
TESTING THE SPEED-UP OF PARALLEL DISCRETE EVENT SIMULATION

IN HETEROGENEOUS EXECUTION ENVIRONMENTS

Gábor Lencse and István Derka
Department of Telecommunications

Széchenyi István University
Egyetem tér 1.

H-9026 Győr, Hungary
lencse@sze.hu

KEYWORDS

parallel discrete event simulation, heterogeneous execution
environments, conservative synchronisation method, rela-
tive speed-up, MPI, OMNeT++, load balancing criterion,
coupling factor criterion.

ABSTRACT

This paper deals with the experimental testing and verifi-

cation of the earlier proposed load balancing and cou-

pling factor criteria for the conservative parallel discrete

event simulation in heterogeneous execution environments

whether they can ensure a good speed-up. The definition

of the relative speed-up is extended to the heterogeneous

systems in a natural way. This definition is used to meas-

ure the efficiency of the parallel simulation executed by

heterogeneous systems. A closed queueing network is used

as the simulation model, and it is executed on different

heterogeneous test systems. Among several scenarios, it is

demonstrated on the example of a heterogeneous system

containing 87 CPU cores of 5 different types that a good

speed-up can be achieved using the load balancing and

coupling factor criteria. It is shown that the extension of

the definition of the relative speed-up to the heterogeneous

systems made it easy to judge the speed-up of parallel dis-

crete event simulation in heterogeneous execution envi-

ronments.

INTRODUCTION

Event-driven discrete event simulation (DES) is a power-
ful method for the performance analysis of information and
communication technology (ICT) systems. The detailed
modelling and simulation of these systems often requires a
huge amount of computing power and memory. Parallelisa-
tion can be a natural solution. Kunz (Kunz 2010) points
out that as the ongoing development in the hardware sector
favours an increasing number of processing units over an
increasing speed of a single unit thus the parallel simula-
tion will remain an important and active field of research.

However, because of the algorithm of the event-driven
DES, parallel discrete event simulation (PDES) it is not
an easy task and the achievable speed-up is often limited.
When doing PDES, the model of the system is divided into

partitions (called Logical Processes), and the partitions are
assigned to processors that are executing them. To main-
tain causality, the virtual times of the partitions must be
synchronised. There are different methods for synchronisa-
tion (Kunz 2010). The conservative method ensures that
causality is never violated. An event can be executed only
if we are certain that no events with smaller timestamp
exist (and also will not be generated) anywhere in the
model. Unless the simulated system has a special property
that the so called lookahead is large enough, the proces-
sors executing the partitions need to wait for each other in
the majority of time, so the achievable speed-up is poor.

In the paper (Varga et al. 2003), the authors proposed a
method for assessing available parallelism in a simulation
model for conservative synchronization. The method re-
quires only a small number of parameters that can be easily
measured on a sequential simulation. In our paper (Lencse
and Varga 2010), we checked the results of the aforemen-
tioned work for homogeneous clusters up to 24 CPU cores
and also examined how the different parameters of the
model influence the achievable speed-up. In our next paper
(Lencse et al. 2013) we examined the criteria for a good
speed-up in a heterogeneous execution environment. Our
criteria were justified by several measurements in a test
system. However, we could not include all the planned
experiments, due to space limitations. This paper presents
our further results on the examinations of different factors
that influence the achievable speed-up of parallel discrete
event simulation in a heterogeneous execution environ-
ment. Moreover, the definition of the relative speed-up is
extended to heterogeneous systems and this extension is
used in the discussion of the results of our experiments to
evaluate the efficiency of parallel simulation executed by
heterogeneous systems.

The remainder of this paper is organised as follows: first, a
brief summary of the method for assessing the available
parallelism is given. Second, our concept of heterogeneous
execution environment, our criteria for a good speed up
and our previous results are summarized. Third, the defini-
tion of the relative speed-up is extended to the heterogene-
ous systems to be able to express the efficiency of parallel
simulation executed by heterogeneous systems. Fourth, our
heterogeneous test environment and simulation model are
described. Fifth, our further experiments and result are
presented and discussed. Finally, our paper is concluded.

This topic was identified as being of importance in the
parallel simulation of large systems using heterogeneous
execution environments.

THE METHOD FOR ASSESSING AVAILABLE

PARALLELISM

The available parallelism can be assessed using some
quantities that can be measured during a sequential simula-
tion of the model in question. The following description is
taken from (Lencse and Varga 2010).

The paper (Varga et. al. 2003) uses the notations ev for
events, sec for real world time in seconds and simsec for
simulated time (model time) in seconds. The paper uses the
following quantities for the assessing of available parallel-
ism:

• P performance represents the number of events proc-
essed per second (ev/sec).

• E event density is the number of events that occur per
simulated second (ev/simsec).

• L lookahead is measured in simulated seconds (sim-

sec).

• τ latency (sec) is the latency of sending a message
from one Logical Process (LP) to another.

• λ coupling factor can be calculated as the ratio of LE
and τP:

P

EL

⋅

⋅
=

τ
λ (1)

In (Lencse and Varga 2010) we have shown that if λ is in
the order of several hundreds or higher then we may expect
a good speed-up. It may be nearly linear even for higher
number of segments (N) if λN is also at least in the order of
several hundreds, where:

N
N

λ
λ = (2)

MODELLING AND SIMULATION IN HETEROGE-

NEOUS EXECUTION ENVIRONMENTS

This chapter is a summary of (Lencse et al 2013).

Our Concept of Heterogeneous Execution Environ-

ments

We recommended a logical topology of two levels: a star

shaped network of homogeneous clusters. This model is
simple enough and can describe a typical heterogeneous

execution environment. What is logically described as a
homogeneous cluster, it can be physically, for example, a
cluster of PCs with identical configuration interconnected
by a switch or it can be a chassis based computer built up
by several main boards, etc. The main point is that a ho-
mogeneous cluster is built up by identical configuration
elements especially concerning CPU type and speed as

well as memory size and speed. The homogeneous clusters
are interconnected logically in a star shaped topology. The
physical connection can be a switch or the topology may
be different but our model considers it to be a star for sim-
plicity.

Criteria for Achieving a Good Speed-up

We set up two criteria. The load balancing criterion re-
quires that all the CPUs (or CPU cores) should get a fair

share from the execution of the simulation. A fair share is
proportional to the computing power of the CPU concern-

ing the execution of the given simulation model. (This is
very important, because, for example, using different
benchmark programs for the same set of computers one
can get seriously different performance results.) Thus, for
the fair division of a given simulation model among the
CPUs, the CPUs should be benchmarked by the same type
of simulation model that is to be executed by them (but
smaller in size, of course). The lookahead or coupling

factor criterion is the same as presented and tested in
(Lencse and Varga 2010) up to 24 CPU cores.

The Most Important Results

The load balancing criterion was justified by measuring the
execution time of a model with different partitioning. The
results of our experiments were quite close to the values
computed according to the load balancing criterion. (See
more details later.) The coupling factor criterion was justi-
fied by different scenarios including a simulation executed
by 64 CPU cores of 4 types resulting in a good speed-up.

EFFICIENCY OF PARALLEL SIMULATION EXE-

CUTED BY HETEROGENEOUS SYSTEMS

Relative Speed-up of Program Execution by Heteroge-

neous Systems

First, the definition of the relative speed-up of parallel
execution of programs is extended for heterogeneous sys-
tems (in general, not only for simulation).

The conventional definition of the speed-up (sn) of parallel
execution is the ratio of the speed of the parallel execution
by n CPUs and the sequential execution by 1 CPU that is
equal with the ratio of the execution time of the sequential
execution (T1) and that of the parallel execution (Tn):

n

1
n

T

T
s = (3)

The relative speed-up (rn) can be calculated as the ratio of
the speed-up and the number of the CPUs that produced
the given speed-up:

n

s
r n
n = (4)

The relative speed-up measures the efficiency of parallel
execution. A relative speed-up value of 1 means that the

speed-up is linear that is the computing power of n CPUs
can be fully utilized.

When dealing with heterogeneous systems, not only the
number of the CPUs but also their performance is to be
taken into consideration. We were looking for a definition
of the relative speed-up of heterogeneous systems that can
be used to measure the efficiency of program execution by
the heterogeneous systems in the same way: its value of
one should mean that the computing power of all the CPUs
(from different types) can be fully utilized.

Let us denote the number of the CPU types in a heteroge-
neous system by NT, the number and the performance of
CPUs available from type i by Ni and Pi, respectively. The
cumulative performance of the heterogeneous system is:

∑
=

⋅=

NT

1j

iic NPP (5)

Let us denote the execution time of a given program by a
single CPU of type i by Ti and let Th denote the execution

time of the given program by the heterogeneous system.
The speed-up of the heterogeneous system compared to the
sequential execution by one CPU of type i is:

h

i
i/h

T

T
s = (6)

The relative speed-up of the heterogeneous system against
the sequential execution by one CPU of type i is now de-
fined as:

ch

ii
i/h

PT

PT
r

⋅

⋅
= (7)

We believe that this definition can be used in general for
measuring the efficiency of program execution by hetero-
geneous systems. Thus, for simplicity, we used the word
“CPU” in this section, but the expression “CPU core”
could be used instead, as it is used everywhere else in this
paper.

Measuring the Efficiency of Parallel Simulation Exe-

cuted by Heterogeneous Systems

If the above definition of relative speed-up of program
execution by heterogeneous systems is used for measuring
the efficiency of parallel simulation executed by heteroge-
neous systems and the performance values of the CPU
cores from different types are measured by benchmarking
them with the same simulation model (expressing its value
in events per seconds and the value of execution time in
seconds) then the numerator of expression (7) gives the
same values for all the values of i (that is its value is inde-
pendent of the CPU core types): it is equal with the total
number of events in the sequential simulation.

Note that the number of events in the parallel version of
the simulation may be higher (e.g. due to communication
and synchronization overhead) but only the events of the

original sequential simulation are the essential part of the
operation of the original model. Thus efficiency should
consider the events of the original sequential simulation
only.

Denoting the total number of events in the sequential simu-
lation by NE, definition (7) can be rewritten as:

ch

E
h

PT

N
r

⋅
= (8)

Thus, we have shown that the value of relative speed-up
calculated by (8) does not depend on which CPU core it
was calculated against, it characterises the parallel simula-
tion itself. Note that this is still true if one uses definition
(7), thus one can use any of them selecting on the basis of
which values are easier to measure directly in the given
simulation. We will do so when calculating the relative
speed-up for measuring the efficiency of simulation in the
different experiments presented in this paper.

HETEROGENEOUS TEST ENVIRONMENT

Available Hardware Base

The following servers, workstations and PCs were avail-
able for our experiments at the Info-communications Labo-
ratory of the Department of Telecommunications, Szé-
chenyi István University. Note that this hardware base is
somewhat larger than that of our previous paper (Lencse et
al. 2013).

One Sun Server SunFire X4150

Two Quad Core Intel Xeon 2.83GHz CPU, 8GB DDR2
800MHz RAM, 160GB HDD, Gigabit Ethernet NICs
Altogether it means a homogeneous cluster of 8 nodes.

Three LS120 Blades form an IBM BladeCenter

Two Dual Core Opteron 280 2.4GHz CPU, 4GB DDR2
667MHz RAM, 73GB HDD, Gigabit Ethernet NIC
Altogether it means a homogeneous cluster of 12 nodes.

One Itanium Server HP Server RX2600

Two Intel Mckinley IA-64 900MHz CPU, 8GB RAM
DDR 266MHz RAM, 36.4GB HDD, Gigabit Ethernet NIC
Although it has no serious computing power but it was
found interesting because of its non-x86 architecture CPU.

Eleven Dell Precision 490 Workstations

Two Intel Xeon 5140 Dual Core 2.33GHz CPU, 4x1GB
DDR2 533MHz RAM (quad channel), 80GB HDD, Giga-
bit Ethernet NICs
Altogether it means a homogeneous cluster of 44 nodes.

Eleven AMD PCs

AMD Athlon 64 X2 Dual Core 4200+ 2200MHz CPU,
2GB DDR2 667MHz RAM, 320 GB HDD, Gb. Eth. NIC
Altogether it means a homogeneous cluster of 22 nodes.

Four Old Intel PCs (P4)

Intel Pentium 4 HT 3GHz CPU, 512 DDR 400MHz RAM,
80 GB HDD, Fast Ethernet NIC.
Note that they use 32 bits CPUs.

Switches for Interconnection

• 3Com Baseline Switch 2948 SFP Plus (3CBLSG48)
• Cisco Intelligent Gigabit Ethernet Switch Module, 4

ports (Part Number 32R1894) in the BladeCenter
• D-Link EasySmart Switch DGS-1100-24

Software Environment

Operating Systems

Linux was used on all the computers. Sun Server and LS21
Blades: Ubuntu 12.04 LTS x86-64; Dell Precision 490
Workstations and AMD PCs: Debian Squeeze (x86_64);
old Intel PC-s: Debian Squeeze (i386);

Cluster Software

OpenMPI 1.6.2 (x86_64 if not stated otherwise; i386 in
some cases)

Discrete-Event Simulation Software

The widely used, open source OMNeT++ 4.2.2 discrete-
event simulation environment (Varga and Hornig 2008)
was chosen. It supports the conservative synchronization
method (the Null Message Algorithm) since 2003 (Seker-
ciouglu et al. 2003). We also expect that because of the
modularity, extensibility and clean internal architecture of
the parallel simulation subsystem, the OMNeT++ frame-
work has the potential to become a preferred platform for
PDES research.

The Simulation Model

Bagrodia and Takai proposed the Closed Queueing Net-
work for testing the performance of conservative parallel
discrete-event simulation (Bagrodia and Takai 2000).
OMNeT++ has a CQN implementation among its simula-
tion sample programs. We have found this model perfect
for our purposes thus it was used in our current paper as
well as in our previous ones (Lencse and Varga 2010) and
(Lencse et al. 2013). The below description of the model is
taken from (Lencse and Varga 2010).

This model consists of M tandem queues where each tan-
dem consists of a switch and k single-server queues with
exponential service times (Figure 1, left).

SSSCPU2CPU1CPU0

Figure 1. M=3 Tandem Queues with k=6 Single Server
Queues in Each Tandem Queue – And its Partitioning

The last queues are looped back to their switches. Each
switch randomly chooses the first queue of one of the tan-
dems as destination, using uniform distribution. The
queues and switches are connected with links that have
nonzero propagation delays. The OMNeT++ model for
CQN wraps tandems into compound modules.

To run the model in parallel, we assign tandems to differ-
ent LPs (Figure 1, right). Lookahead is provided by delays
on the marked links.

As for the parameters of the model, the preset values
shipped with the model were used unless it is stated other-
wise. Configuration B was chosen, the one that promised
good speed-up. The main parameters of the CQN model
were: M=24 tandem queues, k=50 queues in each tandem
queue, exponential service time of the queues with ex-
pected value of 10 seconds, the delay between the tandem
queues L=100 seconds and the length of the simulation
was 106 seconds (in model time).

EXPERIMENTS AND RESULTS

Figure 2 shows the interconnection of the elements of our
heterogeneous environment. Note that our experiments
used different subsets of the elements.

Figure 2. The elements of the Heterogeneous Execution
Environment with their Interconnections

Further Validation of the Load Balancing Criterion

The load balancing criterion requires the benchmarking of
the different CPU cores with the simulation model. The
benchmarking was done using the CQN OMNeT++ sam-
ple model. All the experiments were performed 11 times
and average and standard deviation was calculated. Unless
stated otherwise, it was done so with all the following ex-
periments, too. Table 1 shows the performance of the dif-
ferent CPU core types.

Table 1. The Performance of the Different 64-bit CPU
Core Types (events/second)

Core Type Sun IBM Dell AMD Itanium
Average 468 192 238 174 373 787 235 861 61 509
Std. Dev. 5 581 6 049 4 908 2 726 117

The load balancing was tested on the example of a minimal
size heterogeneous system built up by one Sun core and
one IBM core in (Lencse et al. 2013). Now it is validated
on a similar system built up by one Dell core and one
AMD core. The following series of experiments were per-
formed: the CQN model built up by 24 tandem queues was
cut into two segments: N and 24-N tandem queues were
put into the segment executed by the AMD core and the
Dell core, respectively, where N took its values form 1 to
23. The execution time was measured in all cases and the
value of the relative speed up was calculated according to
(8). Figure 3 shows the results. It can be seen that the parti-
tioning was the best when 10 and 14 tandem queues were
put into the segments executed by the AMD and the Dell
computers, respectively. The exactly performance propor-

tional partitioning would result in the assignment of 9.29
and 14.71 tandem queues. Thus the results of our experi-
ments are in a good agreement with the computed “optimal
partitioning”.

Figure 3. The Relative Speed-up of the Execution of the
CQN Model in the Function of the Partitioning

A Test Including the Itanium Server

As the performance of the Itanium server is much less then
that of all the others, it seems to be a reasonable question if
it is worth using it at all? The following two experiments
were conducted:

1. A cluster of one IBM and one AMD cores was used
and 12 tandem queues were put on each of them.

2. The Itanium server was added to the above cluster.
The number of the tandem queues was decreased by
one both on the IBM and on the AMD cores and the
two tandem queues were assigned to the Itanium
server.

Note that the above partitioning in both cases was the best
possible approximation of the performance proportional
one.

Table 2 shows the parameters and the results of the ex-
periments. The use of the Itanium server resulted in a
9.45% speed-up according to the conventional interpreta-
tion of speed-up. Is it a good result? To be able to judge
the efficiency of the parallel simulation in the second ex-
periment we calculated the relative speed-up according to

(7) using the results of the first experiment as reference.
We are really satisfied with the 0.9688 relative speed-up.

Table 2. The Parameters and the Results of the Experi-
ments for the Itanium Server

Elements of the System IBM+AMD IBM+AMD+Itanium
Cumulated Performance (ev/sec) 474 035 535 544
Average Execution Time (sec) 335.97 306.96
Std. Dev. of Exec. Time 2.43 3.17
Speed-Up (Conventional) (reference) 1.0945
Relative Speed-up (reference) 0.9688

A Test Including the Old 32-bit Intel PC-s

Unfortunately, it is a feature of the OpenMPI, that if 32-bit
libraries are used in one of the computers then they should
be used on all the other ones so that the computers can
communicate with each other. Thus we had to recompile
everything in 32-bit mode for the 64 bit computers and
benchmark them again in 32-bit mode. Table 2 shows the
performance of the different CPU core types in 32-bit
modes. The configuration script of OMNeT++ did not find
the 32-bit MPI libraries under Debian, thus we could not
test the Dell and AMD platforms. As we could not fix the
problem due to lack of time, they were omitted from the
32-bit experiments.

Table 3. The Performance of the Different CPU Core
Types in 32-bit mode (events/second)

Core Type Sun IBM P4

Average 593 340 334 516 218 014
Std. Dev. 9 989 7 467 1 362

Note that the performance results of the Sun and IBM
servers are significantly higher in 32-bit mode than in 64-
bit mode. It is probably due to the fact that the integers and
the pointers use twice as much memory space in 64-bit
mode than in 32-bit mode and the longer programs can be
less effectively cached.

The following two experiments were conducted:

1. The 8 cores of the Sun server and the 4 cores of one
IBM Blade were used.

2. The four old Intel P4 computers were added to the
above system.

The number of the tandem queues was increased in the
CQN model from 24 to 240 to be able to utilize all the
CPU cores. The value of the lookahead was increased from
100s to 1000s see its justification in (Lencse et al. 2013).
The tandem queues were divided as close to the perform-
ance proportional partitioning as it was possible.

According to (Lencse et al. 2013), if the number of the
CPU core types is denoted by NCT, the number and the
performance of the CPU cores available from core type i

are denoted by Ni and Pi, respectively then the ni number
of the queues to be put into a segment executed by a core
from type i should be:

∑
=

⋅

⋅
=

NCT

1j

ii

i
i

NP

P240
n (9)

However, the number of the tandem queues per segments
must be an integer, thus the division of the tandems could
not be fully precise, some “roundings” and adjustments
were done manually and there were differences made even
between the load of the cores from the same core type so
that the number all the tandems be exactly 240. Table 4
and 5 show the division of the tandems among the cores
for the first and the second experiments.

Table 4. The Division of the 240 Tandem Queues among
the Sun and IBM cores

Core
type

Pi (ev/sec) Ni ni
no. of
cores

tandems
/core

cumulated
tandems

Sun 593 340 8 23.40 4 23 92
 4 24 96

IBM 334 516 4 13.19 4 13 52

No. of all the cores: 12 Number of all the tandems: 240

Table 5. The Division of the 240 Tandem Queues among
the Sun, IBM and P4 cores

Core
type

Pi (ev/sec) Ni ni
no. of
cores

tandems
/core

cumulated
tandems

Sun 593 340 8 20.47 8 20 160

IBM 334 516 4 11.54 4 12 48

P4 218 014 4 7.52 4 8 32

No. of all the cores: 16 Number of all the tandems: 240

Table 6 shows the parameters and the results of the ex-
periments. The use of the four old Intel P4 PCs resulted in
a 9.47% speed-up according to the conventional interpreta-
tion of speed-up. Again, as with the Itanium server, we
calculated the relative speed-up according to (7) using the
results of the first experiment as reference to be able to
judge if the efficiency of the parallel simulation in the sec-
ond experiment compared to the first one. We can be satis-
fied with the 0.9575 relative speed-up and mention just for
comparison that even the speed-up caused be the P4 PCs
was a little bit higher than the speed-up caused be the Ita-
nium server, this a is bit less good result, as the efficiency
is somewhat smaller now.

Table 6. The Parameters and the Results of the Experi-
ments for the Old Intel P4 PCs

Elements Sun+IBM Sun+IBM+4xP4
Cumulated Performance (ev/sec) 6 084 784 6 956 480
Average Execution Time (sec) 1 327.31 1 212.51
Std. Dev. of Exec. Time 34.91 47.15
Speed-Up (Conventional) (reference) 1.0947
Relative Speed-up (reference) 0.9575

Note that we calculated the relative efficiency in both cases
because we tested if it was worth using the Itanium server
or the old Intel P4 PCs. It will be done differently in the
test of the largest available system.

A Test of the Largest Available System

The maximum possible number of 64-bit cores were in-
cluded into the heterogeneous system. The number of the
tandem queues and the lookahead were increased to 480
and 2000s, respectively. First, the partitioning was done
according to the old performance values that were meas-
ured during the simulation of the system built up by 24
tandem queues and using 100s lookahead. Table 7. shows
the partitioning.

Table 7. The Division of the 480 Tandem Queues Among
the 64-bit Cores Using the Old Pi Values from Table 1.

Core
type

Pi (ev/sec) Ni ni
no. of
cores

tandems
/core

cumulated
tandems

Sun 468 192 8 7.94 8 8 64

IBM 238 174 12 4.04 12 4 48

Dell 373 787 44 6.34 29 6 174
 15 7 105

AMD 235 861 22 4.00 22 4 88

Itanium 61 509 1 1.04 1 1 1

No. of all the cores: 87 Number of all the tandems: 480

The execution time of the parallel simulation was 159.80
seconds with 2.84 standard deviation. To be able to deter-
mine its efficiency, we needed either a sequential execu-
tion time produced by any of the CPU cores or the total
number of events in the sequential simulation. As the
model was large we executed the sequential simulation
only for a 105 seconds long model time interval that is only
one tenth of the 106 model time simulated by the parallel
execution. (The execution time and event number values
for 106 seconds model time sequential simulation can be
easily extrapolated the by multiplying the results with 10.)
We executed the sequential simulation on all the CPU
types 11 times except for Itanium, where it was executed
only once. The number of all the events was approximately
170.34 million in all cases (that means 1,703.4 million
events for 106 model time seconds). The execution time
values are shown in table 8. This table also shows the
speed-up values (calculated by multiplying the sequential
execution time values by 10) against the sequential execu-
tion by the given CPU core types. The next line of the ta-
ble shows the recalculated Pi performance values. They are
much smaller than those in table 1 due to the effect called
“vacationing jobs” in (Lencse and Varga 2010). Shortly
summarized the effect: the long delay lines are “storing”
some jobs (events) that are missing from the elementary
queues of the tandem queues thus the number of events per
real-time seconds is significantly decreased. The new Pi
values are not even proportional with the old ones. The
next line of the table shows the quotient of the new and the
old Pi values for the different CPU core types: they are
really different. (For this reason, we tested also another

partitioning using the new Pi values.) For computing the
relative speed-up, the cumulative performance was com-
puted from the new Pi values and we got: Pc=17 929 579
ev/sec.

The relative speed-up was calculated according to (8) as:

5945.0
sec/ev17929579sec8.159

ev107034.1
r

9

h ≈
⋅

⋅
= (10)

This value is not at all bad for such a big and inhomogene-
ous cluster.

Table 8. Execution Time of the 105s (model time) Long
Sequential Simulation and Other Derived Values

Core Type Sun IBM Dell AMD Itanium
Avg. Ex. time (s) 593.20 960.03 778.65 972.69 6837.44
Std. Dev. of E. T. 5.38 31.40 3.87 7.49 -
Speed-up 37.1 60.1 38.7 60.9 427.9
new Pi (ev/sec) 287 154 177 432 218 763 175 122 24 907
new Pi / old Pi 0.6133 0.7450 0.5853 0.7425 0.4049

The system was repartitioned according to the new Pi val-
ues, see table 9. Note that even though the number of
available cores was 87, only 86 of them were actually used
as no tandem queues were put to the Itanium server.

Table 9. The Division of the 480 Tandem Queues Among
the 64-bit Cores Using the New Pi Values from Table 8.

Core
type

Pi (ev/sec) Ni ni
no. of
cores

tandems
/core

cumulated
tandems

Sun 287 154 8 7.69 8 8 64

IBM 177 432 12 4.75 12 5 60

Dell 218 763 44 5.85 44 6 264

AMD 175 122 22 4.68 18 4 72

 4 5 20

Itanium 24 907 1 0.67 1 0 0

No. of all the cores: 87 Number of all the tandems: 480

The execution of the simulation gave excellent results. The
average execution time was 108.12 seconds with 2.34
standard deviation. The speed-up values calculated against
the four actually used CPU core types are shown in table
10.

Table 10. Speed-up of the Second Heterogeneous System

Core Type Sun IBM Dell AMD
Speed-up 54.9 88.8 72.0 90.0

As the Itanium server was not used, its performance was
left out from the cumulative performance: Pc=17 904 672
ev/sec. For relative speed-up, we got:

8799.0
sec/ev17904672sec12.108

ev107034.1
r

9

h ≈
⋅

⋅
= (11)

This is excellent for such a big and inhomogeneous cluster.

CONCLUSIONS

Some of our earlier defined criteria (load balancing and
coupling factor) for the possible good speed-up of parallel
discrete event simulation in heterogeneous execution envi-
ronments were summarized. A novel extension of the rela-
tive speed-up for heterogeneous systems was introduced.

The operation of the criteria was justified by several ex-
periments with different size and type of heterogeneous
systems.

The extension of the definition of the relative speed-up to
heterogeneous systems proved to be an appropriate tool for
the evaluation of the speed-up of parallel discrete event
simulation in heterogeneous execution environments.

We conclude that the recommended methods are worth
using and further studying.

ACKNOWLEDGEMENT

This research was supported by the TÁMOP-4.2.2/B-
10/1-2010-0010 project and by the Széchenyi István Uni-
versity (15-3202-08).

REFERENCES

Bagrodia, R. L. and M. Takai. 2000. "Performance evaluation of
conservative algorithms in parallel simulation languages"
IEEE Transactions on Parallel and Distributed Systems,
Vol. 11. No 4. 395-411.

Kunz, G. 2010. "Parallel Discrete Event Simulation" In Model-

ing and Tools for Network Simulation K. Wehrle, M. Günes
and J. Gross (Eds.). Springer-Verlag, Berlin 2010. ISBN
978-3-642-12330-6

Lencse, G. and A. Varga. 2010. "Performance Prediction of Con-
servative Parallel Discrete Event Simulation". Proceedings of

the 2010 Industrial Simulation Conference (ISC'2010) (Bu-
dapest, Hungary, 2010. June 7-9.) EUROSIS-ETI, 214-219.

Lencse, G., I. Derka and L. Muka. 2013. "Towards the efficient
simulation of telecommunication systems in heterogeneous
execution environments", accepted for the 36th International

Conference on Telecommunications and Signal Processing

(TSP), July 2-4, 2013, Rome, Italy.
Sekercioglu, Y. A., Varga, A. and Egan, G. K. Egan. 2003. "Par-

allel Simulation Made Easy with OMNeT++". Proceedings

of the European Simulation Symposium (ESS 2003), Oct. 26-
29, 2003, Delft, The Netherlands.

Varga, A., Y. A. Sekercioglu and G. K. Egan. 2003. "A practical
efficiency criterion for the null message algorithm". Proceed-

ings of the European Simulation Symposium (ESS 2003),
(Oct. 26-29, 2003, Delft, The Netherlands.) SCS Interna-
tional, 81-92.

Varga, A. and Hornig, R. 2008. "An overview of the OMNeT++
simulation environment", Simutools '08: Proceedings of the

1st international conference on Simulation tools and tech-

niques for communications, networks and systems & work-

shops. March 7, 2008, Marseille, France.

