
 

  

Abstract—DNS64 and NAT64 are IPv6 transition 

technologies enabling IPv6 only clients to communicate with 

IPv4 only servers. Mtd64-ng is a novel DNS64 implementation, 

being a successor of MTD64. In this paper, the performance of 

mtd64-ng is compared with that of MTD64 and BIND. The 

details of the measurements are fully disclosed. It is found that 

under heavy load conditions mtd64-ng can answer six times as 

many “AAAA” record requests per second than BIND. Mtd64-

ng fixed two issues of MTD64 and also outperformed its 

predecessor by answering 46% more “AAAA” record requests 

per second under heavy load conditions. 
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I. INTRODUCTION 

The DNS64 [1] IPv6 transition technology (together with 

NAT64 [2]) enables clients having only IPv6 addresses to 

communicate with servers having only IPv4 addresses. 

Several free software [3] (also called open source [4]) 

DNS64 implementations exist. The stability and 

performance of BIND, TOTD, PowerDNS and Unbound 

were examined and compared in [5]. Two of them (BIND 

and PowerDNS) are multithreaded, thus they can benefit 

from the current multi-core CPUs, whereas the other two 

ones are single-threaded. A novel DNS64 implementation, 

namely MTD64 (Multi-Threaded DNS64) was developed at 

the Department of Networked Systems and Services, 

Budapest University of Technology and Economics [6]. The 

novelty of this implementation is that it starts a new thread 

for each request and therefore it can inherently utilize the 

computing power of all cores of a multi-core CPU. Its 

performance was compared to that of BIND and it was 

found that MTD64 seriously outperformed BIND 

concerning the number of answered “AAAA” record 

requests per second [7]. 

However, MTD64 is vulnerable to DoS (Denial of Service) 

attack by design: an attacker can force MTD64 to start a 

high number of threads, which may exhaust the memory of 

the computer. Therefore, MTD64 has been redesigned and 

re-implemented as mtd64-ng by Daniel Bakai [8]. The new 

design contains a thread pool of a fixed size (which is a 

configuration parameter), thus it spares the extra work of 
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starting and terminating threads. In addition to that, mtd64-

ng has a full object oriented design, whereas MTD64 was 

written mostly in C to achieve higher speed (C++ was used 

for convenient thread handling plus a class was used for 

storing the configuration parameters) [9]. MTD64 had 

another problem: memory leaking was experienced during 

its performance testing. This problem is fully eliminated in 

mtd64-ng by using the RAII idiom (Resource Acquisition Is 

Initialization) [10]. The most important design and 

implementation details of mtd64-ng can be found in the 

developer documentation of mtd64-ng [11]. 

The aim of this paper is to check whether mtd64-ng kept the 

high performance of MTD64 after its redesign and 

reimplementation. For this purpose, the performances of 

mtd64-ng, MTD64 and BIND are measured and compared 

using a similar test setup to that of [9]. 

II. METHOD FOR TESTING 

A. Overview 

The principles of the DNS64 testing method were laid down 

in [12]. In short, a high number of queries for “AAAA” 

records (IPv6 addresses) are sent to the DNS64 server. The 

requests contain different domain names which have only 

“A” records (IPv4 addresses) and no “AAAA” records. 

Therefore, the DNS64 server needs to synthesize them. It 

happens as follows. When the DNS64 server receives an 

“AAAA” record request for a particular domain name then 

first, it asks the normal DNS system for an “AAAA” record 

of the given domain name. Since it receives an empty 

answer, second, it sends an “A” record request to the DNS 

system for the same domain name. Now it receives a valid 

answer and it synthesizes a so-called IPv4 embedded IPv6 

address using the prefix, which was set in its configuration 

file and embeds the 32 bits of the “A” record (IPv4 address). 

Finally it returns the synthesized IPv6 address. 

The testing method has been improved over time. Originally, 

bash shell scripts were applied using the standard Linux host 

command. As its default behavior, it also requested an “MX” 

record [13]. Then, the request for the “MX” record was 

eliminated in order to focus on the “AAAA” record only 

[14]. Next, the shell script was partially rewritten in C to be 

able to provide high enough load for testing multi-core 

CPUs [5]. After that, the whole test program was 

implemented in C [15], which was named dns64perf. 

This program has added another factor of freedom: the user 

may set the number of threads to be able to tune the intensity 

of the load, however the number of sent queries was still 
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fixed. Finally, this program was modified to be able to tune 

the number of sent queries and the second version of the 

program was used in our before mentioned paper for testing 

the performance of MTD64 [7]. The operation of the 

dns64perf program and its changes in the second version 

(dns64perf2) are well documented in [15] and in [7], 

respectively.  Therefore, now we give only a short summary 

of the testing method. 

B. Namespace 

The n1-n2-n3-n4.dns64perf.test independent 

namespace is used, where n1, n1, n3 and n4 are integers in 

the [0, 255] interval. The elements of the namespace are 

mapped by a local authoritative DNS server to the 

n1.n2.n3.n3 IPv4 addresses. 

C. Measurement Program Details 

An experiment is composed of the queries for “AAAA” 

records of 256 different domain names. The 256 queries are 

sent by n threads, were n must be a power of 2 (e.g. 1, 2, 4, 

8, 16, etc.) and each thread sends 256/n number of queries 

sequentially in a way that the next query can be sent after 

receiving the reply for the current one. Thus parameter n can 

be used to tune the intensity of the load. The execution time 

of an experiment is measured and printed to the standard 

output of the program (in milliseconds). Whereas the old 

version of the program (dns64perf) always performed 

exactly 256 experiments, dns64perf2 has a further 

parameter: b, and it executes b*256 number of experiments 

(to be able to perform longer tests continually). 

D. Test Setup and Measurements 

The topology of the test network is shown in Fig. 1. The 

three DNS64 implementations were executed by an Odroid 

C1+ single board computer (see top right) to be able to 

produce high enough load by the laptop computer (see at the 

bottom). The authoritative DNS server was a modern 

desktop computer to avoid being a bottleneck (see top left). 

The measurements were performed using different 

parameters. First, the optimal value for the number of 

working threads of mtd64-ng was determined by executing a 

series of measurements using 1, 2, 4, 8, 16, 32, 64 or 128 

working threads and generating the possible highest load by 

the dns64perf2 program using 32 threads in it. Then the 

number of working threads of mtd64-ng was set fixed to the 

value that resulted in the best performance of mtd64-ng, and 

the performances of the three DNS64 implementations were 

compared under different load conditions produced by using 

different number of threads in the dns64perf2 test 

program. Besides the execution time of the dns64perf2 

program, also the CPU utilization of the DNS64 server was 

measured to give more insight into the behavior of the three 

DNS64 implementations. Finally, MTD64 and mtd64-ng 

were tested against memory leaking by executing extremely 

long tests. 

The measurements were carried out by several scripts 

disclosed in the next subsection. 

E. Measurement Scripts 

The “main” measurements were performed by the following 

bash script: 

#!/bin/bash 

#Paramaters: 

server=2001:2::1  # IPv6 addr. of the DNS64 server 

dns64=mtd64-ng    # DNS64 server (set manually) 

b=4               # the length of the measurement 

 

for (( i=0; i<6; i++ )) 

do 

  nth=$((2**i));  # number of threads 

  ssh $server ./stats $dns64 $nth & 

  sleep 1 

  ./dns64perf2 $i $b $nth 1 $server > \ 

    odroid-${dns64}-$nth 

  ssh $server killall dstat 

  sleep 5 

done 

As it can be seen, variable i took the values from 0 to 5 that 

is the number of threads were: 1, 2, 4, 8, 16 and 32. 

The above script started the stats script on the DNS64 

server to log the CPU utilization using the dstat Linux 

command. The contents of the stats script was: 

#!/bin/bash 

nice -n 10 dstat -c --output \ 

  dns64-stats-$1-$2.dstat > /dev/null 

Before the execution of the “main” measurements, we 

needed to optimize the number of working threads to be set 

in the configuration file of mtd64-ng. For this purpose, the 

modified version of the first script was used: 

#!/bin/bash 

#Paramaters: 

server=2001:2::1  # IPv6 addr. of the DNS64 server 

dns64=mtd64-ng    # DNS64 server (set manually) 

b=4               # the length of the measurement 

 

for (( i=0; i<8; i++ )) 

 

Fig. 1. Topology of the test network 
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do 

  nth=$((2**i));  # No.of mtd64-ng working threads 

  ssh -l root $server ./set-mtd64-ng-wth $nth  

  ssh $server ./stats $dns64 $nth & 

  sleep 1 

  ./dns64perf2 0 $b 32 1 $server > \ 

    odroid-${dns64}-$nth 

  ssh $server killall dstat 

  sleep 5 

done 

During the optimization process, the number of threads used 

in dns64perf2 was always 32 (see its third parameter) to 

ensure the highest possible load. Variable nth (taking the 

values 1, 2, 4, 8, 16, 32, 64, 128) denoting the number of 

working threads was set in the configuration file of mtd64-

ng by the set-mtd64-ng-wth script: 

#!/bin/bash 

killall mtd64-ng 

cd /etc 

cp mtd64-ng.conf.core mtd64-ng.conf 

echo "num-threads $1" >> mtd64-ng.conf 

mtd64-ng 

The script for testing memory leaking was much simpler 

than the above measurement scripts. It executed only one but 

very long test, achieving it by using 255 for the value of b, 

and thus performing 255*256*256 “AAAA” queries. Its 

content was: 

#!/bin/bash 

#Paramaters: 

server=2001:2::1  # IPv6 addr. of the DNS64 server 

dns64=mtd64-ng    # DNS64 server (set manually) 

b=255             # length of the measurement 

 

ssh $server ./memstat $dns64 & 

sleep 1 

./dns64perf2 0 $b 32 1 $server > \ 

  odroid-${dns64}-mem 

ssh $server killall pidstat 

The above script started the memstat script on the DNS64 

server to log the memory utilization using the pidstat 

Linux command. The contents of the memstat script was: 

#!/bin/bash 

nice -n 10 pidstat -h -r -p $(pidof $1) 1 | \ 

  grep $1 > dns64-mem-stats-$1 

For the repeatability of our measurements, we provide 

configuration details in the following subsections. 

F. Hardware and Software Parameters  

1) Authoritative DNS Server 

Desktop computer with: 3.2GHz Intel Core i5-4570 CPU (4 

cores, 6MB cache), 16GB 1600MHz DDR3 SDRAM, 

250GB Samsumg 840 EVO SSD, Realtek RTL8111F PCI 

Express Gigabit Ethernet NIC; Debian 8.2 GNU/Linux 

operating system, 3.2.0-4-amd64 kernel, BIND 9.9.5-

9+deb8u3-Debian 

2) DNS64 server 

Odroid C1+ single board computer with: 1.5GHz quad-core 

ARM Cortex A5 CPU (4 cores, 512kB cache), 1GB DDR3 

SDRAM, 16GB Kingston micro SD card, 1000BaseTX 

Ethernet NIC; Ubuntu 14.04.4 LTS GNU/Linux operating 

system, 3.10.80-131 armv7l kernel, BIND 9.9.5-3ubuntu0.8-

Ubuntu, MTD64 from [16], mtd64-ng from [8]. 

3) Tester 

Dell Latitude E6400 series laptop with: 2.53GHz Intel 

Core2 Duo T9400 CPU (2 cores, 6MB cache), 4GB 

800MHz DDR2 SDRAM, 250GB Samsumg 840 EVO SSD, 

Intel 82567LM Gigabit Ethernet NIC; Debian 8.2 

GNU/Linux operating system, 3.2.0-4-amd64 kernel, 

dns64perf2 from [17]. 

4) Switch 

3CGSU05 5-port 3Com Gigabit Ethernet switch. 

G. Authoritative DNS Server Configuration 

1) BIND settings 

The /etc/bind/named.conf.local file contained 

the following settings: 

zone "dns64perf.test" { 

        type master; 

        file "/etc/bind/db.dns64perf.test"; 

}; 

2) Zone file 

The db.dns64perf.test zone file was generated by the 

following bash script: 

#!/bin/bash 

cat > db.dns64perf.test << EOF 

 

\$ORIGIN dns64perf.test. 

\$TTL    86400 

@  IN  SOA  localhost. root.localhost. ( 

        2016012901     ; Serial 

            604800     ; Refresh 

             86400     ; Retry 

           2419200     ; Expire 

            86400 )    ; Negative Cache TTL 

; 

@       IN      NS      localhost. 

 

EOF 

 

for a in {0..6} # to provide independent namespace 

do 

  for b in {0..10} # see parameter b of dns64perf2 

  do 

    for c in {0..255} 

    do 

      echo '$'GENERATE 0-255 $a-$b-$c-$ \ 

        IN A $a.$b.$c.$ >> db.dns64perf.test 

    done 

  done 

done 

echo "" >> db.dns64perf.test 

The memory leaking tests required only single but much 

larger namespace. Therefore, the for cycle for a was 

omitted (the value of a was set to 0) and the value of b was 

running from 0 to 255, thus the size of the namespace was 

2563=16M. 

H. DNS64 Server Configuration 

1) BIND 

The /etc/bind/named.conf.options file contained 

the following settings: 

options { 

        directory "/var/cache/bind"; 

        forwarders { 192.168.1.147; }; 

        forward only; 

        dns64  2001:db8::/96 { }; 
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        dnssec-validation no; 

        auth-nxdomain no 

        listen-on-v6 { any; }; 

}; 

We note that dnssec validation was switched off for the fair 

comparison with the two other DNS64 implementations. 

2) MTD64 

The settings.conf file contained the following 

settings: 

nameserver 192.168.1.147 

dns64-prefix 2001:db8::/96 

debugging no 

timeout-time-sec  1 

timeout-time-usec 0 

resend-attempts   1 

response-maxlength  512 

3) Mtd64-ng 

The /etc/mtd64-ng.conf file contained the following 

settings: 

nameserver 192.168.1.147 

dns64-prefix 2001:db8::/96 

debugging no 

timeout-time  1.0 

resend-attempts   1 

response-maxlength  512 

port 53 

num-threads 16 # for the "main" measurements 

III. RESULTS 

A. Number of Working Threads for Mtd64-ng 

The measurement results of the experiment series for 

determining the optimal number of working threads of 

mtd64-ng are presented in Table I. The first row specifies 

the number of working threads used in mtd64-ng. The 

average and the standard deviation of the execution time of 

an experiment (256 queries) are shown in rows 2 and 3, 

respectively. The number of the replied “AAAA” record 

queries per second (N) is shown in row 4, which was 

calculated according to (1), where T denotes the average 

execution time of one experiment (resolution of 256 

“AAAA” record queries) specified in milliseconds. 

exp

ms
T

s

ms
1000*

exp

query
256

N =
 (1) 

As it was expected, first, the number of server requests per 

second increased with the number of working threads. It 

reached its maximum value at 16 working threads and then it 

showed degradation up to 128 working threads. Therefore, 

the number of working threads was set to 16 for the 

following experiments and all three DNS64 implementations 

were tested under the same conditions. 

TABLE I.  DNS64 PERFORMANCE OF MTD64-NG AS A FUNCTION OF THE NUMBER OF WORKING THREADS, USING ALWAYS 32 THREADS IN DNS64PERF2 

1 No. of working threads in mtd64-ng 1 2 4 8 16 32 64 128 

2 Execution time of 256 

queries (ms) 

average 82.53 53.05 37.18 29.37 27.40 36.89 36.79 36.93 

3 std. dev. 2.35 0.80 0.60 0.84 2.49 3.84 3.78 3.90 

4 No. of served queries per sec. (q/s) 3102 4826 6885 8716 9342 6940 6959 6933 

 

TABLE II.  DNS64 PERFORMANCE OF BIND 

1 Number of threads used in dns64perf2 1 2 4 8 16 32 

2 
Execution time of 256 queries (ms) 

average 517.60 291.78 183.20 165.99 163.01 166.32 

3 standard deviation 34.78 28.46 6.63 14.95 11.14 8.48 

4 Number of served queries per second (query/sec) 495 877 1397 1542 1570 1539 

5 
DNS64 server CPU utilization (%) 

average 34.55 52.45 82.42 90.45 92.32 93.03 

6 standard deviation 8.20 2.58 1.90 3.59 2.73 2.28 

 

TABLE III.  DNS64 PERFORMANCE OF MTD64 

1 Number of threads used in dns64perf2 1 2 4 8 16 32 

2 
Execution time of 256 queries (ms) 

average 125.81 75.25 50.54 42.15 40.62 40.30 

3 standard deviation 2.69 1.24 11.47 2.56 5.57 1.80 

4 Number of served queries per second (query/sec) 2035 3402 5066 6073 6302 6353 

5 
DNS64 server CPU utilization (%) 

average 23.43 39.28 61.44 76.58 87.22 88.45 

6 standard deviation 2.76 1.12 3.03 1.19 1.95 1.39 

 

TABLE IV.  DNS64 PERFORMANCE OF MTD64-NG USING 16 WORKING THREADS 

1 Number of threads used in dns64perf2 1 2 4 8 16 32 

2 
Execution time of 256 queries (ms) 

average 117.20 67.65 44.80 34.90 30.74 27.56 

3 standard deviation 0.65 0.97 1.21 1.07 2.29 2.62 

4 Number of served queries per second (query/sec) 2184 3784 5714 7335 8328 9289 

5 
DNS64 server CPU utilization (%) 

average 20.63 34.64 51.89 67.18 76.93 83.87 

6 standard deviation 1.15 0.92 0.69 0.87 1.14 1.43 
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B. Performance Comparison 

The performance measurement results are presented in 

identical tables for all three DNS64 implementations: Table 

II, Table III and Table IV contain results of BIND, MTD64 

and mtd64-ng, respectively. In each table, the first row 

specifies the number of threads used in dns64perf2. The 

number of threads is used for setting higher and higher 

loads, but we note that doubling the number of threads does 

not result in exactly double intensity of the load. The 

average and the standard deviation of the execution time of 

an experiment (256 queries) are shown in rows 2 and 3, 

respectively. The number of served queries per second was 

calculated according to (1) and it is given in row 4. The 

average and the standard deviation of the CPU utilization of 

the DNS64 server computer are displayed in rows 5 and 6, 

respectively. (100% denotes the aggregated CPU capacity of 

the four cores.) We note that the CPU utilization was 

calculated as subtracting the idle time percentage from 

100%. (See [5] for the justification of this method.) 

Our most important result is that mtd64-ng has seriously 

outperformed BIND at any load conditions by answering 4-6 

times higher number of queries than BIND (it was 2184 vs. 

495 at 1 thread and 9289 vs. 1539 at 32 threads.) The 

performance of mtd64-ng was similar to that of MTD64 

under low load (1 thread) and the difference increased with 

the increase of the load: mtd64-ng significantly 

outperformed MTD64 under high load (it was 9289 q/s vs. 

6353 q/s at 32 threads). 

The observation of the CPU utilization values gives a deeper 

understanding of the behavior of the three DNS64 

implementations. BIND used visibly more computing power 

(34.55%) at 1 thread than MTD64 (23.43%) or mtd64-ng 

(20.63%). BIND could increase its performance until its 

CPU utilization approached 90% at 8 threads, and then 

neither the number of served queries nor the CPU utilization 

could significantly grow. MTD64 needed significantly less 

CPU power and its performance showed similar saturation at 

16 – 32 threads (6302q/s – 6353q/s). As the CPU utilization 

of mtd64-ng was even lower it could significantly increase 

its performance even during the 16 – 32 threads change 

(8328q/s – 9289q/s). 

C. Discussion 

As for the question why both MTD64 and mtd64-ng could 

seriously outperform BIND, we can mention multiple 

reasons. First of all, our measurement method eliminates the 

possible performance gain of caching. Whereas this aspect 

of our testing method complies with the requirements of the 

relevant Internet Draft [18], the measurement method 

impairs the measured performance of DNS64 implementa-

tions that use caching as they waste a significant amount of 

CPU cycles with maintaining their caches (without any 

possible performance gain).  Another factor can be that both 

MTD64 and mtd64-ng are simple and tiny thus their 

working sets [19] better fit into the L1 or L2 cache of the 

CPU of the DNS64 server than that of BIND, thus they can 

be executed faster than BIND. 

Our results definitely show that mtd64-ng not only kept the 

high performance of MTD64 but even significantly 

outperformed it. We identify one of the reasons as the usage 

of a thread pool: thus no thread creation is necessary for the 

processing of every single new requests. Since the 

processing of “AAAA” record requests does not require 

much computation but only constructing and sending two 

requests (first, for an “AAAA” record and, after an empty 

answer, for an “A” record) to the authoritative DNS server 

and synthesizing the reply and sending it back to the client, 

the thread creation overhead may be significant. We also 

consider that mtd64-ng has a better quality source code than 

MTD64, which may also result in higher performance. 

D. Memory Leaking and Vulnerability to DoS Attacks 

As for the memory leaking tests, on the one hand, MTD64 

showed so high memory leaking that the test could not be 

fully performed, because MTD64 was unable to respond (in 

time) and the dns64perf2 ran out of available sockets. 

On the other hand, mtd64-ng showed no memory leaking at 

all: both VSS (virtual set size) and RSS (resident set size) 

were constant during the measurements. Thus mtd64-ng 

proved to be totally free of memory leaking. 

MTD64 starts a separate thread for every single request and 

thus it is susceptible to the kind of DoS attacks where the 

memory of the DNS64 server is exhausted by sending too 

many “AAAA” record requests per second. Using a fixed 

sized thread pool, mtd64-ng is no more susceptible to this 

kind of DoS attack. 

IV. CONCLUSION 

We conclude that mtd64-ng, the successor of MTD64 fixed 

the memory leaking and vulnerability to DoS attacks issues 

of MTD64 and also significantly outperformed it. We plan 

to test and develop this promising DNS64 implementation 

further. 
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