
1

 Review version

Design and Implementation of a Software Tester for Benchmarking

Stateful NAT64 Gateways: Theory and Practice of Extending

Siitperf for Stateful Tests

Gábor LENCSE†a

SUMMARY Our siitperf is the world’s first RFC 8219 compliant

free software SIIT (Stateless IP/ICMP Translation, also called stateless

NAT64) benchmarking tool. It was written in C++ using DPDK (Intel

Data Plane Development Kit). Our current effort aims to design and

implement a test program for stateful NAT64 gateways. Due to the

object-oriented design of siitperf, it is feasible to extend it for

stateful tests, while keeping its original design and features. In this

paper, we introduce the problem of benchmarking stateful NAT64 and

stateful NAT44 (also called NAPT: Network Address and Port

Translation) gateways and propose various solutions. We disclose the

design and the most important implementation decisions of the stateful

extension of siitperf. We prove the viability of our design and

implementation by a functional NAT64 test and performing the

maximum connection establishment rate, throughput and frame loss

rate measurements of a stateful NAT44 gateway. We also carry out an

initial performance estimation of the stateful extension of siitperf.

Our tester is distributed as free software under the GPLv3 license for

the benefit of the research, benchmarking and networking communities.

keywords: benchmarking, IPv6 transition technology, performance

analysis, stateful NAT44, stateful NAT64.

1. Introduction

RFC 8219 [1] has defined a comprehensive

benchmarking methodology for IPv6 transition

technologies in 2017. To that end, it classified the high

number of IPv6 transition technologies [2] into a small

number of categories: dual stack, single translation,

double translation and encapsulation technologies. Both

the SIIT [3] (Stateless IP/ICMP Translation, also called

stateless NAT64) and the stateful NAT64 [4] IPv6

transition technologies belong to the single translation

category.

We have created siitperf [5], the world’s first RFC

8219 compliant free software SIIT benchmarking tool in

2019. We have implemented it in C++ using DPDK and

documented its design, implementation and initial

performance estimation in [6]. As RFC 8219 reused the

throughput benchmarking procedure from RFC 2544 [7],

we have followed its test frame format using fixed

source and destination UDP port numbers in our first

implementation [6]. Then we have added the optional use

of pseudorandom port numbers recommended by RFC

4814 [8] and documented the new feature in [9]. Our

experience has shown that it was relatively easy and

straightforward to extend siitperf to be able to use

pseudorandom port numbers due to its object-oriented

design, and we also managed to preserve its high

performance [9].

Our current effort aims to extend siitperf to be able

to benchmark stateful NAT64 gateways, because they

play an important role in the current phase of IPv6

transition [2]. However, in this paper, we point out that

this extension is not at all straightforward, because of the

missing theoretical background. We are not aware of any

other working tester or publication, which would specify,

how stateful NAT64, or even IPv4 NAPT (Network

Address and Port Translation) gateways can be

benchmarked using bidirectional traffic with random port

numbers.

The remainder of this paper is organized as follows.

Section 2 contains a general discussion, how stateful

NAT (not necessarily NAT64) gateways may be

benchmarked using bidirectional traffic with random port

numbers. Section 3 gives a summary of the design and

implementation of siitperf necessary to understand

the following sections. Section 4 discloses our most

important design considerations and implementation

decisions. Section 5 presents our functional and

performance tests and their results. Section 6 provides a

discussion and highlights our plans for further tests,

development, performance optimization and research on

benchmarking methodology issues. Section 7 gives our

conclusions.

2. Benchmarking Stateful NAT Gateways using

Bidirectional Traffic and Random Port Numbers

2.1. Problem Formulation

As the problem is not specific to stateful NAT64, we

discuss it in a general way. We use the example of the

more well-known and widely used IPv4 NAPT (Network

 Manuscript received April 7, 2021.

 †The author is with the Department of Telecommunications,

Széchenyi István University, 1 Egyetem tér, H-9026 Győr,
Hungary.

 a) E-mail: lencse@sze.hu

Review version

2

Address and Port Translation, please refer to Section 2.2

of RFC 3033 [10], it is also called stateful NAT44).

NAPT is present in many places from small home

networks to the largest ISP networks, where it is used in

the CGN (Carrier-Grade NAT) gateway. Although we

use IPv4 in our example to give an easy explanation of

the problem, any IP version could be used. Fig. 1 shows

the test and traffic setup for the throughput measurement

of NAPT gateways. Although the arrows would suggest

unidirectional traffic, RFC 8219 requires testing with

bidirectional traffic, and testing with unidirectional

traffic is optional. Following our naming convention

used in [6] and [9], we call the direction following the

arrows as forward direction and the opposite one as

reverse direction. We used private IP addresses on the

left side of the devices and public IP addresses on their

right side. Due to the operation of the NAPT solution,

communication may only be initiated in the forward

direction.

Now, we follow the possible operation of the test system.

Let the left side port of the Tester send a test frame with

the following IP addresses and port numbers: source:

10.0.0.2:10000, destination: 198.19.0.2:80, where the

port numbers are considered as arbitrary.

We note that the port numbers are UDP port numbers,

because RFC 8219 requires testing with UDP traffic. We

are aware that stateful translators use different timeout

values for TCP and UDP “connections”. Now, we follow

the requirements of RFC 8219, but we return to this issue

in Section 6.

Let the connection tracking table of the NAPT gateway

be empty at the beginning of testing, and let the NAPT

gateway not change the source port numbers, when it is

not necessary. Thus, the IP addresses and port numbers

of the translated test frame are as follows: source:

198.19.0.1:10000, destination: 198.19.0.2:80. When the

right side port of the Tester receives the translated test

frame, it may store the four tuple of IP addresses and port

numbers, and then it can send a test frame with a valid

four tuple that has a matching entry in the connection

tracking table of the NAPT gateway. The identifiers of

the test frame to be sent in the reverse direction are:

source: 198.19.0.2:80, destination: 198.19.0.1:10000.

The NAPT gateway translates back the test frame using

the information of its connection tracking table, and the

identifiers of the translated frame are: source:

198.19.0.2:80, destination: 10.0.0.2:10000.

Now, let us consider how pseudorandom source and

destination port numbers can be used to comply with the

requirements of RFC 4814. Their application in the

reverse direction requires that preliminary traffic be

provided in the forward direction before the actual

throughput test: during this preliminary phase, the four

tuples are observed and stored. After that, the right side

port of the Tester may randomly choose from among the

stored four tuples to generate valid traffic that can be

translated by the NAPT gateway.

Theoretically, pseudorandom source and destination port

numbers could be used in the forward direction, however,

this approach would be a denial of service attack against

the NAPT gateway, because it would exhaust its

connection tracking table. Let us see some calculations

using the recommendations of RFC 4814:

 Recommended source port range: 1024-65535,

its size is: 65535-1024+1=64512

 Recommended destination port range: 1-49151,

its size is: 49151

 The number of source and destination port

number combinations is:

64512*49151 = 3,170,829,312.

And yet we did not consider the requirement for testing

with also 256 destination networks, which would further

increase the number of connection tracking table entries.

Thus, we have shown that the Tester should not follow

the recommendations of RFC 4814 for pseudorandom

source and destination port numbers blindly. However,

on the other hand, we agree with the purpose of RFC

4814, as we are aware that using the same fixed source

and destination port numbers is very far from the

operational conditions of NAPT gateways. Even a small

home NAPT device has to handle a high number of

different source port numbers since web browsers use a

high number of concurrent TCP connections, the number

of which depends on several factors including the

content of the given web page, the type of client

operating system and browser, etc., please refer to [11]

for further details. A CGN NAPT gateway has to handle

also a high number of different source IP addresses

besides the high number of different source port numbers.

These parameters have a significant influence on the

number of connection tracking table entries and thus they

should not be overlooked.

2.2 Possible Solutions

To find a reasonable solution, let us consider, what port

numbers usually appear in the outgoing packets arriving

at the NAPT gateway of an ISP. It is likely that:

 The source port numbers will be quite different

in the range of 1024-65535.

 There will be a few very popular ones among

 +--------------------+

 10.0.0.2 | | 198.19.0.2

+------------|IPv4 Tester IPv4|<-----------+

| |private public| |

| +--------------------+ |

| |

| +--------------------+ |

| 10.0.0.1 | DUT: | 198.19.0.1 |

+----------->|IPv4 NAPT gw. IPv4|------------+

 |private public|

 +--------------------+

Fig. 1 NAPT gateway test setup (based on RFC 2544).

Review version

3

the destination port numbers, with the

dominance of 443 (HTTPS) and 80 (HTTP),

appearing also the port numbers of several other

widely used protocols1.

Theoretically, it could be possible to capture the traffic at

the NAPT gateway of an ISP, count the frequency of the

occurrence of each source and destination port number

and store the statistics. One could implement a tester,

which loads the statistics, and generates source and

destination port numbers following the distributions

encoded in the statistics. However, several different

questions arise, for example:

1. Are source and destination port numbers

independent from each other or is there any

correlation between them?

2. How much similar or different are the statistics

of different NAPT gateways and how this

difference influences the benchmarking results?

3. To what extent the statistics are permanent or

changing with time, and how this possible

change influences the benchmarking results?

The answer to the first question may simply make the

random number generation a bit more complex, however

the answers to the second two questions may make it

impossible to produce and publish meaningful

benchmarking results that will be usable for others.

We would like to build a more simple and easy-to-use

model. Therefore, we make the following simplifications.

1. Let us omit the possible correlation of the

source and destination port numbers.

2. Let us use uniform distribution for the source

port numbers as recommended by RFC 4814.

(Maybe its distribution is not uniform, but

skewed, however, we hope that using uniform

distribution is not a bad model.)

3. Let us also use uniform distribution for the

destination port numbers, but in a much

narrower range than it is recommended by RFC

4814. (This is a very significant simplification,

which requires validation.)

The size of the destination port range can be used as a

parameter and the performance of the NAPT gateway

may be examined as a function of this parameter. The

results may be useful, when dimensioning a NAPT

gateway.

3. Summary of Siiperf

In this section, we give a summary of the design and

implementation of siitperf only to the extent

necessary to understand the following sections. It is done

by reusing some of the text of our open access papers [6]

and [9], in which further details are available.

As for siitperf, we intended it to be a flexible tool

1 Please refer to the report of Internet Initiative Japan [12] for a

particular observation of the popularity of the different protocols.

designed for research and experimentation rather than an

automated commodity Tester. Therefore, it is a

combination of binaries and shell scripts. It supports the

following benchmarking procedures: throughput, frame

loss rate, latency and PDV (packet delay variation).

There are three binaries written in C++ using DPDK

(Intel Data Plane Development Kit) [13] to ensure high

enough performance. The binaries implement the core

business logic and input a high number of parameters.

There are four bash shell scripts (for the above-

mentioned four benchmarking measurements), and they

call the appropriate binary supplying the command line

parameters necessary for the given measurement step.

For example, the 20 repetitions and the binary search of

the throughput test are performed by the binary-

rate-alg.sh script, which calls the siitperf-tp

binary for every 60s long elementary test providing the

required frame rate and several further parameters. The

same siitperf-tp binary is used by the frame-

loss-rate.sh script to measure the frame loss rate at

various frame rates. Parameters that may vary among the

consecutive executions of the binaries are supplied as

command line parameters, whereas parameters that are

constant (e.g. IP addresses, MAC addresses, etc.) are

supplied in the siitperf.conf configuration file.

We followed an object-oriented design. The classes for

both the latency and the PDV measurements are

extending their base class, throughput. (They are slightly

different from each other, as the latency test uses only a

specified number of timestamps, whereas the PDV test

uses timestamps for every single frame.)

The program structure of each C++ program is very

simple: the main program reads the parameters first from

the configuration file and then from the command line.

Next, it calls the init() function of the required

measurement, which initializes the EAL (Environment

Abstraction Layer) of the DPDK, resets and starts the

network interfaces, and performs a few sanity checks.

Finally, the main program executes the proper

measurement procedure. The measurement procedure

prepares the parameters for the senders and receivers,

and starts one sender and one receiver for each active

direction (as separate threads). They are executed by

their exclusively used CPU cores to ensure guaranteed

performance. After they have finished, the main thread

collects and evaluates their results. From our point of

view, it is important to mention that the four processes

(two senders and two receivers) do not have any

common data structures and they work independently

from each other, except that:

 each receiver receives the test frames sent by

the corresponding sender,

 receivers and senders on the same side use the

same NIC (network interface card).

We have designed siitperf to be flexible due to using

a high number of parameters. For example, the IP

Review version

4

version can be specified individually and independently

for each side, thus siitperf can also be used for

testing IPv4 or IPv6 routers, not only SIIT gateways.

When siitperf constructs and sends out test frames,

their IP version always follow the IP version specified in

the configuration file by the IP-L-Vers and the IP-

R-Vers parameters for the Left Sender and the Right

Sender, respectively. Table 1 summarizes which

parameters are used as source and destination IP

addresses of test frames on each side.

RFC 8219 also requires that besides the traffic that is

translated (we called it as “foreground traffic”), tests

should also use non-translated native IPv6 traffic (we

called it as “background traffic”), and different

proportions of the two types of traffic have to be used.

For us, it will be important that background traffic is

normal IPv6 test frames and they are always sent from

the “real” IPv6 address of the given side to the “real”

IPv6 address of the other side. Background traffic is

indistinguishable from the foreground test frames if the

IP version of both sides is 6 (case no. 4).

We note that a dual stack router may also be

benchmarked using case no. 3 because besides the IPv4

foreground traffic, the background traffic is IPv6 and the

proportion of the two may be set arbitrarily.

The proportion of the foreground traffic and background

traffic can be expressed by two command line

parameters called n and m, please refer to our original

paper [6] for the details.

We note that the receiver function is resilient: it does not

take care of the IP version of its side, it rather checks the

value of the Type field of the Ethernet frame and

processes the payload accordingly (as IPv4 or as IPv6). It

does not check IP or MAC addresses, but it checks an 8-

byte identifier to distinguish the test frames from other

frames.

It is also important that RFC 2544 requires to use fixed

source and destination IP addresses first, and then 256

destination networks for the benchmarking tests. We

allow the user to specify the number of the networks on

the left and right sides independently using any value

from 1 to 256 in the configuration file:

Num-L-Nets 1 # No. of Left side netw.

Num-R-Nets 1 # No. of Right side netw.

The settings apply to both background and foreground

traffic. But they are used only for destination networks

and do not affect the source IP addresses.

There is a further parameter called START_DELAY

(defined as a C preprocessor constant in the source file

defines.h), which was originally intended to be very

much technical: it facilitated the synchronized start of

frame sending by the senders. (As their startup requires

non-zero time, their frame sending has to be started at a

well-defined time.) During our tests, frame loss was

experienced at the beginning of the test, and it turned out

that some part of the test system, perhaps the DUT

(Device Under Test) was not yet ready, right after the

initialization of the interfaces of the Tester. Thus, this

parameter has received a new function to support a

predefined delay between the starting of the network

interfaces of the Tester and the starting of the actual

measurement facilitating the proper initialization of the

network interfaces of the DUT. Its default value was

increased to 2 seconds and it may be further increased if

needed.

Further parameters providing factors of freedom can be

found in our original paper [6].

As for the extension of siitperf to use pseudorandom

port numbers, we kept our flexible approach, and thus it

can be specified individually for each direction and for

the source and destination port numbers, whether they

should be fixed or varying. If they are varying, they may

be pseudorandom or increasing or decreasing in the

consecutive frames. (The latter two are not RFC 4814

compliant, but they may be useful in some cases.) The

configuration file allows to set the following parameters:

Fwd-var-sport 3

Fwd-var-dport 3

Rev-var-sport 1

Rev-var-dport 0

The numeric values are interpreted as follows:

 0: fixed port number (the hard-wired value

defined in Appendix C.2.6.4 of RFC 2544)

 1: increasing port number,

 2: decreasing port number

 3: pseudorandom port number

It is computationally less expensive to use increasing (or

decreasing) port numbers than using pseudorandom port

numbers. Of course, not all combinations are useful,

perhaps, there is not much point in increasing both the

source and the destination port numbers.

The configuration file shipped with siitperf contains

Table 1 Specification of which parameters used as source and destination IP addresses for foreground test frames on each side.

(L/R means: Left/Right, the Virt(ual) value is used to represent an IP address from a different address family than the frame belongs to. Please refer to [6]

for the details.)

Case IP version Type of the

DUT

IP addresses used by the Left Sender IP addresses used by the Right Sender

No. Left Right source destination source destination

1. 6 4 stateless NAT64 gw. IPv6-L-Real IPv6-R-Virt IPv4-R-Real IPv4-L-Virt

2. 4 6 stateless NAT46 gw. IPv4-L-Real IPv4-R-Virt IPv6-R-Real IPv6-L-Virt

3. 4 4 IPv4 router IPv4-L-Real IPv4-R-Real IPv4-R-Real IPv4-L-Real

4. 6 6 IPv6 router IPv6-L-Real IPv6-R-Real IPv6-R-Real IPv6-L-Real

Review version

5

the default settings for port number ranges as required by

RFC 4814:

Fwd-sport-min 1024

Fwd-sport-max 65535

Fwd-dport-min 1

Fwd-dport-max 49151

Rev-sport-min 1024

Rev-sport-max 65535

Rev-dport-min 1

Rev-dport-max 49151

It is also an important implementation detail that the test

frames are not built up from scratch during testing, but

only pre-generated test frames (templates) are modified

to decrease the amount of work and, thus, to increase the

maximum achievable frame rate.

We note that all sorts of variable port numbers apply to

both foreground and background traffic.

As for the output of siitperf-tp, it reports the

number of the transmitted frames and the received

frames for the active directions (one direction may be

missing):

Forward frames sent:

Forward frames received:

Reverse frames sent:

Reverse frames received:

It will be important that the bash shell scripts are

expected to grep for the above expressions in the output

of the program.

So far, we have mainly focused on the siitperf-tp

throughput tester, which can also be used for the frame

loss rate measurements. The design and the operation of

the siitperf-lat latency tester are fairly similar.

The main difference is that a certain number of frames

are tagged for latency measurements. As the maximum

number of latency frames is 50,000, they are always pre-

generated. If the varying port number feature is used,

then the port numbers are updated in the latency frames,

too. When a tagged frame is sent, the sender function

stores its timestamp and when a tagged frame is received,

the receiver function stores its timestamp, too. After the

latency test is finished, siitperf-lat processes the

timestamps and calculates the typical latency and worst-

case latency values for each active direction. The latency

tester has two further command line parameters, the

delay parameter specifies how much time after the start

of the measurement the first tagged frame should be sent,

and the timestamps parameter specifies the number of

frames to be tagged.

The design and the operation of the siitperf-pdv

PDV tester are even more straightforward extensions of

siitperf-tp. It sends only PDV test frames, each of

which contains an 8-byte ordinal number, which is used

as an index for the array of the receiving and sending

timestamps. These arrays are filled during the sending

and receiving of the PDV test frames, and arrays are

processed after finishing the measurement. The PDV

tester has one further command line parameter called

frame timeout. If the value of this parameter is 0, then

the timestamp arrays are processed as required by RFC

8219 to calculate PDV. If the value of this parameter is

higher than 0, then it is interpreted as the timeout

parameter for each frame individually: those frames

having higher latency than frame timeout are reclassified

as lost. Hence, this implements a special throughput test,

where the timeout is checked for each frame individually.

Please refer to our original paper for the details and the

justification of the method [6]. For us this method is

useful for determining the performance (maximum frame

rate) of siitperf-pdv.

4. Design of the Stateful Extension of Siitperf

4.1 General Design Considerations

As we designed a functional extension of siitperf,

we considered compatibility with its previous versions

very important. The new software should be able to

perform all the original tests using the original

parameters (in the command line and in the configuration

file) and provide the original output. To do so, special

values of the new parameters may be required, and if

possible, these values should be their default values.

(Thus, the usage of an old configuration file and

command line parameters with the new software should

result in its old way of operation.)

4.2. High-level Design Decisions

4.2.1 Considerations for Directions and Flexibility

Due to the nature of the stateful translation, it can only

be used at most in one direction. To keep the flexibility

of the software, we decided to let the user specify the

direction. We also wanted to allow stateful translation to

be combined with any IP version (4 or 6). From the set of

possible combinations, stateful NAT44, stateful NAT64

and stateful NAT66 are surely meaningful. Stateful

NAT46 [14] has also been proposed, but its Internet

Draft has never been published as an RFC.

4.2.2 Design of Stateful Testing

Regarding the stateful operation, let us name the roles of

the two ports of the Tester as Initiator and Responder.

The Initiator resides on the “private” side of the DUT,

and only the Initiator can initiate connection

establishments due to the stateful nature of the DUT. The

Responder resides on the “public” side of the DUT and it

can send only test frames that belong to a connection

already initiated by the Initiator. As both of them must be

able to send proper test frames at the required frame rate

from the very beginning of the test, a preliminary phase

Review version

6

is necessary, while the Responder can observe and store

enough valid four tuples (that belong to existing

connections) in its state table. Thus, the Initiator and the

Responder perform the following tasks:

 During the preliminary phase, the Initiator sends N

number of test frames to the Responder through the

DUT. The Responder extracts the IP addresses and

the port numbers from the tests frames and stores

them in its state table, but it does not send any test

frames yet.

 During the test phase, the Responder receives and

processes the test frames as needed2 and it further

updates its state table on the basis of the IP address

and port number information of the received frames.

The responder also sends test frames using the IP

addresses and port numbers from its state table,

whereas the Initiator simply acts like3 the sender

and receiver of the original siitperf.

As the Initiator is completely free to use any source and

destination port number combinations during the testing

phase (even those not used during the preliminary phase),

it is absolutely necessary for the Responder to update its

state table during the test phase. This operation also

means that the sender and receiver of the Responder are

no more independent, but they have a common data

structure, the state table, which is written by the receiver

and read by the sender.

4.3. Further Design and Implementation Decisions

4.3.1 Considerations for the State Table of the Responder

RFC 8219 defines black-box testing: the user is not

aware of the internals of the DUT. In our case, it also

means that we are not aware of even the size and policy

of the state table of the DUT. We are not able to keep the

consistency between the state table of the Responder and

the connection tracking table of the DUT as we may not

examine the latter. However, at least, we need to enable

the user to control, how the old four tuples of IP

addresses and port numbers are thrown out from the state

table of the Responder. Allowing the user to specify a

timeout could be handy from the user’s perspective.

However, its handling would consume a significant

amount of processing power. Due to performance

considerations, we decided to implement the state table

of the Responder as a simple ring buffer of size M. If the

test frames arrive at rate r, then the entries of the state

table are overwritten in M/r time. (Please refer to Section

4.3.6 for another consistency related issue.)

2 E.g. siitperf-tp simply counts them, whereas siitperf-

lat and siitperf-pdv perform further tasks with timestamps.
3 This is a first approximation. Please refer to Subsection 4.3.3 for a

refinement.

4.3.2 Considerations for the Connection Establishment

Rate

Usually, a high number of packets per connection are

transmitted in a typical application scenario of stateful

NAT gateways. It also means that the connection

establishment rate is significantly lower than the packet

rate.

During the test phase of our benchmarking tests, the

number of test frames per connection may be controlled

by the number of possible four tuples (and also by M).

However, at the beginning of the preliminary phase, the

initiator sends all different four tuples, that is, the

connection establishment rate is equal to the frame rate.

As the maximum connection establishment rate of a

stateful device may be significantly lower than its

maximum forwarding rate, we decided to enable the user

to specify a different frame rate for the preliminary phase

than the frame rate used in the test phase.

Please see Section 5.2, how siitperf supports the

measurement of the maximum connection establishment

rate of a stateful device.

4.3.3 Enumeration of Port Numbers

As for the Initiator, its sender could theoretically work

the same as the sender of the stateless tester. However,

we considered it useful to be able to efficiently exhaust

the set of possible port number combinations for two

reasons:

 We planned to use this function for surely

loading all possibly port number combinations

to both the state table of the Responder and to

the connection tracking table of the DUT using

a minimum N number of preliminary test

frames. (It was important both from execution

time point of view and timeout time point of

view.)

 We wanted to create a tool suitable for wilfully

exhausting the port number range of a stateful

NAT64 / NAT44 gateway for simulating a

denial of service attack to support vulnerability

analysis mentioned in [15] and [16].

Therefore, we have added a new input parameter to

combine source and destination port numbers into a

single counter. It means that the source port number is

the lower two bytes and the destination port number is

the higher two bytes of a 4-byte counter. However, its

possible values are still limited by the specified ranges of

the source and destination port numbers. (Please refer to

Section 4.3.5, how to set port number enumeration.)

We note that port number enumeration applies only to

the translated traffic (called foreground traffic). The port

numbers of the non-translated traffic (background traffic)

do not take part in the enumeration.

Review version

7

4.3.4 Port Numbers of the Responder

Due to the stateful translation, the Responder has to

generate test frames using the four tuples from its state

table. It has some consequences for, how the Responder

should use certain input parameters regarding foreground

traffic4:

 It should simply ignore the port number ranges

and the number of destination networks

specified in the configuration file for the given

direction.

 It should reinterpret the values regarding the

nature of the port numbers, that is, the 0, 1, 2 or

3 values of the *-var-{d|s}port parameters

for the given direction.

In order to keep resilience, now we consider, what

approaches can be reasonable:

0 Use the fixed four tuple learned from the very

first preliminary frame.

1 Take the next entry of the state table in

increasing order.

2 Take the next entry of the state table in

decreasing order.

3 Randomly select from among the state table

entries.

We note that case 0 is the same approach, when hard-

wired fixed port numbers are used in the original

siitperf, literally following the test frame format in

Appendix C.2.6.4 of RFC 2544.

In theory, one could say that case 3 is the true spirit of

RFC 4814, whereas cases 1 and 2 are computationally

less expensive alternatives. However, there is a practical

consideration that makes at least one of them a must. We

discuss it in Section 4.3.6.

As the above-mentioned configuration file parameters

specifying the behavior of the source and destination port

numbers may be set differently, and using them would be

confusing for the user if siitperf used one of them

and ignored the other one (e.g. source or destination),

thus we decided to introduce a new parameter (disclosed

in the next subsection).

4.3.5 New Input Parameters

Following our original policy that parameters that do not

change during the execution of the shell scripts are put

into the configuration file, we added the following

parameters to the configuration file with the default

value of 0:

Stateful 0 # valid values: 0, 1, 2

Its values have the following meanings:

0 The original operation of siitperf is kept,

no new command line parameters are accepted.

4 We note that the original settings still apply for the background

traffic.

1 Stateful test is performed, Initiator is on the left

side and Responder is on the right side. New

command line parameters are expected.

2 Stateful test is performed, Initiator is on the

right side and Responder is on the left side.

New command line parameters are expected.

We have introduced a configuration file parameter to

control port number enumeration:

Enumerate-ports 0 # valid: 0, 1

Its values have the following meanings:

0 The original operation of siitperf is kept,

the port numbers behave as usual.

1 The port numbers are enumerated in increasing

order (source port number is the low order

counter and destination port number is high

order counter), but the source and destination

port numbers are limited to their specified

ranges.

We note that port number enumeration applies only for

the foreground traffic, and it is available only, when a

single destination network is set, otherwise, the program

gives an “Input Error:” message.

To express the policy, how the consecutive four tuples

are selected from the state table of the Responder for the

foreground traffic, we introduced the following

configuration file parameter:

Responder-ports 0 # valid: 0, 1, 2, 3

The interpretation is defined by the listed items in

Section 4.3.4.

As for the new command line parameters, they follow

the command line parameters of the throughput test, and

they precede the additional parameters of the Latency

and PDV measurements.

They are to be specified in the following order:

 N (1 – 232-1) – the number of test frames to

send in the preliminary phase

 M (1 – 232-1) – the number of entries in the state

table of the Tester

 R (in frames per second) – the frame rate, at

which the test frames are sent during the

preliminary phase

 T (in milliseconds, 1 – 2,000) – the global

timeout for the preliminary frames

 D (in milliseconds, 1 – 100,000) – the overall

delay caused by the preliminary phase

We note that N denotes the number of all frames

(including foreground and background frames) sent

during the preliminary phase.

It is important that the sending of the N number of test

frames at the specified R frame rate should happen and

also the T global timeout should elapse within the D time,

otherwise siitperf reports an error message and exits.

We note that setting M to 1 is allowed only in the case if

Responder-ports is set to 0. Please refer to Section 4.3.8

Review version

8

for an explanation.

4.3.6 The Issue of Active Directions.

So far, we considered the general case, when both

directions are active, that is bidirectional traffic is used

for benchmarking. As it is in stateless testing, any of the

two directions may be set inactive also in the case of

stateful testing. It is trivially not a problem, if traffic

flows only from the Initiator to the Responder. When

traffic flows only from the Responder to the Initiator,

then the state table of the Responder is filled during the

preliminary phase and it remains unchanged during the

testing phase. It may cause a serious problem under

certain conditions. Stateful NAT64 or NAT44 gateways

use various timeout values for the connections. Let us

consider the following situation. If traffic flows only

from the Responder to the Initiator during the test phase,

and the Responder uses pseudorandom four tuple

selection, it may happen that a specific four tuple is not

used for a specific timeout and then it is used again. It

results in the construction of a frame that belongs to a no

more existing connection in the gateway. Therefore, it is

dropped by the gateway, and the loss of the frame causes

the throughput test to fail. The Responder must surely

avoid this situation. Taking the entries of the state table

in increasing or decreasing order can be a good

guarantee to send only frames belonging to an existing

connection, if the frame rate is high enough to scan

through the state table within timeout time. (Of course,

care must be taken for the timeout also during the

preliminary phase, please see our example calculation in

Section 5.3.)

If bidirectional traffic is used, then fast enough refilling

of the state table of the Responder may guarantee that

random four tuple selection may find only valid four

tuples in it.

4.3.7 The Issue of Indistinguishable IPv6 Background

Frames.

When the IP version is 4 on the side where the

Responder resides, then frames translated by either

stateful NAT44 or stateful NAT64 arrive as IPv4 frames,

and IPv6 frames belong to the background traffic. Hence,

foreground and background frames can be easily

distinguished by the IP version. However, when the IP

version is 6 on the side where the Responder resides,

then frames translated by either stateful NAT46 or

stateful NAT66 arrive as IPv6 frames, and they are

indistinguishable from the background traffic using only

the IP version. The problem could be easily solved by

using a different 8-byte identifier for the test frames

belonging to the background traffic or by examining also

the source IPv6 address. However, we did not implement

it yet, please refer to Section 4.4.1 for more details.

4.3.8 The Issue of Inter-thread Communication

Both high performance and flexibility were our primary

design concerns. As inter-thread communication may

negatively influence performance, we had to make a

compromise on the following issue.

Originally, we planned to allow the partial filling of the

state table of the Tester during the preliminary phase, and

the receiver of the Responder could fill the remaining

entries in the test phase. However, it would have required

continuous communication of the number of valid entries

from the receiver of the Responder to the sender of the

Responder, which could have significant a impact on the

performance of the Tester. Although it could have been

stopped after filling the state table, it would further

complicate the code, whereas a single extra “if”

statement in the innermost receiving and sending loops

was also considered a hindrance to be avoided. So, we

decided that the state table must be filled in the

preliminary phase.

Writing and reading of the state table may slow down the

Tester only in the case if the same entry is affected.

Therefore, we decided to support fixed port numbers by

a separate code, which does not continuously write and

read the single entry. In this case, the very first entry of

the state table is read only once at the beginning of the

test phase, and then the sender and the receiver work

independently.

4.4. Implementation of the Stateful Tests

4.4.1 Scope Decisions

Considering our limited time and the vast difference

between the deployment of stateful NAT44 and stateful

NAT64 versus stateful NAT46 and stateful NAT66, we

decided to support only the first two of them. (The

support for the latter two is not an intellectual challenge,

but requires a significant amount of coding and testing.)

Our decision means that the Initiator has to be able to

handle both IPv4 and IPv6, but the Responder needs to

be able to handle only IPv4 as foreground traffic.

4.4.2 Design of the Initiator

As we mentioned before, the sender of the Initiator is a

modified version of the sender function of the stateless

siitperf. The main difference is the support for port

number enumeration using a twice two-byte counter. Let

us see an example. If the source port numbers are set to

increase from 10,000 to 49,999 (40,000 different values)

and the destination port numbers are set to increase from

80 to 179 (100 different values) then 40,000*100 =

4,000,000 different combinations can be enumerated. If

N is set to a higher value than that, then some of the

values will be repeated. Port number enumeration is

supported only in the case, when the number of

destination networks is set to 1.

Review version

9

The same sender function is called twice: first, in the

preliminary phase and second in the test phase. To

protect the bash shell scripts processing the output of

siitperf from confusion, siitperf uses the word

“Preliminary” instead of “Forward” or “Reverse”, when

reports the number of frames sent and received in the

preliminary phase.

As for the receiver function, it is not used on the Initiator

side during the preliminary phase, and the original one

was kept in the test phase.

4.4.3 Design of the Receiver of the Responder

The consistency of the state table entries is ensured using

atomic variables of C++. The type of the entries of the

state table is defined as follows:

typedef std::atomic<fourTuple>

atomicFourTuple;

Hence, both the reading and the writing of the entries of

the state table are atomic operations.

The receiver of the Responder extracts the IPv4

addresses and port numbers from the received IPv4 test

frames and writes them first into a local variable of type

struct fourTuple, then it writes the four tuples

into the state table in increasing order starting from index

0.

Implementation detail: when the receiver of the

Responder is executed, it extracts its input parameters

and checks the value of the number of valid entries in the

state table. If its value is zero, it indicates that the

execution happens in the preliminary phase, and in this

case, the receiver allocates NUMA local memory for the

state table. It also reports the number of valid entries in

the state table at the end of its execution. The non-zero

value of the number of valid entries indicates the second

execution, when the state table is reused and its entries

are overwritten from index 0.

We also note that neither the receiver nor the sender of

the Responder converts IP addresses and port numbers

between network byte order and host byte order, because

they are only copied but not manipulated.

4.4.4 Design of the Sender of the Responder

The sender of the Responder supports multiple modes of

operation. If Responder-ports is set to 0, then a

single IPv4 test frame is generated based on the very first

element of the state table (index 0), and always this

frame is sent as foreground traffic without regard to the

number of destination networks. Background traffic is

generated using fixed port numbers, but multiple

destination networks may be used.

If Responder-ports is set to 1, 2 or 3, then all the

entries of the state table are used as specified in Section

4.3.4.

Following our original approach, we used pre-generated

templates of Test Frames and modified their IP addresses

and port numbers.

4.4.5 Design of the Latency Measurements

So far, we focused on the design of the stateful extension

of the siitperf-tp throughput tester. The extension

of the siitperf-lat latency tester is fairly similar,

most things are quite straightforward. We mention only a

few differences. As no tagged frames are sent during the

preliminary phase, the Initiator of the throughput tester

and the receiver of the Responder of the throughput

tester are reused in the preliminary phase.

We are aware that we could have implemented an

Initiator for the latency tester that supports port number

enumeration to provide a completely orthogonal set of

functionalities, but we decided not to do that to save time.

Thus, currently port number enumeration is supported

only in the preliminary phase of the latency

measurements. (The program gives a warning about it, if

port number enumeration is specified in the

configuration file.)

We note that latency frames (test frames tagged for

latency measurements) are pre-generated and used as

templates: they are modified in the same way as the

templates of the normal test frames, the only difference

is that they are used only once.

4.4.5 Design of the PDV Measurements

The extension of the siitperf-pdv PDV tester was

completely straightforward. We followed the same

approach as with the latency tester: the Initiator of the

throughput tester and the receiver of the Responder of

the throughput tester are reused in the preliminary phase

and currently port number enumeration is not supported

in the test phase.

5. Functional and Performance Tests

The aim of this section is threefold:

1. to demonstrate the operation of the stateful

NAT64 measurements,

2. to test the usability of our Tester in a typical

application scenario,

3. to make an initial performance assessment of

the stateful operation of siitperf.

In our tests, we reused our test systems built in NICT

StarBED, Japan for stateless NAT64 measurements [17]

and also used for testing the random port feature of

siitperf [9]. We have also reused the texts of our

open access papers [17] and [9] in the description of our

test systems (with updates).

We used three Dell PowerEdge C6220 servers with two

2GHz Intel Xeon E5-2650 CPUs having 8 cores each,

128 GB 1333 MHz DDR3 SDRAM and Intel 10G dual-

port X520 network adapters. Hyper-threading was

Review version

10

switched off and the clock frequency of all servers was

set to 2 GHz (fixed), because we knew from our previous

benchmarking experience [18] that they could cause

scattered measurement results. (We mean under scattered

measurement results that the results of the 20 repetitions

of the measurements are significantly different.) We

aimed to eliminate all circumstances that could cause

scattered measurement results.

The Debian Linux operating system was updated to

version 9.13 on all three computers. The Linux kernel

version was: 4.9.0-4-amd64. The DPDK version was

16.11.11-1+deb9u2.

We used three very similar test setups with somewhat

different goals. The aim of Test System 1 was to

demonstrate the operation of a stateful NAT64

measurement. Test System 2 was used to perform several

actual stateful NAT44 measurements. Test System 3

served an initial performance estimation of siitperf.

The first two of them were identical regarding their

hardware; they differed only in the configuration of their

software.

Except for the demonstration of the operation of a

stateful NAT64 measurement, we used stateful NAT44

for all other tests. We had two reasons for that:

 We wanted to test siitperf in a situation,

where the DUT can achieve high throughput.

(We tested the random port feature using IPv4

for the same reason in [9].)

 We plan to perform a comprehensive NAT64

benchmarking and we wanted to avoid possible

copyright issues (might arise from publishing

the same results in two different papers).

5.1. Demonstration of a Stateful NAT64 Test

We have tested the functional operation of the stateful

NAT64 measurement using Test System 1, the topology

of which is shown in Fig. 2. The Tester and the DUT

were interconnected by two 10GbE direct cable links.

IPv6 was used on the left side network interfaces of the

devices, and IPv4 was used on their right side. Stateful

NAT64 was implemented in two steps using stateless

NAT64 plus stateful NAT44:

1. Stateless NAT64 was implemented by the

tayga stateless NAT64 implementation [19].

2. Stateful NAT44 was implemented by

iptables.

As for tayga, we have reused our previous Explicit

Address Mapping (RFC 7757 [20]) settings [17] as

shown at the bottom of Fig. 2. Please refer to the

appendix of our open access paper [17] for the detailed

settings of tayga.

As for iptables, we used the following command:

iptables -t nat -A POSTROUTING -o enp3s0f1

–j MASQUERADE

To demonstrate the operation of the stateful NAT64 test,

we performed a very short and low rate test. Only five

preliminary frames were sent: 4 foreground frames and 1

background frame (to demonstrate it too). We used port

number enumeration, and the Responder selected the

four tuples randomly.

The new configuration file parameters were set as

follows:

Stateful 1 # yes, Initiator is on the Left

Enumerate-ports 1 # yes

Responder-ports 3 # 4-tuples random select

The command line was:

siitperf-tp 84 5 1 2000 5 4 5 4 5 500 2000

The first 6 command line parameters were “inherited”

from the command line of the stateless tester. They

denote that:

 The IPv6 frame size was 84 bytes (64 bytes for

IPv4).

 The frame rate was 5 frames/s (in each

direction).

 The test duration was 1 second.

 The global timeout was 2000ms.

 The value of n was 5 and the value of m was 4:

it means that 4 of every 5 frames belonged to

the foreground traffic.

The next 5 parameters are new:

enp3s0f0:
2001:2::2/64

enp3s0f0:
2001:2::1/64

Tester

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

DUT
stateful NAT64

gateway

running
siitperfn017

n018

10GbE w/ direct cables

Test System 1

Explicit Address Mapping
198.18.0.1 -- 2001:2::1
198.18.0.2 -- 2001:2::2
198.19.0.1 -- 2001:2:0:1::1
198.19.0.2 -- 2001:2:0:1::2

Fig. 2 Test system for the demonstration of the operation of stateful

NAT64 tests.

Review version

11

 N=5 preliminary frames were sent by the

Initiator.

 The size of the state table of the Responder was

M=4.

 The preliminary frame rate was R=5 frames/s.

 The global timeout for the preliminary phase

was T=500ms.

 The total delay caused by the preliminary phase

was D=2000ms. (It includes the sending of the

preliminary frames, the global timeout of the

preliminary phase and the waiting time before

the real test phase.)

We have captured the traffic by tshark on both

network interfaces of the DUT: enp3s0f0 and

enp3s0f1. They are shown in Fig. 3 and Fig. 4. As

siitperf resets the network interfaces, the first two

lines of both figures contain IPv6 multicast messages.

(As tshark starts the time measurement from the

arrival of the first frame, the times of the two captures

are synchronized approximately, but not completely.)

Frames 3-6 are the foreground preliminary frames. In

Fig. 3, the 2001:2:0:1::2 IPv6 destination address

represents the 198.19.0.2 IPv4 address shown in Fig. 4 as

the destination address. The 2001:2::2 source IPv6

address was first mapped to 198.18.0.2 by tayga, and

then iptables replaced it by 198.19.0.1. Port number

enumeration can also be observed.

As frame 7 is a background frame (native IPv6), the

stateful NAT64 gateway leaves it unchanged. Its port

numbers are pseudorandom, as background frames do

not take part in the port number enumeration.

Frames 8-17 were sent during the test phase. Port

number enumeration can be observed in the 4 foreground

frames from Initiator to the Responder. The port numbers

of the 4 foreground frames from the Responder to the

Initiator are pseudorandom in the [10000, 10003] range,

due to the pseudorandom selection of the four tuples.

We note that we used only a single public IPv4 address

on the IPv4 interface of the stateful NAT64 gateway, but

using multiple public IPv4 addresses could cause no

problem, as the Responder stores the entire four tuple

and uses its elements for traffic generation.

 1 0.000000000 fe80::a236:9fff:fe0e:a2c4 → ff02::16 ICMPv6 150 Multicast Listener Report Message v2

 2 0.787987018 fe80::a236:9fff:fe0e:a2c4 → ff02::16 ICMPv6 150 Multicast Listener Report Message v2

 3 2.060717757 2001:2::2 → 2001:2:0:1::2 UDP 80 10000 → 80 Len=18

 4 2.260718236 2001:2::2 → 2001:2:0:1::2 UDP 80 10001 → 80 Len=18

 5 2.460718536 2001:2::2 → 2001:2:0:1::2 UDP 80 10002 → 80 Len=18

 6 2.660724190 2001:2::2 → 2001:2:0:1::2 UDP 80 10003 → 80 Len=18

 7 2.860727275 2001:2::2 → 2001:2:0:8000::2 UDP 80 13787 → 157 Len=18

 8 4.060774275 2001:2::2 → 2001:2:0:1::2 UDP 80 10000 → 80 Len=18

 9 4.060806550 2001:2:0:1::2 → 2001:2::2 UDP 80 80 → 10003 Len=18

10 4.260758051 2001:2::2 → 2001:2:0:1::2 UDP 80 10001 → 80 Len=18

11 4.260817745 2001:2:0:1::2 → 2001:2::2 UDP 80 80 → 10000 Len=18

12 4.460760118 2001:2::2 → 2001:2:0:1::2 UDP 80 10002 → 80 Len=18

13 4.460819319 2001:2:0:1::2 → 2001:2::2 UDP 80 80 → 10002 Len=18

14 4.660760326 2001:2::2 → 2001:2:0:1::2 UDP 80 10003 → 80 Len=18

15 4.660820912 2001:2:0:1::2 → 2001:2::2 UDP 80 80 → 10002 Len=18

16 4.860769785 2001:2::2 → 2001:2:0:8000::2 UDP 80 21136 → 86 Len=18

17 4.860778173 2001:2:0:8000::2 → 2001:2::2 UDP 80 28744 → 41552 Len=18

Fig. 3 The tshark capture of a stateful NAT64 test on the enp3s0f0 interface of the DUT.

 1 0.000000000 fe80::a236:9fff:fe0e:a2c6 → ff02::16 ICMPv6 150 Multicast Listener Report Message v2

 2 0.731995970 fe80::a236:9fff:fe0e:a2c6 → ff02::16 ICMPv6 150 Multicast Listener Report Message v2

 3 2.036790798 198.19.0.1 → 198.19.0.2 UDP 60 10000 → 80 Len=18

 4 2.236775622 198.19.0.1 → 198.19.0.2 UDP 60 10001 → 80 Len=18

 5 2.436775998 198.19.0.1 → 198.19.0.2 UDP 60 10002 → 80 Len=18

 6 2.636781951 198.19.0.1 → 198.19.0.2 UDP 60 10003 → 80 Len=18

 7 2.836746677 2001:2::2 → 2001:2:0:8000::2 UDP 80 13787 → 157 Len=18

 8 4.036763279 198.19.0.2 → 198.19.0.1 UDP 60 80 → 10003 Len=18

 9 4.036833787 198.19.0.1 → 198.19.0.2 UDP 60 10000 → 80 Len=18

10 4.236767412 198.19.0.2 → 198.19.0.1 UDP 60 80 → 10000 Len=18

11 4.236812336 198.19.0.1 → 198.19.0.2 UDP 60 10001 → 80 Len=18

12 4.436771779 198.19.0.2 → 198.19.0.1 UDP 60 80 → 10002 Len=18

13 4.436814380 198.19.0.1 → 198.19.0.2 UDP 60 10002 → 80 Len=18

14 4.636770939 198.19.0.2 → 198.19.0.1 UDP 60 80 → 10002 Len=18

15 4.636815797 198.19.0.1 → 198.19.0.2 UDP 60 10003 → 80 Len=18

16 4.836778418 2001:2:0:8000::2 → 2001:2::2 UDP 80 28744 → 41552 Len=18

17 4.836789464 2001:2::2 → 2001:2:0:8000::2 UDP 80 21136 → 86 Len=18

Fig. 4 The tshark capture of a stateful NAT64 test on the enp3s0f1 interface of the DUT.

Review version

12

5.2. Measurement of the Maximum Connection

Establishment Rate of a Stateful NAT44 Gateway.

Before an actual stateful NAT44 throughput test could be

performed, one must determine the maximum connection

establishment rate, and a rate somewhat lower than that

should be used during the preliminary phase of the

throughput test to prevent the failure of the measurement

during the preliminary phase due to frame loss caused by

an improper frame rate.

Therefore, we first determined the maximum connection

establishment rate of Test System 2 shown in Fig. 5.

Regarding Test System 2, it is an important condition

that all cores of the second CPU of the DUT were

switched off using the maxcpus=8 kernel parameter to

avoid NUMA issues. (In these servers, cores 0-7 belong

to NUMA node 0 and cores 8-15 belong to NUMA node

1.)

The various settings of the NAT44 gateway may

drastically influence its throughput. We wanted to imitate

the conditions of an ISP, therefore, we set the parameters

of the connection tracking table following the

recommendations of Vyacheslav Gapon for a high-

loaded NAT server [21]. Namely, the

nf_conntrack_max and hashsize parameters

were set to 4,194,304 and 524,288, respectively.

It is important that the measurement script remotely

started and stopped iptables on the DUT before and

after each test in order to delete the content of its

connection tracking table.

To avoid the exhaustion of the connection tracking table

during the tests, we limited the possible port number

combinations to 4,000,000 by using source port range of

[10,000; 49,999] and destination port range of [80; 179].

We used no background traffic. First, we sent exactly

N=4,000,000 number of preliminary frames necessary to

fill the state table (M=4,000,000). The global timeout for

the preliminary frame sending was T=500ms, and the

delay of the preliminary phase was calculated as:

 D=1000*M/N+2*T=2000 (1)

We used binary search to determine the maximum

connection establishment rate, that is, the highest frame

rate for the preliminary test, at which all preliminary

frames are successfully received and processed by the

Responder. The binary search was performed 20 times,

and the median, minimum and maximum were

determined. In addition to that, we have also determined

the dispersion of the results calculated as follows:

 %100
median

minmax
dispersion

 (2)

As for frame size to be used, RFC 8219 lists a number of

standard frame sizes. We used only the first one of them,

64 bytes. Our previous benchmarking experience gained

with these test systems shows that the achievable frame

rate does not significantly decrease with the frame size,

as the bottleneck is the processing power and not the

10Gbps Ethernet [17]. We show an example for testing

with higher a frame size in Section 5.4.

We have performed the measurements both using

pseudorandom port numbers and using port number

enumeration. The results are shown in Table 2. Whereas

the median of the maximum connection establishment

rate using pseudorandom port numbers is 1,406,230fps,

the median of the maximum connection establishment

rate using port number enumeration is only 669,587fps.

The second one is less than half of the previous one,

which needs an explanation. We were aware that when

we used random port numbers, then some of the

combinations were repeated and even though the state

table of the Tester was filled, the connection tracking

table of the DUT contained fewer elements: its number

was around 2.5 million, instead of 4 million. We have

repeated the test with N=M=40,000,000 so that the state

table of the DUT be filled up, too. Its result is shown in

the last column of Table 2. Compared to the first case,

the median value decreased by less than 10% from

1,406,230fps to 1,271,023fps. It means that the root

enp3s0f0:
198.18.0.2/24

enp3s0f0:
198.18.0.1/24

Tester

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

DUT
stateful NAT44

gateway

running
siitperfn017

n018

10GbE w/ direct cables

Test System 2

Fig. 5 Test system performing stateful NAT44 benchmarking

measurements.

Table 2 Maximum connection establishment rate of iptables

stateful NAT44

Port numbers are random enumerated random,

M: 10x

Median (fps) 1,406,320 669,587 1,271,023

1st perc. (fps) 1,400,377 664,030 1,245,115

99th perc. (fps) 1,410,172 675,941 1,291,504

Dispersion 0.70 1.78 3.65

Review version

13

cause of the much lower rate was not the higher number

of elements in the connection tracking table of the DUT,

but the port number enumeration. It is beyond the scope

of our paper to investigate why the usage of increasing

port numbers deteriorate the performance of iptables

to such an extent, but it is an important lesson for us that

the random or ordered nature of the port numbers of the

consecutive packets may have a significant effect on the

maximum connection establishment rate. Thus this

observation limits the applicability of such tests.

5.3. Throughput Measurement of a Stateful NAT44

Gateway.

Section 5.3 of RFC 8219 requires that all tests be

performed with bidirectional traffic. Unidirectional tests

are optional, but we performed them, because we were

interested, if we could point out any asymmetric

behaviour of iptables.

As for the parameters, we kept the settings of the

connection establishment rate measurements in Section

5.2 unless stated otherwise. The N number of preliminary

frames and the M size of the state table requires some

discussion. If the connection tracking table of the DUT is

not filled during the preliminary phase, its filling is

completed during the 60s long throughput test, if there is

traffic in the forward direction. It will not happen if a

unidirectional test is performed in the reverse direction.

Therefore, it is desirable to fill the connection tracking

table of the DUT in the preliminary phase as much as

possible. However, we need to consider the timeout

limitations, too. The timeout of the UDP connections is

30 seconds.

First, we have performed some preliminary tests

allowing that the connection tracking table was filled

only partially (about 2.5 million entries) to gain some

insight regarding the order of magnitude of the

throughput of the DUT. We have found that the

bidirectional throughput value fell into the [800,000fps,

1,000,000fps] interval, and the unidirectional throughput

values fell into the [1,000,000fps, 2,000,000fps] interval.

We note that siitperf reports the frames/s per

direction rate, that is, if a bidirectional test is used, then

the number of all forwarded frames per second is double

the reported rate.

As for the bidirectional test, we have chosen

1,400,000fps as the upper bound of the binary search,

and we have considered 700,000fps as the lowest frame

rate to be used. We have chosen N=M=20,000,000. Even

when sending at only 700,000fps rate, the Responder can

go through the state table in 28.6s. Based on our results

for the maximum connection establishment rate, we have

chosen R=1,000,000 to leave some performance reserve.

In our case, the delay caused by the preliminary phase is

D=21s, which is deliberately not the bottleneck, but in

other cases one should also consider it, when calculating

the limits of the timeout. As for the unidirectional tests,

we used 2,000,000fps as the upper bound of the binary

search.

We have performed the bidirectional test in two ways to

check, if it makes a difference. First, we used

pseudorandom four tuple selection at the Responder (by

setting Responder-ports to 3), and then we used

linear scanning of the state table in increasing order

(Responder-ports: 1). The results are shown in

Table 3. The difference is quite visible: the second

setting reduces the median throughput from 932,919fps

to 875,861 by 6.1%. As for the unidirectional tests, this

setting was redundant during the test in the forward

direction (as there was no traffic from the responder to

the initiator), and linear scanning was the only workable

solution during the test in the reverse direction. We have

found a slight asymmetry: whereas the median

throughput was 1,891,016fps in the forward direction, it

was only 1,498,951fps in the reverse direction (about

20.7% less).

5.4. Frame loss rate measurement

Frame loss rate measurement is also a part of RFC 8219.

It can be performed with the same siitperf-tp

program using a different shell script, which performs

the tests at different frame rates and records the number

of successfully received frames.

As an illustration, we have carried out test series using

Table 3 The throughput of iptables stateful NAT44

Traffic bidir.

rp: 3

bidir.

rp: 1

forward reverse

Median (fps) 932,919 875,861 1,891,016 1,498,951

min (fps) 926,945 872,046 1,749,999 1,453,124

max (fps) 936,891 880,500 1,906,251 1,531,495

Dispersion 1.07 0.97 8.26 5.23

0

5

10

15

20

25

30

35

40

45

50

700 800 900 1000 1100 1200 1300 1400 1500 1600

Fr
am

e
 lo

ss
 r

at
e

(%
)

Frame rate (kfps)

iptables NAT44 Frame Loss Rate

64bytes 512bytes

Fig. 6 Frame loss rate of siitperf NAT44 as a function of frame

rate and frame size using bidirectional traffic

Review version

14

Test System 2 with the same parameters used for the

bidirectional throughput test using random four tuple

selection in Section 5.3. Besides using the same 64-byte

long frames as in all other tests, we have used also 512-

byte long frames. (This standard frame size was selected

to be significantly larger, but still small enough to

prevent the 10Gbps Ethernet from being a bottleneck.)

Our results are shown in Fig. 6. The colour bars show the

median values and the (usually invisible) error bars show

the minimum and maximum values. The results for 64-

byte frames are in a good agreement with our throughput

measurement results: there is no frame loss up to

900kfps rate, and though the frame loss rate is invisible

in the figure, the median of the frame loss is 0.08% at

1000kfps frame rate, and it visibly grows from 1100kfps

frame rate. As for the 512-byte frames, an error bar

appears at 800kfps, showing that the maximum of the

frame loss rate was 1.8% and the frame loss rate visibly

grows from 900kfps frame rate. Except for the case of

512-byte frames at 800kfps frame rate, the results are

very stable: the error bars are practically invisible in all

other cases.

5.5. An Initial Performance Estimation of the Stateful

Operation of Siitperf.

We used Test System 3 for determining the performance

limits of siitperf. Its topology was very simple as

shown in Fig. 7. The two 10GbE interfaces of the Tester

were interconnected by a direct cable. Thus, the

performance of the looped back Tester was limited by the

performance of siitperf itself.

Unless stated otherwise, we used the settings of the

connection establishment rate measurements in Section

5.2.

First, we tested the preliminary phase performance both

using random ports and port number enumeration. The

results are shown in Table 4. As we expected,

siitperf kept its high performance.

Based on the results, we used R=6,000,000 for the

throughput tests.

We performed two sets of throughput tests. In both series,

pseudorandom port numbers were used by the sender of

the Initiator. The value of N and M, as well as the size of

the port range was increased from 4,000,000 through

40,000,000 to 400,000,000 by using 179, 1079 and

10,079 as the upper limit of the destination port range. In

the first series, the sender of the Responder used

pseudorandom four tuple selection, whereas in the

second series, the Responder used the four tuples from

its state table in increasing order.

The results of the first measurement series are shown in

Table 5. Throughput as a function of the M size of the

state table shows a slightly decreasing tendency. We

attribute it to the fact that caching becomes less and less

effective as the size of the state table grows. We can

support it with the results of the second series in Table 6.

On the one hand, the results are higher than the results in

Table 5, also because in the second series there was no

need to generate a random number. However, on the

other hand, the results are not degrading here, because

enp3s0f0:
198.18.0.2/24

Tester

enp3s0f1:
198.19.0.2/24

running
siitperfn019

10GbE w/ direct cable

Test System 3

Fig. 7 Test system for determining the performance limits of

siitperf.

Table 4 Achieved frame rate for maximum connection establishment

rate measurement

Port numbers random enumerated

Median (fps) 6,251,382 6,701,677

1st perc. (fps) 6,249,999 6,687,499

99th perc. (fps) 6,251,709 6,702,881

Dispersion 0.03 0.23

Table 5 Achieved frame rate for throughput test with pseudorandom

four tuple selection from the state table of the Tester

N, M, Port numbers 4,000,000 40,000,000 400,000,000

Median (fps) 4,045,161 3,801,450 3,733,430

Minimum (fps) 4,039,061 3,781,249 3,703,001

Maximum (fps) 4,048,891 3,802,918 3,742,249

Dispersion 0.24 0.57 1.05

Table 6 Achieved frame rate for throughput test with linear scanning

of the state table of the Tester

N, M, Port numbers 4,000,000 40,000,000 400,000,000

Median (fps) 5,035,116 5,034,443 5,034,109

Minimum (fps) 5,033,136 5,032,957 5,033,202

Maximum (fps) 5,039,063 5,035,652 5,035,284

Dispersion 0.12 0.05 0.04

Table 7 Achieved frame rate of siitperf-pdv with state table

size M=4,000,000

four tuple selection random linear scan

Median (fps) 3,643,421 4,620,949

Minimum (fps) 3,642,328 4,619,952

Maximum (fps) 3,644,532 4,623,047

Dispersion 0.06 0.07

Review version

15

the access of the elements of the state table happened in

an increasing order, which made caching and likely also

cache pre-fetching effective.

As discussed in [9], the low number of latency frames do

not influence the performance of siitperf, therefore,

there was no need to measure the performance of

siitperf-lat.

As for the performance of siitperf-pdv, we have

checked it at state table size M=4,000,000 using both

random and linear four tuple selection. The results are

shown in Table 7. As we expected, maintaining a 64-bit

counter in each frame has its costs, and linear four tuple

selection gives higher performance than random.

6. Discussion and Future Work

As far as we know, our stateful extension of siitperf

is the world’s first RFC 8219 and RFC 4814 compliant

stateful NAT64 / stateful NAT44 tester. Having no

sample to follow, we could rely only on our own

considerations. Our first test results seem to justify our

design concept in various aspects:

1. The usage of the four tuples proved to be a

working solution for generating traffic in the

direction from the Responder to the Initiator at

a sufficiently high frame rate.

2. Separating preliminary phase and test phase

enabled us to perform a unidirectional test

having traffic only from the Responder to the

Initiator.

3. Letting the user specify a different frame rate at

the preliminary phase enabled us to properly

measure the throughput in the case if it is

higher than the maximum connection

establishment rate (as seen in Section 5.3).

4. Making the extension resilient with several

parameters also proved to be useful, e.g.

different policies for four tuple selection,

resilience regarding the number of preliminary

frames, the size of the state table, etc.

Port number enumeration was another concept, which

we expected to be of practical use in benchmarking. We

expected it to enable us efficiently filling up the

connection tracking table of the DUT and the state table

of the Responder. On the one hand, our results in

Section 5.3 justified our intention to save timeout time.

However, on the other hand, our results regarding the

maximum connection establishment rate in Section 5.2

have shown that the random or ordered nature of the

port numbers of the consecutive packets may have a

significant effect on the maximum connection

establishment rate, hence, the performance of a stateful

gateway. Therefore, we had to use a more complicated

method in Section 5.3 to fill up the state table of the

DUT. However, we still consider it as a useful feature of

siitperf, which may be applied for special purposes,

like wilfully exhausting the port number range of a

stateful NAT64 / NAT44 gateway for simulating a denial

of service attack. We plan to use it for testing various

NAT64 implementations, how much they are vulnerable

to this kind of attack, as we mentioned in [15] and [16].

We are aware that still there are several open questions.

For example, in Section 5.4, we took the liberty of

creating different number of port number combinations

by keeping the source port number range as fixed and

increasing the destination port number range tenfold

twice. However, we have no idea, how much it is

different, if we use a source port range of size 10,000

and a destination port range of size 100 versus if we use

a source port range of size 40,000 and a destination port

range of size 25. The number of possible combinations

is 1 million in both cases, but they may result in

different performance.

And it was just one example. We expect to gain more

experience in stateful testing by carrying out

comprehensive benchmarking of various stateful NAT64

implementations like Jool or OpenBSD PF. Our

experience may show the need for further developments

of siitperf.

We believe that having a suitable benchmarking tool is

important, but not sufficient. For example, network

operator experience regarding the most important

parameters of a stateful NAT64 or NAT44 gateway is

absolutely necessary for producing usable benchmarking

results. Thus, we are looking for partners.

We would be grateful to receive any feedback regarding

the theory and practice of stateful testing and also

regarding our tool, siitperf. Its stateful extension is

now available in the “stateful” branch [5], and we plan

to merge it into the “master” branch, when we consider

it to be matured enough.

We are also open to add further functionalities like

stateful NAT66 testing if there is user demand for it.

We plan to perform performance optimization when the

set of functionalities seem to be stable.

6. Conclusions

We conclude that our efforts were successful in creating

the world’s first RFC 8219 and RFC 4814 compliant free

software stateful NAT64/NAT44 benchmarking tool.

Our tests proved that it works correctly and it has high

enough performance for benchmarking stateful NAT64

and even stateful NAT44 gateway implementations. We

have also advanced the theory of stateful benchmarking

by being the first to propose a working solution.

Our future plans include its comprehensive testing,

adding further functionalities and its performance

optimization. We also plan to use our new Tester for

research in benchmarking methodology issues.

One of the most crucial methodology issues is the

problem of using UDP traffic for benchmarking as

Review version

16

required by RFC 8219. This can be a serious problem for

two reasons:

 The default timeout values of iptables are

different for TCP and UDP “connections”.

 The handling of TCP and UDP “connections” is

very likely also different.

Therefore, we believe that it is necessary to implement

testing also with TCP traffic. However, we expect it to be

more difficult due to the need for proper handling of TCP

connection establishment and termination.

We also plan to write an Internet Draft about the

proposed methodology for stateful testing and submit it

to the Benchmarking Working Group of IETF.

Acknowledgments

The development of siitperf and the measurements

were carried out by remotely using the resources of

NICT StarBED, 2-12 Asahidai, Nomi-City, Ishikawa

923-1211, Japan. The author would like to thank Shuuhei

Takimoto for the possibility to use StarBED, as well as to

Satoru Gonno, Makoto Yoshida and Miku Takuma for

their help and advice in StarBED usage related issues.

The author thanks Keiichi Shima, Sándor Répás and

Ahmed Al-hamadani for their reading and commenting

on the manuscript.

References

[1] M. Georgescu, L. Pislaru and G. Lencse, “Benchmarking

Methodology for IPv6 Transition Technologies”, IETF RFC 8219,

Aug. 2017, DOI: 10.17487/RFC8219

[2] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6

transition technologies: A subjective classification for security

analysis”, IEICE Trans. Commun., vol. E102-B, no. 10, pp. 2021–

2035, DOI: 10.1587/transcom.2018EBR0002

[3] C. Bao, X. Li, F. Baker T. Anderson, F. Gont, “IP/ICMP

Translation Algorithm”, IETF RFC 7915, June 2016, DOI:

10.17487/RFC7915

[4] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:

Network address and protocol translation from IPv6 clients to

IPv4 servers”, RFC 6146, April 2011, DOI: 10.17487/RFC6146

[5] G. Lencse, “Siitperf: an RFC 8219 compliant SIIT (stateless

NAT64) tester written in C++ using DPDK”, source code,

https://github.com/lencsegabor/siitperf

[6] G. Lencse, “Design and Implementation of a Software Tester for

Benchmarking Stateless NAT64 Gateways”, IEICE Trans.

Commun., vol. E104-B, no.2, pp. 128–140. Feb. 2021. DOI:

10.1587/transcom.2019EBN0010

[7] S. Bradner and J. McQuaid, “Benchmarking methodology for

network interconnect devices”, IETF RFC 2544, March 1999.

DOI: 10.17487/RFC2544

[8] D. Newman, T. Player, “Hash and stuffing: Overlooked factors in

network device benchmarking”, IETF RFC 4814, 2008. DOI:

10.17487/RFC4814

[9] G. Lencse, “Adding RFC 4814 random port feature to siitperf:

Design, implementation and performance estimation”, Int. J.

Advances in Telecomm., Electrotechnics, Signals and Systems, vol.

9, no. 3, pp. 18–26, 2020, DOI: 10.11601/ijates.v9i3.291

[10] P. Srisuresh and K. Egevang, “Traditional IP Network Address

Translator (Traditional NAT)”, IETF RFC 3022, January 2001.

DOI: 10.17487/RFC3022

[11] G. Lencse, “Estimation of the Port Number Consumption of Web

Browsing”, IEICE Trans. Commun., vol. E98-B, no. 8. pp. 1580–

1588. Aug. 2015. DOI: 10.1587/transcom.E98.B.1580

[12] T. Kurahashi, Y. Matsuzaki, T. Sasaki, T. Saito, F. Tsutsuji,

“Periodic observation report: Internet trends as seen from IIJ

infrastructure – 2020”, Internet Infrastructure Review, vol. 49,

December 25, 2020.

https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf

[13] D. Scholz, “A look at Intel’s dataplane development kit”, Proc.

Seminars Future Internet (FI) and Innovative Internet

Technologies and Mobile Communications (IITM), Munich,

Germany, Aug. 2014, pp. 115–122, DOI: 10.2313/NET-2014-08-

1_15

[14] D. Liu and H. Deng, “NAT46 consideration,” expired Internet

Draft, https://tools.ietf.org/html/draft-liu-behave-nat46-02

[15] G. Lencse and Y. Kadobayashi, “Methodology for the

identification of potential security issues of different IPv6

transition technologies: Threat analysis of DNS64 and stateful

NAT64”, Computers & Security (Elsevier), vol. 77, no. 1, pp.

397-411, August 1, 2018, DOI: 10.1016/j.cose.2018.04.012

[16] A. Al-Azzawi and G. Lencse, “Towards the Identification of the

Possible Security Issues of the 464XLAT IPv6 Transition

Technology”, 43rd International Conference on

Telecommunications and Signal Processing (TSP 2020), Milan,

Italy, July 7-9, 2020, pp. 439-444.

[17] G. Lencse, K. Shima, “Performance Analysis of SIIT

Implementations: Testing and Improving the Methodology”,

Comput. Commun., vol. 156, pp. 54–67, April 15, 2020, DOI:

10.1016/j.comcom.2020.03.034

[18] Lencse G., Kadobayashi Y., “Benchmarking DNS64

implementations: Theory and practice”, Comput. Commun., vol.

127, 2018, pp. 61–74, DOI: 10.1016/j.comcom.2018.05.005

[19] Lutchansky, N. (2011). TAYGA: Simple, no-fuss NAT64 for

Linux, http://www.litech.org/tayga/ Accessed March 1, 2021.

[20] Anderson, T., Potter, A. L. (2016). Explicit address mappings for

stateless IP/ICMP Translation, IETF RFC 7757, DOI:

10.17487/RFC7757

[21] V. Gapon, “Tuning nf_conntrack”, personal blog,

https://ixnfo.com/en/tuning-nf_conntrack.html Accessed March 1,

2021.

 Gábor Lencse received his M.Sc. and Ph.D.

degrees in computer science from the

Budapest University of Technology and

Economics, Budapest, Hungary in 1994 and

2001, respectively. He works for the

Department of Telecommunications,

Széchenyi István University, Győr, Hungary

since 1997. Now, he is a professor. He is also

a part time senior research fellow at the

Department of Networked Systems and

Services, Budapest University of Technology

and Economics since 2005. His research

interests include the performance and

security analysis of IPv6 transition

technologies. He is a co-author of RFC

8219.

https://github.com/lencsegabor/siitperf
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf
https://tools.ietf.org/html/draft-liu-behave-nat46-02
http://www.litech.org/tayga/
https://ixnfo.com/en/tuning-nf_conntrack.html

