

Abstract—DNS64 is going to be an important service

(together with NAT64) in the upcoming years of the IPv6

transition enabling the clients having only IPv6 addresses to

reach the servers having only IPv4 addresses (the majority of

the servers on the Internet today). This paper describes the

design, implementation and functional testing of MTD64, a

flexible, easy to use, multi-threaded DNS64 proxy published as

a free software under the GPLv2 license. All the theoretical

background is introduced including the DNS message format,

the operation of the DNS64 plus NAT64 solution and the

construction of the IPv4-embedded IPv6 addresses. Our design

decisions are fully disclosed from the high level ones to the

details. Implementation is introduced at high level only as the

details can be found in the developer documentation. The most

important parts of a through functional testing are included as

well as the results of some basic performance comparison with

BIND.

Keywords—DNS, DNS64, domain names, IPv4, IPv6, IPv6

transition.

I. INTRODUCTION

Due to the depletion of the public IPv4 address pool [1]

the ISPs (Internet Service Providers) will not be able to

assign public IPv4 addresses to their new clients. Reference

[2] classifies the possible IPv4 address sharing mechanisms

and discloses their tradeoffs. From among them, many

Hungarian ISPs have chosen to give private IPv4 addresses

to the clients and use CGN (Carrier Grade NAT). However,

this solution limits the reachability of the clients from the

outside world, and does not support their transition to IPv6,

which one must happen once (sooner or later). In our

opinion, the deployment of IPv6 is the forward looking

solution for the shortage of public IPv4 address. The new

clients will get IPv6 addresses only and they can

communicate with the native IPv6 servers directly, but the

majority of the Internet servers still use IPv4 only. The

combination of a DNS64 [3] service and a NAT64 [4]

gateways is a suitable solution which enables the IPv6 only

clients to communicate with IPv4 only servers [5]. We agree

with the authors of [2] that: “The only actual address sharing

mechanism that really pushes forward the transition to IPv6

is Stateful NAT64 (Class 4). All other (classes of)

mechanisms are more tolerant to IPv4.” Therefore we expect

that (because NAT64 needs it) DNS64 will become a

widespread used service during the upcoming phase of the

IPv6 transition. To use this solution, a DNS64 server has to

be set as the DNS server in the IPv6 only computers. When

Manuscript received November 6, 2015, revised March 14, 2016.

G. Lencse is with the Department of Networked Systems and Services,

Budapest University of Technology and Economics, 2 Magyar tudósok

körútja, H-1117 Budapest, Hungary (phone: +36-20-775-82-67; fax: +36-

1-463-3263; e-mail: lencse@hit.bme.hu).

A. G. Soós was with Telenor Hungary, 1 Pannon út, H-2045

Törökbálint, Hungary (e-mail: soos.gabor.andras@gmail.com).

a client program (e.g. web browser) requests a domain name

resolution for the domain name of a server which it wants to

connect to, then the DNS64 server acts like a proxy: it uses

the normal DNS system to find out the IP address. If the

DNS64 server gets an IPv6 address from the DNS system

then it simply returns the IPv6 address to the client.

However, if it gets no IPv6 address but only IPv4 address

(recall that it happens in the vast majority of the cases today)

then it synthesizes a so called IPv4-embedded IPv6 address

[6] and it returns the synthesized IPv6 address to the client.

In this case, the communication of the IPv6 only client and

the IPv4 only server will happen with the help of a NAT64

gateway. See more details later in this paper.

There are a number of free software [7] (also called open

source [8]) DNS64 implementations, e.g. BIND, Unbound,

PowerDNS or TOTD but even the smallest of them, TOTD

has about 10,000 lines of source code (excluding the source

of SWILL, its built-in web server) [9]. In this paper, we

propose MTD64, a tiny Multi-Threaded DNS64 server,

which one is very small in code size (less than 1300 lines of

source code) but it is still flexible and convenient. The aim

of our work is to provide a simple DNS64 implementation

which has clear and disclosed design decisions and well

documented source code to give a chance for others to

improve it by adding further functionalities or changing

some of the used solutions to more efficient ones. The

software is planned to be developed mainly by university

students under the supervision of the first author of this

paper, but our free software license allows anyone to join by

making an own fork of the source code. At its current stage,

MTD64 is not meant to be used as a DNS64 server in real-

life networks, but it is rather meant to be a base point for

further developments and to serve also as a testbed for

comparison of the efficiency of different possible solutions

(e.g. different caching policies). Our long term goal is to

develop a production quality DNS64 server step by step.

The design decisions of MTD64 were originally disclosed

in our conference paper [10], which one is now extended

with high level details of implementation and with the

documentation of testing including a thorough functional

testing and a basic performance comparison with BIND.

The remainder of this paper is organized as follows. First,

the theoretical background is introduced to the reader: the

DNS message format, the operation of the DNS64+NAT64

solution and the construction of the IPv4-embedded IPv6

addresses are described. Second, our design decisions are

presented from the high level ones to the details. Third, the

implementation is described at high level including the

source files and their roles as well as the operation of the

program in a nutshell. Fourth, a detailed functional testing of

our DNS64 implementation is done including a short

performance testing, too. Fifth, our future plans are

summarized. Finally, our conclusions are given.

Design, Implementation and Testing of a Tiny

Multi-Threaded DNS64 Server

Gábor Lencse and András Gábor Soós

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

68doi: 10.11601/ijates.v5i2.129

II. THEORETICAL BACKGROUND

A. Format of DNS Messages

The DNS64 server has to work with various DNS

messages: it must interpret, forward, prepare or synthesize

them. Therefore we give a brief summary of the DNS

message format [11].

DNS messages between a client and a server usually

travel over UDP because both the requests and replies are

usually short and sending them over UDP is much faster

than establishing a TCP connection using the three-way

handshake before the client-server communication and

closing it at the end using the four-way handshake. If some

of the messages happen to be lost then they can be resent.

1) Top level structure

A DNS message is built up by five sections: its Header

section is always 12 bytes long and it is followed by four

variable length sections (some of them may be empty):

Question, Answer, Authority, Additional.

2) Header section format

The Header section can be further subdivided as shown in

Fig. 1. The 16-bit Transaction ID field is used by the client

to identify the answer of the server for different questions. It

is generated by the requester (client) and it is copied by the

server into the corresponding reply. The QR bit specifies

whether this message is a query (0), or a response (1). The

OPCODE field is used by the originator of the query to

specify the kind of the query and it is copied by the server

into the answer. Only the 0 value is of practical interest for

us, it means standard query. The AA bit is valid only in

responses and it signals if the answer is authoritative. The

TC bit signals if the DNS message was truncated due to the

limitations of the MTU of the transmission channel. The

usage of the TC bit is clarified in section 9 of [12]. “The TC

bit should not be set merely because some extra information

could have been included, but there was insufficient room.”

It also states that: “When a DNS client receives a reply with

TC set, it should ignore that response, and query again,

using a mechanism, such as a TCP connection, that will

permit larger replies.”

→ The DNS64 server program should not set the TC bit

for leaving out some of the Additional RRs at the end of the

message.

The RD bit is used by the requester to ask recursive query.

The RA bit is used by the server to signal if recursion is

available. All four bits of the Z field must be set to 0 in all

queries and responses (it is reserved for future use). The

RCODE field of the responses specifies the error code: 0

value means no error. The QDCOUNT field specifies the

number of entries in the Question section. In practice, clients

send only one question in a DNS message. The ANCOUNT,

NSCOUNT and ARCOUNT fields specify the number of

resource records in the Answer, Authority and Additional

sections, respectively.

3) Question section format

The Question section contains QDCOUNT number of

entries (usually 1). An entry follows the format shown in

Fig 2. The variable length QNAME field contains the domain

name using special encoding (see: Domain name encoding

and message compression). The QTYPE filed specifies the

RR (Resource Record) type by 16-bit long binary vales.

Some examples are:

 A (0x01) – IPv4 Address

 AAAA (0x1C) – IPv6 Address (4 times size of A)

 CNAME (0x05) – Canonical NAME (alias)

 MX (0x0F) – Mail eXchanger

 NS (0x02) – Name Server

 PTR (0x0C) – used for reverse mapping (PoinTeR).

The QCLASS field contains the 0x01 16-bit binary value

for denoting the IN (Internet) class. The other theoretically

possible values for CH (Chaos) or HS (Hesiod) are not used.

4) Resource record format

The RR (Resource Record) format – used in the Answer,

Authority and Additional sections – is shown in Fig. 3. The

first three fields correspond to that of the Question section.

The 32-bit unsigned integer in the TTL (Time to Live) field

specifies the time interval in seconds while the RR may be

cached. The 16-bit unsigned integer in the RDLENGTH field

gives (in octets) the length of the RDATA field, which

contains the octets of the given resource (e.g. the 4 octets of

the IPv4 address or the 16 octets of the IPv6 address).

5) Domain name encoding and message compression

The domain names stored in the QNAME or NAME fields

follow special encoding. A domain name is built up by so

called labels separated from each other by “.” characters.

The labels must be no longer than 63 characters. When

domain names are encoded in DNS messages, the first

character gives the length of the first label and then the

characters of the first label follow. After that, a character

stands that specifies the length of the next label and the

characters of the next label follow, etc. Finally, a zero

character after the last label signals the end of the domain

name. Fig. 4 illustrates the encoding of the domain name

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transaction ID

QR OPCODE AA TC RD RA Z RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

Fig. 1. DNS message Header section format.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

QNAME

(variable length)

QTYPE

QCLASS

Fig. 2. DNS message Question section format.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NAME

(variable length)

TYPE

CLASS

TTL

(32-bit)

RDLENGTH

RDATA

(variable length)

Fig. 3. DNS message RR format for Answer, Authority, Additional sections.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

69

whale.hit.bme.hu.

The addition of pointers to this encoding scheme makes

possible an efficient compression if there are repetitions of

entire domain names or label sequences at the end of the

domain names in DNS messages. A pointer is a two octet

sequence where the first two bits of the first octet are ones,

see Fig. 5. Note that the length of a label is at most 63 octets,

therefore the first two bits of the octet expressing its length

are always zeros, thus a pointer can be easily distinguished

from a label. The OFFSET field of the pointer specifies the

offset of the pointed label sequence from the beginning of

the DNS message. Let us demonstrate it with an example. If

the domain name in Fig. 4 starts at offset 0x0030 in a DNS

message then we can compress the www.hit.bme.hu

domain name in the same DNS message as it is shown in

Fig. 6. The beginning three w characters are encoded in the

usual way and then follows the 0xC0 value. The “11” values

of its first two bits show that this is a pointer and the octet is

to be interpreted together with the next one. The value of the

offset field is 0x0036, which points to the second label of the

domain name in Fig. 4.

→ The DNS64 server program must be able to handle

correctly this encoding and compression scheme. (See later

its consequences: the server program must be able to decode

the domain name for logging purposes and it must also be

able to modify the pointer if the pointed RR is moved within

the DNS message.)

B. Operation of the DNS64 + NAT64 Solution

The operation of the DNS64 + NAT64 solution is

demonstrated in Fig. 7. It shows a scenario where an IPv6

only client communicates with an IPv4 only web server. The

DNS64 server uses the 64:ff9b::/96 NAT64 Well-Known

Prefix for generating IPv4-embedded IPv6 addresses. A

prerequisite for the proper operation is that packets towards

the 64:ff9b::/96 network are routed to the NAT64 gateway

(routing must be configured that way). Let us follow the

steps:

1. The client asks its DNS server (which one is actually

a DNS64 server) about the IPv6 address of the

www.hit.bme.hu web server.

2. The DNS64 server asks the DNS system about the

IPv6 address of www.hit.bme.hu.

3. No IPv6 address is returned.

4. The DNS64 server then asks the DNS system for the

IPv4 address of www.hit.bme.hu.

5. The 152.66.148.44 IPv4 address is returned.

6. The DNS64 server synthesizes an IPv4-embedded

IPv6 address by placing the 32 bits of the received

152.66.148.44 IPv4 address after the 64:ff9b::/96

prefix and sends the result back to the client.

7. The IPv6 only client sends a TCP SYN segment

using the received 64:ff9b::9842:f82c IPv6 address

and it arrives to the IPv6 interface of the NAT64

gateway (since the route towards the 64ff9b::/96

network is set so in all the routers along the path).

8. The NAT64 gateway constructs an IPv4 packet using

the last 32 bits (0x9842f82c) of the destination

IPv6 address as the destination IPv4 address (this

is exactly 152.66.248.44), its own public IPv4

address (198.51.100.10) as the source IPv4 address

and some other fields from the IPv6 packet plus

the payload of the IPv6 packet. It also registers the

connection into its connection tracking table (and

replaces the source port number by a unique one if

necessary). Finally it sends out the IPv4 packet to

the IPv4 only server.

9. The server receives the TCP SYN segment and sends

a SYN ACK reply back to the public IPv4 address

of the NAT64 gateway.

10. The NAT64 gateway receives the IPv4 reply

packet. It constructs an appropriate IPv6 packet

5 w h a l e 3 h i t 3 b m e 2 h u 0

Fig. 4. DNS encoding of the whale.hit.bme.hu domain name.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 OFFSET

Fig. 5. The structure of a pointer.

3 w w w C0 36

Fig. 6. Compressed encoding of the www.hit.bme.hu domain name

using the fact that the domain name shown in Fig. 4 starts at offset 0x0030.

1
“AAAA” www.hit.b

me.hu ?

DNS64
server

“AAAA” 64:ff9
b::9

842:f8
2c

Domain
Name

 System

SYN 64:ff9b::9842:f82c

NAT64 gateway

SYN 152.66.248.44

IPv4 only server

6

7

IPv6 only client
SYN ACK 198.51.100.10 9

Address: 2001:db8::ac31:b17
IPv6 Address: 2001:db8:abcd::1

IPv4 Address: 198.51.100.10

IPv4 Address: 152.66.248.44

Hostname: www.hit.bme.hu

10SYN ACK 2001:db8::ac31:b17

“AAAA” www.hit.bme.hu ?2

“A” www.hit.bme.hu ?4

“AAAA” (empty) 3

“A” 152.66.248.44 5

8

Fig. 7. The operation of the DNS64+NAT64 solution: an IPv6 only client communicates with and IPv4 only server.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

70

using the necessary information from its state table.

It sends the IPv6 packet back to the IPv6 only

client.

The communication may continue on. It seems to the

clients that it communicates to an IPv6 server. Similarly, the

server “can see” an IPv4 client. If it logs the IP addresses of

the clients than it will log the public IPv4 address of the

NAT64 gateway.

Most client-server applications can work well with the

DNS64+NAT64 solution. See more information about the

application compatibility in: [13]–[15].

In practice, the world wide usage of the NAT64 Well-

Known Prefix has several hindrances, see sections 3.1 and

3.2 of [6]. Therefore the network operators allocate a subnet

from their own network for this purpose. It is called Network

Specific Prefix (NSP).

→ The DNS64 server must enable the user to set the

appropriate prefix for synthesizing the IPv4-embedded IPv6

address.

C. Construction of the IPv4-Embedded IPv6 Addresses

The construction of the IPv4-embedded IPv6 addresses is

defined in [6]. When using Network-Specific Prefix, the

network administrator has to decide the size of the prefix.

There are some constraints:

 The prefix size must be exactly one of 32, 40, 48, 56,

64 or 96.

 The 64-71 bits of the IPv6 address must be 0.

 The 32 bits of the IPv4 address are stored right after

the prefix but the above mentioned 0 bits have to

be left out (or jumped over).

 If there are unused bits at the end of the IPv6 address

then they must be filled with 0-s.

→ The DNS64 server should be able to check the prefix size

and accept only the permitted ones.

D. Operation Requirements for the DNS64 server

The DNS64 server is set as the normal DNS server of the

client.

→ Therefore the DNS64 server must be able to act as a

proxy for any other requests than the AAAA records (e.g.

MX).

Even though DNS64 is intended as an IPv6 transition

solution for the IPv6 only clients, the clients might use dual

stack.

→ Therefore A record requests and their replies must

also be forwarded untouched.

III. DESIGN DECISIONS

A. Design Principles

Our intention was to create a DNS64 server program that

can be a viable alternative to the existing free software

DNS64 implementations. Its attributes must include ease of

use, high performance and ease of modification. In our

position, a program like this should be:

 simple and therefore short (in source code)

 fast (written in C, at most some parts in C++)

 extensible (well structured and well documented)

 convenient and flexible in configuration

 free software under GPL or BSD license

B. High Level Design Decisions

1) Forwarder or recursor

A DNS server may operate in two modes. If it works as a

recursor then it performs the recursion itself: starting from a

top level DNS server it performs a series of iterative queries

until it receives an authoritative answer. If it works as a

forwarder then it acts like a proxy: forwards the queries to

another DNS server and simply returns its answer to the

client. (It may also cache the information.) As for the before

mentioned four free DNS64 implementations, BIND and

PowerDNS can act as both recursor and forwarder. TOTD

can act as a forwarder only. Unbound can be either of them

if it is used as a DNS server only, but it may perform the

DNS64 functionality only in the case if it is set as a recursor.

We decided that MTD64 will operate as a forwarder only.

It complies with the principle of simplicity.

2) Caching

On the one hand caching may significantly improve the

performance of a DNS server, but on the other hand it

seriously increases complexity. In addition to that the most

common desktop operating systems, i.e. the different

versions of Windows and Linux use DNS caching, thus they

do not send the subsequent requests of the clients concerning

the same domain name to the DNS server. However, if the

DNS64 server is used by several clients then many of them

may send requests for the same set of domain names thus

caching is very likely to be beneficial.

We decided to omit caching from the first version of

MTD64 because implementing it would have required more

time than it was available during the final project (MSc

thesis) of the second author of this paper. It is planned to be

added later as a separate project for another student.

3) Storing the requests or not

When the DNS64 server receives a request from the client

and forwards it to the DNS system, the DNS64 server should

preserve the information about the client while waiting for

the reply to be able to send back the reply (or the

synthesized IPv6 address) to the client. The requests from

the different clients may arrive in high number therefore an

expandable data structure should be chosen e.g. linked list,

balanced or unbalanced trees. Their operations (insert, find,

delete) involve programming complexity and the operations

may involve significant time complexity if the data structure

has high number of elements. Unfortunately there is a trade-

off between the programming complexity and the speed. E.g.

the operations of the linked list are simple but their time

complexity is O(n), where n denotes the number of elements

in the data structure. The time complexity of the operations

of the balanced trees is O(log n), but their operations require

more programming work. For more information see [16] and

its references.

We decided not to store explicitly the client information

but start a new thread for each request. It means the

information is stored on the stack in the local variables (and

on the heap in dynamically allocated data structures held by

pointers). We hope that this solution will not fight back

through high memory consumption but it will turn out during

performance testing. As a positive consequence of our

decision, MTD64 will be able to utilize all the CPU cores of

the server.

4) Programming language and program structure

The C++ programming language was chosen mainly for

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

71

its thread handling. Only one class is used: its tasks are to

store the parameters set by the user and to make them

available by member function calls. The majority of the

source code is written in the C language to be as fast as

possible. One main source code file contains the most

important operation of the server program and two separate

ones contains the code for loading and storing the settings.

They all include the same single header file. See more

details later on.

5) Configuration file format

Simple text format was chosen. The configuration file is

line oriented: a keyword is followed by the values for the

given setting. Both “#” and “//” can be used for denoting

comments.

6) Logging

The MTD64 program uses the standard syslog facility for

logging. The program uses multiple log levels and the

amount of the logged information can also be set by the user

in the configuration file of MTD64.

7) License

The GPL v2 license was chosen. It ensures that the

derivatives of MTD64 will remain also free software.

C. Important Design Details

1) DNS servers and selection between them

Multiple name servers may be set. They can be added by

using multiple lines. Also the configured name servers from

the (Linux) operating system can be loaded. Two DNS

server selection modes are supported. Round Robin uses the

first one from the list while it replies on time. If time-out

occurs, than it takes the next one from the list. Random

chooses one randomly for every request. Note that this

solution makes it possible to use the DNS servers balanced

or unbalanced: e.g. one of them is specified 10 times and the

other one is specified 20 times.

The random DNS server selection mode will also be

useful when testing the performance of the MTD64

software: multiple DNS servers can be used so that their

performance will not limit the performance of the MTD64

software.

2) DNS message length

DNS messages carried over the UDP transport protocol

are limited to 512 octets. A DNS server may return multiple

RR entries in its answer, thus its size may be close to 512

octets. When IPv4-embedded IPv6 addresses are synthesized

from IPv4 addresses it results in a 16-4=12 octets growth for

each IP address. Therefore care must be taken to the 512

octet limit. As certain programs may handle larger

datagrams and others may not, we decided to entrust the

decision to the user. Therefore the maximum length of the

response of the MTD64 server can be set in the

configuration file. If a resource record does not fit in the

specified size of DNS reply message, the program leaves out

the resource record and also logs the event. It does not set

the TC bit, because by doing so it would force the client to

repeat the query by using TCP, see [12].

3) Client and DNS server IP version

The IP version for the client side is obvious: the IPv6 only

clients use IPv6. What IP version should be used to reach

the DNS system? Theoretically the request for the “AAAA”

record might also be sent over IPv6, but we found a safe and

simple choice to use always IPv4. (It simplifies both the

setting of the DNS servers in the configuration file and the

communication with them.)

4) Order of questions and answers

Section 5.1.8 of [3] states that: “The DNS64 MAY

perform the query for the AAAA RR and for the A RR in

parallel, in order to minimize the delay.” However, this

possible speed up has its price in assembling and sending

always two questions instead of one1 as well as taking care

for which one the answer has already arrived, therefore we

decided not to do this, but rather follow the order shown in

Fig 7.

5) Preparation of the answers to the clients

If the question of the client was different than an “AAAA”

record (e.g. “A” record, “MX” record, etc.) or the client

asked for an “AAAA” record and the DNS system

responded with an “AAAA” record than it is enough to

forward its reply to the client. (It can be done without any

changes, because even the Transaction ID is matching since

MTD64 forwarded the request of the client untouched to the

DNS system which one also kept the Transaction ID.) When

an “AAAA” record must be synthetized from an “A” record,

we saw two possible ways for completing this task:

1. The complete reply can be assembled step-by-step

“from scratch” using the information piece-by-

piece from the reply of the DNS system. (It

requires a lot of steps, see the fields of the DNS

messages.)

2. The reply can be built in larger chunks by copying as

long as possible memory areas from the reply of

the DNS system.

The second one was chosen to achieve higher speed. The

size of the chunks is limited by the occurrences of the “A”

records: the 4 octet long IPv4 addresses have to be replaced

by the synthesized IPv6 addresses which requires 16 octets

space. Special care must be taken for the domain names

containing pointers whether they have to be adjusted. (Recall

that the RRs in the DNS answers also contain the questions

with specially encoded and possibly compressed the domain

names.)

D. Further Design Details

The presentation of all the design details would exceed

the limitations of this paper. They are included in the

“Programmer Documentation”. For those who would like

only to use MTD64, we recommend the “User

Documentation”. They can be found together with the

commented source code on GitHub [17]. We also present a

simple configuration file in the appendix, to give an

impression of how flexibly MTD64 can be configured.

IV. IMPLEMENTATION

As both programmer documentation and commented

source code are available on GitHub [17], we give only a

high level overview here.

A. Source Files and their Responsibilities

There is a single header file header.h containing all the

necessary system header file includes, the definition of the

ConfigModule class and some function prototypes. It is

included by all program files.

1 We note that more and more Internet hosts will have IPv6 addresses in

the future and, therefore, the “A” record will have to be asked less

frequently.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

72

The config_load.cpp file contains a single function

load_config(), which is responsible for loading all

parameters from the settings.conf configuration file

and storing them in an instance of the ConfigModule

class.

The member functions of the ConfigModule class are

defined in config_module.cpp and their task is to set

and retrieve all data members of the class containing

configuration information as well as to synthesize IPv4-

embedded IPv6 addresses.

The main source file is called dns64server.cpp and

it contains some string and error handling functions, the

main() function and the send_response() function

which one is responsible for the lion’s share of the tasks of

MTD64.

A workable sample configuration file settings.conf

and a Makefile are also provided.

B. Operation of MTD64 in a Nutshell

The main() function calls the load_config()

function to read the parameters, opens an UDP socket for

receiving DNS queries and then starts an infinite loop, in

which it receives DNS queries and starts a separate thread

for handling each of them. The executed code of the thread

is the send_response() function. It checks and records

if an “AAAA” record was requested by the client. Then it

forwards the query to the appropriate DNS server

(determined by the settings) keeping everything (including

the Transaction ID) untouched in it. Next, it sets the

appropriate timeout (defined by the user in the configuration

file) using the setsockopt() socket handling function

and calls the recfvrom()function for receiving the reply

from the DNS server. (If timeout occurs then it resends the

query by at most as many times as the number set by the user

in the configuration file, but now we do not go into deeper

details.) If finally a response is received then it checks in its

own records, if an “AAAA” record was requested by the

client. If yes, and no “AAAA” record was received in the

answer of the DNS server then it prepares a DNS query for

an “A” record by modifying the query type in the preserved

DNS query message from the client. Then it sends the query

to the appropriate DNS server and receives its reply in the

above mentioned manner (using timeout and resending the

query if necessary). If it receives at least one “A” record

then it modifies the message from the DNS server by

replacing all “A” records with synthesized “AAAA” records

(note that there may be more than one of them) taking care

also for modifying pointers if necessary. It also considers the

maximum DNS message length allowed by the standard

(512 octets) or set for some other value by the user. (It may

be necessary to omit some records at the end of the DNS

message.) Finally, it returns either the untouched reply of the

DNS server (if no change was necessary) or the modified

one – containing one or more IPv4-embedded IPv6

address(es) – to the client. Note that the Transaction ID was

always left unchanged thus the reply will meet the

expectation of the client.

V. TESTING

Unless stated otherwise, the settings of the sample

configuration file were kept and the standard Linux host

command was used for testing. The IPv6 address of the

client was fe80::221:ccff:fe69:9f0a and the IPv6 address of

the MTD64 server was: fe80::8e89:a5ff:fec5:5bef during all

the functional and message length tests.

A. Functional Testing

1) Command line testing and observation

The host www.yandex.ru command was used for

testing. As no other parameters were specified, the host

command sent three queries and they asked “A”, “AAAA”

and “MX” records. The result of the command is shown in

Fig. 8. It can be observed that the domain has three IPv4

addresses and no IPv6 address, therefore three IPv6

addresses were synthesized by MTD64 using the IPv4

addresses and the 2001:db8:63a9:2ef5:dead:beef::/96 prefix.

Please note that the IPv4 and the corresponding IPv4-

embedded IPv6 addresses are in a different order; we shall

show its reason soon.

2) Wireshark capture analysis

The network traffic of the MTD64 server was captured by

Wireshark during the execution of the host command for a

more thorough checking of the operation of our DNS64

implementation. The captured packets are shown in Fig. 9.

By observing the first four of them, we can see that MTD64

Fig. 8. Output of the functional testing command.

Fig. 9. DNS messages during the basic functional testing – captured and displayed by Wireshark.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

73

acted like a proxy when an “A” record was requested: the

first message was sent from the client to the MTD64 server

over IPv6. The second message contained the same query

and is was sent from the MTD64 server to a public DNS

server at 8.8.4.4 over IPv4. Similarly the response of the

public DNS server was simply forwarded to the client by

MTD64. The next six lines show the resolution of the query

for an “AAAA” record. Similarly to the case of the query for

the “A” record, MTD64 forwarded the request of the client

to the public DNS server. Let us observe that the 0x1032

Transaction ID was also kept. However, MTD64 received

an “empty” answer. Therefore, it sent a query for an “A”

record using the same Transaction ID. We can observe that

the public DNS server sent the same three IPv4 addresses as

before but in a different order (now, the first two begin with

the 213.180/16 prefix). This is the explanation of our earlier

observation of the order change (based on the output of the

host command shown in Fig. 8.) And let us also observe that

whereas the length of the response of the public DNS server

is 245 bytes, the length of the response of the MTD64 server

is 325 bytes. The difference is 80 bytes. We shall explain its

reason soon by a deeper analysis of the two messages. The

last four lines show the resolution of the query for an

“AAAA” record. Here, MTD64 acted as a proxy again, thus

we do not go into details.

3) Deeper analysis of the messages

Now, we compare two messages: the one with the “A”

records from the public DNS server to the MTD64 server

and the one with the synthesized “AAAA” records from the

MTD64 server to the client. They are shown in Fig. 10. The

first message contains the query, the three answers as “A”

records, the names of two authoritative name servers and

four additional records. From the four additional records,

two ones are of type “A” and the other two ones are of type

“AAAA”. MTD64 transformed this message into the second

one. How many differences can be observed? There are five

of them: the three “A” records as answers and the two “A”

records from among the additional records were transformed

into “AAAA” records. Each transformation is responsible

for a length growth by 12 octets. The IP headers are not

displayed here but it can be checked in Fig. 9 that the first

message travelled over IPv4 and the second one was sent

over IPv6. The length of the standard IPv4 and IPv6 headers

are 20 octets and 40 octets, respectively. Now, we have

shown that the difference between the lengths of the two

messages is exactly 5*12+20=80 octets.

B. Testing DNS Message Length Issues

As we have just seen, the DNS64 functionality increases

the length of the DNS messages. What happens if we reach

Fig. 10. How MTD64 synthesizes IPv4-embedded IPv6 messages?

Fig. 11. A DNS message which is longer than 512 octets.

Fig. 12. DNS messages with 700 octets maximum length limit set – captured and displayed by Wireshark.

Fig. 13. DNS messages with standard 512 octets maximum length limit set – captured and displayed by Wireshark.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

74

the 512 octets limit? To be able to test this situation, we had

to find an appropriate domain name. An appropriate one can

be found as follows: the host -t AAAA www.gmw.cn

command results in several CNAME-s and one of them,

namely cc00033.h.cnc.ccgslb.com.cn is suitable

for this purpose.

1) Testing with 700 octets limit

The configuration file was modified as follows:

response-maxlength 700

Fig. 11 shows the results of the execution of the host

command querying the “AAAA” record of the above

mentioned domain name. The command also displayed the

length of the DNS message: 605 bytes (marked by a red

rectangle). Please note that the host command did not give

an error message because of the DNS message was longer

than 512 octets – even in the verbose mode (set by the -v

option). Wireshark also displayed this message with no

error, see Fig. 12. (The DNS payload size is also reported as

605 bytes in the bottom left corner of the figure.)

2) Testing with standard 512 octets limit

The configuration file was modified as follows:

response-maxlength 512

dns64-prefix 2001:0db8:63a9::/96

The same host command was issued again. Fig. 13

shows the Wireshark results. Now the payload length is only

493 bytes. Fig. 14 shows the reply of the public DNS server

(with the “A” records) and the reply of the MTD64 server

(with synthesized “AAAA” records). It can be seen that

some of the additional RRs were omitted by MTD64 due to

the standard 512 octets DNS message size limit.

C. Basic Performance Testing

During the review process of this journal paper, we have

compared the performance of MTD64 to that of BIND, and

it was found that MTD64 significantly outperformed BIND

concerning the number of answered AAAA record requests

per second [18]. However, as that paper is still under review

(and therefore it is not citable yet), we have performed more

measurements using different DNS64 server hardware to

avoid copyright issues.

1) Test setup

The topology of our performance test network is shown in

Fig. 15. A Raspberry Pi 2 Model B+ single-board computer

was used as DUT (Device Under Test) to execute the

DNS64 server programs to be compared. The dns64perf

[19] test program was executed by a laptop computer for

performance measurement. The authoritative DNS server

was executed by a high performance desktop computer. The

elements were interconnected by a Gigabit Ethernet switch.

This setup was prepared so that the DUT be the bottleneck,

thus its performance determined the overall performance of

the test system.

2) Hardware and software parameters

For the repeatability of our measurements, we provide

hardware and software details.

The authoritative DNS server was a desktop computer

with 3.2GHz Intel Core i5-4570 CPU (4 cores, 6MB cache),

Fig. 14. Comparison of the DNS reply with the A records (on the left) and the MTD64 reply with synthesized AAAA records (on the right). Some of the

additional RRs were omitted due to the standard 512 octets DNS message size limit.

laptop computer with
dual-core Intel 2.53GHz CPU

192.168.1.144/24

Tester:
dns64perf

3Com 3CGSU05
Gigabit switch

2002:2::3/64

DNS64 Server
- MTD64
- BIND

Authoritative
DNS server

BIND

192.168.1.149/24
2002:2::1/64

desktop computer with
quad-core 3.2GHz Intel CPU

Raspberry Pi 2 with
quad-core 900MHz ARM CPU

Fig. 15. Topology of the performance test network

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

75

16GB 1600MHz DDR3 SDRAM, 250GB Samsung 840

EVO SSD, Realtek RTL8111F PCI Express Gigabit

Ethernet NIC; Debian GNU/Linux 8.2 operating system,

3.2.0-4-amd64 kernel, BIND 9.9.5-9+deb8u3-Debian

The DUT was a Raspberry Pi 2 Model B single-board

computer with 900MHz quad-core ARM Cortex A7 CPU,

1GB 400MHz LPDDR2 SDRAM, 16GB Kingston micro

SD card, 100BaseTX Ethernet NIC; Debian GNU/Linux 8.0

operating system, 3.18.0-trunk-rpi2 kernel, BIND 9.9.5-

9+deb8u2-Debian, MTD64 from [17] (Latest commit:

January 4, 2015).

The tester device was a Dell Latitude E6400 series laptop

with 2.53GHz Intel Core2 Duo T9400 CPU (2 cores, 6MB

cache), 4GB 800MHz DDR2 SDRAM, 250GB Samsung

840 EVO SSD, Intel 82567LM Gigabit Ethernet NIC;

Debian GNU/Linux 8.2 operating system, 3.2.0-4-amd64

kernel, dns64perf test program from [20].

The devices were interconnected by a 3CGSU05 5-port

3Com Gigabit Ethernet switch.

3) Testing method

The dns64perf program sent AAAA record queries for

the domain names 10-0-b-c.dns64perf.test, where

variables b and c took their values from the [0..255] interval,

thus altogether 65536 queries were sent. The domain names

were resolved to the 10.0.b.c IPv4 addresses by the

authoritative DNS server. As it is documented in [19], the

dns64perf program organizes the 65536 name resolutions

into 256 “experiments”. During an experiment, variable b

has a fixed value and the program can use several threads

specified by the user. The program measures the execution

time of the experiments and prints out the 256 results (in

milliseconds). For further details, see [19]. For this time, 16

threads were used to send 16 queries concurrently in order to

ensure high enough load.

4) Results

The result are presented in Table I. The N number or the

replied AAAA record queries per second is calculated

according to (1), where T denotes the execution time of one

experiment (resolution of 256 AAAA record queries)

specified in milliseconds.

exp

ms
T

s

ms
1000*

exp

query
256

N
 (1)

The results are convincing: MTD64 could reply 3886

AAAA record queries per second whereas BIND could do

only 2094. For further results on performance comparison,

please see [18].

VI. FUTURE PLANS

A. Detailed Performance Analysis

We plan to test MTD64 under heavy load conditions to

investigate its stability, CPU and memory requirements and

also to check if it complies with the graceful degradation

principle [21]. We also plan to compare its performance to

the before mentioned free DNS64 server programs, namely

BIND, TOTD, Unbound and PowerDNS with a similar test

method which was used for their performance analysis in

[22], [23], and [24].

We are especially interested in how the extensive use of

threading influences the memory consumption of the

program.

We consider that our current performance results and the

result of [18] partially justify our design decisions but we

need to perform further tests, especially concerning the

effects of a possible DoS (Denial of Service) attack, when

the attacker sends needless AAAA record requests to

exhaust the resources of the server.

B. Implementing Further Functions

We plan to implement recursion, caching and concurrent

look-up of “AAAA” and “A” records, too. We plan to add

these functions one by one and compare the performance of

the new software to the original one to check whether the

additional complexity required by these functions results in

speed-up or slow-down of the software.

Our long term plans include the support of TCP as

transport protocol for DNS messages and after its inclusion,

it will be possible to add also DNSSEC [25].

EDNS(0) makes it possible to use larger than 512 bytes

message size over UDP, see section 4.3 of [26]. We will

consider implementing this feature.

The tiny size of the source code makes it possible to

oversee the program as a whole and thus to change its

behavior and add functions as we find the best.

C. Expecting Feedback from the Users

MTD64 was released as free software, sharing the source

code and documentation on GitHub [17]. The program can

be used, modified and redistributed under the GPLv2

license. We would like to warn our potential users that the

software is not yet ready to be used in production systems,

but it can be tested and/or further developed.

Any questions, comments, suggestions, experiences, test

reports are welcome by the authors of this paper.

D. The Development of MTD64 is Kept Going

Dániel Bakai has taken over the further development of

our DNS64 implementation in 2015. He made a fork and

named the new version mtd64-ng. We plan to report his

results soon.

VII. CONCLUSION

We have introduced all the necessary details about the

DNS message format, the operation of the DNS64+NAT64

solution and the construction of IPv4-embedded IPv6

addresses.

We have disclosed our design principles for a high

performance, easy to use and modify DNS64 server.

We have fully described our design decisions from the top

level ones to the details.

We have summarized the most important implementation

details in this paper and also published the source code and

documentation of our multi-threaded DNS64 server (called

MTD64) on GitHub as a free software under the GPLv2

License.

We have conducted a thorough functional testing and also

TABLE I

BASIC PERFORMANCE COMPARISON OF MTD64 AND BIND

DNS64 Implementation MTD64 BIND

Execution time of one

experiment (ms)

average 65.87 122.27

std. dev. 5.08 4.67

Replied AAAA queries per second 3886 2094

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

76

checked the DNS message size issues.

During the basic performance testing, we have found that

MTD64 significantly outperformed BIND when they were

executed by a Raspberry Pi 2 Model B+ single-board

computer.

Stability testing under heavy load conditions and a

detailed performance analysis including comparison with

several other free DNS64 implementations are planned

future tasks.

We conclude that MTD64 may be useful also as a starting

point for later development for anyone interested in.

ACKNOWLEDGEMENT

The development of the MTD64 server was the MSc

thesis (final project) work of the second author at the

Department of the Networked Systems and Services,

Budapest University of Technology and Economics under

the supervision of the first author.

REFERENCES

[1] The Number Resource Organization, “Free pool of IPv4 address
space depleted” [Online]. Available: http://www.nro.net/news/ipv4-
free-pool-depleted

[2] N. Skoberne, O. Maennel, I. Phillips, R. Bush, J. Zorz, and M.
Ciglaric, “IPv4 address sharing mechanism classification and tradeoff
analysis”, IEEE/ACM Transactions on Networking, vol. 22, no 2,
April 2014, pp. 391–404.DOI: 10.1109/TNET.2013.2256147

[3] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147)

[4] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF, April 2011. ISSN: 2070-1721 (RFC 6146)

[5] M. Bagnulo, A. Garcia-Martinez and I. Van Beijnum, “The
NAT64/DNS64 tool suite for IPv6 transition”, IEEE Communications
Magazine, vol. 50, no. 7, July 2012, pp. 177–183. DOI:
10.1109/MCOM.2012.6231295

[6] C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF RFC 6052, 2010.

[7] Free Software Fundation, “The free software definition”, [Online].
Available: http://www.gnu.org/philosophy/free-sw.en.html

[8] Open Source Initiative, “The open source definition”, [Online].
Available: http://opensource.org/docs/osd

[9] F. W. Dillema, TOTD 1.5.3 source code, [Online]. Available:

https://github.com/fwdillema/totd

[10] G. Lencse and A. G. Soós, “Design of a Tiny Multi-Threaded DNS64

Server”, in Proc. 38th Internat. Conf. on Telecommunications and

Signal Processing (TSP 2015), Prague, 2015, pp. 27–32. DOI:

10.1109/TSP.2015.7296218

[11] P. Mockapetris, “Domain names – implementation and

specification”, IETF, November 1987. (RFC 1035)

[12] R. Elz and R. Bush, “Clarifications to the DNS Specification”, IETF,

July 1997. (RFC 2181)

[13] N. Škoberne and M. Ciglarič, “Practical evaluation of stateful

NAT64/DNS64 translation” Advances in Electrical and Computer

Engineering, vol. 11, no. 3, August 2011, pp. 49–54. DOI:

10.4316/AECE.2011.03008

[14] V. Bajpai, N. Melnikov, A. Sehgal and J. Schönwälder, “Flow-based

identification of failures caused by IPv6 transition mechanisms” in

Proc. 6th IFIP WG 6.6 Internat. Conf. on Autonomous

Infrastructure, Management, and Security (AIMS 2012),

Luxembourg, 2012, pp 139–150. DOI: 10.1007/978-3-642-30633-

4_19

[15] S. Répás, T. Hajas and G. Lencse, “Application compatibility of the

NAT64 IPv6 transition technology”, in Proc. 37th Internat. Conf. on

Telecommunications and Signal Processing (TSP 2014), Berlin,

2014, pp. 49–55. DOI: 10.1109/TSP.2015.7296383

[16] G. Lencse, “Investigation of event-set algorithms”, in Proc. 9th

European Simulation Multiconference (ESM'95) Prague, 1995, pp.

821–825.

[17] A. Soós, “Multi-Threaded DNS64 server”, documentation and source

code, [Online]. Available: https://github.com/Yoso89/MTD64

[18] G. Lencse, “Performance analysis of MTD64, our tiny multi-threaded
DNS64 server implementation: Proof of concept”, review version
available: http://www.hit.bme.hu/~lencse/publications/

[19] G. Lencse, “Test program for the performance analysis of DNS64
servers”, Internat. J. of Advances in Telecomm., Electrotechnics,
Signals and Systems, vol. 4. no. 3. pp 60–65. Sep. 2015. DOI:
10.11601/ijates.v4i3.121

[20] G. Lencse, dns64perf source code, http://ipv6.tilb.sze.hu/dns64perf/

[21] NTIA ITS, “Definition of ‘graceful degradation’ ” [Online].
Available: http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm

[22] G. Lencse and S. Répás, “Performance analysis and comparison of
different DNS64 implementations for Linux, OpenBSD and
FreeBSD”, in Proc. IEEE 27th Internat. Conf. on Advanced
Information Networking and Applications (AINA 2013), Barcelona,
2013, pp. 877–884. DOI: 10.1109/AINA.2013.80

[23] G. Lencse and S. Répás, “Improving the Performance and Security of
the TOTD DNS64 Implementation”, Journal of Computer Science
and Technology (JCS&T), ISSN: 1666-6038, vol. 14, no. 1, pp. 9–15.
Apr. 2014.

[24] G. Lencse, S. Répás, “Performance analysis and comparison of four
DNS64 implementations under different free operating systems”,
Telecommunication Systems, in press, DOI: 10.1007/s11235-016-
0142-x

[25] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS
Security Introduction and Requirements”, IETF, March 2005. (RFC
4033)

[26] J. Damas, M. Graff, P. Vixie, “Extension Mechanisms for DNS
(EDNS(0))”, IETF, April 2013. (RFC 6891)

Gábor Lencse received his MSc in

electrical engineering and computer

systems at the Technical University of

Budapest in 1994, and his PhD in 2001.

 He has been working for the

Department of Telecommunications,

Széchenyi István University in Győr since

1997. He teaches Computer networks, and

the Linux operating system. Now, he is an

Associate Professor. He is responsible for

the specialization of the information and

communication technology of the BSc level

electrical engineering education. He is a

founding and also core member of the

Multidisciplinary Doctoral School of Engineering Sciences, Széchenyi

István University. The area of his research includes discrete-event

simulation methodology, performance analysis of computer networks and

IPv6 transition technologies. He has been working part time for the

Department of Networked Systems and Services, Budapest University of

Technology and Economics (the former Technical University of Budapest)

since 2005. There he teaches computer architectures and computer

networks.
 Dr. Lencse is a member of IEEE, IEEE Communications Society and
IEICE (Institute of Electronics, Information and Communication
Engineers, Japan).

András Gábor Soós received his Bsc and
MSc in computer engineering from the
Budapest University of Tecnology and
Economics in 2013 and 2015, respectively.
For his BSc thesis, he added DHCPv6
functionality to an open source GGSN
software. For his MSc thesis, he has
implemented a fully functional DNS64
server program called MTD64.

 He worked for Telenor Global services
as a Voice Core Network Operator
Engineer providing second and third line
support, being responsible for solving voice
related issues in 2014 and 2015. Currently
he is working at Avaya Global Support

Services as a Backbone Engineer porividing third line enterprise support
on Avaya Voice products.

x

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

77

APPENDIX: CONFIGURATION POSSIBILITIES OF MTD64

Sample configuration file for MTD64, a tiny Multi-Threaded DNS64 server

// Uncomment the following line for name servers to be read from /etc/resolv.conf

#nameserver defaults

// Or you can add name servers manually

nameserver 8.8.8.8

nameserver 195.46.39.39

// Set DNS server selection mode

selection-mode random // The given DNS servers will be used in random order

selection-mode round-robin // If a DNS server does not respond until timeout, the next one will be used

// Accepted IPv6 prefix length values are: 32, 40, 48, 56, 64, 96

dns64-prefix 2001:0db8:63a9:2ef5:dead:beef::/96

debugging yes // Results in more verbose logging

Sample settings for the timeout value of 1.35 sec

timeout-time-sec 1 // Maximum value is 32767

timeout-time-usec 350000 // Maximum value is 999999

How many times will the DNS64 server try to resend a DNS query message if there is no answer

resend-attempts 2 // Maximum value is 32767

This will set the maximum length of the IPv6 response message (UDP payload).

Blocks which fall outside this value will be cut off.

It is highly recommended not to change from 512 since it is the RFC standard.

Some programs can accept UDP DNS response messages longer than 512 bytes.

Note that only Answer, Authority, Additional blocks can be cut off.

Queries block is going to be sent even if the message length is longer therewith

response-maxlength 512 // Accepted range for this setting is 0-32767

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 2 (2016)

78

