

Abstract—DNS64 and NAT64 are IPv6 transition

technologies enabling IPv6 only clients to communicate with

IPv4 only servers. Mtd64-ng is a novel DNS64 implementation,

being a successor of MTD64. In this paper, the performance of

mtd64-ng is compared with that of MTD64 and BIND. The

details of the measurements are fully disclosed. It is found that

under heavy load conditions mtd64-ng can answer six times as

many “AAAA” record requests per second than BIND. Mtd64-

ng fixed two issues of MTD64 and also outperformed its

predecessor by answering 46% more “AAAA” record requests

per second under heavy load conditions.

Keywords—BIND, DNS, DNS64, IPv6 transition, MTD64,

mtd64-ng, performance comparison

I. INTRODUCTION

The DNS64 [1] IPv6 transition technology (together with

NAT64 [2]) enables clients having only IPv6 addresses to

communicate with servers having only IPv4 addresses.

Several free software [3] (also called open source [4])

DNS64 implementations exist. The stability and

performance of BIND, TOTD, PowerDNS and Unbound

were examined and compared in [5]. Two of them (BIND

and PowerDNS) are multithreaded, thus they can benefit

from the current multi-core CPUs, whereas the other two

ones are single-threaded. A novel DNS64 implementation,

namely MTD64 (Multi-Threaded DNS64) was developed at

the Department of Networked Systems and Services,

Budapest University of Technology and Economics [6]. The

novelty of this implementation is that it starts a new thread

for each request and therefore it can inherently utilize the

computing power of all cores of a multi-core CPU. Its

performance was compared to that of BIND and it was

found that MTD64 seriously outperformed BIND

concerning the number of answered “AAAA” record

requests per second [7].

However, MTD64 is vulnerable to DoS (Denial of Service)

attack by design: an attacker can force MTD64 to start a

high number of threads, which may exhaust the memory of

the computer. Therefore, MTD64 has been redesigned and

re-implemented as mtd64-ng by Daniel Bakai [8]. The new

design contains a thread pool of a fixed size (which is a

configuration parameter), thus it spares the extra work of

Manuscript received July 28, 2016, revised October 1, 2016.

G. Lencse is with the Department of Networked Systems and Services,

Budapest University of Technology and Economics, 2 Magyar tudósok

körútja, H-1117 Budapest, Hungary (phone: +36-20-775-82-67; fax: +36-

1-463-3263; e-mail: lencse@hit.bme.hu).

starting and terminating threads. In addition to that, mtd64-

ng has a full object oriented design, whereas MTD64 was

written mostly in C to achieve higher speed (C++ was used

for convenient thread handling plus a class was used for

storing the configuration parameters) [9]. MTD64 had

another problem: memory leaking was experienced during

its performance testing. This problem is fully eliminated in

mtd64-ng by using the RAII idiom (Resource Acquisition Is

Initialization) [10]. The most important design and

implementation details of mtd64-ng can be found in the

developer documentation of mtd64-ng [11].

The aim of this paper is to check whether mtd64-ng kept the

high performance of MTD64 after its redesign and

reimplementation. For this purpose, the performances of

mtd64-ng, MTD64 and BIND are measured and compared

using a similar test setup to that of [9].

II. METHOD FOR TESTING

A. Overview

The principles of the DNS64 testing method were laid down

in [12]. In short, a high number of queries for “AAAA”

records (IPv6 addresses) are sent to the DNS64 server. The

requests contain different domain names which have only

“A” records (IPv4 addresses) and no “AAAA” records.

Therefore, the DNS64 server needs to synthesize them. It

happens as follows. When the DNS64 server receives an

“AAAA” record request for a particular domain name then

first, it asks the normal DNS system for an “AAAA” record

of the given domain name. Since it receives an empty

answer, second, it sends an “A” record request to the DNS

system for the same domain name. Now it receives a valid

answer and it synthesizes a so-called IPv4 embedded IPv6

address using the prefix, which was set in its configuration

file and embeds the 32 bits of the “A” record (IPv4 address).

Finally it returns the synthesized IPv6 address.

The testing method has been improved over time. Originally,

bash shell scripts were applied using the standard Linux host

command. As its default behavior, it also requested an “MX”

record [13]. Then, the request for the “MX” record was

eliminated in order to focus on the “AAAA” record only

[14]. Next, the shell script was partially rewritten in C to be

able to provide high enough load for testing multi-core

CPUs [5]. After that, the whole test program was

implemented in C [15], which was named dns64perf.

This program has added another factor of freedom: the user

may set the number of threads to be able to tune the intensity

of the load, however the number of sent queries was still

Performance Estimation of the Mtd64-ng

DNS64 Implementation

Gábor Lencse

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 3 (2016)

160doi: 10.11601/ijates.v5i3.176

fixed. Finally, this program was modified to be able to tune

the number of sent queries and the second version of the

program was used in our before mentioned paper for testing

the performance of MTD64 [7]. The operation of the

dns64perf program and its changes in the second version

(dns64perf2) are well documented in [15] and in [7],

respectively. Therefore, now we give only a short summary

of the testing method.

B. Namespace

The n1-n2-n3-n4.dns64perf.test independent

namespace is used, where n1, n1, n3 and n4 are integers in

the [0, 255] interval. The elements of the namespace are

mapped by a local authoritative DNS server to the

n1.n2.n3.n3 IPv4 addresses.

C. Measurement Program Details

An experiment is composed of the queries for “AAAA”

records of 256 different domain names. The 256 queries are

sent by n threads, were n must be a power of 2 (e.g. 1, 2, 4,

8, 16, etc.) and each thread sends 256/n number of queries

sequentially in a way that the next query can be sent after

receiving the reply for the current one. Thus parameter n can

be used to tune the intensity of the load. The execution time

of an experiment is measured and printed to the standard

output of the program (in milliseconds). Whereas the old

version of the program (dns64perf) always performed

exactly 256 experiments, dns64perf2 has a further

parameter: b, and it executes b*256 number of experiments

(to be able to perform longer tests continually).

D. Test Setup and Measurements

The topology of the test network is shown in Fig. 1. The

three DNS64 implementations were executed by an Odroid

C1+ single board computer (see top right) to be able to

produce high enough load by the laptop computer (see at the

bottom). The authoritative DNS server was a modern

desktop computer to avoid being a bottleneck (see top left).

The measurements were performed using different

parameters. First, the optimal value for the number of

working threads of mtd64-ng was determined by executing a

series of measurements using 1, 2, 4, 8, 16, 32, 64 or 128

working threads and generating the possible highest load by

the dns64perf2 program using 32 threads in it. Then the

number of working threads of mtd64-ng was set fixed to the

value that resulted in the best performance of mtd64-ng, and

the performances of the three DNS64 implementations were

compared under different load conditions produced by using

different number of threads in the dns64perf2 test

program. Besides the execution time of the dns64perf2

program, also the CPU utilization of the DNS64 server was

measured to give more insight into the behavior of the three

DNS64 implementations. Finally, MTD64 and mtd64-ng

were tested against memory leaking by executing extremely

long tests.

The measurements were carried out by several scripts

disclosed in the next subsection.

E. Measurement Scripts

The “main” measurements were performed by the following

bash script:

#!/bin/bash

#Paramaters:

server=2001:2::1 # IPv6 addr. of the DNS64 server

dns64=mtd64-ng # DNS64 server (set manually)

b=4 # the length of the measurement

for ((i=0; i<6; i++))

do

 nth=$((2**i)); # number of threads

 ssh $server ./stats $dns64 $nth &

 sleep 1

 ./dns64perf2 $i $b $nth 1 $server > \

 odroid-${dns64}-$nth

 ssh $server killall dstat

 sleep 5

done

As it can be seen, variable i took the values from 0 to 5 that

is the number of threads were: 1, 2, 4, 8, 16 and 32.

The above script started the stats script on the DNS64

server to log the CPU utilization using the dstat Linux

command. The contents of the stats script was:

#!/bin/bash

nice -n 10 dstat -c --output \

 dns64-stats-$1-$2.dstat > /dev/null

Before the execution of the “main” measurements, we

needed to optimize the number of working threads to be set

in the configuration file of mtd64-ng. For this purpose, the

modified version of the first script was used:

#!/bin/bash

#Paramaters:

server=2001:2::1 # IPv6 addr. of the DNS64 server

dns64=mtd64-ng # DNS64 server (set manually)

b=4 # the length of the measurement

for ((i=0; i<8; i++))

Fig. 1. Topology of the test network

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 3 (2016)

161

do

 nth=$((2**i)); # No.of mtd64-ng working threads

 ssh -l root $server ./set-mtd64-ng-wth $nth

 ssh $server ./stats $dns64 $nth &

 sleep 1

 ./dns64perf2 0 $b 32 1 $server > \

 odroid-${dns64}-$nth

 ssh $server killall dstat

 sleep 5

done

During the optimization process, the number of threads used

in dns64perf2 was always 32 (see its third parameter) to

ensure the highest possible load. Variable nth (taking the

values 1, 2, 4, 8, 16, 32, 64, 128) denoting the number of

working threads was set in the configuration file of mtd64-

ng by the set-mtd64-ng-wth script:

#!/bin/bash

killall mtd64-ng

cd /etc

cp mtd64-ng.conf.core mtd64-ng.conf

echo "num-threads $1" >> mtd64-ng.conf

mtd64-ng

The script for testing memory leaking was much simpler

than the above measurement scripts. It executed only one but

very long test, achieving it by using 255 for the value of b,

and thus performing 255*256*256 “AAAA” queries. Its

content was:

#!/bin/bash

#Paramaters:

server=2001:2::1 # IPv6 addr. of the DNS64 server

dns64=mtd64-ng # DNS64 server (set manually)

b=255 # length of the measurement

ssh $server ./memstat $dns64 &

sleep 1

./dns64perf2 0 $b 32 1 $server > \

 odroid-${dns64}-mem

ssh $server killall pidstat

The above script started the memstat script on the DNS64

server to log the memory utilization using the pidstat

Linux command. The contents of the memstat script was:

#!/bin/bash

nice -n 10 pidstat -h -r -p $(pidof $1) 1 | \

 grep $1 > dns64-mem-stats-$1

For the repeatability of our measurements, we provide

configuration details in the following subsections.

F. Hardware and Software Parameters

1) Authoritative DNS Server

Desktop computer with: 3.2GHz Intel Core i5-4570 CPU (4

cores, 6MB cache), 16GB 1600MHz DDR3 SDRAM,

250GB Samsumg 840 EVO SSD, Realtek RTL8111F PCI

Express Gigabit Ethernet NIC; Debian 8.2 GNU/Linux

operating system, 3.2.0-4-amd64 kernel, BIND 9.9.5-

9+deb8u3-Debian

2) DNS64 server

Odroid C1+ single board computer with: 1.5GHz quad-core

ARM Cortex A5 CPU (4 cores, 512kB cache), 1GB DDR3

SDRAM, 16GB Kingston micro SD card, 1000BaseTX

Ethernet NIC; Ubuntu 14.04.4 LTS GNU/Linux operating

system, 3.10.80-131 armv7l kernel, BIND 9.9.5-3ubuntu0.8-

Ubuntu, MTD64 from [16], mtd64-ng from [8].

3) Tester

Dell Latitude E6400 series laptop with: 2.53GHz Intel

Core2 Duo T9400 CPU (2 cores, 6MB cache), 4GB

800MHz DDR2 SDRAM, 250GB Samsumg 840 EVO SSD,

Intel 82567LM Gigabit Ethernet NIC; Debian 8.2

GNU/Linux operating system, 3.2.0-4-amd64 kernel,

dns64perf2 from [17].

4) Switch

3CGSU05 5-port 3Com Gigabit Ethernet switch.

G. Authoritative DNS Server Configuration

1) BIND settings

The /etc/bind/named.conf.local file contained

the following settings:

zone "dns64perf.test" {

 type master;

 file "/etc/bind/db.dns64perf.test";

};

2) Zone file

The db.dns64perf.test zone file was generated by the

following bash script:

#!/bin/bash

cat > db.dns64perf.test << EOF

\$ORIGIN dns64perf.test.

\$TTL 86400

@ IN SOA localhost. root.localhost. (

 2016012901 ; Serial

 604800 ; Refresh

 86400 ; Retry

 2419200 ; Expire

 86400) ; Negative Cache TTL

;

@ IN NS localhost.

EOF

for a in {0..6} # to provide independent namespace

do

 for b in {0..10} # see parameter b of dns64perf2

 do

 for c in {0..255}

 do

 echo '$'GENERATE 0-255 $a-$b-$c-$ \

 IN A $a.$b.$c.$ >> db.dns64perf.test

 done

 done

done

echo "" >> db.dns64perf.test

The memory leaking tests required only single but much

larger namespace. Therefore, the for cycle for a was

omitted (the value of a was set to 0) and the value of b was

running from 0 to 255, thus the size of the namespace was

2563=16M.

H. DNS64 Server Configuration

1) BIND

The /etc/bind/named.conf.options file contained

the following settings:

options {

 directory "/var/cache/bind";

 forwarders { 192.168.1.147; };

 forward only;

 dns64 2001:db8::/96 { };

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 3 (2016)

162

 dnssec-validation no;

 auth-nxdomain no

 listen-on-v6 { any; };

};

We note that dnssec validation was switched off for the fair

comparison with the two other DNS64 implementations.

2) MTD64

The settings.conf file contained the following

settings:

nameserver 192.168.1.147

dns64-prefix 2001:db8::/96

debugging no

timeout-time-sec 1

timeout-time-usec 0

resend-attempts 1

response-maxlength 512

3) Mtd64-ng

The /etc/mtd64-ng.conf file contained the following

settings:

nameserver 192.168.1.147

dns64-prefix 2001:db8::/96

debugging no

timeout-time 1.0

resend-attempts 1

response-maxlength 512

port 53

num-threads 16 # for the "main" measurements

III. RESULTS

A. Number of Working Threads for Mtd64-ng

The measurement results of the experiment series for

determining the optimal number of working threads of

mtd64-ng are presented in Table I. The first row specifies

the number of working threads used in mtd64-ng. The

average and the standard deviation of the execution time of

an experiment (256 queries) are shown in rows 2 and 3,

respectively. The number of the replied “AAAA” record

queries per second (N) is shown in row 4, which was

calculated according to (1), where T denotes the average

execution time of one experiment (resolution of 256

“AAAA” record queries) specified in milliseconds.

exp

ms
T

s

ms
1000*

exp

query
256

N =
 (1)

As it was expected, first, the number of server requests per

second increased with the number of working threads. It

reached its maximum value at 16 working threads and then it

showed degradation up to 128 working threads. Therefore,

the number of working threads was set to 16 for the

following experiments and all three DNS64 implementations

were tested under the same conditions.

TABLE I. DNS64 PERFORMANCE OF MTD64-NG AS A FUNCTION OF THE NUMBER OF WORKING THREADS, USING ALWAYS 32 THREADS IN DNS64PERF2

1 No. of working threads in mtd64-ng 1 2 4 8 16 32 64 128

2 Execution time of 256

queries (ms)

average 82.53 53.05 37.18 29.37 27.40 36.89 36.79 36.93

3 std. dev. 2.35 0.80 0.60 0.84 2.49 3.84 3.78 3.90

4 No. of served queries per sec. (q/s) 3102 4826 6885 8716 9342 6940 6959 6933

TABLE II. DNS64 PERFORMANCE OF BIND

1 Number of threads used in dns64perf2 1 2 4 8 16 32

2
Execution time of 256 queries (ms)

average 517.60 291.78 183.20 165.99 163.01 166.32

3 standard deviation 34.78 28.46 6.63 14.95 11.14 8.48

4 Number of served queries per second (query/sec) 495 877 1397 1542 1570 1539

5
DNS64 server CPU utilization (%)

average 34.55 52.45 82.42 90.45 92.32 93.03

6 standard deviation 8.20 2.58 1.90 3.59 2.73 2.28

TABLE III. DNS64 PERFORMANCE OF MTD64

1 Number of threads used in dns64perf2 1 2 4 8 16 32

2
Execution time of 256 queries (ms)

average 125.81 75.25 50.54 42.15 40.62 40.30

3 standard deviation 2.69 1.24 11.47 2.56 5.57 1.80

4 Number of served queries per second (query/sec) 2035 3402 5066 6073 6302 6353

5
DNS64 server CPU utilization (%)

average 23.43 39.28 61.44 76.58 87.22 88.45

6 standard deviation 2.76 1.12 3.03 1.19 1.95 1.39

TABLE IV. DNS64 PERFORMANCE OF MTD64-NG USING 16 WORKING THREADS

1 Number of threads used in dns64perf2 1 2 4 8 16 32

2
Execution time of 256 queries (ms)

average 117.20 67.65 44.80 34.90 30.74 27.56

3 standard deviation 0.65 0.97 1.21 1.07 2.29 2.62

4 Number of served queries per second (query/sec) 2184 3784 5714 7335 8328 9289

5
DNS64 server CPU utilization (%)

average 20.63 34.64 51.89 67.18 76.93 83.87

6 standard deviation 1.15 0.92 0.69 0.87 1.14 1.43

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 3 (2016)

163

B. Performance Comparison

The performance measurement results are presented in

identical tables for all three DNS64 implementations: Table

II, Table III and Table IV contain results of BIND, MTD64

and mtd64-ng, respectively. In each table, the first row

specifies the number of threads used in dns64perf2. The

number of threads is used for setting higher and higher

loads, but we note that doubling the number of threads does

not result in exactly double intensity of the load. The

average and the standard deviation of the execution time of

an experiment (256 queries) are shown in rows 2 and 3,

respectively. The number of served queries per second was

calculated according to (1) and it is given in row 4. The

average and the standard deviation of the CPU utilization of

the DNS64 server computer are displayed in rows 5 and 6,

respectively. (100% denotes the aggregated CPU capacity of

the four cores.) We note that the CPU utilization was

calculated as subtracting the idle time percentage from

100%. (See [5] for the justification of this method.)

Our most important result is that mtd64-ng has seriously

outperformed BIND at any load conditions by answering 4-6

times higher number of queries than BIND (it was 2184 vs.

495 at 1 thread and 9289 vs. 1539 at 32 threads.) The

performance of mtd64-ng was similar to that of MTD64

under low load (1 thread) and the difference increased with

the increase of the load: mtd64-ng significantly

outperformed MTD64 under high load (it was 9289 q/s vs.

6353 q/s at 32 threads).

The observation of the CPU utilization values gives a deeper

understanding of the behavior of the three DNS64

implementations. BIND used visibly more computing power

(34.55%) at 1 thread than MTD64 (23.43%) or mtd64-ng

(20.63%). BIND could increase its performance until its

CPU utilization approached 90% at 8 threads, and then

neither the number of served queries nor the CPU utilization

could significantly grow. MTD64 needed significantly less

CPU power and its performance showed similar saturation at

16 – 32 threads (6302q/s – 6353q/s). As the CPU utilization

of mtd64-ng was even lower it could significantly increase

its performance even during the 16 – 32 threads change

(8328q/s – 9289q/s).

C. Discussion

As for the question why both MTD64 and mtd64-ng could

seriously outperform BIND, we can mention multiple

reasons. First of all, our measurement method eliminates the

possible performance gain of caching. Whereas this aspect

of our testing method complies with the requirements of the

relevant Internet Draft [18], the measurement method

impairs the measured performance of DNS64 implementa-

tions that use caching as they waste a significant amount of

CPU cycles with maintaining their caches (without any

possible performance gain). Another factor can be that both

MTD64 and mtd64-ng are simple and tiny thus their

working sets [19] better fit into the L1 or L2 cache of the

CPU of the DNS64 server than that of BIND, thus they can

be executed faster than BIND.

Our results definitely show that mtd64-ng not only kept the

high performance of MTD64 but even significantly

outperformed it. We identify one of the reasons as the usage

of a thread pool: thus no thread creation is necessary for the

processing of every single new requests. Since the

processing of “AAAA” record requests does not require

much computation but only constructing and sending two

requests (first, for an “AAAA” record and, after an empty

answer, for an “A” record) to the authoritative DNS server

and synthesizing the reply and sending it back to the client,

the thread creation overhead may be significant. We also

consider that mtd64-ng has a better quality source code than

MTD64, which may also result in higher performance.

D. Memory Leaking and Vulnerability to DoS Attacks

As for the memory leaking tests, on the one hand, MTD64

showed so high memory leaking that the test could not be

fully performed, because MTD64 was unable to respond (in

time) and the dns64perf2 ran out of available sockets.

On the other hand, mtd64-ng showed no memory leaking at

all: both VSS (virtual set size) and RSS (resident set size)

were constant during the measurements. Thus mtd64-ng

proved to be totally free of memory leaking.

MTD64 starts a separate thread for every single request and

thus it is susceptible to the kind of DoS attacks where the

memory of the DNS64 server is exhausted by sending too

many “AAAA” record requests per second. Using a fixed

sized thread pool, mtd64-ng is no more susceptible to this

kind of DoS attack.

IV. CONCLUSION

We conclude that mtd64-ng, the successor of MTD64 fixed

the memory leaking and vulnerability to DoS attacks issues

of MTD64 and also significantly outperformed it. We plan

to test and develop this promising DNS64 implementation

further.

REFERENCES

[1] M. Bagnulo, A. Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF RFC 6147, April 2011.

[2] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF RFC 6146, April 2011.

[3] Free Software Fundation, “The free software definition”, [Online].
Available: http://www.gnu.org/philosophy/free-sw.en.html

[4] Open Source Initiative, “The open source definition”, [Online].
Available: http://opensource.org/docs/osd

[5] G. Lencse, S. Répás, “Performance analysis and comparison of four
DNS64 implementations under different free operating systems”,
Telecommun. Systems, in press, DOI: 10.1007/s11235-016-0142-x

[6] G. Lencse and A. G. Soós, “Design of a tiny multi-threaded DNS64
server”, in Proc. 38th Internat. Conf. on Telecommunications and
Signal Processing (TSP 2015), Prague, 2015, pp. 27–32. DOI:
10.1109/TSP.2015.7296218

[7] G. Lencse, “Performance analysis of MTD64, our tiny multi-threaded
DNS64 server implementation: Proof of concept”, Internat. J. of Adv.
in Telecommun., Electrotechn., Signals and Systems, vol. 5, no 2, pp.
116–121, DOI: 10.11601/ijates.v5i2.166

[8] D. Bakai, “Mtd64-ng: A lightweight C++11 DNS64 server”, source
code, [Online]. Available: https://github.com/bakaid/mtd64-ng

[9] G. Lencse, A. G. Soós, “Design, implementation and testing of a tiny
multi-threaded DNS64 server”, Internat. J. of Adv. in Telecommun.,

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 3 (2016)

164

Electrotechn., Signals and Systems, vol. 5. no. 2, pp. 68–78, DOI:
10.11601/ijates.v5i2.129

[10] B. Stroustrup, The C++ Programming Language, 3rd ed. Addison-
Wesley Longman. Reading Mass. USA.

[11] D. Bakai, “mtd64-ng: A lightweight C++11 DNS64 server” developer
documentation, [Online]. Available:
https://github.com/bakaid/mtd64-ng/tree/master/doc

[12] G. Lencse and G. Takács, “Performance analysis of DNS64 and
NAT64 solutions”, Infocommunications Journal, vol. 4, no. 2, pp.
29–36, June 2012.

[13] G. Lencse and S. Répás, “Performance analysis and comparison of
different DNS64 implementations for Linux, OpenBSD and
FreeBSD”, in Proc. IEEE 27th Internat. Conf. on Advanced
Information Networking and Applications (AINA 2013), Barcelona,
Spain, 2013, pp. 877-884. DOI: 10.1109/AINA.2013.80

[14] G. Lencse and S. Répás, “Improving the performance and security of
the TOTD DNS64 implementation”, Journal of Computer Science
and Technology, ISSN: 1666-6038, vol. 14, no. 1, pp. 9–15. Apr.
2014.

[15] G. Lencse, “Test program for the performance analysis of DNS64
servers”, Internat. J. of Adv. in Telecommun., Electrotechn., Signals
and Systems, vol. 4, no. 3, pp. 60–65. Sep. 2015. DOI:
10.11601/ijates.v4i3.121

[16] A. G. Soós, “MTD64: Multi-Threaded DNS64 server” source code,
[Online]. Available: https://github.com/Yoso89/MTD64

[17] G. Lencse, “dns64perf2” source code, [Online]. Available:
http://www.hit.bme.hu/~lencse/dns64perf2

[18] M. Georgescu and G. Lencse, “Benchmarking methodology for IPv6
transition technologies”, Internet Draft, IETF BMWG, July 7, 2016,
[Online]. Available: https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-
tran-tech-benchmarking-02

[19] P. J. Denning, “The working set model for program behavior”,
Communications of the ACM, vol. 11, no. 5, pp. 323–333, May 1968.
DOI: 10.1145/363095.363141

Gábor Lencse received his MSc in

electrical engineering and computer

systems at the Technical University of

Budapest in 1994, and his PhD in 2001.

 He has been working for the

Department of Telecommunications,

Széchenyi István University in Győr since

1997. He teaches computer networks, and

the Linux operating system. Now, he is an

Associate Professor. He is responsible for

the specialization of the information and

communication technology of the BSc

level electrical engineering education. He

is a founding and also core member of the Multidisciplinary Doctoral

School of Engineering Sciences, Széchenyi István University. The area of

his research includes discrete-event simulation methodology, performance

analysis of computer networks and IPv6 transition technologies. He has

been working part time for the Department of Networked Systems and

Services, Budapest University of Technology and Economics (the former

Technical University of Budapest) since 2005. There he teaches computer

architectures and computer networks.

 Dr. Lencse is a member of IEEE, IEEE Communications Society and
IEICE (Institute of Electronics, Information and Communication
Engineers, Japan).

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 3 (2016)

165

