
See last page for copyright! (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

13 | P a g e

www.ijacsa.thesai.org

Performance Analysis and Comparison of 6to4 Relay

Implementations

Gábor Lencse

Department of Telecommunications

Széchenyi István University

Győr, Hungary

lencse@sze.hu

Sándor Répás

Department of Telecommunications

Széchenyi István University

Győr, Hungary

repas.sandor@sze.hu

Abstract—The depletion of the public IPv4 address pool may

speed up the deployment of IPv6. The coexistence of the two

versions of IP requires some transition mechanisms. One of them

is 6to4 which provides a solution for the problem of an IPv6

capable device in an IPv4 only environment. From among the

several 6to4 relay implementations, the following ones were

selected for testing: sit under Linux, stf under FreeBSD and stf

under NetBSD. Their stability and performance were investigat-

ed in a test network. The increasing measure of the load of the

6to4 relay implementations was set by incrementing the number

of the client computers that provided the traffic. The packet loss

and the response time of the 6to4 relay as well as the CPU

utilization and the memory consumption of the computer

running the tested 6to4 relay implementations were measured.

The implementations were tested also under very heavy load

conditions to see if they are safe to be used in production systems.

Keywords—IPv6 deployment; IPv6 transition solutions; 6to4;

performance analysis;

I. INTRODUCTION

The majority of the current Internet still uses the Internet
Protocol version 4 (IPv4) for forwarding the packets of the
communication of the applications. Even though IPv6 was
defined in 1998 [1], it has not replaced IPv4 yet. As of Aug.
31, 2013, only 1.88% of the Internet traffic reaching Google
used IPv6 [2]. The coexistence of the two versions of IP results
in different issues (e.g. the two endpoints of the communica-
tion use different IP versions, or the endpoints use the same IP
version but the communication path between the endpoints
supports the other version only). Several transition mechan-
isms were developed to solve the different issues of the
coexistence of the two versions of the Internet Protocol. These
theoretical solutions are defined in different RFCs. There are a
number of implementations for each solutions. When a
network operator decides to support some of the IPv6 transition
mechanisms, it can be a difficult task to choose the right
implementations because there can be security, reliability and
performance issues. Several papers were published in the topic
of performance analysis of different IPv6 transition implemen-
tations.

One of the most important driving forces of the deployment

of IPv6 is the depletion of the global IPv4 address pool. IANA

delegated the last five “/8” IPv4 address blocks to the five

Regional Internet Registries in 2011 [3]. Therefore an

important upcoming coexistence issue is the problem of an

IPv6 only client and an IPv4 only server, because internet

service providers (ISPs) can still supply the relatively small

number of new servers with IPv4 addresses from their own

pool but the huge number of new clients can get IPv6 addresses

only. DNS64 [4] and NAT64 [5] are the best available

techniques that make it possible for an IPv6 only client to

communicate with an IPv4 only server. Another very important

coexistence issue comes from the case when the ISP does not

support IPv6 but the clients do and they would like to

communicate with IPv6 servers. The most matured solution for

this problem is called 6to4 [6]. The stability and performance

analysis of different 6to4 implementations is the topic of this

paper.

The remainder of this paper is organized as follows: first, a
short survey of the results of the most current publications is
given, second, 6to4 is introduced, third, the selection of the
6to4 relay implementations is discussed, fourth, our test
environment is described, fifth, the performance measurement
method of the 6to4 relay implementations is detailed, sixth, the
results are presented and discussed, seventh, the validity of our
results is considered and our plans for the future research are
presented, finally, our conclusions are given.

This topic was identified as being of high importance for

network administrators.

II. A SHORT SURVEY OF CURRENT RESEARCH RESULTS

A. The Problem of an IPv6 Only Client and an IPv4 Only

Server

Several papers were published in the topic of the

performance of DNS64 and NAT64 in 2012 and 2013. The

performance of the TAYGA NAT64 implementation (and

implicitly of the TOTD DNS64 implementation) is compared

to the performance of NAT44 in [7]. The performance of the

Ecdysis NAT64 implementation (that has its own DNS64

implementation) is compared to the performance of the

authors’ own HTTP ALG in [8]. The performance of the

This research was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-
0012: “Smarter Transport” – IT for co-operative transport system – The

Project is supported by the Hungarian Government and co-financed by the
European Social Fund.

See last page for copyright! (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

14 | P a g e

www.ijacsa.thesai.org

Ecdysis NAT64 implementation is compared to the perfor-

mance of both the NAT-PT and an HTTP ALG in [9]. All of

these papers deal with the common performance of a given

DNS64 implementation with a given NAT64 implementation.

The performance of the BIND DNS64 implementation and

performance of the TAYGA NAT64 implementation are

analyzed separately and also their stability is tested in [10]. A

good survey of the most recent DNS64 and NAT64 research

results is given in [11]. They also demonstrated that the

DNS64+NAT64 system is a viable solution for an internet

service provider. Our results about the stability and

performance of different DNS64 and NAT64 implementations

were published in [12] and [13], respectively.

B. The Problem of an IPv6 Capable Client in an IPv4 Only

Environment

A good survey of IPv6 transition mechanisms including
both translation and tunneling solutions can be found in [14]. It
discusses 6to4 among the tunneling mechanisms. Ref. [15]
named 6to4 and Teredo [16] the two most widely used
transition solutions on the bases of the IPv6 prefixes in use.
The performance of 6to4 is addressed in [17]. They prepared a
controlled environment and compared the performance
characteristics (round trip time and throughput) of 6to4 to the
native IPv4 and IPv6 using both TCP and UDP between the
endpoints. They used Cisco routers in the test network. In
contrast, we have chosen different free software [18] (also
called open source [19]) implementations for stability testing
and performance comparison.

III. INTODUCTION TO 6TO4 IN A NUTSHELL

The aim of 6to4 is to help those IPv6 capable devices that
are residing in an IPv4 environment to connect to other devices
being in the same situation and to the native IPv6 internet. The
solution is an “automatic tunnel” that encapsulates the IPv6
packets into IPv4 packets (using protocol number 41, as the
configured IPv6 over IPv4 tunnel [20]).

The IPv6 capable device can be a single host having a 6to4
pseudo-interface that performs the encapsulation of the IPv6
packets into IPv4 packets and also the decapsulation in the
opposite direction. This is called 6to4 host. It is also possible
that there are multiple IPv6 devices in an IPv6 network behind
a so-called 6to4 (border) router that performs the encapsula-
tion of the IPv6 packets into IPv4 packets and the decapsula-
tion in the opposite direction. These 6to4 IPv6 devices can
communicate with other 6to4 IPv6 devices or with IPv6
devices on the native IPv6 internet. In the latter case, they need
a 6to4 relay at the border of the IPv4 internet and the IPv6
internet, see Fig. 1.

It is a precondition of the applicability of the 6to4 solution
that a 6to4 host or a 6to4 router must have a public IPv4
address. The IPv6 addresses for the IPv6 capable devices will
get IPv6 addresses from the 2002::/16 prefix. The next 32 bits
of their IPv6 addresses are the 32 bits of the public IPv4
address of the 6to4 host or 6to4 router and still there are 16 bits
for subnetting. (It can be filled with 0 or chosen randomly if no
subnetting is needed.) The last 64 bits of the IPv6 address may
be generated in the usual way from the MAC addresses of the
hosts using the modified EUI-64 algorithm.

If the communication occurs between two IPv6 capable
devices that both use 6to4 then the route of the encapsulated
packet in the IPv4 internet is exactly determined by the public
IPv4 addresses of the two 6to4 hosts/routers. If one of the
communication endpoints resides in the native IPv6 internet
then the route of the packet must go through a 6to4 relay.
There are multiple 6to4 relays having the same 192.88.99.1
anycast address and the network will use the nearest one.

The forthcoming example scenario can be followed in
Fig. 1. Let our client having the 2002:c000:208::2 6to4 IPv6
address communicate with the server having the 2001:db8::2
global IPv6 address. The client sends out its IPv6 packet
containing its own IPv6 address as the source address and the
IPv6 address of the server as the destination address. The
packet arrives to the 6to4 router as the default gateway. The
6to4 router encapsulates the IPv6 packet in an IPv4 packet
using its own IP address, 192.0.2.8 as the source address and
the 192.88.99.1 anycast address as the destination address. The
protocol type is set to 41, which indicates that an IPv6 packet
was embedded. The packet arrives to the nearest 6to4 relay at
the 192.88.99.1 anycast address. The relay recognizes the 41
protocol type and thus it decapsulates the IPv6 packet and
sends towards its destination. The server receives the packet
and replies in the normal way addressing its reply packet to the
client. In the global public IPv6 internet, the 2002::/16 prefix is
routed (using anycast addressing) towards the nearest 6to4
relay, which may be different from the one that was used by
the packet travelling from the client to the server (asymmetric
routing). The 6to4 relay receives the IPv6 packet and
encapsulates it in an IPv4 packet. It determines the target IPv4
address from the destination IPv6 address as it contains the
192.0.2.8 IPv4 address of the 6to4 router next to its 2002::/16
prefix: 2002:c000:208::2. When the 6to4 router receives the
packet it simply decapsulates the embedded IPv6 packet and
sends it to the client.

IPv6 Island

IPv4 Internet

6to4 Router
2002:c000:208::1

Client
2002:c000:208::2

IPv6 Internet

6to4 Relay
192.88.99.1

6to4 Relay
192.88.99.1

Server
2001:db8::2

6to4 Host
198.51.100.12

2002:c633:640c::2

192.0.2.8

2002::/16

Fig. 1. Sample network for the demonstration of 6to4

See last page for copyright! (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

15 | P a g e

www.ijacsa.thesai.org

Note that if two devices using both 6to4 IPv6 addresses
communicate with each other then the 6to4 routers or hosts
never send the IPv4 packet (containing the encapsulated IPv6
packet) to a 6to4 relay rather they always take the 32 bits next
to the 2002::/16 prefix of the destination IPv6 address and use
these 32 bits as the target IPv4 address. A 6to4 target address
can be easily recognized from its 2002::/16 prefix. All other
target addresses are treated as global IPv6 addresses and the
destination address of the IPv4 packet is set to the 192.88.99.1
anycast address of the 6to4 relays.

Let us consider the performance requirements of the
devices performing 6to4 operations.

 A 6to4 host performs encapsulation and decapsulation
of the traffic from and to the local host.

 A 6to4 router performs encapsulation and decapsula-
tion of the traffic from and to a limited number of hosts
behind the router.

 A 6to4 relay may be responsible for the traffic of a
huge number of hosts. Because of the anycast
addressing, their number and thus the load of the 6to4
relay depend on the location of other 6to4 relays.

Therefore, if a 6to4 relay using the 192.88.99.1 anycast
IPv4 address is set up then it may receive huge load.
Consequently, it should be a stable system that does not
collapse even in serious overload situation rather complies with
the graceful degradation principles [21].

IV. SELECTION OF IMPLEMENTATIONS FOR TESTING

As it was mentioned before, only free software [18] (also
called open source [19]) implementations were considered for
stability testing and performance comparison. We had multiple
reasons for this decision:

 The licenses of certain vendors (e.g. [22] and [23]) do
not allow the publication of benchmarking results.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is free of charge for us, too.

In our previous research efforts of performance and
stability analysis of IPv6 transition solutions (DNS64 [12] and
NAT64 [13]), we used Linux, OpenBSD and FreeBSD as host
operating systems. Unfortunately 6to4 is not implemented in
OpenBSD for security concerns [24]. Thus, the following
implementations were selected for testing: sit under Linux, stf
under FreeBSD and stf under NetBSD.

V. TEST ENVIRONMENT

The aim of our tests was to examine and compare the

performance of the selected 6to4 implementations. We were

also interested in their stability and behavior under heavy load

conditions. (For testing the software, some hardware had to be

used, but our aim was not the performance analysis of any

hardware.)

3com Baseline 2948-SFP Plus

10x Dell Precision 490

Native IPv6: 2a02:a50::2/64

Native IPv6: 2a02:a50::1/64

Public IPv4: 80.64.79.254/24
6to4: 2002:5040:4ffe::1/16

Public IPv4: 80.64.79.1/24
6to4: 2002:5040:4f01::1/16

Public IPv4: 80.64.79.10/24
6to4: 2002:5040:4f0a::1/16

Intel PIII 800MHz

. . .

6to4
relay

Client
computers

3com Baseline 2948-SFP Plus

Native IPv6: 2a02:a50::3/64

2x 6to4 test
 responder

2x Dell Precision 490

Fig. 2. Topology of the 6to4 test network.

A. The Structure of the Test Network

The topology of the network is shown in Fig. 2. The central

element of the network is the 6to4 relay. The ten Dell

workstations at the bottom of the figure played the role of the

6to4 hosts for the 6to4 relay performance measurements. The

two Dell computers at the top of the figure responded to all the

6to4 hosts. Even though their hardware was much more

powerful than that of the 6to4 relay (see details later), we used

two of them to be sure that the responder part of the system

was never a bottleneck during our tests.

B. The Hardware Configuration of the Computers

A test computer with special configuration was put together

for the purposes of the 6to4 relay so that the 6to4 hosts will be

able to produce high enough load for overloading it. The CPU

and memory parameters were chosen to be as little as possible

from our available hardware base in order to be able to create

an overload situation with a finite number of 6to4 hosts, and

only the network cards were chosen to be fast enough. The

configuration of the test computer was:

 Intel D815EE2U motherboard

 800MHz Intel Pentium III (Coppermine) processor

 256MB, 133MHz SDRAM

 Two 3Com 3c940 Gigabit Ethernet NICs

See last page for copyright! (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

16 | P a g e

www.ijacsa.thesai.org

For the 6to4 host purposes, standard DELL Precision

Workstation 490 computers were used with the following

configuration:

 DELL 0GU083 motherboard with Intel 5000X chipset

 Two Intel Xeon 5140 2.33GHz dual core processors

 4x1GB 533MHz DDR2 FB-DIMM SDRAM (quad
channel)

 Broadcom NetXtreme BCM5752 Gigabit Ethernet
controller (PCI Express)

Note that these computers were the same as those used in

the DNS64 and NAT64 tests ([12] and [13]) but with a little

faster CPU and four identical RAM modules which were able

to operate quad channel.

The responder computers were similar to the 6to4

computers but they had somewhat slower CPUs:

 Two Intel Xeon 5130 2GHz dual core processors

Debian Squeeze 6.0.3 GNU/Linux operating system was

installed on all the computers including the Pentium III test

computer acting as a 6to4 rely when it was used under Linux.

The version number of FreeBSD and NetBSD were 9.0 and

6.0.1, respectively. The responder computers had the Open-

BSD 5.1 operating system. OpenBSD was chosen because it

supports NAT66, which was needed for our experiments.

C. The Software Configuration of the Computers

Fig. 2 shows the IP addresses of the Ethernet interfaces.
The 6to4 hosts had IPv4 and 6to4 IPv6 addresses. The 6to4

relay had two Gigabit Ethernet interfaces: eth1 was used for
communication with the 6to4 hosts and it had the 80.64.79.254
public IPv4 address and the 2002:5040:4ffe::1 6to4 address;
eth2 was used for communication with the responder
computers and it had the 2a02:a50::1 global IPv6 address. The
responder computers had the 2a02:a50::2 and 2a02:a50::3
global IPv6 addresses.

To make the results comparable, the same Pentium III
computer was used for 6to4 purposes under Linux, FreeBSD
and NetBSD. The network settings were also identical. Fig. 3
shows the exact settings of the interfaces under Linux
containing the starting of the sit 6to4 pseudo interface and also
the routing. Note that some of the tests were also performed
with one responder only. Fig. 3 contains the settings for both
cases. The network settings and the routing of FreeBSD are
shown in Fig. 4 and the FreeBSD stf tunnel was started by the
commands shown in Fig 5. The configuration files for the
network interfaces under NetBSD are shown in Fig. 6 and
Fig 7. The routing under NetBSD was set and the stf tunnel
was started by the script in Fig. 8.

As it can be seen in Fig. 3 and Fig. 4 the packets to the
2001:0738:2c01:8001:ffff:0:a00::/104 network were directed to
the responder computer(s). On the responder computers,
NAT66 was used to redirect these packets to the computer
itself (see Fig. 9), to be able to respond to them.

Note that the CPU utilization was monitored during the
measurements, and even when using only one responder, its
maximum CPU utilization was about 10%.

The network setting of the 6to4 hosts were done as shown
in Fig. 10.

#to the 6to4 hosts
auto eth1
iface eth1 inet static
 address 80.64.79.254
 netmask 255.255.255.0

#to the responders
auto eth2
iface eth2 inet6 static
 address 2a02:a50::1
 netmask 64
pre-up echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
pre-up echo 0 > /proc/sys/net/ipv6/conf/eth2/autoconf
pre-up echo 0 > /proc/sys/net/ipv6/conf/eth2/accept_ra
#In the case of TWO responders:
post-up ip -f inet6 route add 2001:0738:2c01:8001:ffff:0000:0a00::/105 via 2a02:a50::2
post-up ip -f inet6 route add 2001:0738:2c01:8001:ffff:0000:0a80::/105 via 2a02:a50::3
In the case of ONE responder:
post-up ip -f inet6 route add 2001:0738:2c01:8001:ffff:0000:0a00::/104 via 2a02:a50::2

#6to4
auto sit0
iface sit0 inet6 static
 address 2002:5040:4ffe::1
 netmask 16

Fig. 3. Configuration of the Linux interfaces, routing and the sit tunnel (/etc/network/interfaces).

See last page for copyright! (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

17 | P a g e

www.ijacsa.thesai.org

ifconfig_sk0_ipv6="inet6 2a02:a50::1/64"
ifconfig_sk1="inet 80.64.79.254 netmask 255.255.255.0"
ipv6_static_routes="respondernet respondernet2"
ipv6_route_respondernet="2001:0738:2c01:8001:ffff:0000:0a00::/105 2a02:a50::2"
ipv6_route_respondernet2="2001:0738:2c01:8001:ffff:0000:0a80::/105 2a02:a50::3"
ipv6_gateway_enable="YES"

Fig. 4. Configuration of the FreeBSD interfaces and routing when using two responders (/etc/rc.conf).

ifconfig stf0 create
ifconfig stf0 inet6 2002:5040:4ffe::1 prefixlen 16 alias

Fig. 5. Starting script of the FreeBSD 6to4 tunnel (start6to4).

up
media autoselect
inet6 2a02:a50::1 prefixlen 64 alias

Fig. 6. Configuration of the interface towards the clients, NetBSD (/etc/ifconfig.sk0).

up
media autoselect
80.64.79.254 netmask 0xffffff00 media autoselect

Fig. 7. Configuration of the interface towards the responders, NetBSD (/etc/ifconfig.sk1).

route add -inet6 2001:0738:2c01:8001:ffff:0000:0a00:: -prefixlen 105 2a02:a50::2
route add -inet6 2001:0738:2c01:8001:ffff:0000:0a80:: -prefixlen 105 2a02:a50::3
ifconfig stf0 create
ifconfig stf0 inet6 2002:5040:4ffe::1 prefixlen 16 alias

Fig. 8. Configuration script under NetBSD (start6to4).

set timeout interval 2
set limit states 400000
match in on em1 inet6 to 2001:0738:2c01::/48 rdr-to em1

Fig. 9. Redirection on the responder computers under OpenBSD (/etc/pf.conf).

auto eth0
iface eth0 inet static
address 80.64.79.{1..10} # that is 80.64.79.1 on client1, 80.64.79.2 on client2, etc.
netmask 255.255.255.0

auto tun6to4
iface tun6to4 inet6 v4tunnel
 address 2002:5040:4f0{1..a}::1 # {} is to be interpreted as above
 netmask 16
 gateway ::80.64.79.254
 endpoint any
 local 80.64.79.{1..10} # {} is to be interpreted as above

Fig. 10. Configuration of the network interfaces of the 6to4 hosts under Linux (/etc/network/interfaces).

VI. PERFORMANCE MEASUREMENT METHOD

In order to be able to exactly tune the measure of the load
from moderate to serious overload in controlled steps, the
number of the clients (6to4 hosts) was tuned. First, a series of
measurements was conducted by a single client. Second, the
test system was restarted and two clients were used, etc. The
measurements were done by the execution of the script in
Fig. 11. Different destination IPv6 addresses were used to
simulate real-life situation. In a given series of experiments,
each active client sent 256*64*8*11=1,441,792 ICPMv6 echo
requests (sending eleven of them to each one of the different

256*64*8=131.072 IPv6 addresses). Using the “&” sign for
asynchronous command execution, eight ping6 commands
were executed quasi-parallel utilizing the computing power of
the two dual core CPUs. The target address range,
2001:0738:2c01:8001:ffff:0000:0a00::/104 was cut into two
halves. The lower half side of the address range,
2001:0738:2c01:8001:ffff:0000:0a00::/105 was used by the
commands containing the variable i, and the higher half side of
the address range, 2001:0738:2c01:8001:ffff:0000:0a80::/105
was used by the commands containing the variable j. Thus the
application of two responders could be easily done by using
only two lines in the routing table of the 6to4 relay.

See last page for copyright! (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

18 | P a g e

www.ijacsa.thesai.org

#!/bin/bash
i=`cat /etc/hostname|grep -o .$`
j=$((i+128))
for b in {0..255}
 do
 rm -r $b
 mkdir $b
 for c in {0..252..4}
 do
 ping6 -c11 -i0 -q 2001:738:2c01:8001:ffff:0000:10.$i.$b.$c >$b/6to4p-10-$i-$b-$c &
 ping6 -c11 -i0 -q 2001:738:2c01:8001:ffff:0000:10.$j.$b.$c >$b/6to4p-10-$j-$b-$c &
 ping6 -c11 -i0 -q 2001:738:2c01:8001:ffff:0000:10.$i.$b.$((c+1)) >$b/6to4p-10-$i-$b-$((c+1)) &
 ping6 -c11 -i0 -q 2001:738:2c01:8001:ffff:0000:10.$j.$b.$((c+1)) >$b/6to4p-10-$j-$b-$((c+1)) &
 ping6 -c11 -i0 -q 2001:738:2c01:8001:ffff:0000:10.$i.$b.$((c+2)) >$b/6to4p-10-$i-$b-$((c+2)) &
 ping6 -c11 -i0 -q 2001:738:2c01:8001:ffff:0000:10.$j.$b.$((c+2)) >$b/6to4p-10-$j-$b-$((c+2)) &
 ping6 -c11 -i0 -q 2001:738:2c01:8001:ffff:0000:10.$i.$b.$((c+3)) >$b/6to4p-10-$i-$b-$((c+3)) &
 ping6 -c11 -i0 -q 2001:738:2c01:8001:ffff:0000:10.$j.$b.$((c+3)) >$b/6to4p-10-$j-$b-$((c+3))
 done
done

Fig. 11. 6to4 relay performace test script (ping-test-8d.sh).

The CPU utilization and the memory consumption of the 6to4

relay was measured under BSD with the following command:
vmstat –w 1 > load.txt

Under Linux, the command line was the following:

dstat -t -c -m -l -p -n --unix --output load.csv.

VII. MEASUREMENT RESULTS

A. Linux sit tunnel with two responders

The results can be found in Table 1. (The tables were put

on the same page for the synoptic view and easy comparison of

the results of the 6to4 implementations.) This table and all the

other tables with the results are to be interpreted as follows.

Row 1 shows the number of clients that executed the test

script. (The load of the 6to4 relay was proportional with the

number of the clients.) The packet loss ratio is displayed in the

second row. Rows 3 and 4 show the average and the standard

deviation of the response time (expressed in milliseconds),

respectively. The following two rows show the average and the

standard deviation of the CPU utilization of the test computer.

Row 7 shows the number of forwarded packets per seconds.

The last row shows the estimated memory consumption

measured at the test computer. Note that this parameter can be

measured with high uncertainty, as its value is very low and

other processes than the 6to4 relay implementation may also

influence the size of free/used memory of the test computer.

The number of forwarded packets per seconds and the CPU

utilization are graphically displayed in Fig. 12.

Evaluation of the results:

 Though packet loss occurred for eight or more clients,

the packet loss ratio was always very low (under 0.03

percent, which means that 3 packets were lost from

10,000 packets).

 The average response time (given in milliseconds) was

low even at 10 clients. Its measure showed nearly

linear increase in the function of the load from 4 to 10

clients.

 The number of forwarded packets per second could

increase nearly linearly in the function of the number

of clients for small number of clients (1-3). It showed

less than linear growth for 4-6 clients, and saturation

for 7-10 clients, where there was not enough free CPU

capacity.

 The CPU utilization showed a linear increase in the

function of the number of clients in the case of 1-3

clients (3.0%, 6.1%, 10.1%), as expected. However it

showed a radical increase in the case of 4-7 clients

(16.9%, 28.1%, 51.0%, 86.4%) which was unexpected

and seems to be groundless.

 The memory consumption was always very low (note:

it was measured in kB) and it was only slightly

increasing in the function of the load with some

fluctuations.

To sum up the findings above, we can lay down that the

Linux sit 6to4 relay performed quite well, its memory

consumption was found to be very low and its average

response time increased approximately linearly with the load at

high load conditions, that is, it seems to comply with the

graceful degradation principle [21], however from 4 to 7

clients, the CPU utilization increased higher than linearly in the

function of the number of clients. This is a strange

phenomenon and it should be investigated before Linux sit

6to4 relay is being actually used in environments with strong

response time requirements.

See last page for copyright! (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

19 | P a g e

www.ijacsa.thesai.org

TABLE I. LINUX 6TO4 RELAY PERFORMANCE RESULTS USING TWO RESPONDERS

1 Number of Clients 1 2 3 4 5 6 7 8 9 10

2 Packet loss (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.03

3 Response Time

of ping6 (ms)

Average 0.274 0.308 0.241 0.480 0.576 0.7 0.867 0.998 1.168 1.311

4 Std. dev. 0.017 0.029 0.053 0.082 0.105 0.126 0.148 0.176 0.192 0.196

5 CPU Utiliza-

tion (%)

Average 3.0 6.1 10.1 16.9 28.1 51.0 84.6 94.1 92.5 94.3

6 Std. dev. 1.0 1.3 2.5 5.6 10.3 22.2 23.8 13.5 12.8 8.9

7 Traffic Volume (packets/sec) 11177 21360 29424 35166 39829 42615 43502 45411 45691 46812

8 Memory Consumption (kB) 72 96 120 124 148 124 108 164 212 292

TABLE II. FREEBSD 6TO4 RELAY PERFORMANCE RESULTS USING TWO RESPONDERS

1 Number of Clients 1 2 3 4 5 6 7 8 9 10

2 Packet loss (%) 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 Response Time

of ping6 (ms)

Average 0.491 0.936 1.454 2.050 2.635 3.234 3.866 4.456 5.059 5.629

4 Std. dev. 0.034 0.093 0.143 0.179 0.181 0.139 0.144 0.115 0.156 0.178

5 CPU Utiliza-

tion (%)

Average 69.0 91.4 97.8 98.7 99.7 100.0 99.9 100.0 100.0 100.0

6 Std. dev. 3.9 2.9 1.4 1.1 0.6 0.0 0.4 0.0 0.0 0.0

7 Traffic Volume (packets/sec) 8900 11916 12873 13018 13179 13248 13176 13212 13214 13288

8 Memory Consumption (kB) 536 892 1548 892 892 1300 2320 2060 2012 2648

TABLE III. NETBSD 6TO4 RELAY PERFORMANCE RESULTS USING TWO RESPONDERS

1 Number of Clients 1 2 3 4 5 6 7 8 9 10

2 Packet loss (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 Response Time

of ping6 (ms)

Average 2.191 2.270 2.668 2.514 2.543 3.033 2.786 3.320 3.267 3.398

4 Std. dev. 0.574 0.628 0.809 0.718 0.719 0.768 0.686 0.634 0.617 0.557

5 CPU Utiliza-

tion (%)

Average 9.9 18.9 25.0 34.9 42.9 44.5 55.8 55.0 62.5 67.4

6 Std. dev. 2.0 4.0 6.3 7.9 9.5 10.3 11.6 10.1 11.3 10.7

7 Traffic Volume (packets/sec) 3068 5958 7836 11006 13628 14021 17644 17241 19721 21079

8 Memory Consumption (kB) 936 144 156 160 160 176 240 228 236 592

Fig. 12. Linux sit performance and CPU utilization

B. Linux sit tunnel with one responder

The aim of this series of measurements was to see if there
are significant differences in the results compared to the case
with two responders therefore the measurements were taken
only for certain number of clients (1, 4, 5, 8, 10). The
comparison can be seen in Fig. 13. The results of the
measurements with the one responder were very close to that
of the measurements with two responders. For this reason, we

do not include measurement results with one responder for the
other two implementations.

C. FreeBSD stf tunnel with two responders

The results can be found in Table 2. The number of

forwarded packets per seconds and the CPU utilization are

graphically displayed in Fig. 14. Evaluation of the results:

 Though packet loss occurred for 1-3 clients, but the

packet loss ratio was always very low (under 0.02

percent, which means that 2 packets were lost from

10,000 packets).

 The average response time (given in milliseconds) was

acceptable even at 10 clients. Its measure showed

nearly linear increase in the function of the load.

 The number of forwarded packets per second in the

function of the number of clients showed saturation

from 3 clients because there was not enough free CPU

capacity.

 The CPU was practically fully utilized from 3 clients.

 The memory consumption was always low (note: it

was measured in kB) and it was only slightly

increasing in the function of the load with some

fluctuations.

0

20

40

60

80

100

0

10 000

20 000

30 000

40 000

50 000

1 2 3 4 5 6 7 8 9 10

CPU util.
(%)

forwarded
packets/sec.

No. of clients

Linux sit performance

performance CPU utilization

See last page for copyright! (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

20 | P a g e

www.ijacsa.thesai.org

Fig. 13. Comparison of the Linux sit performance with one and two

responders.

Fig. 14. FreeBSD stf performance and CPU utilization

To sum up the findings above, we can lay down that the

FreeBSD stf 6to4 relay performed quite well, its memory

consumption was found to be low and its average response

time increased approximately linearly with the load, that is, it

complies with the graceful degradation principle [21].

D. NetBSD stf tunnel with two responders

The results can be found in Table 3. Evaluation of the

results:

 The packet loss ratio was always less than 0.005%

(thus it was rounded to 0.00%).

 The average response time (given in milliseconds) was

acceptable even at 10 clients. Its measure showed only

a very slight increase in the function of the load.

 The number of forwarded packets per second in the

function of the number of clients did not show

saturation even in the case of 10 clients.

 The CPU was not fully utilized even in the case of 10

clients.

 The memory consumption was always low (note: it

was measured in kB), but is showed serious

fluctuations.

To sum up the findings above, we can lay down that the

NetBSD stf 6to4 relay performed quite well, its memory

consumption was found to be low and its average response

time increased less then linearly with the load. As the CPU was

never fully utilized we can state only that as far as we could

test it, NetBSD stf complied with the graceful degradation

principle [21].

E. Comparison of the Resuls and Final Evaluation

As for the number of forwarded packets per second, Linux

sit showed much better performance than FreeBSD/NetBSD stf

at any investigated load conditions. As for 10 clients, Linux sit

processed 46812/13288=3.52 times more packets per seconds

than FreeBSD stf and 46812/21079=2.22 times more packets

per seconds than NetBSD stf. As for the average response time,

Linux sit was also much better than FreeBSD/NetBSD stf. The

average response times of Linux sit, FreeBSD stf and NetBSD

stf at 10 clients were: 1.3ms, 5.6ms and 3.4ms, respectively.

Thus we can say that as for their measured performance, Linux

sit seems to be much better than FreeBSD/NetBSD stf.

However, Linux sit showed the phenomenon of a super linear

CPU consumption in the function of the load at certain

conditions. This makes us cautious and we advise to test Linux

sit further before using it in mission critical environments with

strong response time requirements.

The comparison of the performance results of the FreeBSD

stf and of the NetBSD stf is also very interesting. On the one

hand, FreeBSD stf performed much better than NetBSD stf

both in the number of packets processed (FreeBSD: 8900,

NetBSD: 3068) and in the average response time (FreeBSD:

0.5ms, NetBSD: 2.2ms) with one client. Note that its CPU

utilization was much higher, too. On the other hand, NetBSD

stf performed significantly better than FreeBSD stf both in the

number of packets processed (NetBSD: 21079, FreBSD:

13288) and in the average response time (NetBSD: 3.4,

FreeBSD: 5.6) with ten clients. NetBSD had even free CPU

capacity. Therefore if one prefers the BSD platform (e.g. for

security reasons) FreeBSD can be a good choice if low traffic

is expected (and ensured) because of its shorter response time.

If high traffic is expected (or if there is a possibility of high

traffic), than the more robust NetBSD is our recommendation.

VIII. DISCUSSION OF THE VALIDITY OF THE RESULTS AND

FUTURE WORK

As 6to4 operates at network level and IP can carry the data

units of both TCP and UDP, no care was taken to the transport

layer protocol or the type of applications. This approach can be

justified by the fact that 6to4 operates on the basis of the IP

header and does not take care to the payload of the datagram.

The payload was actually ICMPv6, because it was simple to

generate by using the ping6 Unix command.

On the one hand, an IP datagram is just like another, thus

our results characterize the investigated 6to4 relay implementa-

0

10 000

20 000

30 000

40 000

50 000

1 2 3 4 5 6 7 8 9 10

forwarded
packets/sec.

No. of
clients

Linux 6to4 sit with one and two responders

performance performance
two responders one responder

0

20

40

60

80

100

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

1 2 3 4 5 6 7 8 9 10

CPU util.
(%)

forwarded
packets/sec.

No. of
clients

FreeBSD stf performance

performance CPU utilization

See last page for copyright! (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

21 | P a g e

www.ijacsa.thesai.org

tions in general with no regard to the transport layer protocol,

applications or even network topology. On the other hand, the

length of the used ICMPv6 echo request / echo reply

packets was 100 bytes, which is quite short, thus our tests were

a kind of worst case tests for the implementations in the sense

that much more payload bytes may be carried by the same

amount of work of the 6to4 relay when using longer packets.

(Our purpose was to provide the highest possible workload for

the tested 6to4 relay implementations to be able to test their

behavior under serious overload situations.)

As real life applications use longer packets up to 1500

bytes – the MTU (Maximum Transmission Unit) size of the

Ethernet link layer protocol – we plan to perform our tests

using different (higher) packet sizes, too.

It is also our plan to check the possible interference

between the 6to4 relay implementations and the transport layer

protocols. Unlike ICMP and UDP, TCP provides two reliable

streams (one per direction) between the endpoints. Therefore

TCP resends the lost packets and thus generates higher load for

unreliable channels. The packet loss ratio was low in our

experiments and thus we do not expect significant differences,

but we plan to perform the tests both using UDP and TCP, too.

IX. CONCLUSIONS

The 6to4 IPv6 transition method was introduced. Linux sit,
FreeBSD stf and NetBSD stf 6to4 relay implementations were
selected for performance and stability testing. The test
environment and the measurement method were described.

It was found that Linux sit gave the best performance
results in both the number of forwarded packets per second and
the average response time under all investigated load
conditions. However Linux sit showed super linear CPU
consumption in the function of the load under certain
conditions. Therefore we advice systems administrators to be
cautious and to test Linux sit further before using it in mission
critical environments with strong response time requirements.

Within the BSD platform, which can be a choice for
security reasons, FreeBSD gave shorter response time at low
load conditions and NetBSD could process more packets per
second at high load conditions.

REFERENCES

[1] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6)
specification”, IETF, December 1998. (RFC 2460)

[2] Google, “IPv6 statistics”, http://www.google.com/ipv6/statistics.html

[3] The Number Resource Organization, “Free pool of IPv4 address space
depleted” http://www.nro.net/news/ipv4-free-pool-depleted

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147)

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF, April 2011. ISSN: 2070-1721 (RFC 6146)

[6] B. Carpenter, K. Moore, “Connection of IPv6 domains via IPv4 clouds”,
IETF, February 2001. (RFC 3056)

[7] K. J. O. Llanto and W. E. S. Yu, “Performance of NAT64 versus
NAT44 in the context of IPv6 migration”, in Proc. International
MultiConference of Engineers and Compuer Scientists 2012 Vol I.
(IMECS 2012, March 14-16, 2012), Hong Kong, pp. 638-645

[8] C. P. Monte et al, “Implementation and evaluation of protocols
translating methods for IPv4 to IPv6 transition”, Journal of Computer
Science & Technology, vol. 12, no. 2, pp. 64-70

[9] S. Yu, B. E. Carpenter, “Measuring IPv4 – IPv6 translation techniques”,
Technical Report 2012-001, Department of Computer Science, The
University of Auckland, January 2012

[10] G. Lencse and G. Takács, “Performance Analysis of DNS64 and NAT64
Solutions”, Infocommunications Journal, vol. 4, no 2, June, 2012. pp.
29-36.

[11] E. Hodzic, S. Mrdovic, “IPv4/IPv6 Transition using DNS64/NAT64:
deployment issues”, Proc. 2012 IX International Symposium on
Telecommunications (BIHTEL, Oct. 25-27, 2012), Sarajevo, Bosnia and
Herzegovina

[12] G. Lencse and S. Répás, “Performance analysis and comparison of
different DNS64 implementations for Linux, OpenBSD and FreeBSD”,
Proc. 27th IEEE International Conference on Advanced Information
Networking and Applications (AINA-2013, March 25-28, 2013)
Barcelona, Spain, pp. 877-884.

[13] G. Lencse and S. Répás, "Performance analysis and comparison of the
TAYGA and of the PF NAT64 implementations" Proc. 36th
International Conference on Telecommunications and Signal Processing
(TSP-2013, July 2-4, 2013) Rome, Italy, pp. 71-76.

[14] P. Wu, Y. Cui, J. Wu, J. Liu, and C. Metz, “Transition from IPv4 to
IPv6: a state-of-the-art survey” Communications Surveys & Tutorials,
IEEE, vol. 15, no. 3, 2013, pp. 1407 - 1424

[15] E. Karpilovsky, A. Gerber, D. Pei, J. Rexford, and A. Shaikh A,
“Quantifying the extent of IPv6 deployment,” in Passive and Active
Network Measurement. vol. 5448/2009: Springer Berlin/Heidelberg,
2009, pp. 13-22.

[16] C. Huitema, “Teredo: tunneling IPv6 over UDP through network
address translations (NATs)”, IETF, February 2006. (RFC 4380)

[17] N. Bahaman, E. Hamid, A.S Prabuwono, “Network performance
evaluation of 6to4 tunneling” Proc. 2012 International Conference on
Innovation Management and Technology Research (ICIMTR, May 21-
22, 2012) Malacca, Malaysia, pp. 263-268

[18] Free Software Fundation, “The free software definition”,
http://www.gnu.org/philosophy/free-sw.en.html

[19] Open Source Initiative, “The open source definition”,
http://opensource.org/docs/osd

[20] E. Normark, R. Gillian, “Basic transition mechanisms for IPv6 hosts and
routers”, IETF, October 2005. (RFC 4213)

[21] NTIA ITS, “Definition of ‘graceful degradation’”
http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm

[22] Cisco, “End user licence agreement”,
http://www.cisco.com/en/US/docs/general/warranty/English/EU1KEN_.
html

[23] Juniper Networks, “End user licence agreement”,
http://www.juniper.net/support/eula.html

[24] Federico Biancuzzi, “The man in the machine”,
http://www.securityfocus.com/columnists/459

This is the author’s version of the paper. For personal use only, not for

redistribution. The definitive version can be found in the International
Journal of Advanced Computer Science and Applications (IJACSA), Vol. 4,

No. 9. (September, 2013) published by The Science and Information (SAI)

Organization, ISSN: 2156-5570, pp. 13-21.
© Gábor Lencse and Sándor Répás 2013. All rights reserved.
http://www.thesai.org/Publications/ViewIssue?volume=4&issue=9&code=IJACSA

http://www.thesai.org/Publications/ViewIssue?volume=4&issue=9&code=IJACSA

