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Abstract—In the current stage of IPv6 deployment, the com-
bination of DNS64 and NAT64 is an important IPv6 transition
technology, which can be used to enable IPv6 only clients to
communicate with IPv4 only servers. In addition to the existing
free software DNS64 implementations, we proposed a tiny multi-
threaded one, MTD64.

In this paper, the performance of MTD64 is measured and
compared to that of the industry standard BIND in order to check
the correctness of the design concepts of MTD64, especially of
the one that we use a new thread for each request. For the perfor-
mance measurements, our earlier proposeddns64perf program
is enhanced asdns64perf2, which one is also documented in
this paper. We found that MTD64 seriously outperformed BIND
and hence our design principles may be useful for the design of
a high performance production class DNS64 server.

As an additional test, we have also examined the effect of
dynamic CPU frequency scaling to the performance of the
implementations.

Keywords—IPv6 transition, DNS64, BIND, MTD64, Perfor-
mance analysis.

I. I NTRODUCTION

The combination of DNS64 [1] and NAT64 [2] is an
appropriate solution for the problem that an IPv6 only client
must communicate with an IPv4 only server. This situation
occurs when an ISP (Internet Service Provider) decides to
introduce IPv6 in a way that it distributes only IPv6 addresses
to its subscribers.1 However, the majority of the servers on
the Internet still uses only the IPv4 protocol. Several free
software [3] (also called open source [4]) DNS64 implemen-
tations exist, e.g. BIND, TOTD, Unbound, PowerDNS, and
we have also contributed with a tiny multi-treaded DNS64
implementation named MTD64 [5], [6]. In our earlier papers,
we have compared the performances of BIND and TOTD [7],
and later BIND, TOTD, Unbound and PowerDNS [8]. The aim
of our current work is to compare the performance of MTD64,
our new DNS64 implementation to that of BIND, the most
well-known and industry standard DNS64 implementation and
to thus check if our design concepts were right.

The remainder of this paper is organized as follows. In
section 2, we recall the most important performance relevant
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1This one can be a forward looking solution for the problem of the depletion
of the public IPv4 address pool. Of course, there are several other possible
solutions, e.g. the distribution of private IPv4 addresses to the clients together
with the use of CGN (Carrier-grade NAT).

design concepts of MTD64. In section 3, we disclose our per-
formance measurement method including the documentation
of the second version of ourdns64perf test program. In
section 4, we present and discuss our results.

We note that we have given an introduction to the operation
of DNS64 in our paper [6], which may be worth consulting
for those not familiar with DNS64.

II. PERFORMANCERELEVANT DESIGN DECISIONS OF

MTD64

All our design considerations can be found in both [5] and
[6] including e.g. to write free software. Now, we focus on
those of them, which ones we consider performance relevant.
The most important ones required that MTD64 should:

• be simple and therefore short (in source code)
• be fast (written in C, at most some parts in C++)
• not store the AAAA record (IPv6 address) requests in a

common data structure, but start a new thread for each
of them.

The first two ones are self explanatory, but the third one
requires some explanation. A DNS64 server may receive many
requests and because of the nature of the DNS64 service (the
server must ask information from external source and thus it
has to wait for the reply) it is deliberate that if we want a
high performance DNS64 server then the processing of the
consecutive AAAA record requests must overlap. A natural
solution would have been to use e.g. three data structures:

• one for storing the new, unprocessed requests
• one for storing the requests, for which AAAA record

requests were sent to the DNS system
• one for storing the requests, for which A record requests

were sent to the DNS system.
The first one of them could have been a simple queue,

as the incoming requests can be processed in the receiving
order. However, the two other ones should support a searching
method to find the matching request when a reply is received
from the DNS system. Concerning the appropriate data struc-
ture, we considered in [5] that e.g. linked list, balanced or
unbalanced trees could be used: “Their operations (insert, find,
delete) involve programming complexity and the operations
may involve significant time complexity if the data structure
has high number of elements. Unfortunately there is a trade-
off between the programming complexity and the speed. E.g.
the operations of the linked list are simple but their time
complexity isO(n), wheren denotes the number of elements
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Fig. 1. DNS64 test network (See hardware and software detailsin subsection
III-D.)

in the data structure. The time complexity of the operations
of the balanced trees isO(log n), but their operations require
more programming work. For more information see [9] and
its references.” [5]

We decided not to store the requests explicitly but to start
a new thread for each request. This was a risky decision and
we new its potential positive and negative consequences. The
positive consequences are:

• there is no need for implementing a data structure and its
operations (programming simplicity, shorter code)

• all cores of the CPU can be utilized without the need of
explicit programming efforts for it (may result in a good
speed-up if executed by multi-core servers).

The negative consequences are:

• a multi-threaded code is much harder to debug
• starting a new thread for each request might result in

too much computation costs (especially, because we used
C++ for an easy thread handling)

• starting a new thread for each request makes MTD64
vulnerable to DoS attacks (attackers may exhaust the
memory of the server by fake requests).

The aim of our current research is to examine the perfor-
mance consequences of our design decisions.

III. PERFORMANCEMEASUREMENTMETHOD

A. Overview

We decided to use the DNS64 server performance mea-
surement method that we had developed for our earlier papers
[7], [8] for DNS64 server performance testing. That algorithm
was later implemented in C/C++ bydns64perf, our DNS64
performance test program documented in [10]. Keeping the
original algorithm made our current results comparable with
our previous ones.

The logical topology of the test setup is shown in Fig. 1.
As for Tester, we used the modified version2 of dns64perf.
The dns64perf2 program sent a high number of AAAA
record requests to theDUT (Device Under Test) for different
domain names and received the replies. TheDUT executed
the MTD64 or the BIND3 DNS64 server programs (the latter
one served as a performance reference). As for authoritative
DNS server, always BIND was used and it was executed by a
desktop computer with significantly higher computing power
to avoid being a bottleneck.

B. Operation of dns64perf2

The details of the testing algorithm that was implemented
in dns64perf can be found in [10]. Whereas the basics
of the method were kept indns64perf2, we had to do
some technical modifications for having long enough test runs.
This subsection contains the documentation of the operation
of version 2.

1) Testing Algorithm: The core of the testing algorithm is
very simple: AAAA record queries are sent for domain names,
which ones do not have AAAA records but only A records;
hence the DNS64 server needs to synthesize IPv4-embedded
IPv6 addresses. An independent name space is used to be
able to resolve the domain names without delay. This name
space is the following:n1-n2-n3-n4.dns64perf.test,
where n1, n2, n3 and n4 are integers from the [0, 255]
interval. This name space can be easily mapped to IPv4: the
corresponding IPv4 address is: n1.n2.n3.n4. However, the roles
of the four numbers are very different. The first one, n1 is
used as a fixed number during an execution ofdns64perf2.
Its task is to define an independent name space for each
execution4. Each execution ofdns64perf2 contains several
experiments (at least 256 and at most 65536), where an
experiment contains the resolution of 256 domain names and
their time is measured together. The next two numbers, n2
and n3 are used as counters (n2 is the high order one and
n3 is the low order one, that is n2*256+n3 equals with the
sequence number of the given experiment). Finally the last
number, n4 is used within an experiment. An experiment is
executed inn number of threads, wheren must be a power of
2. Each thread is responsible for 256/ndomain names, which
ones are requested sequentially with no overlapping: the next
one can be asked only after receiving the result of the current
request. Nanosecond precision time stamps are taken at the
beginning of each experiment (before starting then threads)
and at the end of the experiment (after all threads were joined).
Their difference is calculated, converted to milliseconds, and
printed bydns64perf2.

2The modification is only technical, essentially the original testing method
was used, see details in subsection III-B.

3BIND was chosen because it is the most well-known and widespread
used free software DNS server implementation. Its DNS64 performance was
compared to that of three other DNS64 implementations in our former paper
[8]. Using those results and the current performance comparison of MTD64
and BIND, one can also compare the performance of MTD64 to that of the
DNS64 implementations included in [8].

4It can be useful for different purposes. In our earlier works [7], [8], we used
multiple clients to generate high enough load, thus we needed independent
name space for each client. In this paper, we use it in a different way.
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2) Parameters: The program takes five or six command line
arguments. In their presentation, we use the variable names
from the source code [11] and the C language notation of
the program arguments. The operation of thedns64perf2
program is controlled by the following parameters:
a = argv[1] specifies an independent name space for each
execution ofdns64perf2, wherea is an integer from the
[0, 255] interval.
b = argv[2]. During an execution of the program, 256*b
experiments are performed, whereb is an integer from the
[0, 255] interval.
n = argv[3]. In each experiment,n threads are used, where
n must be a power of 2, e.g. 1, 2, 4, 8, etc. and each of the
threads sends 256/nnumber of AAAA record requests.
timeout = argv[4]. The timeout value is given as a
positive integer (interpreted as seconds) and it specifies the
time while the program waits for a reply (typical values are 1
or 5).
server = argv[5] is the IPv6 address of the DNS64
server.
port = argv[6] is the port number on which the DNS64
server program listens (if not supplied then the default value
of 53 is used).

In dns64perf2, parameterb was introduced because
dns64perf performed only 256 experiments and their exe-
cution time proved to be too short for our measurements. The
execution of the program could have been repeated multiple
times, but we intended to use its continuous operation.

What is the relationship between the command line argu-
ments of the program and the n1, n2, n3 and n4 numbers in the
first label of the domain names in the AAAA record requests?

• In all requests, n1 takes the value ofa.
• The two bytes long counter built up by n2 and n3 takes

its values from the [0, 256*b-1] interval. (The whole
measurement contains 256*bnumber of experiments, and
the two bytes long counter identifies the experiments.)

• An experiment contains 256 AAAA record requests,
which ones can be distinguished by the value of n4. Each
one of then threads sends 256/nnumber of requests.

The load generated by the program may be tuned by the
value ofn, the number of threads. It may be worth increasing
n over the number of CPU cores of the computer used for
the execution ofdns64perf2, because the threads may be
waiting for the replies.

We note that in our earlier works [7] and [8], we used
different number of client computers (1, 2, 4 and 8) executing
the test script to be able to exactly tune the measure of the
load. In this way we were able to exactly double the measure
of the offered load. This time we will increase the number
of threads to tune the measure of the load. We do it for ease
of testing now, and we admit that the offered load will not be
exactly doubled when doubling the number of threads because
all the threads are executed by the same computer with limited
resources.

C. Test Script Used for our Measurements

The tests were executed multiple times using different
number of threads, to measure and compare the performances

of MTD64 and BIND under different load conditions. The
following test script was used:

#!/bin/bash
#Paramaters:
server=2001:2::1 # IPv6 address of the DNS64 server
dns64=mtd64 # type of the DNS64 server
b=10 # length of the measurement

for (( i=0; i<5; i++ ))
do

nth=$((2**i)); # number of threads
ssh $server ./stats $dns64 $nth & # start dstat
sleep 1
./dns64perf2 $i $b $nth 1 $server > \
dns64perf2-results-${dns64}-$nth

ssh $server killall dstat # stop dstat
sleep 5

done

As it can be seen from the script, the value of parametera
took the values 0, 1, 2, 3, 4. This way an independent name
space was ensured for each execution of thedns64perf2
program. The value ofb was 10 that is 2560 experiments
were performed in each run ofdns64perf2. The number of
threads took the values of 1, 2, 4, 8, 16 to increase the load
offered by the Tester to the DUT. The timeout value was 1
second.

Though many times the DUT is considered as a black box,
now we did not follow this approach, but measured the CPU
utilization at the DNS64 server for a deeper understanding of
the behavior of the tested DNS64 implementations. We started
thedstat Linux command from a smallbash script named
stats executed byssh (and stopped it by thekillall
command usingssh, too). The content of thestats script
was:

#!/bin/bash
nice -n 10 dstat -c --output \

dns64-stats-$1-$2.dstat > /dev/null

To calculate the CPU utilization, we used the idle time
percentage from the output ofdstat, and subtracted it
from 100%. We did so because we considered less problem
to include also the CPU utilization of some possible other
processes, which were not taking part in DNS64 than leaving
out the CPU utilization of some processes other than MTD64
or BIND, but doing some work for their interest (e.g. kernel
processes sending and receiving packets, writing log files,
etc.).

As we tested only two DNS64 implementations, they were
started manually (and also their names were set manually in
the test script).

D. Hardware and Software Parameters of the Test Environ-
ment

For the repeatability of our measurements, we provide the
most important hardware and software parameters of our test
environment.
Authoritative DNS Server Desktop computer with 3.2GHz
Intel Core i5-4570 CPU (4 cores, 6MB cache), 16GB
1600MHz DDR3 SDRAM, 250GB Samsumg 840 EVO SSD,
Realtek RTL8111F PCI Express Gigabit Ethernet NIC; De-
bian GNU/Linux 8.2 operating system, 3.2.0-4-amd64 kernel,
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TABLE I
DNS64PERFORMANCE: MTD64

1 Number of threads used indns64perf2 1 2 4 8 16
2

Exec. time of 256 queries (ms)
average 61.34 33.23 28.53 17.90 15.12

3 std. dev. 0.95 1.13 1.19 0.77 0.82
4 Number of queries per second 4174 7705 8972 14300 16929
5

DNS64 server CPU utilization (%)
average 20.65 37.42 38.96 67.25 84.47

6 std. dev. 1.41 1.77 0.84 0.67 0.49

TABLE II
DNS64PERFORMANCE: BIND

1 Number of threads used indns64perf2 1 2 4 8 16
2

Exec. time of 256 queries (ms)
average 166.99 101.51 93.09 84.85 88.13

3 std. dev. 3.57 8.29 10.49 9.12 17.79
4 Number of queries per second 1533 2522 2750 3017 2905
5

DNS64 server CPU utilization (%)
average 50.51 72.37 68.87 83.18 86.63

6 std. dev. 1.06 2.26 6.75 4.68 3.93

TABLE III
DNS64PERFORMANCE: MTD64, DYNAMIC CPU FREQUENCY SCALING ENABLED

1 Number of threads used indns64perf2 1 2 4 8 16
2

Exec. time of 256 queries (ms)
average 93.27 51.23 38.56 23.80 16.87

3 std. dev. 0.93 0.70 1.29 0.66 0.58
4 Number of queries per second 2745 4997 6640 10757 15175
5

DNS64 server CPU utilization (%)
average 11.71 22.41 28.88 50.56 76.60

6 std. dev. 2.93 3.51 1.18 1.63 2.02

TABLE IV
DNS64PERFORMANCE: BIND, DYNAMIC CPU FREQUENCY SCALING ENABLED

1 Number of threads used indns64perf2 1 2 4 8 16
2

Exec. time of 256 queries (ms)
average 205.71 113.95 95.86 84.30 87.52

3 std. dev. 8.72 7.68 8.97 8.22 17.05
4 Number of queries per second 1244 2247 2670 3037 2925
5

DNS64 server CPU utilization (%)
average 40.38 70.08 65.94 83.99 87.40

6 std. dev. 1.81 1.97 3.45 4.16 3.70

BIND 9.9.5-9+deb8u3-Debian
DNS64 serverDesktop computer with 2.2GHz AMD Athlon
64 X2 Dual Core CPU 4200+ (2 cores, 512kB cache), 2GB
667MHz DDR2 SDRAM, 320GB Samsung HD321KJ HDD,
nVidia CK804 Gigabit Ethernet NIC; Debian GNU/Linux
8.2 operating system, 3.2.0-4-amd64 kernel, BIND 9.9.5-
9+deb8u4-Debian, MTD64 from [12] (Latest commit: January
4, 2015)
Tester Dell Latitude E6400 series laptop with 2.53GHz In-
tel Core2 Duo T9400 CPU (2 cores, 6MB cache), 4GB
800MHz DDR2 SDRAM, 250GB Samsumg 840 EVO SSD,
Intel 82567LM Gigabit Ethernet NIC; Debian GNU/Linux 8.2
operating system, 3.2.0-4-amd64 kernel,dns64perf2 from
[11]
Switch 3CGSU05 5-port 3Com Gigabit Ethernet switch

All three computers are able to use dynamic CPU frequency
scaling. First, this feature was disabled on all three computers
during our main measurements to eliminate its potential effect
to the results. However, as this feature is quite common, we
have also examined the case when it was enabled on all three
computers.

IV. RESULTS AND DISCUSSION

A. Presentation and Interpretation of the Results

Our DNS64 performance measurement results are presented
in Table I and Table II. Both tables follow the same structure.
The number of threads used indns64perf2 is given in the
first row. (We note that the number of threads is a parameter
of the Tester and not of the tested DNS64 servers. It is used to
tune the intensity of the load provided by the Tester so that the
DNS64 server can be tested under different load conditions.)
The average and the standard deviation of the execution time
of an experiment (256 queries) are shown in row 2 and row
3, respectively. In row 4, we also displayed the number of
answered queries per second calculated by using the average
execution time from row 2. The average and the standard
deviation of DNS64 server CPU utilization can be found in
row 5 and row 6, respectively.

As for the performances of the two DNS64 implementa-
tions, MTD64 seriously outperformed BIND even when a
single thread was used: MTD64 processed 4174 queries per
second whereas BIND could do only 1533. This difference was
growing further when the number of threads was increased.
When 16 threads were used, MTD64 outperformed BIND
more than five times by processing 16929 queries per second
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Fig. 2. DNS64 performance of MTD64 and BIND

whereas BIND could do only 2905. The explanation is clear:
MTD64 used much less computing power than BIND, e.g.
20.65% vs. 50.51% at one thread or 37.42% vs. 72.37% at
two threads, therefore MTD64 had still significant amount of
spare CPU capacity at two threads and thus it could cope with
the higher loads produced by 4, 8 and 16 threads execution of
dns64perf2. Whereas the performance of BIND (2905qps)
was somewhat less at 16 threads than at 8 threads (3017qps),
MDT64 could still significantly increase its performance from
14300qps to 16929qps when the number of threads was
increased from 8 to 16.

Fig. 2 provides a graphical comparison of the DNS64
performances of MTD64 and BIND as a function of the
number ofdns64perf2 threads, that is, the intensity of the
load.

B. Discussion

We can lay down that the results justify the design prin-
ciples of MTD64. However, we can consider this excellent
performance result only as a “proof of concept”. We do not
recommend MTD64 to be used as a real life DNS64 server
for several reasons, including:

• MTD64 was not written to be a productive MTD64
server. It is neither supported, nor maintained.

• Though our tests have shown that it can perform DNS64
server functionality properly [6], it has not undergone
extensive testing and may contain bugs.

• In its current state, it is not a real server program: it is
not daemonized but runs in the foreground.

• MTD64 was not tested against DoS attacks for which it
is vulnerable by design.

Thus our final evaluation is that the experiment of creating
MTD64, a tiny multi-threaded DNS64 server was successful,
and the our principles seem to be viable for the design and
implementation of a production class DNS64 server.

We note that MTD64 has been released as a free software
under GPL v2 license, thus anyone can make a fork of its

source code available on Github [12] and may further develop
it.

We also note that MTD64 is a light-weighted software
omitting many real world scenarios (e.g. controls, exceptions,
etc.) thus its performance comparison with BIND is not
completely fair.

C. The Effect of Dynamic CPU Frequency Scaling

The DNS64 measurements were also performed with dy-
namic CPU frequency scaling enabled on all three computers.
Table III and Table IV show the results.

The results produced under moderate load (using a single
thread only) are significantly different from those produced
when the dynamic CPU frequency scaling was disabled:
MTD64 processed only 2745qps instead of 4174qps and BIND
served 1244qps instead of 1533qps. Thus this result shows
that disabling such mechanisms is a must when performance
measurements are taken.

On the other side of the coin, the heavier the load was,
the better the results of measurements with dynamic CPU
frequency scaling approximated the results of the measure-
ments without dynamic CPU frequency scaling. (As for BIND,
the results for 4-16 threads are very similar; as for MTD64,
the result for 16 threads are getting similar.) This observation
justifies the application of dynamic CPU frequency scaling in
production systems: the computers can still provide their full
performance under high load conditions, and energy may be
saved under lower load.

V. CONCLUSION

We conclude that the design principles of MTD64, our tiny
multi-threaded DNS64 server can be useful in the design of a
high performance production class DNS64 server.
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