

Computing (ICSTCC), Sinaia, Romania, Oct. 17–19, 2014, DOI:

10.1109/ICSTCC.2014.6982421

[38] D. Bakai, “mtd64-ng: A lightweight multithreaded C++11

DNS64 server”, [Online]. Available:

https://github.com/bakaid/mtd64-ng/

[39] G. Lencse, “birthday-test source code”,

http://ipv6.tilb.sze.hu/DNS-birthday-test/

[40] M. Welschenbach, “Large Random Numbers”, In: Cryptography

in C and C++, 2nd Ed, Apress, Berkeley, CA, 2013. DOI:

10.1007/978-1-4302-5099-9_12

Gábor Lencse received his MSc and

PhD in computer science from the

Budapest University of Technology and

Economics, Budapest, Hungary in 1994

and 2001, respectively.

He has been working full time for the

Department of Telecommunications,

Széchenyi István University, Győr,

Hungary since 1997. Now, he is an

Associate Professor. He has been working part time for the

Department of Networked Systems and Services, Budapest

University of Technology and Economics, Budapest, Hungary

as a Senior Research Fellow since 2005. At the time of writing

this paper he was a Guest Researcher at the Laboratory for

Cyber Resilience, Nara Institute of Science and Technology,

Japan, where his research area was the security analysis of IPv6

transition technologies.

Dr. Lencse is a member of IEICE (Institute of Electronics,

Information and Communication Engineers, Japan).

Youki Kadobayashi received his

Ph.D. degree in computer science from

Osaka University, Japan, in 1997.

He is currently a Professor in the

Graduate School of Information

Science, Nara Institute of Science and

Technology, Japan. Since 2013, he has

also been working as the Rapporteur of

ITU-T Q.4/17 for cybersecurity

standardization. His research interests include cybersecurity,

web security, and distributed systems.

Dr. Kadobayashi is a member of IEEE Communications

society.

