

Acta

Technica

Jaurinensis

Vol. 10., No.Y., pp. xx-yy, 20xy

DOI: 10.14513/actatechjaur.vX.nY.000

Available online at acta.sze.hu

1

Performance and Stability Analysis of Free NAT64

Implementations with Different Protocols

S. Répás, P. Farnadi, G. Lencse

Széchenyi István University, Department of Telecommunications

Egyetem tér 1, H-9026 Győr, Hungary

E-mail: repas.sandor@sze.hu, farnadi@tilb.sze.hu, lencse@sze.hu

Abstract: Due to its rapid spread, Internet has now outgrown the address space

provided by IPv4. The transition to the new IPv6 protocol is extremely slow.

The different transition techniques are intended to facilitate the transition to

the new version of Internet Protocol. The NAT64 transition technique is one

of the most suitable solutions. In this paper, both the performance and the

stability of two NAT64 gateway implementations are examined by ICMP,

TCP and UDP protocols. The tested two free implementations, the TAYGA

on the Linux system and the PF of the OpenBSD system can be effectively

used in a production environment, and can facilitate the deployment of the

IPv6 protocol.

Keywords: NAT64, TAYGA, PF, performance, stability

1. Introduction

Due to the exhaustion of the IPv4 address pool [1], the internet service providers will

not be able to provide IPv4 addresses to their customers in the near future. The application

of the new version of the Internet Protocol, the IPv6 can provide practically infinite

number of addresses for the huge number of Internet-enabled devices. The specification

of the IPv6 protocol exists since 1998 [2], but the widespread application of it is still

pending. While the IPv6 protocol can solve the address exhaustion problem, the

application of the new protocol raises another problem. Because of the different IP header

structure and addressing scheme, the direct communication between an IPv4 and IPv6

hosts is impossible. The most important hindering factor of the rapid deployment of the

IPv6 protocol is the combination of this incompatibility and the huge number of the

installed IPv4 only devices. To solve this problem and speed up the IPv6 widespread

implementation one can use the so called IPv6 transition techniques. These techniques

enable the communication between hosts in a mixed IPv4 and IPv6 network. Over the

years several transition techniques have been developed. According to the authors’

opinion, the combination of a DNS64 [3] server and a NAT64 [4] gateway is currently

one of the most useful techniques to speed up the IPv6 deployment. The appropriate

choice of high performance and very stable DNS64 and NAT64 implementations can be

crucial for the service providers. This paper deals with the stability and performance of

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

2

two different open source NAT64 implementations with the three most important

protocols over: ICMP, UDP and TCP.

The remainder of this paper is organized as follows: first, the operation of the

DNS64+NAT64 solution is described, second, TAYGA under Linux and Packet Filter of

OpenBSD are introduced, third, the NAT64 performance and stability research results are

surveyed, fourth, the description of the test network and the testing method of each

protocols are given, fifth, the test results are introduced, sixth, our results are summarized

and discussed, and finally, our conclusions are given.

2. The DNS64 and NAT64 transition techniques

In the current phase of the IPv6 deployment it is a very important task to provide

connectivity between an IPv6 only client and an IPv4 only server. To solve this problem

one can use the DNS64+NAT64 combination. DNS64 is an extension of the DNS server,

and NAT64 is similar to the “normal” Network Address Translation [5] process, but with

address family translation. The operation of DNS64+NAT64 is shown in Fig. 1.

The explanation of the communication process is the following:

 Step 1: The IPv6 only client sends a query to its name server about the IPv6

address of the destination server with the DNS name of the server (query the

AAAA record [6] of the destined server).

 Step 2: The DNS64 server tries to resolve the DNS name.

 Step 3:

 If the DNS server resolves the given name to an IPv4 address, but not

IPv6: The DNS64 server generates an answer with an AAAA record

with a synthesized IPv6 address. This IPv6 address contains the given

IPv4 address of the server at the last 32 bits, while the first 96 bits can

be a network specific prefix or the NAT64 well-known prefix. This

special IPv6 address is called IPv4-Embedded IPv6 Address.

 If the DNS server could resolve the given name to an IPv6 address (the

given name has an AAAA resource record) then the DNS64 server acts

as normal. (This case is not shown in the figure.)

 Step 4: The DNS64 server sends back as an answer for the query of its client.

 Step 5: The client sends the IPv6 packet through its (NAT64) gateway.

 Step 6:

 If the destination address of the packet contains the special prefix, the

gateway knows that the IPv6 packet is destined to an IPv4 server. The

NAT64 gateway makes a stateful network address and address family

translation between IPv6 and IPv4 and sends the resulted IPv4 packet

to the IPv4 only server with its own public IPv4 address as source

address. The NAT64 gateway needs to have both IPv4 and IPv6

addresses, to make this process happen.

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

3

 If the destination address of the packet does not contain the prefix, the

gateway forward the packet normally to its next hop. (This case is not

shown in the figure.)

 Step 7: The IPv4 only server sends its answer to the IPv4 address of the NAT64

gateway.

 Step 8: The NAT64 gateway assembles the IPv6 version of the received packet

using the payload of the IPv4 packet and its own state table and then sends the

IPv6 packet to the originating client.

The whole process is intended to be transparent for the client computer. This IPv6

transition solution is compatible with the majority of the wide spread application layer

protocols that work in client-server model (e.g. HTTP, SMTP, POP3, IMAP4, SSH, etc.)

but it has issues with those protocols that transfer IP addresses (e.g. FTP, SIP) and usually

does not work with peer-to-peer applications (e.g. BitTorrent), see: [7], [8] and [9].

For a more detailed but still easy to follow introduction to DNS64+NAT64, see [10]

and for the most accurate and detailed information, see the relating RFCs [3] and [4].

IPv6

CLIENT

DNS64 DNS

WEB
SERVER

NAT64

3. A 192.0.2.14. AAAA 64:ff9b::c000:201

1. h2.example.com ?
2. h2.example.com ?

6. Packet to 192.0.2.1

IPv4

7. Answer from 192.0.2.1

Figure 1. Operation of DNS64+NAT64 (Based on: [11])

3. The examined NAT64 implementations

3.1. TAYGA

TAYGA [12] is a free stateless NAT64 implementation for Linux under GPLv2 license.

The main goal of its developers was to provide a production quality NAT64 service where

a dedicated NAT64 device would be overkill. The latest release of TAYGA is 0.9.2.

According to its authors, TAYGA could never come close to offering the power and

flexibility available in the packet filter of Linux (iptables), so instead TAYGA turns IPv6

into IPv4 in the most transparent manner possible, allowing existing IPv4-only tools to

be used to further manipulate sessions flowing through it. It means that by itself it can

create only a one-to-one mapping between IPv6 and IPv4 addresses. For this reason

TAYGA is used together with a stateful NAT44 packet filter (iptables under Linux):

TAYGA maps the source IPv6 addresses to different IPv4 addresses from a suitable size

of private IPv4 address range, and the stateful NAT44 packet filter performs an SNAT

(Source Network Address Translation) from the private IPv4 addresses to the public IPv4

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

4

address of the NAT64 gateway. In the reverse direction, the stateful NAT44 packet filter

“knows” which private IPv4 address belongs to the reply packet arriving to the IPv4

interface of the NAT64 gateway. After the NAT44 translation, TAYGA can determine

the appropriate IPv6 address using its one-to-one address mapping and then it rewrites

the packet to IPv6. To work with TAYGA, a suitably large private IPv4 dynamic address

pool should be provided.

Packet Filter, PF

The Packet Filter was introduced in the OpenBSD system in 2001. PF is a very popular

firewall application in the BSD systems. The PF of OpenBSD supports stateful and

stateless mode at the same time. It supports various types of packet manipulation, and it

supports IPv4 and IPv6 stateful NAT for many years. Since OpenBSD 5.1 it supports

stateful NAT64, too [13]. Stateful behaviour means that it does not need the help of a

stateful NAT44 packet filter to work as a complete NAT64 gateway. This nature of PF

can speed up the NAT64 translation.

4. A Short Survey of the Current Research Results

Though NAT64 is addressed in high number of current research papers, only a relatively

few of them deals with the performance analysis of its different implementations. For

example, [14] gives a good summary of the NAT64 papers until 2012 and it states that

“two papers were found that deal with NAT64 performance issues”. And also many of

those that deal with the performance of NAT64 implementations do it in the way that they

examine the performance of a given NAT64 implementation together with a given

DNS64 implementation. For instance, they measure the performance of the TAYGA

NAT64 implementation with the TOTD DNS64 implementation in [15]. The authors of

two other papers [16] and [17] measure the performance of the Ecdysis NAT64

implementation, which uses its own DNS64 implementation. However, we have already

shown that as DNS64 and NAT64 are two distinct services, they may be and thus should

be analyzed separately to be able to choose the best suiting implementations for

someone’s purposes [18]. We have published our first results on the separate performance

analysis of the TAYGA NAT64 implementation and of the BIND DNS64 implementation

in [19]. Later on, we compared the performance of the BIND and TOTD DNS64

implementations under Linux, OpenBSD and FreeBSD in [20]. We tested the stability

and the performance of the TAYGA and of the PF NAT64 implementations using ICMP

in [18]. The aim of our current research it to test their stability and compare their

performance using also TCP and UDP protocols, as they are used over IP in real life

applications.

5. The test environment for the NAT64 performance measurements

5.1. The topology of the test network

The test network was built up in the Infocommunications Laboratory of the Department

of Telecommunications, Széchenyi István University. The topology of the network is

shown in Fig. 2. All of the network elements were connected with 1000Base-TX network

connections. For this purpose, a 3Com Baseline 2948-SFP switch was used. The

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

5

responder computer can be seen on the top of the figure. The role of the computer was to

answer all of the measurement traffic destined to it. For this reason, a high performance

workstation computer was used for this role. The central element of the network is the

NAT64 server. This gateway was built from the lowest performance computer in the

laboratory, because serious overload situation was necessary during the measurement

process. In the bottom of the picture eight pieces of high performance test clients are

shown. These workstation computers played the role of the high number of clients during

the different test scenarios.

Dell Precision 490

8x Dell Precision 490

192.168.100.111/24

192.168.100.233/24

fdb9:a0ab:af17:ffff::1/64

fdb9:a0ab:af17:ffff::112/64 fdb9:a0ab:af17:ffff::119/64

Pentium III Celeron 900MHz

. . .

responder
10.0.0.0/8

NAT64
gateway

Client computers

3com Baseline 2948-
SFP Plus switch

Figure 2. Topology of the test network

5.2. The hardware configuration of the computers

The configuration of the responder computer was the following:

 DELL 0GU083, Intel 5000X chipset mainboard

 Two Dual Core Intel(R) Xeon(R) CPU 5160 3.00GHz dual core microprocessors

 4x1 GB 533 MHz DDR2 SDRAM (quad channel)

 Broadcom NetXtreme BCM5752 Gigabit Ethernet PCI Express network card

 Debian 6.0.7

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

6

 KDE 4.4.5 graphic environment

The configuration of the NAT64 gateway computer was the following:

 Intel D815EEA2 mainboard

 900 Intel Pentium III (Coppermine) microprocessor

 256 MB, 133 MHz SDRAM

 Two 3Com 3c940 Gigabit Ethernet PCI network cards

The configuration of all of the client computers was the following:

 DELL 0GU083, Intel 5000X chipset mainboard

 Two Dual Core Intel(R) Xeon(R) CPU 5140 2.33GHz dual core microprocessors

 4x1 GB 533 MHz DDR2 SDRAM (quad channel)

 Broadcom NetXtreme BCM5752 Gigabit Ethernet PCI Express network card

 Debian 6.0.7

5.3. The software configuration of the computers

The NAT64 gateway performance was monitored with the commands as seen in Figures

3 and 4. The settings of the network interfaces are shown in Figures 5, 6 and 7.

dstat -t -c -m -l -p --unix --output load.txt

Figure 3. NAT64 gateway computer performance monitoring on Linux system

vmstat –w 1 > load.txt

Figure 4. NAT64 gateway computer performance monitoring on OpenBSD system

The settings of the TAYGA on Linux are shown in Fig. 8. The starting of TAYGA was

automatized with a shell script. The script is shown in Fig. 9. The NAT64 function was

enabled on the OpenBSD system in a modification in the /etc/pf.conf file as shown in

Fig. 10.

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

7

#Internal
auto eth0
iface eth0 inet6 static
address fdb9:a0ab:af17:ffff::1
netmask 64
up sleep 1
up echo 0 > /proc/sys/net/ipv6/conf/eth1/autoconf
up echo 0 > /proc/sys/net/ipv6/conf/eth1/accept_ra
post-up sleep 1
post-up /root/nat64-config.sh

#External
auto eth1
iface eth1 inet static
address 192.16.100.233
netmask 255.255.255.240
gateway 192.168.100.1

pre-up echo 1 > /proc/sys/net/ipv6/conf/all/forwarding

Figure 5. Network interface settings in the /etc/network/interfaces file on the

Linux system

inet 192.168.100.233 255.255.255.0
!route add –inet 10.0.0.0/8 192.168.100.111

Figure 6. External network interface settings in the /etc/hostname.sk0 file on the

OpenBSD system

inet6 fdb9:a0ab:af17:ffff::1 64

Figure 7. Internal network interface settings in the /etc/hostname.sk1 file on the

OpenBSD system

tun-device nat64
ipv4-addr 172.16.0.1
prefix fdb9:a0ab:af17:ffff:ffff:ffff::/96
dynamic-pool 172.16.0.0/12
data-dir /var/db/tayga

Figure 8. TAYGA settings in the /usr/local/etc/tayga.conf file

On the responder computer, all of the IP traffic destined to the 10.0.0.0/8 network were

redirected to the local address of the Ethernet interface of the computer with iptables

command as seen on Fig. 11.

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

8

#!/bin/bash
tayga --mktun
ip link set nat64 up

#Private IPv4 address space for stateless NAT
ip addr add 172.16.0.1 dev nat64
ip route add 172.16.0.0/12 dev nat64

#For NAT64 unique local IPv6 address space
ip addr add fdb9:a0ab:af17:ffff::2 dev nat64
ip route add fdb9:a0ab:af17:ffff:ffff:ffff::/96 dev nat64
tayga

#Enable packet forwarding
echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding

#Enable stateful NAT44
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

#The used addresses are routed to the responder
ip route add 10.0.0.0/8 via 192.168.100.111

Figure 9. The nat64-config.sh shell script on Linux system

set limit states 40000
pass in on sk1 inet6 from any to fdb9:a0ab:af17:ffff:ffff:ffff::/96 \
 af-to inet from 192.168.10.233

Figure 10. The /etc/pf.conf settings on OpenBSD system

iptables -t nat -A PREROUTING -d 10.0.0.0/8 -j DNAT \
 --to-destination 192.168.100.111

Figure 11. iptables settings on the responder computer

6. The measurement process and scripts

6.1. ICMP

Responder

During the preliminary measurements, some fluctuations were experienced in the load of

the NAT64 gateway. This behavior was caused by the limited size of the connection

tracking table on the responder computer. This problem could be solved with two

methods. First, the size of the table could be drastically increased. Second, the timeout

value of a record in the table could be decrease to a low value. For the measurements, the

second solution was chosen. It is shown on Figure 12.

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

9

echo 1 > /proc/sys/net/netfilter/nf_conntrack_icmp_timeout

Figure 12. Setting the timeout value of ICMP packets to 1s in the conntrack table

Client computers

All of the measurements were made with 1, 2, 4 and 8 client computers simultaneously.

The measurement of the execution time and the starting of the experiment was initiated

with the command line on the Fig. 13. The synchronized start of the scripts on the client

computers were done by using the “Send Input to All Sessions” function of the Konsole

terminal program of the KDE graphical environment on a separated “controller”

computer.

~# /usr/bin/time –f "%" –o runtime –a ./icmptest.sh experiment_ID

Figure 13. Starting the measurement

The test script is shown in figure 14.

#!/bin/bash
mkdir $1
i=`cat /etc/hostname | grep -o .$`
for b in {0..255}
do
 mkdir $1/$b
 for c in {0..248..8}
 do
 ping6 -c10 -i0 fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$c \
 >> $1/$b/nat64p-10-$i-$b-$c &
 ping6 -c10 -i0 fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+1)) \
 >> $1/$b/nat64p-10-$i-$b-$((c+1)) &
 ping6 -c10 -i0 fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+2)) \
 >> $1/$b/nat64p-10-$i-$b-$((c+2)) &
 ping6 -c10 -i0 fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+3)) \
 >> $1/$b/nat64p-10-$i-$b-$((c+3)) &
 ping6 -c10 -i0 fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+4)) \
 >> $1/$b/nat64p-10-$i-$b-$((c+4)) &
 ping6 -c10 -i0 fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+5)) \
 >> $1/$b/nat64p-10-$i-$b-$((c+5)) &
 ping6 -c10 -i0 fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+6)) \
 >> $1/$b/nat64p-10-$i-$b-$((c+6)) &
 ping6 -c10 -i0 fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+7)) \
 >> $1/$b/nat64p-10-$i-$b-$((c+7))
 done
done

Figure 14. icmp-test.sh shell script

Each client sent 256*256*10=655360 ICMP Echo request packets to 256*256=65536

different destination IP addresses during one experiment. The body of the cycle contains

8 ping commands which were started concurrent. With the 8 simultaneous commands, we

were able to provide sufficiently large load on the NAT64 gateway.

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

10

6.2. TCP

Responder

On the responder computer, the Apache 2 web server was used to respond the queries

sent over TCP. The Apache 2 web server was installed from the Debian repository by the

apt-get command. The preparation of the files with different sizes was made by the dd

command. For example to generate a 100 byte long file, the following command line was

used:

dd if=/dev/zero of=/var/www/file bs=100 count=1

The timeout value of the TCP records in the connection tracking table was decreased

to 1s by issuing the following command:

 echo 1 > /proc/sys/net/netfilter/nf_conntrack_tcp_timeout_time_wait

Client computers

In this case the tcp256.sh shell script was started synchronously, similarly to the ICMP

measurement. The tcp256.sh script is shown in Fig. 15.

The tcp.sh script was invoked 256 times by the tcp256.sh script. The tcp.sh script

was responsible for downloading the files from the responder computer. The two scripts

downloaded altogether 256*256=65536 files from 65536 IP addresses. The tcp.sh script

is shown in Fig. 16.

#!/bin/bash
i=`cat /etc/hostname | grep -o .$`
for b in {0..255}
do
 mkdir $1/$b
 /usr/bin/time -f "%e" -o output.txt -a ./tcp.sh $i $b $1
done

Figure 15. tcp256.sh shell script

#!/bin/bash
for c in {0..255}
do
 wget -m http://[fdb9:a0ab:af17:ffff:ffff:ffff:10.$1.$2.$c]/file \
 -P $3/$2
done

Figure 16. tcp.sh shell script

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

11

6.3. UDP

6.4. Network

For the UDP measurements, the OpenVPN software with UDP VPN tunnel was

selected. The logical network diagram is shown in Fig. 17. The Responder computer

played the role of the OpenVPN server, while all of the Client computers were the clients

of the OpenVPN server.

Responder

Client 1

Client 8

NAT64 gatewayVPN Virtual interface

VPN Virtual interface

VPN Virtual interface

172.16.0.1/16

fdb9:a0ab:af17:ffff::112/64

fdb9:a0ab:af17:ffff::119/64172.16.0.28/16

172.16.0.21/16

..
.192.168.100.111/24

192.168.100.233/24 fdb9:a0ab:af17:ffff::1/64

UDP6UDP

IPV4 network

IPV6 network

Apache http server

UDP
channel

Figure 17. Network diagram of the UDP measurement

6.5. Responder

The OpenVPN server was installed from the Debian repository by the apt-get

command. For the working OpenVPN environment, the following tasks were performed:

 Step 1: Editing the /usr/share/doc/openvpn/examples/easy-rsa/2.0/vars

file, according to Fig. 18.

 Step 2: Creation of the /etc/openvpn/keys directory with the mkdir command.

 Step 3: Copying the openssl.cnf, whochopensslcnf, and pkitool files from

the /usr/share/doc/openvpn/examples/easy-rsa/2.0/ to the newly created

/etc/openvpn/keys directory by cp command.

 Step 4: Building the certificate authority by issuing the commands on Fig. 19.

 Step 5: Creating the certificates by issuing the commands on Fig. 20.

 Step 6: Copying the ca.crt, dh1024.pem, server.crt and server.key files to

the /etc/openvpn/ directory.

 Step 7: Extraction of the /usr/share/doc/openvpn/examples/sample-

configfiles/server.conf.gz file into the /etc/openvpn directory and

modifying the server.conf, according to Fig. 21.

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

12

export KEY_COUNTRY=”HU”
export KEY_PPROVINCE=”GYMS”
export KEY_CITY=”GYOR”
export KEY_ORG=”TILB”
export KEY_EMAIL=openvpnadmin@tilb.sze.hu

Figure 18. Modification of the /usr/share/doc/openvpn/examples/easy-

rsa/2.0/vars file

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/vars

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/clean-all

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/build-ca

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/build-dh

Figure XVIX. Creating the Certificate Authority

cd /usr/share/doc/openvpn/examples/easy-rsa/2.0/
./build-key-server server
./build-key client

Figure 20. Creating the certificates

proto udp
dev tun
server 172.16.0.0 255.255.0.0
duplicate cn
group
nogroup

Figure 21. The modifications of the /etc/openvpn/server.conf file

6.6. Clients

The OpenVPN clients were installed from the Debian repository by the apt-get

command. For the working OpenVPN environment, the following tasks were performed:

 Step 1: Copying the client.crt, ca.crt, client.key files from the

/etc/openvpn/keys/ directory of the responder computer into the

/etc/openvpn/ directory of the client computers.

 Step 2: Copying the /usr/share/doc/openvpn/examples/sample-

configfiles/client.conf file into the /etc/openvpn/ directory and

modifying it, according to Fig. 22.

dev tun
proto udp6
remote fdb9:a0ab:af17:ffff:ffff:ffff:192.168.100.111

Figure 22. The modifications of the /etc/openvpn/client.conf file

In this case the udp256.sh shell script was started synchronously on the client computers,

similarly to the ICMP and TCP measurements. The udp256.sh script is shown in Fig. 23.

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

13

The udp.sh script was invoked 64 times by the udp256.sh script. The udp.sh script

was responsible the downloading of the files from the responder computer, see Fig. 24.

The core of the “for” cycle downloaded four files parallel. The two scripts downloaded

altogether 64*256=16384 files from the same IP address.

#!/bin/bash
mkdir $1
for b in {0..63}
do
 /usr/bin/time -f "%e" -o output.txt -a ./udp.sh $b $1
done

Figure 23. udp256.sh shell script

#!/bin/bash
for c in {0..252..4}
do
 wget http://172.16.0.1/file -P $2/$1/$c &
 wget http://172.16.0.1/file -P $2/$1/$((c+1)) &
 wget http://172.16.0.1/file -P $2/$1/$((c+2)) &
 wget http://172.16.0.1/file -P $2/$1/$((c+3))
done

Figure 24. udp.sh shell subscript

7. NAT64 performance results

7.1. ICMP

TAYGA

The results can be found in Table 1. Row 1 shows the number of clients that executed the

test script. (The load of the NAT64 gateway was proportional to the number of the

clients.) The packet loss ratio is displayed in the second row. Rows 3, 4 and 5 show the

average, the standard deviation and the maximum values of the response time (expressed

in milliseconds), respectively. The following two rows show the average and the standard

deviation of the CPU utilization of the test computer. The last row shows the number of

forwarded packets per seconds.

Table 1. TAYGA, ICMP NAT64 performance

1 Number of clients 1 2 4 8

2 Packet loss (%) 0.002 0.003 0.005 0.007

3 Response time (ms) average 1.67 3.65 7.42 28.47

4 std. deviation 0.56 0.94 1.70 9.21

5 maximum 30.00 34.70 52.40 87.24

6 CPU utilization (%) average 88.89 95.64 99.55 100

7 std. deviation 2.16 1.77 0.89 0

8 Traffic volume (packet/sec) 3825 3928 4097 4128

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

14

Evaluation of the results:

 The packet loss ratio was slightly increased with higher traffic. With one client

the NAT64 gateway produced 0.002% packet loss, whereas with 8 clients it was

0.007% packet loss.

 The CPU utilization was very high on the gateway even with one client. With 2

and 4 clients the behavior of the system remained predictable and the averages

of the response times were only slightly more than doubled (3.65/1.67=2.19;

7.42/3.65=2.03). With 8 clients, the system remained stable, but the average

CPU usage reached the 100%, while the average of the response times was

almost four fold (28.47/7.42=3.84).

 The number of served queries were increased while the gateway computer had

free CPU capacity. When the CPU usage reached the 100%, the response time

increased unexpectedly.

Packet Filter

The results can be found in Table 2. Evaluation of the results:

 The packet loss rate was always very low.

 Due to the doubling of the load on the NAT64 gateway, the response time ratios

were as follows: 0.7/0.48=1.45; 1.43/0.7=2.04; 3.19/1.42=2.23. The CPU

utilization increased with more clients, but the system remained stable in the

serious overload situation with 8 clients.

 The number of served queries increased while the gateway computer had free

CPU capacity. From 1 to 2 clients, there was 64.13% increase in the number of

answered queries, whereas from 2 to 4 clients there was 22.73% increase. With

8 clients, the NAT64 gateway reached its maximum capacity, the CPU usage

was close to 100%, and the number of served queries showed only a slight

increase (4.35%).

Table 2. PF, ICMP NAT64 performance

1 Number of clients 1 2 4 8

2 Packet loss (%) 0.001 0.002 0.007 0.008

3 Response time (ms) average 0.48 0.70 1.43 3.19

4 std. deviation 0.22 0.46 0.77 1.15

5 maximum 21.30 30.50 44.00 43.40

6 CPU utilization (%) average 49.86 77.23 91.17 96.47

7 std. deviation 6.64 3.91 1.82 1.51

8 Traffic volume (packet/sec) 8536 14010 17195 17944

Comparison of the ICMP results

Comparing the performance results with ICMP packets of TAYGA and PF, we can state

the followings:

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

15

 With one client, the throughput of PF is significantly higher than that of

TAYGA: 8536/3825=223.16%, in addition to that, PF reaches this performance

with significantly lower usage of the CPU. With 2, 4 and 8 clients the ratios of

the throughputs of the two implementations are: 14010/3928=356.67%;

17195/4097=419.69%; 17944/4128=436.69%. (Fig. 25.)

 A similar phenomenon could be seen with the average response times:

1.67/0.48=3.48; 3.65/0.7=5.21; 7.42/1.42=5.23; 28.47/3.19=8.92 (Fig. 26.).

 In addition, the maximum values of the response times of PF are better, too.

Figure 25. ICMP throughput comparison (higher is better)

Figure 26. ICMP response time comparison (lower is better)

7.2. TCP

The performance measurements of the two NAT64 gateway implementations with TCP

protocol were done by using 8 different file sizes. This method generated 8 times more

data. It is more practical to interpret these results with graphs.

TAYGA

The average number of served queries can be seen on Fig. 27. The horizontal axis (x)

shows the size of the files. The sizes were doubled during the measurements from 100 to

12800 bytes. The vertical axis (y) shows the throughput of the NAT64 gateway (files/sec),

8536

14010
17195 17944

3825 3928 4097 4128

0

5000

10000

15000

20000

1 2 3 4

Traffic
(packets/sec)

Clients

ICMP traffic

PF

Tayga

0,48 0,7 1,42
3,19

1,67 3,65
7,42

28,47

0

20

40

1 2 3 4

Response
time (ms)

Clients

ICMP response time

PF

Tayga

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

16

whereas the graph depth (z) corresponds to the number of clients. In the intersection

points of different values of the x and z axes, the y values show that how many files with

a given size and at a given number of clients the system was able to serve. The average

of the response times and the average values of the CPU utilization are shown on Figures

28 and 29, respectively. Evaluation of the results:

 With one client, the CPU utilization is strictly increasing from 55% to 75% in

the 100 – 12800 bytes file size range. The system was able to serve nearly the

same number of files of size from 100 to 3200 bytes. Then the curve started to

break down slowly, with 6400 bytes it served by 21.51% less and with 12800

bytes it served by 25.8% less than with the previous size (see Fig. 27).

 With two clients, the CPU still had free capacity, thus the response time just

slightly increased, the system remained stable. The throughput of the system

with 100 bytes files increased by 683/405=68.64% compared to one client.

But with 12800 byte files, this difference is only 292/233=25.32%.

 With 4 and 8 clients, the system does not have free capacity, thus the response

times are increasing continuously.

Figure 27. Number of transferred files per second by TAYGA NAT64 gateway with TCP

protocol

Figure 28. Average download time of 256 files with TAYGA and TCP protocol

1 2 4 8

0

500

1000

1500

644

563

335

1228

990

506

1387

1173

546

1421

1211

1077

828

538

Tr
an

sf
e

r
(f

ile
s/

se
c)

Transferred files

0

1,5

3

4,5

6

7,5

100 200 400 800 1600 3200 6400 12800

0,63 0,63 0,62 0,63 0,64 0,64 0,81 1,090,76 0,76 0,79 0,76 0,86 0,94 1,21 1,741,35 1,43 1,44 1,44 1,53 1,81

3,35 3,612,67 2,71 2,78 2,87 3,01
3,65

4,61

6,66 Number of
clients

Response time
(s)

File size (bytes)

Average download time of 256 files

1 2
4 8

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

17

Figure 29. Average CPU utilization with TAYGA

PF

The number of served queries, the average of the download times and of the CPU

utilization are shown on Figures 30, 31 and 32, respectively. Evaluation of the results:

 With one client, the utilization of the CPU is 18.82%, and with the maximum

file size it is 32.02%. This is the reason of the low value of the average and

maximum of the transfer time. With larger size of the transferred files the

number of them just slightly decreases.

 With two clients, the CPU utilization is 33.88% in the beginning of the range,

whereas it is 57.81% at the end of the range. Thus the average and maximum

values of the response times only slightly increase. The throughput of the system

is almost doubled compared to one client (~190%).

 With four clients, the CPU utilization is 59.79% at the beginning of the range,

whereas it reaches 88.91% at the end of the range. The number of the transferred

files strictly decreases from the value of 192% at the beginning of the range until

162% at the end of it – compared to the values of the measurement with two

clients.

 With eight clients, the system reaches the end of its capacity. At the beginning

of the range it uses 93.04% of its CPU, while transfers about 70% more files

compared to the case with 4 clients. With the increasing of the size of the

transferred files to 1600 bytes, the CPU utilization increases, too. From this point

the system starts to behave unpredictable, the response time sharply increases,

while the CPU utilization starts to fluctuate. Thus, the number of the transferred

files of the system decreases to 1055 files/seconds at 12800 bytes from 2875

files at 100 bytes.

55,5 57,74 57,75 58,35 62,2 67,86
71,61

73,41
91,43 91,62 91,91 92,23

95,08 96,79 98,11 99,26

0

20

40

60

80

100

100 200 400 800 1600 3200 6400 12800

Utilization
(%)

File size (bytes)

CPU utilization

1 2
4 8

Number of
clients

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

18

Figure 30. Number of transferred files per second by PF NAT64 gateway with TCP

protocol

Figure 31. Average download time of 256 files with PF

Figure 32. Average CPU utilization with PF

1 2 4 8

0

2000

4000

453

459

376

882

841

713

1695

1687

1158

2875

2756

2144

1919

1055

Tr
an

sf
e

r
(f

ile
s/

se
c)

Transferred Files

0

1

2

100 200 400 800 1600 3200 6400 12800

0,55 0,55 0,56 0,55 0,53 0,55 0,6 0,67
0,57 0,56 0,57 0,56 0,54 0,6 0,63 0,71

0,59 0,59 0,59 0,59 0,56 0,61 0,71
0,870,71 0,71 0,72 0,71 0,71

0,9
1,06

1,93

Number of
clients

Response time
(s)

File size (bytes)

Average download time of 256 files with PF

1 2
4 8

18,82 18,92 19,12 19,35 20,11 21,16 23,8
32,02

33,88 34,47 34,95 35,08 36,51 40,05
45,98

57,81

59,79 60,61 60,75 60,06 61,05
67,42

73,29

88,9193,04 93,34 93,56 94,85 97,63 92,34

64,09 59,9

0

50

100

100 200 400 800 1600 3200 6400 12800

Utilization
(%)

File size (bytes)

CPU utilization

1 2

4 8

Number of
clients

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

19

Comparison of the TCP results

Comparing the performance results of TAYGA and PF with transfer via TCP protocol,

we can state the followings:

 With one, two and four clients the CPU utilization of PF of OpenBSD was much

lower than that of TAYGA on Linux system. To serve one client with 100 bytes

files, PF needs 18.82% CPU time, whereas the TAYGA needs 55.5%. Thus the

average and maximum values of the transfer times are also better with PF.

 In download time with 12800 bytes files the advantage of the PF is about 3.5

times.

 In serious overload situation, the TAYGA remains stable, where the behavior of

the PF is unpredictable but its performance is still higher than that of TAYGA.

7.3. UDP

TAYGA

The number of the transferred files, the average of the download times and of the CPU

utilization are shown on Figure 33, 34, 35, respectively. Evaluation of the results:

 With one client, the utilization of the CPU is 46.04% and it starts to increase at

800 bytes long files, and it grows until 70.41% at the end of the range. The

average values of the download times doubled to the end of the range. With

larger size of the transferred files the number of them slowly decreases from 644

to 335, which means -48%.

 With two clients, the CPU utilization is between 77.85% and 96.28%. Thus the

average and maximum values of the response times increase from 1600 bytes.

With larger size of the transferred files the number of them slowly decreases

from 1228 to 506, which means -59%.

 With four and eight clients, the response times greatly increase compared to the

two measurement with two clients. The main cause of this phenomenon is the

high processor utilization, which is about 100% at the whole range. With four

and eight clients the number of the transferred files decreases with 61% and 62%

to the end of the range.

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

20

Figure 33. Number of transferred files per second by TAYGA NAT64 gateway with

UDP protocol

Figure 34. Average download time of 256 files with TAYGA

Figure 35. Average CPU utilization with TAYGA

PF

The number of the transferred files, the average of the download times and of the CPU

utilization are shown on Figure 36, 37, 38, respectively. Evaluation of the results:

1 2 4 8

0

1000

2000

644

563

335

1228

990

506

1387

1173

546

1421

1211

1077

828
538

Tr
an

sf
e

r
(f

ile
s/

se
c)

Transferred files

0
0,5

1
1,5

2
2,5

3
3,5

4

0,37 0,39 0,41 0,41 0,41 0,43 0,5
0,74

0,4 0,45 0,45 0,45 0,49 0,53 0,74
1,01

0,73 0,73 0,73 0,73 0,92 0,94

1,19 1,861,44 1,48 1,5
1,5 1,72

1,95

2,49

3,79

Number of
clients

Response
time (s)

File size (bytes)

Average download time of 256 files

1 2

4 8

46,04 46,18 46,29 46,51
50,21 54,43 63,04

70,4177,85 77,73 79,92 80,96
86,96

88,31 93,47 96,28

0

20

40

60

80

100

100 200 400 800 1600 3200 6400 12800

Utilization
(%)

File size (bytes)

CPU utilization

1 2

4 8

Number of
clients

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

21

 With one client the utilization of the CPU is 19.47% and it starts to increase at

800 bytes long files, until 32.35% at the end of the range. The average values of

the response times increase by 46.87% to the end of the range. With larger size

of the transferred files the number of them slowly decreases from 747 to 446,

which means -40%.

 With two clients, the CPU utilization is between 32.67% and 48.87%. The

average values of the response times increase by 47% to the end of the range.

The response times increase by 3.13% through 15% at the whole range compared

to the one client case, while the number of the transferred files increases by

92.5% through 95%.

 With four clients, the utilization of the CPU starts at 59.41% and starts to

increase between 1600 and 3200 bytes long files, until 75.59% at the end of the

range. The response times are almost doubled in the range. The response times

increase by 6.1% at 100 bytes, whereas 26% at 12800 bytes, compared to the

measurement with two clients, while the number of transferred files increase to

195.91% with 100 bytes files and 167% with 12800 bytes files.

 With eight clients, the average utilization of the processor starts at 76.31%, and

finishes at 82.41%. Comparing with the 4 clients case, the average of the

response times increases by 37% at 100 bytes, and by 75% at the end of the

range, while the throughput of the NAT64 gateway increases by 43% and 18%.

Figure 36. Number of transferred files per second by PF NAT64 gateway with UDP

protocol

1 2 4 8

0

2500

5000

747

699

446

1494

1414

871

2927

2502

1458

4200

3609

3314

2522
1724

Tr
an

sf
e

r
(f

ile
s/

se
c)

Transferred files

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

22

Figure 37. Average download time of 256 files with PF

Comparison of the UDP results

With one client, the PF based NAT64 gateway can transfer by about 20% more files

then TAYGA at the whole range, with less than the half of the CPU usage of the TAYGA.

With more clients PF gains even greater superiority over TAYGA. The advantage of PF

with eight clients in the number of transferred 100 bytes long files is 295% and it is 320%

with 12800 bytes files. TAYGA used all of its computing power with 4 clients, whereas

PF cannot reach the 83% with eight clients. Both of the implementations proved their

stability during the measurements.

Figure 38. Average CPU utilization with PF

8. Conclusions

Both of the two NAT64 implementations were found stable enough to be used in a

production environment, whereas PF of OpenBSD showed the best overall performance

characteristics.

With ICMP traffic, both implementations behaved stable, and the throughput of PF was

significantly better than that of TAYGA. In the serious overload situation PF

outperformed TAYGA more than 4 times by means of the number of forwarded packets

0

0,5

1

1,5

100 200 400 800 1600 3200 6400 12800

0,32 0,32 0,33 0,33 0,34 0,35 0,39 0,47
0,33 0,33 0,33 0,36 0,36 0,39 0,41

0,540,35 0,37 0,37 0,38 0,38 0,42 0,46 0,680,48 0,48 0,48 0,49 0,56
0,61

0,79 1,19

Response time
(s)

File size (bytes)

Average download time of 256 files with PF

1 2

4 8

Number of
clients

19,47 19,67 19,77 20,27 22,94 23,59 27,09
32,3532,67 33,73 34,47 35,25 38,61 39,56 42,42
48,87

59,41 59,46 59,68 59,84 60,48 63,16
68,62

75,59

76,31 76,77 77,59 77,92 78,59 80,85 80,97 82,41

0

20

40

60

80

100

100 200 400 800 1600 3200 6400 12800

Utilization
(%)

File size (bytes)

CPU utilization

1 2

4 8

Number of
clients

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

23

per second. With the TCP protocol, the dominance of PF is reduced to 3.5 times, which

is still a significant value. However, PF became unpredictable under very high volume of

TCP traffic. PF produced its relatively lowest values with UDP traffic, “only” 3.2 times

outperformed TAYGA on Linux, and remained stable all of the time.

As for their response times, PF was 8.9 times faster than TAYGA with ICMP protocol at

the highest load, whereas this proportion was 3.45 with TCP and 3.18 with UDP protocol.

Acknowledgement

The work of Sándor Répás was supported in the framework of TÁMOP 4.2.4. A/2-11-1-

2012-0001 “National Excellence Program – Elaborating and operating an inland student

and researcher personal support system convergence program” The project was

subsidized by the European Union and co-financed by the European Social Fund.

The work of Gábor Lencse was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-

0012: “Smarter Transport” – IT for co-operative transport system – The Project is

supported by the Hungarian Government and co-financed by the European Social Fund.

References

[1] Geoff, H.: IPv4 Address Report, http://www.potaroo.net/tools/ipv4/

[2] Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification,

https://www.ietf.org/rfc/rfc2460.txt

[3] Bagnulo, M., Sullivan, A., Matthews, P., Beijnum, 1.: DNS64: DNS extensions for

network address translation from IPv6 clients to IPv4 servers, IETF, ISSN: 2070-

1721 (RFC 6147), 2011

[4] Bagnulo, M., Matthews P., Beijnum, 1.: Stateful NAT64: Network address and

protocol translation from IPv6 clients to IPv4 servers, IETF, ISSN: 2070-1721

(RFC 6146), 2011

[5] Egevang, K., Francis, P.: The IP Network Address Translator (NAT), IETF, RFC

1631, 1994

[6] Thomson, S., Huitema, C., Ksinant, 5., Souissi, M.: DNS Extensions to Support IP

Version 6, IETF, RFC 3596, 2003

[7] Škoberne, N., Ciglarič, M.: Practical Evaluation of Stateful NAT64/DNS64

Translation Advances in Electrical and Computer Engineering, vol. 11, no. 3,

2011, pp. 49-54. DOI: 10.4316/AECE.2011.03008

[8] Bajpai, 5., Melnikov, N., Sehgal, A., Schönwälder, J.: Flow-based Identification of

Failures Caused by IPv6 Transition Mechanisms in Dependable Networks and

Services, Springer LNCS, Vol. 7279, 2012, pp 139-150. DOI: 10.1007/978-3-642-

30633-4_19

[9] Répás, S., Hajas, T., Lencse, G.: Application Compatibility of the NAT64 IPv6

Transition Technology in Proc. 37th International Conference on Telecommuni-

cations and Signal Processing (TSP 2014), Berlin, Germany, July, 1-3, 2014, pp.

49-55.

[10] Bagnulo, M., Garcia-Martinez, A., Van Beijnum, 1.: The NAT64/DNS64 tool suite

for IPv6 transition, IEEE Communications Magazine, vol. 50, no. 7, pp. 177-183,

2012. DOI: 10.1109/MCOM.2012.6231295

A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy

24

[11] MRO: IPv6 transition mechanisms: NAT64,

http://en.wikipedia.org/wiki/IPv6_transition_mechanisms#mediaviewer/File:NAT

64.svg

[12] TAYGA: Simple, no-fuss NAT64 for Linux, http://www.litech.org/tayga/

[13] Theo de Raadt: OpenBSD 5.1, May 1, 2012, ISBN 978-0-9784475-9-5,

http://www.openbsd.org/51.html

[14] Hodzic, E., Mrdovic, S.: IPv4/IPv6 Transition Using DNS64/NAT64: Deployment

Issues, Proc. IX International Symposium on Telecommunications (BIHTEL),

Sarajevo, Bosnia and Herzegovina, 2012

[15] Llanto, K. J. O., Yu, W. E. S.: Performance of NAT64 versus NAT44 in the

Context of IPv6 Migration, in Proc. International MultiConference of Engineers

and Compuer Scientists (IMECS 2012), Hong Kong, pp. 638-645, 2012

[16] Monte, C. P. et al: Implementation and evaluation of protocols translating

methods for IPv4 to IPv6 transition, Journal of Computer Science & Technology,

vol. 12, no. 2, pp. 64-70

[17] Yu, S., Carpenter, B. E.: Measuring IPv4 – IPv6 translation techniques, Technical

Report 2012-001, Department of Computer Science, The University of Auckland,

January 2012

[18] Lencse, G., Répás, S.: Performance analysis and comparison of the TAYGA and of

the PF NAT64 implementations, in Proc. 36th International Conference on

Telecommunications and Signal Processing (TSP 2013), Rome, Italy, pp. 71-76,

2013. DOI: 10.1109/TSP.2013.6613894

[19] Lencse G., Takács, G.: Performance Analysis of DNS64 and NAT64 Solutions,

Infocommunications Journal, Vol. 4, no 2, pp. 29-36, 2012

[20] Lencse G., Répás, S.: Performance analysis and comparison of different DNS64

implementations for Linux, OpenBSD and FreeBSD, in Proc. 27th IEEE

International Conference on Advanced Information Networking and Applications

(AINA-2013) Barcelona, Spain, pp. 877-884, 2013. DOI: 10.1109/AINA.2013.80

