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Abstract: Due to its rapid spread, Internet has now outgrown the address space 

provided by IPv4. The transition to the new IPv6 protocol is extremely slow. 

The different transition techniques are intended to facilitate the transition to 

the new version of Internet Protocol. The NAT64 transition technique is one 

of the most suitable solutions. In this paper, both the performance and the 

stability of two NAT64 gateway implementations are examined by ICMP, 

TCP and UDP protocols. The tested two free implementations, the TAYGA 

on the Linux system and the PF of the OpenBSD system can be effectively 

used in a production environment, and can facilitate the deployment of the 

IPv6 protocol. 
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1. Introduction 

Due to the exhaustion of the IPv4 address pool [1], the internet service providers will 

not be able to provide IPv4 addresses to their customers in the near future. The application 

of the new version of the Internet Protocol, the IPv6 can provide practically infinite 

number of addresses for the huge number of Internet-enabled devices. The specification 

of the IPv6 protocol exists since 1998 [2], but the widespread application of it is still 

pending. While the IPv6 protocol can solve the address exhaustion problem, the 

application of the new protocol raises another problem. Because of the different IP header 

structure and addressing scheme, the direct communication between an IPv4 and IPv6 

hosts is impossible. The most important hindering factor of the rapid deployment of the 

IPv6 protocol is the combination of this incompatibility and the huge number of the 

installed IPv4 only devices. To solve this problem and speed up the IPv6 widespread 

implementation one can use the so called IPv6 transition techniques. These techniques 

enable the communication between hosts in a mixed IPv4 and IPv6 network. Over the 

years several transition techniques have been developed. According to the authors’ 

opinion, the combination of a DNS64 [3] server and a NAT64 [4] gateway is currently 

one of the most useful techniques to speed up the IPv6 deployment. The appropriate 

choice of high performance and very stable DNS64 and NAT64 implementations can be 

crucial for the service providers. This paper deals with the stability and performance of 
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two different open source NAT64 implementations with the three most important 

protocols over: ICMP, UDP and TCP. 

The remainder of this paper is organized as follows: first, the operation of the 

DNS64+NAT64 solution is described, second, TAYGA under Linux and Packet Filter of 

OpenBSD are introduced, third, the NAT64 performance and stability research results are 

surveyed, fourth, the description of the test network and the testing method of each 

protocols are given, fifth, the test results are introduced, sixth, our results are summarized 

and discussed, and finally, our conclusions are given. 

2. The DNS64 and NAT64 transition techniques 

In the current phase of the IPv6 deployment it is a very important task to provide 

connectivity between an IPv6 only client and an IPv4 only server. To solve this problem 

one can use the DNS64+NAT64 combination. DNS64 is an extension of the DNS server, 

and NAT64 is similar to the “normal” Network Address Translation [5] process, but with 

address family translation. The operation of DNS64+NAT64 is shown in Fig. 1. 

The explanation of the communication process is the following: 

 Step 1: The IPv6 only client sends a query to its name server about the IPv6 

address of the destination server with the DNS name of the server (query the 

AAAA record [6] of the destined server). 

 Step 2: The DNS64 server tries to resolve the DNS name. 

 Step 3: 

 If the DNS server resolves the given name to an IPv4 address, but not 

IPv6: The DNS64 server generates an answer with an AAAA record 

with a synthesized IPv6 address. This IPv6 address contains the given 

IPv4 address of the server at the last 32 bits, while the first 96 bits can 

be a network specific prefix or the NAT64 well-known prefix. This 

special IPv6 address is called IPv4-Embedded IPv6 Address. 

 If the DNS server could resolve the given name to an IPv6 address (the 

given name has an AAAA resource record) then the DNS64 server acts 

as normal. (This case is not shown in the figure.) 

 Step 4: The DNS64 server sends back as an answer for the query of its client. 

 Step 5: The client sends the IPv6 packet through its (NAT64) gateway. 

 Step 6: 

 If the destination address of the packet contains the special prefix, the 

gateway knows that the IPv6 packet is destined to an IPv4 server. The 

NAT64 gateway makes a stateful network address and address family 

translation between IPv6 and IPv4 and sends the resulted IPv4 packet 

to the IPv4 only server with its own public IPv4 address as source 

address. The NAT64 gateway needs to have both IPv4 and IPv6 

addresses, to make this process happen. 
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 If the destination address of the packet does not contain the prefix, the 

gateway forward the packet normally to its next hop. (This case is not 

shown in the figure.) 

 Step 7: The IPv4 only server sends its answer to the IPv4 address of the NAT64 

gateway. 

 Step 8: The NAT64 gateway assembles the IPv6 version of the received packet 

using the payload of the IPv4 packet and its own state table and then sends the 

IPv6 packet to the originating client. 

The whole process is intended to be transparent for the client computer. This IPv6 

transition solution is compatible with the majority of the wide spread application layer 

protocols that work in client-server model (e.g. HTTP, SMTP, POP3, IMAP4, SSH, etc.) 

but it has issues with those protocols that transfer IP addresses (e.g. FTP, SIP) and usually 

does not work with peer-to-peer applications (e.g. BitTorrent), see: [7], [8] and [9]. 

For a more detailed but still easy to follow introduction to DNS64+NAT64, see [10] 

and for the most accurate and detailed information, see the relating RFCs [3] and [4]. 

IPv6

CLIENT

DNS64 DNS

WEB
SERVER

NAT64

3. A 192.0.2.14. AAAA 64:ff9b::c000:201

1. h2.example.com ?
2. h2.example.com ?

6. Packet to 192.0.2.1

IPv4

7. Answer from 192.0.2.1

 

Figure 1. Operation of DNS64+NAT64 (Based on: [11])  

3. The examined NAT64 implementations 

3.1. TAYGA 

TAYGA [12] is a free stateless NAT64 implementation for Linux under GPLv2 license. 

The main goal of its developers was to provide a production quality NAT64 service where 

a dedicated NAT64 device would be overkill. The latest release of TAYGA is 0.9.2. 

According to its authors, TAYGA could never come close to offering the power and 

flexibility available in the packet filter of Linux (iptables), so instead TAYGA turns IPv6 

into IPv4 in the most transparent manner possible, allowing existing IPv4-only tools to 

be used to further manipulate sessions flowing through it. It means that by itself it can 

create only a one-to-one mapping between IPv6 and IPv4 addresses. For this reason 

TAYGA is used together with a stateful NAT44 packet filter (iptables under Linux): 

TAYGA maps the source IPv6 addresses to different IPv4 addresses from a suitable size 

of private IPv4 address range, and the stateful NAT44 packet filter performs an SNAT 

(Source Network Address Translation) from the private IPv4 addresses to the public IPv4 
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address of the NAT64 gateway. In the reverse direction, the stateful NAT44 packet filter 

“knows” which private IPv4 address belongs to the reply packet arriving to the IPv4 

interface of the NAT64 gateway. After the NAT44 translation, TAYGA can determine 

the appropriate IPv6 address using its one-to-one address mapping and then it rewrites 

the packet to IPv6. To work with TAYGA, a suitably large private IPv4 dynamic address 

pool should be provided. 

Packet Filter, PF 

The Packet Filter was introduced in the OpenBSD system in 2001. PF is a very popular 

firewall application in the BSD systems. The PF of OpenBSD supports stateful and 

stateless mode at the same time. It supports various types of packet manipulation, and it 

supports IPv4 and IPv6 stateful NAT for many years. Since OpenBSD 5.1 it supports 

stateful NAT64, too [13]. Stateful behaviour means that it does not need the help of a 

stateful NAT44 packet filter to work as a complete NAT64 gateway. This nature of PF 

can speed up the NAT64 translation. 

4. A Short Survey of the Current Research Results 

Though NAT64 is addressed in high number of current research papers, only a relatively 

few of them deals with the performance analysis of its different implementations. For 

example, [14] gives a good summary of the NAT64 papers until 2012 and it states that 

“two papers were found that deal with NAT64 performance issues”.  And also many of 

those that deal with the performance of NAT64 implementations do it in the way that they 

examine the performance of a given NAT64 implementation together with a given 

DNS64 implementation. For instance, they measure the performance of the TAYGA 

NAT64 implementation with the TOTD DNS64 implementation in [15]. The authors of 

two other papers [16] and [17] measure the performance of the Ecdysis NAT64 

implementation, which uses its own DNS64 implementation. However, we have already 

shown that as DNS64 and NAT64 are two distinct services, they may be and thus should 

be analyzed separately to be able to choose the best suiting implementations for 

someone’s purposes [18]. We have published our first results on the separate performance 

analysis of the TAYGA NAT64 implementation and of the BIND DNS64 implementation 

in [19]. Later on, we compared the performance of the BIND and TOTD DNS64 

implementations under Linux, OpenBSD and FreeBSD in [20]. We tested the stability 

and the performance of the TAYGA and of the PF NAT64 implementations using ICMP 

in [18]. The aim of our current research it to test their stability and compare their 

performance using also TCP and UDP protocols, as they are used over IP in real life 

applications. 

5. The test environment for the NAT64 performance measurements 

5.1. The topology of the test network 

The test network was built up in the Infocommunications Laboratory of the Department 

of Telecommunications, Széchenyi István University. The topology of the network is 

shown in Fig. 2. All of the network elements were connected with 1000Base-TX network 

connections. For this purpose, a 3Com Baseline 2948-SFP switch was used. The 
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responder computer can be seen on the top of the figure. The role of the computer was to 

answer all of the measurement traffic destined to it. For this reason, a high performance 

workstation computer was used for this role. The central element of the network is the 

NAT64 server. This gateway was built from the lowest performance computer in the 

laboratory, because serious overload situation was necessary during the measurement 

process. In the bottom of the picture eight pieces of high performance test clients are 

shown. These workstation computers played the role of the high number of clients during 

the different test scenarios. 

Dell Precision 490

8x Dell Precision 490

192.168.100.111/24

192.168.100.233/24

fdb9:a0ab:af17:ffff::1/64

fdb9:a0ab:af17:ffff::112/64 fdb9:a0ab:af17:ffff::119/64

Pentium III  Celeron 900MHz

. . .

responder
10.0.0.0/8

NAT64 
gateway

Client computers

3com Baseline 2948-
SFP Plus switch 

 

Figure 2. Topology of the test network 

5.2. The hardware configuration of the computers 

The configuration of the responder computer was the following: 

 DELL 0GU083, Intel 5000X chipset mainboard 

 Two Dual Core Intel(R) Xeon(R) CPU 5160 3.00GHz dual core microprocessors 

 4x1 GB 533 MHz DDR2 SDRAM (quad channel) 

 Broadcom NetXtreme BCM5752 Gigabit Ethernet PCI Express network card 

 Debian 6.0.7 



A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy 

6 

 KDE 4.4.5 graphic environment 

The configuration of the NAT64 gateway computer was the following: 

 Intel D815EEA2 mainboard 

 900 Intel Pentium III (Coppermine) microprocessor 

 256 MB, 133 MHz SDRAM 

 Two 3Com 3c940 Gigabit Ethernet PCI network cards 

The configuration of all of the client computers was the following: 

 DELL 0GU083, Intel 5000X chipset mainboard 

 Two Dual Core Intel(R) Xeon(R) CPU 5140 2.33GHz dual core microprocessors 

 4x1 GB 533 MHz DDR2 SDRAM (quad channel) 

 Broadcom NetXtreme BCM5752 Gigabit Ethernet PCI Express network card 

 Debian 6.0.7 

5.3. The software configuration of the computers 

The NAT64 gateway performance was monitored with the commands as seen in Figures 

3 and 4. The settings of the network interfaces are shown in Figures 5, 6 and 7. 

dstat -t -c -m -l -p --unix --output load.txt 

Figure 3. NAT64 gateway computer performance monitoring on Linux system 

vmstat –w 1 > load.txt 

Figure 4. NAT64 gateway computer performance monitoring on OpenBSD system 

The settings of the TAYGA on Linux are shown in Fig. 8. The starting of TAYGA was 

automatized with a shell script. The script is shown in Fig. 9. The NAT64 function was 

enabled on the OpenBSD system in a modification in the /etc/pf.conf file as shown in 

Fig. 10. 
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#Internal 
auto eth0 
iface eth0 inet6 static 
address fdb9:a0ab:af17:ffff::1 
netmask 64 
up sleep 1 
up echo 0 > /proc/sys/net/ipv6/conf/eth1/autoconf 
up echo 0 > /proc/sys/net/ipv6/conf/eth1/accept_ra 
post-up sleep 1 
post-up /root/nat64-config.sh 
 
#External 
auto eth1 
iface eth1 inet static 
address 192.16.100.233 
netmask 255.255.255.240 
gateway 192.168.100.1 
 
pre-up echo 1 > /proc/sys/net/ipv6/conf/all/forwarding 

Figure 5. Network interface settings in the /etc/network/interfaces file on the 

Linux system 

inet 192.168.100.233 255.255.255.0 
!route add –inet 10.0.0.0/8 192.168.100.111 

Figure 6. External network interface settings in the /etc/hostname.sk0 file on the 

OpenBSD system 

inet6 fdb9:a0ab:af17:ffff::1 64 

Figure 7. Internal network interface settings in the /etc/hostname.sk1 file on the 

OpenBSD system 

tun-device nat64 
ipv4-addr 172.16.0.1 
prefix fdb9:a0ab:af17:ffff:ffff:ffff::/96 
dynamic-pool 172.16.0.0/12 
data-dir /var/db/tayga 

Figure 8. TAYGA settings in the /usr/local/etc/tayga.conf file 

On the responder computer, all of the IP traffic destined to the 10.0.0.0/8 network were 

redirected to the local address of the Ethernet interface of the computer with iptables 

command as seen on Fig. 11. 
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#!/bin/bash 
tayga --mktun 
ip link set nat64 up 
 
#Private IPv4 address space for stateless NAT 
ip addr add 172.16.0.1 dev nat64 
ip route add 172.16.0.0/12 dev nat64 
 
#For NAT64 unique local IPv6 address space 
ip addr add fdb9:a0ab:af17:ffff::2 dev nat64 
ip route add fdb9:a0ab:af17:ffff:ffff:ffff::/96 dev nat64 
tayga 
 
#Enable packet forwarding 
echo 1 > /proc/sys/net/ipv4/ip_forward 
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding 
 
#Enable stateful NAT44 
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE 
 
#The used addresses are routed to the responder 
ip route add 10.0.0.0/8 via 192.168.100.111 

Figure 9. The nat64-config.sh shell script on Linux system 

set limit states 40000 
pass in on sk1 inet6 from any to fdb9:a0ab:af17:ffff:ffff:ffff::/96 \ 
  af-to inet from 192.168.10.233 

Figure 10. The /etc/pf.conf settings on OpenBSD system 

iptables -t nat -A PREROUTING -d 10.0.0.0/8 -j DNAT \ 
  --to-destination 192.168.100.111 

Figure 11. iptables settings on the responder computer 

6. The measurement process and scripts 

6.1. ICMP 

Responder 

During the preliminary measurements, some fluctuations were experienced in the load of 

the NAT64 gateway. This behavior was caused by the limited size of the connection 

tracking table on the responder computer. This problem could be solved with two 

methods. First, the size of the table could be drastically increased. Second, the timeout 

value of a record in the table could be decrease to a low value. For the measurements, the 

second solution was chosen. It is shown on Figure 12. 
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echo 1 > /proc/sys/net/netfilter/nf_conntrack_icmp_timeout 

Figure 12. Setting the timeout value of ICMP packets to 1s in the conntrack table 

Client computers 

All of the measurements were made with 1, 2, 4 and 8 client computers simultaneously. 

The measurement of the execution time and the starting of the experiment was initiated 

with the command line on the Fig. 13. The synchronized start of the scripts on the client 

computers were done by using the “Send Input to All Sessions” function of the Konsole 

terminal program of the KDE graphical environment on a separated “controller” 

computer. 

~# /usr/bin/time –f "%" –o runtime –a ./icmptest.sh experiment_ID 

Figure 13. Starting the measurement 

The test script is shown in figure 14. 

#!/bin/bash 
mkdir $1 
i=`cat /etc/hostname | grep -o .$` 
for b in {0..255} 
do 
  mkdir $1/$b 
  for c in {0..248..8} 
  do 
    ping6 -c10 -i0  fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$c \ 
      >> $1/$b/nat64p-10-$i-$b-$c & 
    ping6 -c10 -i0  fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+1)) \ 
      >> $1/$b/nat64p-10-$i-$b-$((c+1)) & 
    ping6 -c10 -i0  fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+2)) \ 
      >> $1/$b/nat64p-10-$i-$b-$((c+2)) & 
    ping6 -c10 -i0  fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+3)) \ 
      >> $1/$b/nat64p-10-$i-$b-$((c+3)) & 
    ping6 -c10 -i0  fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+4)) \ 
      >> $1/$b/nat64p-10-$i-$b-$((c+4)) & 
    ping6 -c10 -i0  fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+5)) \ 
      >> $1/$b/nat64p-10-$i-$b-$((c+5)) & 
    ping6 -c10 -i0  fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+6)) \ 
      >> $1/$b/nat64p-10-$i-$b-$((c+6)) & 
    ping6 -c10 -i0  fdb9:a0ab:af17:ffff:ffff:ffff:10.$i.$b.$((c+7)) \ 
      >> $1/$b/nat64p-10-$i-$b-$((c+7)) 
  done 
done 

Figure 14. icmp-test.sh shell script 

Each client sent 256*256*10=655360 ICMP Echo request packets to 256*256=65536 

different destination IP addresses during one experiment. The body of the cycle contains 

8 ping commands which were started concurrent. With the 8 simultaneous commands, we 

were able to provide sufficiently large load on the NAT64 gateway. 



A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy 

10 

6.2. TCP 

Responder 

On the responder computer, the Apache 2 web server was used to respond the queries 

sent over TCP. The Apache 2 web server was installed from the Debian repository by the 

apt-get command. The preparation of the files with different sizes was made by the dd 

command. For example to generate a 100 byte long file, the following command line was 

used:  

dd if=/dev/zero of=/var/www/file bs=100 count=1 

The timeout value of the TCP records in the connection tracking table was decreased 

to 1s by issuing the following command: 

 echo 1 > /proc/sys/net/netfilter/nf_conntrack_tcp_timeout_time_wait 

Client computers 

In this case the tcp256.sh shell script was started synchronously, similarly to the ICMP 

measurement. The tcp256.sh script is shown in Fig. 15. 

The tcp.sh script was invoked 256 times by the tcp256.sh script. The tcp.sh script 

was responsible for downloading the files from the responder computer. The two scripts 

downloaded altogether 256*256=65536 files from 65536 IP addresses. The tcp.sh script 

is shown in Fig. 16. 

#!/bin/bash 
i=`cat /etc/hostname | grep -o .$` 
for b in {0..255} 
do 
    mkdir $1/$b  
    /usr/bin/time -f "%e" -o output.txt -a ./tcp.sh $i $b $1 
done 

Figure 15. tcp256.sh shell script 

#!/bin/bash 
for c in {0..255} 
do 
  wget -m http://[fdb9:a0ab:af17:ffff:ffff:ffff:10.$1.$2.$c]/file \ 
    -P $3/$2 
done 

Figure 16. tcp.sh shell script 
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6.3. UDP 

6.4. Network 

For the UDP measurements, the OpenVPN software with UDP VPN tunnel was 

selected. The logical network diagram is shown in Fig. 17. The Responder computer 

played the role of the OpenVPN server, while all of the Client computers were the clients 

of the OpenVPN server. 

Responder

Client 1

Client 8

NAT64 gatewayVPN Virtual interface

VPN Virtual interface

VPN Virtual interface

172.16.0.1/16

fdb9:a0ab:af17:ffff::112/64

fdb9:a0ab:af17:ffff::119/64172.16.0.28/16

172.16.0.21/16

..
.192.168.100.111/24

192.168.100.233/24 fdb9:a0ab:af17:ffff::1/64

UDP6UDP

IPV4 network

IPV6 network

Apache http server

UDP 
channel

 
Figure 17. Network diagram of the UDP measurement  

6.5. Responder 

The OpenVPN server was installed from the Debian repository by the apt-get 

command. For the working OpenVPN environment, the following tasks were performed: 

 Step 1: Editing the /usr/share/doc/openvpn/examples/easy-rsa/2.0/vars 

file, according to Fig. 18. 

 Step 2: Creation of the /etc/openvpn/keys directory with the mkdir command. 

 Step 3: Copying the openssl.cnf, whochopensslcnf, and pkitool files from 

the /usr/share/doc/openvpn/examples/easy-rsa/2.0/ to the newly created 

/etc/openvpn/keys directory by cp command. 

 Step 4: Building the certificate authority by issuing the commands on Fig. 19. 

 Step 5: Creating the certificates by issuing the commands on Fig. 20. 

 Step 6: Copying the ca.crt, dh1024.pem, server.crt and server.key files to 

the /etc/openvpn/ directory. 

 Step 7: Extraction of the /usr/share/doc/openvpn/examples/sample-

configfiles/server.conf.gz file into the /etc/openvpn directory and 

modifying the server.conf, according to Fig. 21. 



A. Author et al. – Acta Technica Jaurinensis, Vol. 10., No. Y., pp. xx-yy, 20xy 

12 

export KEY_COUNTRY=”HU”  
export KEY_PPROVINCE=”GYMS”  
export KEY_CITY=”GYOR”  
export KEY_ORG=”TILB”  
export KEY_EMAIL=openvpnadmin@tilb.sze.hu 

Figure 18. Modification of the /usr/share/doc/openvpn/examples/easy-

rsa/2.0/vars file 

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/vars 

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/clean-all 

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/build-ca 

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/build-dh 

Figure XVIX. Creating the Certificate Authority 

cd /usr/share/doc/openvpn/examples/easy-rsa/2.0/ 
./build-key-server server 
./build-key client 

Figure 20. Creating the certificates 

proto udp 
dev tun 
server 172.16.0.0 255.255.0.0 
duplicate cn 
group 
nogroup 

Figure 21. The modifications of the /etc/openvpn/server.conf file 

6.6. Clients 

The OpenVPN clients were installed from the Debian repository by the apt-get 

command. For the working OpenVPN environment, the following tasks were performed: 

 Step 1: Copying the client.crt, ca.crt, client.key files from the 

/etc/openvpn/keys/ directory of the responder computer into the 

/etc/openvpn/ directory of the client computers. 

 Step 2: Copying the /usr/share/doc/openvpn/examples/sample-

configfiles/client.conf file into the /etc/openvpn/ directory and 

modifying it, according to Fig. 22. 

dev tun 
proto udp6 
remote fdb9:a0ab:af17:ffff:ffff:ffff:192.168.100.111 

Figure 22. The modifications of the /etc/openvpn/client.conf file 

In this case the udp256.sh shell script was started synchronously on the client computers, 

similarly to the ICMP and TCP measurements. The udp256.sh script is shown in Fig. 23. 
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The udp.sh script was invoked 64 times by the udp256.sh script. The udp.sh script 

was responsible the downloading of the files from the responder computer, see Fig. 24. 

The core of the “for” cycle downloaded four files parallel. The two scripts downloaded 

altogether 64*256=16384 files from the same IP address. 

#!/bin/bash 
mkdir $1 
for b in {0..63} 
do 
  /usr/bin/time -f "%e" -o output.txt -a ./udp.sh $b $1 
done 

Figure 23. udp256.sh shell script 

#!/bin/bash 
for c in {0..252..4} 
do 
  wget http://172.16.0.1/file -P $2/$1/$c & 
  wget http://172.16.0.1/file -P $2/$1/$((c+1)) & 
  wget http://172.16.0.1/file -P $2/$1/$((c+2)) & 
  wget http://172.16.0.1/file -P $2/$1/$((c+3)) 
done 

Figure 24. udp.sh shell subscript 

7. NAT64 performance results 

7.1. ICMP 

TAYGA 

The results can be found in Table 1. Row 1 shows the number of clients that executed the 

test script. (The load of the NAT64 gateway was proportional to the number of the 

clients.) The packet loss ratio is displayed in the second row. Rows 3, 4 and 5 show the 

average, the standard deviation and the maximum values of the response time (expressed 

in milliseconds), respectively. The following two rows show the average and the standard 

deviation of the CPU utilization of the test computer. The last row shows the number of 

forwarded packets per seconds. 

Table 1. TAYGA, ICMP NAT64 performance 

1 Number of clients 1 2 4 8 

2 Packet loss (%) 0.002 0.003 0.005 0.007 

3 Response time (ms) average 1.67 3.65 7.42 28.47 

4 std. deviation 0.56 0.94 1.70 9.21 

5 maximum 30.00 34.70 52.40 87.24 

6 CPU utilization (%) average 88.89 95.64 99.55 100 

7 std. deviation 2.16 1.77 0.89 0 

8 Traffic volume (packet/sec) 3825 3928 4097 4128 
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Evaluation of the results: 

 The packet loss ratio was slightly increased with higher traffic. With one client 

the NAT64 gateway produced 0.002% packet loss, whereas with 8 clients it was 

0.007% packet loss. 

 The CPU utilization was very high on the gateway even with one client. With 2 

and 4 clients the behavior of the system remained predictable and the averages 

of the response times were only slightly more than doubled (3.65/1.67=2.19; 

7.42/3.65=2.03). With 8 clients, the system remained stable, but the average 

CPU usage reached the 100%, while the average of the response times was 

almost four fold (28.47/7.42=3.84).  

 The number of served queries were increased while the gateway computer had 

free CPU capacity. When the CPU usage reached the 100%, the response time 

increased unexpectedly. 

Packet Filter 

The results can be found in Table 2. Evaluation of the results: 

 The packet loss rate was always very low. 

 Due to the doubling of the load on the NAT64 gateway, the response time ratios 

were as follows: 0.7/0.48=1.45; 1.43/0.7=2.04; 3.19/1.42=2.23. The CPU 

utilization increased with more clients, but the system remained stable in the 

serious overload situation with 8 clients. 

 The number of served queries increased while the gateway computer had free 

CPU capacity. From 1 to 2 clients, there was 64.13% increase in the number of 

answered queries, whereas from 2 to 4 clients there was 22.73% increase. With 

8 clients, the NAT64 gateway reached its maximum capacity, the CPU usage 

was close to 100%, and the number of served queries showed only a slight 

increase (4.35%). 

Table 2. PF, ICMP NAT64 performance 

1 Number of clients 1 2 4 8 

2 Packet loss (%) 0.001 0.002 0.007 0.008 

3 Response time (ms) average 0.48 0.70 1.43 3.19 

4 std. deviation 0.22 0.46 0.77 1.15 

5 maximum 21.30 30.50 44.00 43.40 

6 CPU utilization (%) average 49.86 77.23 91.17 96.47 

7 std. deviation 6.64 3.91 1.82 1.51 

8 Traffic volume (packet/sec) 8536 14010 17195 17944 

Comparison of the ICMP results 

Comparing the performance results with ICMP packets of TAYGA and PF, we can state 

the followings: 
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 With one client, the throughput of PF is significantly higher than that of 

TAYGA: 8536/3825=223.16%, in addition to that, PF reaches this performance 

with significantly lower usage of the CPU. With 2, 4 and 8 clients the ratios of 

the throughputs of the two implementations are: 14010/3928=356.67%; 

17195/4097=419.69%; 17944/4128=436.69%. (Fig. 25.) 

 A similar phenomenon could be seen with the average response times: 

1.67/0.48=3.48; 3.65/0.7=5.21; 7.42/1.42=5.23; 28.47/3.19=8.92 (Fig. 26.). 

 In addition, the maximum values of the response times of PF are better, too. 

 

Figure 25. ICMP throughput comparison (higher is better) 

 

Figure 26. ICMP response time comparison (lower is better) 
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The performance measurements of the two NAT64 gateway implementations with TCP 

protocol were done by using 8 different file sizes. This method generated 8 times more 

data. It is more practical to interpret these results with graphs. 

TAYGA 

The average number of served queries can be seen on Fig. 27. The horizontal axis (x) 

shows the size of the files. The sizes were doubled during the measurements from 100 to 
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whereas the graph depth (z) corresponds to the number of clients. In the intersection 

points of different values of the x and z axes, the y values show that how many files with 

a given size and at a given number of clients the system was able to serve. The average 

of the response times and the average values of the CPU utilization are shown on Figures 

28 and 29, respectively. Evaluation of the results: 

 With one client, the CPU utilization is strictly increasing from 55% to 75% in 

the 100 – 12800 bytes file size range. The system was able to serve nearly the 

same number of files of size from 100 to 3200 bytes. Then the curve started to 

break down slowly, with 6400 bytes it served by 21.51% less and with 12800 

bytes it served by 25.8% less than with the previous size (see Fig. 27). 

 With two clients, the CPU still had free capacity, thus the response time just 

slightly increased, the system remained stable. The throughput of the system 

with 100 bytes files increased by 683/405=68.64% compared to one client. 

But with 12800 byte files, this difference is only 292/233=25.32%. 

 With 4 and 8 clients, the system does not have free capacity, thus the response 

times are increasing continuously. 

 

Figure 27. Number of transferred files per second by TAYGA NAT64 gateway with TCP 

protocol 

 

Figure 28. Average download time of 256 files with TAYGA and TCP protocol 
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Figure 29. Average CPU utilization with TAYGA 

PF 
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Figure 30. Number of transferred files per second by PF NAT64 gateway with TCP 

protocol 

 

Figure 31. Average download time of 256 files with PF 

 

Figure 32. Average CPU utilization with PF 
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Comparison of the TCP results 

Comparing the performance results of TAYGA and PF with transfer via TCP protocol, 

we can state the followings: 

 With one, two and four clients the CPU utilization of PF of OpenBSD was much 

lower than that of TAYGA on Linux system. To serve one client with 100 bytes 

files, PF needs 18.82% CPU time, whereas the TAYGA needs 55.5%. Thus the 

average and maximum values of the transfer times are also better with PF. 

 In download time with 12800 bytes files the advantage of the PF is about 3.5 

times. 

 In serious overload situation, the TAYGA remains stable, where the behavior of 

the PF is unpredictable but its performance is still higher than that of TAYGA. 

7.3. UDP 

TAYGA 

The number of the transferred files, the average of the download times and of the CPU 

utilization are shown on Figure 33, 34, 35, respectively. Evaluation of the results: 

 With one client, the utilization of the CPU is 46.04% and it starts to increase at 

800 bytes long files, and it grows until 70.41% at the end of the range. The 

average values of the download times doubled to the end of the range. With 

larger size of the transferred files the number of them slowly decreases from 644 

to 335, which means -48%. 

 With two clients, the CPU utilization is between 77.85% and 96.28%. Thus the 

average and maximum values of the response times increase from 1600 bytes. 

With larger size of the transferred files the number of them slowly decreases 

from 1228 to 506, which means -59%. 

 With four and eight clients, the response times greatly increase compared to the 

two measurement with two clients. The main cause of this phenomenon is the 

high processor utilization, which is about 100% at the whole range. With four 

and eight clients the number of the transferred files decreases with 61% and 62% 

to the end of the range. 
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Figure 33. Number of transferred files per second by TAYGA NAT64 gateway with 

UDP protocol 

 

Figure 34. Average download time of 256 files with TAYGA 

 

Figure 35. Average CPU utilization with TAYGA 

PF 
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 With one client the utilization of the CPU is 19.47% and it starts to increase at 

800 bytes long files, until 32.35% at the end of the range. The average values of 

the response times increase by 46.87% to the end of the range. With larger size 

of the transferred files the number of them slowly decreases from 747 to 446, 

which means -40%. 

 With two clients, the CPU utilization is between 32.67% and 48.87%. The 

average values of the response times increase by 47% to the end of the range. 

The response times increase by 3.13% through 15% at the whole range compared 

to the one client case, while the number of the transferred files increases by 

92.5% through 95%. 

 With four clients, the utilization of the CPU starts at 59.41% and starts to 

increase between 1600 and 3200 bytes long files, until 75.59% at the end of the 

range. The response times are almost doubled in the range. The response times 

increase by 6.1% at 100 bytes, whereas 26% at 12800 bytes, compared to the 

measurement with two clients, while the number of transferred files increase to 

195.91% with 100 bytes files and 167% with 12800 bytes files.  

 With eight clients, the average utilization of the processor starts at 76.31%, and 

finishes at 82.41%. Comparing with the 4 clients case, the average of the 

response times increases by 37% at 100 bytes, and by 75% at the end of the 

range, while the throughput of the NAT64 gateway increases by 43% and 18%. 

 

Figure 36. Number of transferred files per second by PF NAT64 gateway with UDP 

protocol 
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Figure 37. Average download time of 256 files with PF 

Comparison of the UDP results 

With one client, the PF based NAT64 gateway can transfer by about 20% more files 

then TAYGA at the whole range, with less than the half of the CPU usage of the TAYGA. 

With more clients PF gains even greater superiority over TAYGA. The advantage of PF 

with eight clients in the number of transferred 100 bytes long files is 295% and it is 320% 

with 12800 bytes files. TAYGA used all of its computing power with 4 clients, whereas 

PF cannot reach the 83% with eight clients. Both of the implementations proved their 

stability during the measurements. 

 

Figure 38. Average CPU utilization with PF 
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per second. With the TCP protocol, the dominance of PF is reduced to 3.5 times, which 

is still a significant value. However, PF became unpredictable under very high volume of 

TCP traffic. PF produced its relatively lowest values with UDP traffic, “only” 3.2 times 

outperformed TAYGA on Linux, and remained stable all of the time. 

As for their response times, PF was 8.9 times faster than TAYGA with ICMP protocol at 

the highest load, whereas this proportion was 3.45 with TCP and 3.18 with UDP protocol. 
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