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Abstract—Our DNS64 benchmarking program, dns64perf++,
is the world’s first standard DNS64 benchmarking tool, which
complies with the requirements of RFC 8219 (Benchmarking
methodology for IPv6 transition technologies) including DNS64.
The aim of our current effort is to check and ensure its accuracy.
In this paper, we disclose our measurement method and results.
We have found inaccuracies at higher rates, which were caused
by the self-correcting timing algorithm. We have replaced the
timing algorithm by a simpler one, which resulted in accurate
results at any tested rates. We have also tested the corrected
version during real measurements: we compared the quality
of the measurements results produced by the original and the
corrected version.

Keywords—benchmarking, DNS64, IPv6 transition technology,
performance analysis.

I. INTRODUCTION

DNS64 [1] and NAT64 [2] are important IPv6 transition
technologies enabling IPv6-only clients to communicate with
IPv4-only servers. There are several DNS64 implementations,
and their performance is an important factor when network op-
erators have to select from among them. To that end, we have
developed a benchmarking methodology for DNS64 servers
[3], which is also a part of the relevant RFC on benchmarking
methodology for IPv6 transition technologies [4]. The com-
pulsory requirements of the RFC for benchmarking DNS64
servers were satisfied by the dns64perf++ measurement
program [5], which was documented in [6]. Later, the optional
feature of testing the efficiency of the caching performance of
DNS64 servers was also added [7].

The dns64perf++ benchmarking tool was successfully
used in various measurements, which required only moderate
rates, below 35,000qps (queries per second), see [3] and [8]
for details. The program can also be used for testing the
performance of DNS servers, and we used it for measuring the
performances of several different authoritative DNS servers, in
order to find out, which one would be the best choice to be
used as authoritative DNS server for DNS64 benchmarking
tests. When the testing rates were above 50,000qps, we expe-
rienced scattered measurement results. (RFC 8219 [4] requires
at least 20 tests, which means that the binary search for the
highest possible rate, at which the DNS64 server can serve
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AAAA record requests, should be executed at least 20 times.
We experienced significant differences between the results of
the 20 tests.) We were looking for the reason of the scattered
results, and we have systematically checked the accuracy of
dns64perf++.

The aim of our current paper is to document the accuracy
measurements, analyze their results, patch the bug, and assure
the accuracy of dns64perf++ at high rates.

The remainder of this paper is organized as follows. Sec-
tion II recalls the operation of the dns64perf++ program
in a nutshell. Section III presents our accuracy measurement
method and the results, as well as the analysis of the results
and the identification of the cause of the inaccuracies at high
rates. Section IV discloses our solution for the problem and
the test results of the corrected timing algorithm. Section V
considers the limitations of corrected program. Section VI is
a case study: both the original and the corrected versions
of dns64perf++ are used for real measurements and the
accuracies of their results are compared. Section VII points
out the significance of the proper timing algorithm in a larger
context. Section VIII gives our conclusions.

II. OPERATION OF DNS64PERF++ IN A NUTSHELL

A detailed description of the design and operation of the
dns64perf++ program can be found in our open access
paper [6], now we give a short summary1 of it including
only the parts relevant to our topic. Fig. 1 shows the test
setup for DNS64 measurements. It contains three devices: the
client, the DNS64 server and the authoritative DNS server.
When dns64perf++ is used for benchmarking authoritative
DNS servers, then the DNS64 server is removed and the
remaining two devices are directly connected to each other. In
this case, the authoritative DNS server is configured to serve
AAAA records (IPv6 addresses), because dns64perf++
always requests AAAA records.

The dns64perf++ program executes in two threads: one
of them sends queries for AAAA records of different domain
names at a specified rate and the other one receives the answers
and decides about every single answer if it is arrived in time
(within a given timeout) and if it contains an AAAA record. If
both conditions are met then the program qualifies the answer
as “valid”.

For being able to perform these tasks, the sending thread
stores a nanosecond precision timestamp of the sending time

1Some of the text of this summary is taken verbatim from [6].
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Fig. 1. Test setup for benchmarking DNS64 servers [6].

of each query and, similarly, the receiving thread stores a
nanosecond precision timestamp of the receiving time of every
single answer.

We have invested a lot of work into the design of the timing
algorithm for sending the AAAA record requests. Instead of
calculating the waiting time independently for each message,
we always considered the remaining time until the end of
the testing. We calculated the waiting time before starting to
prepare the (n+ 1)-th request as follows:

TW (n+ 1) =
N ∗ T − (tB(n)− tB(0))

N − n
− TR(n) (1)

where N is the total number of requests to be sent, T is
the required time interval between the consecutive messages
(that is, 1/frequency), tB(n) denotes the timestamp when the
preparation of the n-th request started and TR(n) denotes the
time it took to prepare and send the n-th request (n takes the
values from 0 to N -1). This way, the timing is self-correcting.

We note that this method guarantees only the “global”
accuracy of timing. There may be “local” inaccuracies, and
they will surely occur if the request rate is high enough.
Modern computer hardware support the efficiency of program
execution by several solutions such as caching, branch predic-
tion or prefetching data/instructions. Some high request rates
can only be achieved after these solutions provide full benefits
(program code and data are loaded into the cache; the branch
predictors have already learnt the behavior of the program,
etc.). Thus, a given number of requests may be sent somewhat
late at the beginning of the test.

We also note that dns64perf++ is still under development
and its latest version has been enabled to use twice n threads
(n threads for sending queries and n threads for receiving
replies) to achieve higher rates, but this feature is not docu-
mented by a research paper yet.

In our current paper, we deal with the original version of
dns64perf++ documented in [6].

III. MEASUREMENTS, RESULTS AND PROBLEM
IDENTIFICATION

The fact that dns64perf++ dumps all its results (includ-
ing all the nanosecond precision timestamps) in CSV format
into the dns64perf.csv file, enabled us to test its accu-
racy without the need for purchasing expensive measurement
devices.

We have performed 60s long tests (to comply with the re-
quirements of RFC 8219 [4]) at various speeds from 50,000qps

to 250,000qps with the increase of 50,000qps. We focused on
the sending timestamps only. To make the huge number of
results digestible, we have used a short script to count how
many timestamps fall into each 100ms time window from 0s
to 60s.

For the repeatability of our measurements, we present the
most important parameters of the computer used for testing. It
was a Huawei CH140 v3 compute node with Intel Xeon E5-
2670 v3 2.30GHz CPUs, 8x 16GB 2133MHz DDR4 SDRAM
and Ubuntu 16.04.2 LTS GNU/Linux operating system with
4.4.0-45-generic x86 64 kernel was used.

We note that in this case, dns64perf++ was not used in
a real measurement situation, but rather the timing accuracy
of its AAAA record request generation was tested. Section VI
contains a case study where dns64perf++ is used in bench-
marking measurements.

The results are shown in Fig. 2. Whereas the result of the
50,000qps test seem to be correct, all the other results are
visibly differ from the expected one. The behavior of the
self-correcting timing algorithm can be very well observed
on the graph, which belongs to the test at 250,000qps. For
some reason, which we will soon determine, the curve starts at
24,450queries/100ms, which corresponds to 244,500qps, and
the compensation is visibly too low, therefore the algorithm
has to compensate too much at the end. However, finally, the
required 250,000*60=15,000,000 number of messages were
successfully sent in 60 seconds, and thus the program reported
that it could send all the messages during the required time.

The explanation of the curve is also very simple. To achieve
the required 250,000qps rate, the program should have sent
a request at every 4,000ns. The achieved 244,500qps rate
corresponds to 4,090ns cycle time. It means that the program
spent about 90ns more with each message than it should have
spent. We can easily check the validity of this model. Let
us check two calculations. (Table I shows all of them.) The
cycle time should be 5,000ns at 200,000qps rate, and 5,090ns
results in 19,646 queries/100ms, which is very close to what
we measured (19,651). The cycle time should be 20,000ns at

TABLE I
VALIDATION OF OUR ERROR MODEL.

Required query rate (qps) 50,000 100,000 150,000 200,000 250,000
Required cycle time (ns) 20,000 10,000 6,667 5,000 4,000
Cycle t. in our model (ns) 20,090 10,090 6,757 5,090 4,090
Computed queries/100ms 4,978 9,911 14,799 19,646 24,450
Counted queries/100ms 4,979 9,913 14,805 19,651 24,450
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Fig. 2. Number of AAAA record queries sent in a 100ms long interval by the original dns64perf++ program.

50,000qps rate, and 20,090ns results in 4,978queries/100ms,
which is very close to what we measured (4,979).

Of course, this behavior is completely unacceptable from a
measurement program, but the non-constant rate and especially
the steep rise at the end of the measurement interval gave a
good explanation for the scattered results of our authoritative
DNS server measurements.

IV. CORRECTION OF THE TIMING ALGORITHM

As for the timing algorithm, it became evident that we
should not try to distribute the compensation of the possible
latency for the remaining testing time, but we should rather
use a simple solution, where we attempt to compensate all the
accumulated latency at the current step.

We calculate the waiting time before starting to prepare the
(n+ 1)-th request as follows:

TW (n+ 1) = t1 + n ∗ T − tS(n) (2)

where t1 denotes the timestamp when the preparation of the
first request started, T is the required time interval between
the consecutive messages, and tS(n) denotes the timestamp
when the n-th request was sent. In this way, the timing error
will not cumulate.

As for the modification of the source code, we limited
the change for a single line of a single file (line 49 of
timer.cpp, as shown in Fig. 3).

Technical note: the expression “(n_-n)” of the source
code corresponds to “n” in (2).

We note that after the above change, the calculation of the
function execution time in line 42 is used only in debug mode,
otherwise it is now calculated unnecessarily, thus one wants to
optimize the code, may exchange lines 42 and 43 to execute
the calculation within the #ifdef DEBUG macro. We did
not include this change for simplicity.

Using the corrected timing algorithm, we have performed
the same tests as before, and the results are displayed in Fig. 4.
They show that the correction was successful, and the accuracy
is now ensured at all tested query rates.

V. DISCUSSION OF THE ACCURACY

We would like to emphasize that the accuracy of
dns64perf++ is still limited. It is a software-based gen-
erator, which is executed by a modern computer hardware
under the Linux operating system and uses socket interface
API functions, thus the limitations mentioned in section 5.6
of [6] are still valid.

To fully disclose the accuracy of dns64perf++, we have
prepared a plot using 10ms wide cells. Fig. 5 shows the result
of the same measurements, as Fig. 4, the only difference is
that narrower cells were used during the processing of the
results. Several spikes can be observed on the graphs of both
the 200,000qps and the 100,000qps tests. We have identified
the first spike of the 200,000qps graph. Its downwards pointing
part belongs to the 2.05s-2.06s time window, where only 1904
requests were sent instead of the required 2000 requests. (Its
reason could be e.g. the handling of an interrupt, rescheduling
the thread to a different CPU core, or some other thing
mentioned in section 5.6 of [6].) The upwards pointing part
of the spike belongs to the 2.06s-2.07s time window, where
2097 requests were sent. This example shows that the modified
program attempts to compensate for any latency as soon as
possible.

As the measurement method requires the usage of 1s
timeout [3], we believe that these local inaccuracies, which are
visible only in Fig. 5 having 10ms wide cells but are invisible
in Fig. 4 having 100ms wide cells, are satisfactorily ironed
out during the 1s timeout interval and thus dns64perf++
may be used. However, we recommend the users of the
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The sleep time calculation in the source file timer.cpp was replaced as follows:
Original code (lines 42-49):
42: function_execution_time = std::chrono::duration_cast<std::chrono::nanoseconds>

(std::chrono::high_resolution_clock::now() - before);
43: #ifdef DEBUG
44: if (function_execution_time > interval) {
45: std::cerr << "Can’t keep up!" << std::endl;
46: }
47: #endif
48: --n;
49: sleep_time = interval - function_execution_time; // ONLY THIS LINE WILL BE CHANGED!

New code (lines 42-49):
42: function_execution_time = std::chrono::duration_cast<std::chrono::nanoseconds>

(std::chrono::high_resolution_clock::now() - before);
43: #ifdef DEBUG
44: if (function_execution_time > interval) {
45: std::cerr << "Can’t keep up!" << std::endl;
46: }
#endif
47: --n;
49: sleep_time = starttime + (n_-n)*interval_ - std::chrono::high_resolution_clock::now(); // NEW CODE

Fig. 3. Modifications to the dns64perf++ program.

Fig. 4. Number of AAAA record queries sent in a 100ms long interval by the modified dns64perf++ program.

program to check the nanosecond precision timestamps made
available by the program in the dns64perf.csv file. Thus,
by processing this file, the user may decide if the accuracy is
acceptable for his/her purposes or not. (In the latter case, the
measurement should be invalidated and repeated.)

We also note that higher rates and likely higher accuracy
could be reached by using the DPDK (Intel Data Plane
Development Kit) [9] instead of the socket interface API.

VI. COMPARISON DURING REAL MEASUREMENTS

In this case study, we demonstrate the real life effect of the
correction of the program.

As for measurement environment, we used three Dell Pow-
erEdge C6620 servers from the NICT StarBED, Japan. The

servers were interconnected by 10G Ethernet direct cable
links. The test setup is shown in Fig. 6. The three devices
can be identified by their roles, which correspond to that of
the three devices in Fig. 1. There is an important difference
here: the Measurer and AuthDNS subsystems of the Tester
are interconnected by a direct link, which will be used for the
so-called “self-test” of the tester (see later).

For the repeatability of our measurements, we briefly sum-
marize the most important parameters of the servers used
for our measurements. Each Dell PowerEdge C6620 server
contained two Intel Xeon E5-2650 2GHz CPUs, having 8 cores
each, 16x8GB 1333MHz DDR3 RAM, two Intel I350 Gigabit
Ethernet NICs, two Intel 10G 2P X520 Adapters, with a 10G
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Fig. 5. Number of AAAA record queries sent in a 10ms long interval by the modified dns64perf++ program.
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Fig. 6. Test setup for real DNS64 and tests.

interface module in each. Debian GNU/Linux 9.2 operating
system with kernel version 4.9.0-4-amd64 was installed to all
the computers.

According to the recommendations of [3], we have switched
off hyper-threading on all three computers, and set the clock

frequency of nodes n018 and n019 to fixed 2GHz to avoid
scattered results. (Turbo mode was enabled on node n017 to
achieve the highest possible performance.)

The qualities of the results of the old and of the modified
program were compared in two types of tests, namely DNS64
tests and self-tests of the Tester [4].

For the DNS64 tests, mtd64-ng 1.1.0 [8] and YADIFA
2.2.3-6237 were used as DNS64 server and authoritative DNS
server, respectively. On the basis of our experience with
DNS64 testing [10], we limited the number of CPU cores at
the DUT to 8, and the number of working threads of mtd64-
ng to 14 in order to achieve both high rate and good quality
results.

As specified by RFC 8219 [4], 60s long tests with 1s
timeout were used. The tests were executed 20 times and
median as well as 1 and 99 percentiles were determined,
where the latter two correspond to minimum and maximum
as the number of tests were less than 100. Although it is not
required by RFC 8219, we introduced another quantity for the
characterization of the quality of the results in [10]. This is
dispersion, calculated as the proportion of the range of the
results and the median, expressed in percentage, as defined by
(3).

dispersion =
max−min

median
∗ 100% (3)

All the DNS64 performance measurement results are shown
in Table II. As for the results of the original dns64perf++,
the difference between the maximum (54,785qps) and mini-
mum (51,199qps) is 3,586qps, which is about 6.63% of the
median (54,057qps) thus, the accuracy of the measurement
is questionable. The results of the corrected program are
significantly better. The difference between the maximum
(55,459qps) and minimum (54,223qps) is 1,236qps, which is
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about 2.25% of the median (54,853qps) thus, the accuracy of
the measurement is acceptable, but we would not call it as
good. Having no other test program, we are unable to tell at
this point, where the observed 2.25% dispersion of the results
produced by the corrected test program comes from. Either it
may be still caused by the corrected test program or it may
be an inherent property of mtd64-ng. Therefore, we needed to
perform further tests.

Besides the DNS64 tests, we have also performed “self-
tests”. We had multiple arguments for doing so:

• From the viewpoint of dns64perf++, the two kinds of
tests (DNS64 and self-test) are the same: dns64perf++
has to send requests for AAAA records and receive
the answers, thus any of them can be suitable for the
determination of the accuracy of dns64perf++.

• RFC 8219 requires both kinds of tests.
• As for the achievable rates, they are higher for self-tests,

and thus self-tests can better demonstrate the difference
between the old and the new software.

As for measurement setup, we used the one called the “self-
test” of the tester in section 9.2.1 of RFC 8219 [4]. (This test
is described in more details in [3].) For this measurement, the
Tester is looped back, that is the Measurer subsystem of the
Tester is directly connected to the AuthDNS subsystem of the
Tester, leaving out the DNS64 server. We have achieved this
by an additional direct cable link (without the removal of the
DUT), as mentioned before.

As for authoritative DNS server for the self-test mea-
surements, we used NSD 4.1.14-1 with no “server-count”
specification, thus using only a single CPU core to achieve
non-scattered results. This was not a random choice, but we
knew from our experience that good quality results with low
dispersion can be expected in this case.

As specified in RFC 8219 [4], 60s long tests with 0.25s
timeout were used, which were executed 20 times. The results
are shown in Table III. The results produced by the original
test program, are rather poor. The difference between the max-
imum (155,653qps) and minimum (130,815qps) is 24,838qps,
which is about 16.95% of the median (146,511qps) thus,
the accuracy of the measurement is very much questionable.
The results of the corrected program are incomparably bet-
ter. The difference between the maximum (177,169qps) and
minimum (176,127qps) is 1,042qps, which is about 0.59%
of the median (177,051qps), therefore, the accuracy of the
measurement can be considered as good. Thus, we have
shown that dns64perf++ can be used as a good quality
measurement tool.

TABLE II
DNS64 PERFORMANCE RESULTS OF MTD64-NG PRODUCED BY THE

ORIGINAL AND THE CORRECTED DNS64PERF++ MEASUREMENT
PROGRAM.

dns64perf++ version original corrected

DNS64 performance
(number of successfully processed
queries per second)

median 54,057 54,853
minimum 51,199 54,223
maximum 54,785 55,459
dispersion 6.63 2.25

TABLE III
AUTHORITATIVE DNS PERFORMANCE RESULTS OF NSD PRODUCED BY

THE ORIGINAL AND THE CORRECTED DNS64PERF++ MEASUREMENT
PROGRAM.

dns64perf++ version original corrected

Authoritative DNS performance
(number of successfully processed
queries per second)

median 146,511 177,051
minimum 130,815 176,127
maximum 155,653 177,169
dispersion 16.95 0.59

VII. FUTURE WORK

RFC 8219 [4] contains benchmarking methodology for
several other IPv6 transition technologies besides DNS64. For
benchmarking double translation or encapsulation technolo-
gies, RFC 2544 testers may be used, when the dual DUT setup
is followed (please refer to Section 4.2 of [4]). However, the
usage of the single DUT setup is also recommended for them,
and the single DUT setup is the only possible measurement
setup for single translation technologies such as e.g. stateful
NAT64 [3] or SIIT [11]. As far as we know, no RFC 8219
compliant testers are available for their benchmarking. The
only tester mentioned in a research paper aims to address
stateless IPv4/IPv6 translation implementations [12].

We contend that the significance of our correction of the
timing algorithm of the dns64perf++ program goes far
beyond DNS64 bechmarking. As dns64perf++ is a free
software under GPLv2 license, its source code can be used as
a starting point for implementing testers for different classes
of IPv6 transition technologies. However, for doing so, it is a
prerequisite to have a proper timing algorithm, what we have
now ensured.

VIII. CONCLUSIONS

We conclude that our efforts were successful in measuring
the accuracy of the dns64perf++ program, finding the
reason of its significant inaccuracy above 50,000qps and
correcting it. Now, its accuracy is ensured by changing its mal-
functioning self-correcting timing algorithm to a very simple
one, which attempts to compensate the accumulated latency
at each step. We have also demonstrated that the accuracy
of the results produced by the corrected test program was
significantly higher than the accuracy of the results produced
by the original one and we concluded that dns64perf++
can be used as a good quality measurement tool.
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