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SUMMARY Our siitperf is the world’s first RFC 8219 compliant 

free software SIIT (Stateless IP/ICMP Translation, also called stateless 

NAT64) benchmarking tool. It was written in C++ using DPDK (Intel 

Data Plane Development Kit). Our current effort aims to design and 

implement a test program for stateful NAT64 gateways.  Due to the 

object-oriented design of siitperf, it is feasible to extend it for 

stateful tests, while keeping its original design and features. In this 

paper, we introduce the problem of benchmarking stateful NAT64 and 

stateful NAT44 (also called NAPT: Network Address and Port 

Translation) gateways and propose various solutions. We disclose the 

design and the most important implementation decisions of the stateful 

extension of siitperf. We prove the viability of our design and 

implementation by a functional NAT64 test and performing the 

maximum connection establishment rate, throughput and frame loss 

rate measurements of a stateful NAT44 gateway. We also carry out an 

initial performance estimation of the stateful extension of siitperf. 

Our tester is distributed as free software under the GPLv3 license for 

the benefit of the research, benchmarking and networking communities. 

keywords: benchmarking, IPv6 transition technology, performance 

analysis, stateful NAT44, stateful NAT64. 

1. Introduction 

RFC 8219 [1] has defined a comprehensive 

benchmarking methodology for IPv6 transition 

technologies in 2017. To that end, it classified the high 

number of IPv6 transition technologies [2] into a small 

number of categories: dual stack, single translation, 

double translation and encapsulation technologies. Both 

the SIIT [3] (Stateless IP/ICMP Translation, also called 

stateless NAT64) and the stateful NAT64 [4] IPv6 

transition technologies belong to the single translation 

category.  

We have created siitperf [5], the world’s first RFC 

8219 compliant free software SIIT benchmarking tool in 

2019. We have implemented it in C++ using DPDK and 

documented its design, implementation and initial 

performance estimation in [6]. As RFC 8219 reused the 

throughput benchmarking procedure from RFC 2544 [7], 

we have followed its test frame format using fixed 

source and destination UDP port numbers in our first 

implementation [6]. Then we have added the optional use 

of pseudorandom port numbers recommended by RFC 

4814 [8] and documented the new feature in [9]. Our 

experience has shown that it was relatively easy and 

straightforward to extend siitperf to be able to use 

pseudorandom port numbers due to its object-oriented 

design, and we also managed to preserve its high 

performance [9].  

Our current effort aims to extend siitperf to be able 

to benchmark stateful NAT64 gateways, because they 

play an important role in the current phase of IPv6 

transition [2]. However, in this paper, we point out that 

this extension is not at all straightforward, because of the 

missing theoretical background. We are not aware of any 

other working tester or publication, which would specify, 

how stateful NAT64, or even IPv4 NAPT (Network 

Address and Port Translation) gateways can be 

benchmarked using bidirectional traffic with random port 

numbers. 

The remainder of this paper is organized as follows. 

Section 2 contains a general discussion, how stateful 

NAT (not necessarily NAT64) gateways may be 

benchmarked using bidirectional traffic with random port 

numbers. Section 3 gives a summary of the design and 

implementation of siitperf necessary to understand 

the following sections. Section 4 discloses our most 

important design considerations and implementation 

decisions. Section 5 presents our functional and 

performance tests and their results. Section 6 provides a 

discussion and highlights our plans for further tests, 

development, performance optimization and research on 

benchmarking methodology issues. Section 7 gives our 

conclusions. 

2. Benchmarking Stateful NAT Gateways using 

Bidirectional Traffic and Random Port Numbers 

2.1. Problem Formulation 

As the problem is not specific to stateful NAT64, we 

discuss it in a general way. We use the example of the 

more well-known and widely used IPv4 NAPT (Network 
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Address and Port Translation, please refer to Section 2.2 

of RFC 3033 [10], it is also called stateful NAT44). 

NAPT is present in many places from small home 

networks to the largest ISP networks, where it is used in 

the CGN (Carrier-Grade NAT) gateway. Although we 

use IPv4 in our example to give an easy explanation of 

the problem, any IP version could be used. Fig. 1 shows 

the test and traffic setup for the throughput measurement 

of NAPT gateways. Although the arrows would suggest 

unidirectional traffic, RFC 8219 requires testing with 

bidirectional traffic, and testing with unidirectional 

traffic is optional. Following our naming convention 

used in [6] and [9], we call the direction following the 

arrows as forward direction and the opposite one as 

reverse direction. We used private IP addresses on the 

left side of the devices and public IP addresses on their 

right side. Due to the operation of the NAPT solution, 

communication may only be initiated in the forward 

direction. 

Now, we follow the possible operation of the test system. 

Let the left side port of the Tester send a test frame with 

the following IP addresses and port numbers: source: 

10.0.0.2:10000, destination: 198.19.0.2:80, where the 

port numbers are considered as arbitrary. 

We note that the port numbers are UDP port numbers, 

because RFC 8219 requires testing with UDP traffic. We 

are aware that stateful translators use different timeout 

values for TCP and UDP “connections”. Now, we follow 

the requirements of RFC 8219, but we return to this issue 

in Section 6. 

Let the connection tracking table of the NAPT gateway 

be empty at the beginning of testing, and let the NAPT 

gateway not change the source port numbers, when it is 

not necessary. Thus, the IP addresses and port numbers 

of the translated test frame are as follows: source: 

198.19.0.1:10000, destination: 198.19.0.2:80. When the 

right side port of the Tester receives the translated test 

frame, it may store the four tuple of IP addresses and port 

numbers, and then it can send a test frame with a valid 

four tuple that has a matching entry in the connection 

tracking table of the NAPT gateway. The identifiers of 

the test frame to be sent in the reverse direction are: 

source: 198.19.0.2:80, destination: 198.19.0.1:10000. 

The NAPT gateway translates back the test frame using 

the information of its connection tracking table, and the 

identifiers of the translated frame are: source: 

198.19.0.2:80, destination: 10.0.0.2:10000. 

Now, let us consider how pseudorandom source and 

destination port numbers can be used to comply with the 

requirements of RFC 4814. Their application in the 

reverse direction requires that preliminary traffic be 

provided in the forward direction before the actual 

throughput test: during this preliminary phase, the four 

tuples are observed and stored. After that, the right side 

port of the Tester may randomly choose from among the 

stored four tuples to generate valid traffic that can be 

translated by the NAPT gateway. 

Theoretically, pseudorandom source and destination port 

numbers could be used in the forward direction, however, 

this approach would be a denial of service attack against 

the NAPT gateway, because it would exhaust its 

connection tracking table. Let us see some calculations 

using the recommendations of RFC 4814: 

 Recommended source port range: 1024-65535, 

its size is: 65535-1024+1=64512 

 Recommended destination port range: 1-49151, 

its size is: 49151 

 The number of source and destination port 

number combinations is: 

64512*49151 = 3,170,829,312. 

And yet we did not consider the requirement for testing 

with also 256 destination networks, which would further 

increase the number of connection tracking table entries. 

Thus, we have shown that the Tester should not follow 

the recommendations of RFC 4814 for pseudorandom 

source and destination port numbers blindly. However, 

on the other hand, we agree with the purpose of RFC 

4814, as we are aware that using the same fixed source 

and destination port numbers is very far from the 

operational conditions of NAPT gateways. Even a small 

home NAPT device has to handle a high number of 

different source port numbers since web browsers use a 

high number of concurrent TCP connections, the number 

of which depends on several factors including the 

content of the given web page, the type of client 

operating system and browser, etc., please refer to [11] 

for further details. A CGN NAPT gateway has to handle 

also a high number of different source IP addresses 

besides the high number of different source port numbers. 

These parameters have a significant influence on the 

number of connection tracking table entries and thus they 

should not be overlooked. 

2.2 Possible Solutions 

To find a reasonable solution, let us consider, what port 

numbers usually appear in the outgoing packets arriving 

at the NAPT gateway of an ISP. It is likely that: 

 The source port numbers will be quite different 

in the range of 1024-65535.  

 There will be a few very popular ones among 

             +--------------------+ 

    10.0.0.2 |                    | 198.19.0.2 

+------------|IPv4   Tester   IPv4|<-----------+ 

|            |private       public|            | 

|            +--------------------+            | 

|                                              | 

|            +--------------------+            | 

|   10.0.0.1 |         DUT:       | 198.19.0.1 | 

+----------->|IPv4  NAPT gw.  IPv4|------------+ 

             |private       public| 

             +--------------------+ 

 

Fig. 1  NAPT gateway test setup (based on RFC 2544). 



Review version 

3 

the destination port numbers, with the 

dominance of 443 (HTTPS) and 80 (HTTP), 

appearing also the port numbers of several other 

widely used protocols1. 

Theoretically, it could be possible to capture the traffic at 

the NAPT gateway of an ISP, count the frequency of the 

occurrence of each source and destination port number 

and store the statistics. One could implement a tester, 

which loads the statistics, and generates source and 

destination port numbers following the distributions 

encoded in the statistics. However, several different 

questions arise, for example: 

1. Are source and destination port numbers 

independent from each other or is there any 

correlation between them? 

2. How much similar or different are the statistics 

of different NAPT gateways and how this 

difference influences the benchmarking results? 

3. To what extent the statistics are permanent or 

changing with time, and how this possible 

change influences the benchmarking results? 

The answer to the first question may simply make the 

random number generation a bit more complex, however 

the answers to the second two questions may make it 

impossible to produce and publish meaningful 

benchmarking results that will be usable for others. 

We would like to build a more simple and easy-to-use 

model. Therefore, we make the following simplifications. 

1. Let us omit the possible correlation of the 

source and destination port numbers. 

2. Let us use uniform distribution for the source 

port numbers as recommended by RFC 4814. 

(Maybe its distribution is not uniform, but 

skewed, however, we hope that using uniform 

distribution is not a bad model.) 

3. Let us also use uniform distribution for the 

destination port numbers, but in a much 

narrower range than it is recommended by RFC 

4814. (This is a very significant simplification, 

which requires validation.) 

The size of the destination port range can be used as a 

parameter and the performance of the NAPT gateway 

may be examined as a function of this parameter. The 

results may be useful, when dimensioning a NAPT 

gateway. 

3. Summary of Siiperf 

In this section, we give a summary of the design and 

implementation of siitperf only to the extent 

necessary to understand the following sections. It is done 

by reusing some of the text of our open access papers [6] 

and [9], in which further details are available. 

As for siitperf, we intended it to be a flexible tool 

                                                           
1 Please refer to the report of Internet Initiative Japan [12] for a 

particular observation of the popularity of the different protocols. 

designed for research and experimentation rather than an 

automated commodity Tester. Therefore, it is a 

combination of binaries and shell scripts. It supports the 

following benchmarking procedures: throughput, frame 

loss rate, latency and PDV (packet delay variation). 

There are three binaries written in C++ using DPDK 

(Intel Data Plane Development Kit) [13] to ensure high 

enough performance. The binaries implement the core 

business logic and input a high number of parameters. 

There are four bash shell scripts (for the above-

mentioned four benchmarking measurements), and they 

call the appropriate binary supplying the command line 

parameters necessary for the given measurement step. 

For example, the 20 repetitions and the binary search of 

the throughput test are performed by the binary-

rate-alg.sh script, which calls the siitperf-tp 

binary for every 60s long elementary test providing the 

required frame rate and several further parameters. The 

same siitperf-tp binary is used by the frame-

loss-rate.sh script to measure the frame loss rate at 

various frame rates. Parameters that may vary among the 

consecutive executions of the binaries are supplied as 

command line parameters, whereas parameters that are 

constant (e.g. IP addresses, MAC addresses, etc.) are 

supplied in the siitperf.conf configuration file. 

We followed an object-oriented design. The classes for 

both the latency and the PDV measurements are 

extending their base class, throughput. (They are slightly 

different from each other, as the latency test uses only a 

specified number of timestamps, whereas the PDV test 

uses timestamps for every single frame.) 

The program structure of each C++ program is very 

simple: the main program reads the parameters first from 

the configuration file and then from the command line. 

Next, it calls the init() function of the required 

measurement, which initializes the EAL (Environment 

Abstraction Layer) of the DPDK, resets and starts the 

network interfaces, and performs a few sanity checks. 

Finally, the main program executes the proper 

measurement procedure. The measurement procedure 

prepares the parameters for the senders and receivers, 

and starts one sender and one receiver for each active 

direction (as separate threads). They are executed by 

their exclusively used CPU cores to ensure guaranteed 

performance. After they have finished, the main thread 

collects and evaluates their results. From our point of 

view, it is important to mention that the four processes 

(two senders and two receivers) do not have any 

common data structures and they work independently 

from each other, except that: 

 each receiver receives the test frames sent by 

the corresponding sender, 

 receivers and senders on the same side use the 

same NIC (network interface card). 

We have designed siitperf to be flexible due to using 

a high number of parameters. For example, the IP 
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version can be specified individually and independently 

for each side, thus siitperf can also be used for 

testing IPv4 or IPv6 routers, not only SIIT gateways. 

When siitperf constructs and sends out test frames, 

their IP version always follow the IP version specified in 

the configuration file by the IP-L-Vers and the IP-

R-Vers parameters for the Left Sender and the Right 

Sender, respectively. Table 1 summarizes which 

parameters are used as source and destination IP 

addresses of test frames on each side. 

RFC 8219 also requires that besides the traffic that is 

translated (we called it as “foreground traffic”), tests 

should also use non-translated native IPv6 traffic (we 

called it as “background traffic”), and different 

proportions of the two types of traffic have to be used. 

For us, it will be important that background traffic is 

normal IPv6 test frames and they are always sent from 

the “real” IPv6 address of the given side to the “real” 

IPv6 address of the other side. Background traffic is 

indistinguishable from the foreground test frames if the 

IP version of both sides is 6 (case no. 4). 

We note that a dual stack router may also be 

benchmarked using case no. 3 because besides the IPv4 

foreground traffic, the background traffic is IPv6 and the 

proportion of the two may be set arbitrarily. 

The proportion of the foreground traffic and background 

traffic can be expressed by two command line 

parameters called n and m, please refer to our original 

paper [6] for the details. 

We note that the receiver function is resilient: it does not 

take care of the IP version of its side, it rather checks the 

value of the Type field of the Ethernet frame and 

processes the payload accordingly (as IPv4 or as IPv6). It 

does not check IP or MAC addresses, but it checks an 8-

byte identifier to distinguish the test frames from other 

frames. 

It is also important that RFC 2544 requires to use fixed 

source and destination IP addresses first, and then 256 

destination networks for the benchmarking tests. We 

allow the user to specify the number of the networks on 

the left and right sides independently using any value 

from 1 to 256 in the configuration file:  

Num-L-Nets 1 # No. of Left side netw.  

Num-R-Nets 1 # No. of Right side netw. 

The settings apply to both background and foreground 

traffic. But they are used only for destination networks 

and do not affect the source IP addresses. 

There is a further parameter called START_DELAY 

(defined as a C preprocessor constant in the source file 

defines.h), which was originally intended to be very 

much technical: it facilitated the synchronized start of 

frame sending by the senders. (As their startup requires 

non-zero time, their frame sending has to be started at a 

well-defined time.) During our tests, frame loss was 

experienced at the beginning of the test, and it turned out 

that some part of the test system, perhaps the DUT 

(Device Under Test) was not yet ready, right after the 

initialization of the interfaces of the Tester. Thus, this 

parameter has received a new function to support a 

predefined delay between the starting of the network 

interfaces of the Tester and the starting of the actual 

measurement facilitating the proper initialization of the 

network interfaces of the DUT. Its default value was 

increased to 2 seconds and it may be further increased if 

needed. 

Further parameters providing factors of freedom can be 

found in our original paper [6]. 

As for the extension of siitperf to use pseudorandom 

port numbers, we kept our flexible approach, and thus it 

can be specified individually for each direction and for 

the source and destination port numbers, whether they 

should be fixed or varying. If they are varying, they may 

be pseudorandom or increasing or decreasing in the 

consecutive frames. (The latter two are not RFC 4814 

compliant, but they may be useful in some cases.) The 

configuration file allows to set the following parameters: 

Fwd-var-sport 3  

Fwd-var-dport 3  

Rev-var-sport 1  

Rev-var-dport 0  

The numeric values are interpreted as follows:  

 0: fixed port number (the hard-wired value 

defined in Appendix C.2.6.4 of RFC 2544) 

 1: increasing port number, 

 2: decreasing port number 

 3: pseudorandom port number 

It is computationally less expensive to use increasing (or 

decreasing) port numbers than using pseudorandom port 

numbers. Of course, not all combinations are useful, 

perhaps, there is not much point in increasing both the 

source and the destination port numbers. 

The configuration file shipped with siitperf contains 

Table 1  Specification of which parameters used as source and destination IP addresses for foreground test frames on each side. 

(L/R means: Left/Right, the Virt(ual) value is used to represent an IP address from a different address family than the frame belongs to. Please refer to [6] 

for the details.)   

Case  IP version Type of the 

DUT 

IP addresses used by the Left Sender IP addresses used by the Right Sender 

No. Left Right source destination source destination 

1. 6 4 stateless NAT64 gw. IPv6-L-Real IPv6-R-Virt IPv4-R-Real IPv4-L-Virt 

2. 4 6 stateless NAT46 gw. IPv4-L-Real IPv4-R-Virt IPv6-R-Real IPv6-L-Virt 

3. 4 4 IPv4 router IPv4-L-Real IPv4-R-Real IPv4-R-Real IPv4-L-Real 

4. 6 6 IPv6 router IPv6-L-Real IPv6-R-Real IPv6-R-Real IPv6-L-Real 
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the default settings for port number ranges as required by 

RFC 4814: 

Fwd-sport-min 1024 

Fwd-sport-max 65535 

Fwd-dport-min 1 

Fwd-dport-max 49151 

Rev-sport-min 1024 

Rev-sport-max 65535 

Rev-dport-min 1 

Rev-dport-max 49151 

It is also an important implementation detail that the test 

frames are not built up from scratch during testing, but 

only pre-generated test frames (templates) are modified 

to decrease the amount of work and, thus, to increase the 

maximum achievable frame rate. 

We note that all sorts of variable port numbers apply to 

both foreground and background traffic. 

As for the output of siitperf-tp, it reports the 

number of the transmitted frames and the received 

frames for the active directions (one direction may be 

missing): 

Forward frames sent:  

Forward frames received:  

Reverse frames sent:  

Reverse frames received:  

It will be important that the bash shell scripts are 

expected to grep for the above expressions in the output 

of the program. 

So far, we have mainly focused on the siitperf-tp 

throughput tester, which can also be used for the frame 

loss rate measurements. The design and the operation of 

the siitperf-lat latency tester are fairly similar. 

The main difference is that a certain number of frames 

are tagged for latency measurements. As the maximum 

number of latency frames is 50,000, they are always pre-

generated. If the varying port number feature is used, 

then the port numbers are updated in the latency frames, 

too. When a tagged frame is sent, the sender function 

stores its timestamp and when a tagged frame is received, 

the receiver function stores its timestamp, too. After the 

latency test is finished, siitperf-lat processes the 

timestamps and calculates the typical latency and worst-

case latency values for each active direction. The latency 

tester has two further command line parameters, the 

delay parameter specifies how much time after the start 

of the measurement the first tagged frame should be sent, 

and the timestamps parameter specifies the number of 

frames to be tagged.  

The design and the operation of the siitperf-pdv 

PDV tester are even more straightforward extensions of 

siitperf-tp. It sends only PDV test frames, each of 

which contains an 8-byte ordinal number, which is used 

as an index for the array of the receiving and sending 

timestamps. These arrays are filled during the sending 

and receiving of the PDV test frames, and arrays are 

processed after finishing the measurement. The PDV 

tester has one further command line parameter called 

frame timeout. If the value of this parameter is 0, then 

the timestamp arrays are processed as required by RFC 

8219 to calculate PDV. If the value of this parameter is 

higher than 0, then it is interpreted as the timeout 

parameter for each frame individually: those frames 

having higher latency than frame timeout are reclassified 

as lost. Hence, this implements a special throughput test, 

where the timeout is checked for each frame individually. 

Please refer to our original paper for the details and the 

justification of the method [6]. For us this method is 

useful for determining the performance (maximum frame 

rate) of siitperf-pdv. 

4. Design of the Stateful Extension of Siitperf 

4.1 General Design Considerations 

As we designed a functional extension of siitperf, 

we considered compatibility with its previous versions 

very important. The new software should be able to 

perform all the original tests using the original 

parameters (in the command line and in the configuration 

file) and provide the original output. To do so, special 

values of the new parameters may be required, and if 

possible, these values should be their default values. 

(Thus, the usage of an old configuration file and 

command line parameters with the new software should 

result in its old way of operation.) 

4.2. High-level Design Decisions 

4.2.1 Considerations for Directions and Flexibility 

Due to the nature of the stateful translation, it can only 

be used at most in one direction. To keep the flexibility 

of the software, we decided to let the user specify the 

direction. We also wanted to allow stateful translation to 

be combined with any IP version (4 or 6). From the set of 

possible combinations, stateful NAT44, stateful NAT64 

and stateful NAT66 are surely meaningful. Stateful 

NAT46 [14] has also been proposed, but its Internet 

Draft has never been published as an RFC. 

4.2.2 Design of Stateful Testing 

Regarding the stateful operation, let us name the roles of 

the two ports of the Tester as Initiator and Responder. 

The Initiator resides on the “private” side of the DUT, 

and only the Initiator can initiate connection 

establishments due to the stateful nature of the DUT. The 

Responder resides on the “public” side of the DUT and it 

can send only test frames that belong to a connection 

already initiated by the Initiator. As both of them must be 

able to send proper test frames at the required frame rate 

from the very beginning of the test, a preliminary phase 
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is necessary, while the Responder can observe and store 

enough valid four tuples (that belong to existing 

connections) in its state table. Thus, the Initiator and the 

Responder perform the following tasks: 

 During the preliminary phase, the Initiator sends N 

number of test frames to the Responder through the 

DUT. The Responder extracts the IP addresses and 

the port numbers from the tests frames and stores 

them in its state table, but it does not send any test 

frames yet. 

 During the test phase, the Responder receives and 

processes the test frames as needed2 and it further 

updates its state table on the basis of the IP address 

and port number information of the received frames. 

The responder also sends test frames using the IP 

addresses and port numbers from its state table, 

whereas the Initiator simply acts like3 the sender 

and receiver of the original siitperf. 

As the Initiator is completely free to use any source and 

destination port number combinations during the testing 

phase (even those not used during the preliminary phase), 

it is absolutely necessary for the Responder to update its 

state table during the test phase. This operation also 

means that the sender and receiver of the Responder are 

no more independent, but they have a common data 

structure, the state table, which is written by the receiver 

and read by the sender. 

4.3. Further Design and Implementation Decisions 

4.3.1 Considerations for the State Table of the Responder 

RFC 8219 defines black-box testing: the user is not 

aware of the internals of the DUT. In our case, it also 

means that we are not aware of even the size and policy 

of the state table of the DUT. We are not able to keep the 

consistency between the state table of the Responder and 

the connection tracking table of the DUT as we may not 

examine the latter. However, at least, we need to enable 

the user to control, how the old four tuples of IP 

addresses and port numbers are thrown out from the state 

table of the Responder. Allowing the user to specify a 

timeout could be handy from the user’s perspective. 

However, its handling would consume a significant 

amount of processing power. Due to performance 

considerations, we decided to implement the state table 

of the Responder as a simple ring buffer of size M. If the 

test frames arrive at rate r, then the entries of the state 

table are overwritten in M/r time. (Please refer to Section 

4.3.6 for another consistency related issue.) 

 

                                                           
2 E.g. siitperf-tp simply counts them, whereas siitperf-

lat and siitperf-pdv perform further tasks with timestamps. 
3 This is a first approximation. Please refer to Subsection 4.3.3 for a 

refinement. 

4.3.2 Considerations for the Connection Establishment 

Rate 

Usually, a high number of packets per connection are 

transmitted in a typical application scenario of stateful 

NAT gateways. It also means that the connection 

establishment rate is significantly lower than the packet 

rate.  

During the test phase of our benchmarking tests, the 

number of test frames per connection may be controlled 

by the number of possible four tuples (and also by M). 

However, at the beginning of the preliminary phase, the 

initiator sends all different four tuples, that is, the 

connection establishment rate is equal to the frame rate. 

As the maximum connection establishment rate of a 

stateful device may be significantly lower than its 

maximum forwarding rate, we decided to enable the user 

to specify a different frame rate for the preliminary phase 

than the frame rate used in the test phase. 

Please see Section 5.2, how siitperf supports the 

measurement of the maximum connection establishment 

rate of a stateful device. 

4.3.3 Enumeration of Port Numbers 

As for the Initiator, its sender could theoretically work 

the same as the sender of the stateless tester. However, 

we considered it useful to be able to efficiently exhaust 

the set of possible port number combinations for two 

reasons:  

 We planned to use this function for surely 

loading all possibly port number combinations 

to both the state table of the Responder and to 

the connection tracking table of the DUT using 

a minimum N number of preliminary test 

frames. (It was important both from execution 

time point of view and timeout time point of 

view.) 

 We wanted to create a tool suitable for wilfully 

exhausting the port number range of a stateful 

NAT64 / NAT44 gateway for simulating a 

denial of service attack to support vulnerability 

analysis mentioned in [15] and [16]. 

Therefore, we have added a new input parameter to 

combine source and destination port numbers into a 

single counter. It means that the source port number is 

the lower two bytes and the destination port number is 

the higher two bytes of a 4-byte counter. However, its 

possible values are still limited by the specified ranges of 

the source and destination port numbers. (Please refer to 

Section 4.3.5, how to set port number enumeration.) 

We note that port number enumeration applies only to 

the translated traffic (called foreground traffic). The port 

numbers of the non-translated traffic (background traffic) 

do not take part in the enumeration. 
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4.3.4 Port Numbers of the Responder 

Due to the stateful translation, the Responder has to 

generate test frames using the four tuples from its state 

table. It has some consequences for, how the Responder 

should use certain input parameters regarding foreground 

traffic4: 

 It should simply ignore the port number ranges 

and the number of destination networks 

specified in the configuration file for the given 

direction. 

 It should reinterpret the values regarding the 

nature of the port numbers, that is, the 0, 1, 2 or 

3 values of the *-var-{d|s}port parameters 

for the given direction. 

In order to keep resilience, now we consider, what 

approaches can be reasonable: 

0 Use the fixed four tuple learned from the very 

first preliminary frame.  

1 Take the next entry of the state table in 

increasing order.  

2 Take the next entry of the state table in 

decreasing order. 

3 Randomly select from among the state table 

entries.  

We note that case 0 is the same approach, when hard-

wired fixed port numbers are used in the original 

siitperf, literally following the test frame format in 

Appendix C.2.6.4 of RFC 2544. 

In theory, one could say that case 3 is the true spirit of 

RFC 4814, whereas cases 1 and 2 are computationally 

less expensive alternatives. However, there is a practical 

consideration that makes at least one of them a must. We 

discuss it in Section 4.3.6. 

As the above-mentioned configuration file parameters 

specifying the behavior of the source and destination port 

numbers may be set differently, and using them would be 

confusing for the user if siitperf used one of them 

and ignored the other one (e.g. source or destination), 

thus we decided to introduce a new parameter (disclosed 

in the next subsection). 

4.3.5 New Input Parameters 

Following our original policy that parameters that do not 

change during the execution of the shell scripts are put 

into the configuration file, we added the following 

parameters to the configuration file with the default 

value of 0: 

Stateful 0 # valid values: 0, 1, 2 

Its values have the following meanings:  

0 The original operation of siitperf is kept, 

no new command line parameters are accepted. 

                                                           
4 We note that the original settings still apply for the background 

traffic. 

1 Stateful test is performed, Initiator is on the left 

side and Responder is on the right side. New 

command line parameters are expected. 

2 Stateful test is performed, Initiator is on the 

right side and Responder is on the left side. 

New command line parameters are expected. 

We have introduced a configuration file parameter to 

control port number enumeration: 

Enumerate-ports 0 # valid: 0, 1 

Its values have the following meanings: 

0 The original operation of siitperf is kept, 

the port numbers behave as usual. 

1 The port numbers are enumerated in increasing 

order (source port number is the low order 

counter and destination port number is high 

order counter), but the source and destination 

port numbers are limited to their specified 

ranges. 

We note that port number enumeration applies only for 

the foreground traffic, and it is available only, when a 

single destination network is set, otherwise, the program 

gives an “Input Error:” message.  

To express the policy, how the consecutive four tuples 

are selected from the state table of the Responder for the 

foreground traffic, we introduced the following 

configuration file parameter: 

Responder-ports 0 # valid: 0, 1, 2, 3 

The interpretation is defined by the listed items in 

Section 4.3.4. 

As for the new command line parameters, they follow 

the command line parameters of the throughput test, and 

they precede the additional parameters of the Latency 

and PDV measurements. 

They are to be specified in the following order: 

 N (1 – 232-1) – the number of test frames to 

send in the preliminary phase 

 M (1 – 232-1) – the number of entries in the state 

table of the Tester 

 R (in frames per second) – the frame rate, at 

which the test frames are sent during the 

preliminary phase 

 T (in milliseconds, 1 – 2,000) – the global 

timeout for the preliminary frames 

 D (in milliseconds, 1 – 100,000) – the overall 

delay caused by the preliminary phase 

We note that N denotes the number of all frames 

(including foreground and background frames) sent 

during the preliminary phase. 

It is important that the sending of the N number of test 

frames at the specified R frame rate should happen and 

also the T global timeout should elapse within the D time, 

otherwise siitperf reports an error message and exits. 

We note that setting M to 1 is allowed only in the case if 

Responder-ports is set to 0. Please refer to Section 4.3.8 
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for an explanation. 

4.3.6 The Issue of Active Directions. 

So far, we considered the general case, when both 

directions are active, that is bidirectional traffic is used 

for benchmarking. As it is in stateless testing, any of the 

two directions may be set inactive also in the case of 

stateful testing. It is trivially not a problem, if traffic 

flows only from the Initiator to the Responder. When 

traffic flows only from the Responder to the Initiator, 

then the state table of the Responder is filled during the 

preliminary phase and it remains unchanged during the 

testing phase. It may cause a serious problem under 

certain conditions. Stateful NAT64 or NAT44 gateways 

use various timeout values for the connections. Let us 

consider the following situation. If traffic flows only 

from the Responder to the Initiator during the test phase, 

and the Responder uses pseudorandom four tuple 

selection, it may happen that a specific four tuple is not 

used for a specific timeout and then it is used again. It 

results in the construction of a frame that belongs to a no 

more existing connection in the gateway. Therefore, it is 

dropped by the gateway, and the loss of the frame causes 

the throughput test to fail.  The Responder must surely 

avoid this situation. Taking the entries of the state table 

in increasing or decreasing order can be a good 

guarantee to send only frames belonging to an existing 

connection, if the frame rate is high enough to scan 

through the state table within timeout time. (Of course, 

care must be taken for the timeout also during the 

preliminary phase, please see our example calculation in 

Section 5.3.) 

If bidirectional traffic is used, then fast enough refilling 

of the state table of the Responder may guarantee that 

random four tuple selection may find only valid four 

tuples in it. 

4.3.7 The Issue of Indistinguishable IPv6 Background 

Frames. 

When the IP version is 4 on the side where the 

Responder resides, then frames translated by either 

stateful NAT44 or stateful NAT64 arrive as IPv4 frames, 

and IPv6 frames belong to the background traffic. Hence, 

foreground and background frames can be easily 

distinguished by the IP version. However, when the IP 

version is 6 on the side where the Responder resides, 

then frames translated by either stateful NAT46 or 

stateful NAT66 arrive as IPv6 frames, and they are 

indistinguishable from the background traffic using only 

the IP version. The problem could be easily solved by 

using a different 8-byte identifier for the test frames 

belonging to the background traffic or by examining also 

the source IPv6 address. However, we did not implement 

it yet, please refer to Section 4.4.1 for more details. 

4.3.8 The Issue of Inter-thread Communication 

Both high performance and flexibility were our primary 

design concerns. As inter-thread communication may 

negatively influence performance, we had to make a 

compromise on the following issue. 

Originally, we planned to allow the partial filling of the 

state table of the Tester during the preliminary phase, and 

the receiver of the Responder could fill the remaining 

entries in the test phase. However, it would have required 

continuous communication of the number of valid entries 

from the receiver of the Responder to the sender of the 

Responder, which could have significant a impact on the 

performance of the Tester. Although it could have been 

stopped after filling the state table, it would further 

complicate the code, whereas a single extra “if” 

statement in the innermost receiving and sending loops 

was also considered a hindrance to be avoided. So, we 

decided that the state table must be filled in the 

preliminary phase. 

Writing and reading of the state table may slow down the 

Tester only in the case if the same entry is affected. 

Therefore, we decided to support fixed port numbers by 

a separate code, which does not continuously write and 

read the single entry. In this case, the very first entry of 

the state table is read only once at the beginning of the 

test phase, and then the sender and the receiver work 

independently. 

4.4. Implementation of the Stateful Tests 

4.4.1 Scope Decisions 

Considering our limited time and the vast difference 

between the deployment of stateful NAT44 and stateful 

NAT64 versus stateful NAT46 and stateful NAT66, we 

decided to support only the first two of them. (The 

support for the latter two is not an intellectual challenge, 

but requires a significant amount of coding and testing.) 

Our decision means that the Initiator has to be able to 

handle both IPv4 and IPv6, but the Responder needs to 

be able to handle only IPv4 as foreground traffic. 

4.4.2 Design of the Initiator 

As we mentioned before, the sender of the Initiator is a 

modified version of the sender function of the stateless 

siitperf. The main difference is the support for port 

number enumeration using a twice two-byte counter. Let 

us see an example. If the source port numbers are set to 

increase from 10,000 to 49,999 (40,000 different values) 

and the destination port numbers are set to increase from 

80 to 179 (100 different values) then 40,000*100 = 

4,000,000 different combinations can be enumerated. If 

N is set to a higher value than that, then some of the 

values will be repeated. Port number enumeration is 

supported only in the case, when the number of 

destination networks is set to 1. 
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The same sender function is called twice: first, in the 

preliminary phase and second in the test phase. To 

protect the bash shell scripts processing the output of 

siitperf from confusion, siitperf uses the word 

“Preliminary” instead of “Forward” or “Reverse”, when 

reports the number of frames sent and received in the 

preliminary phase. 

As for the receiver function, it is not used on the Initiator 

side during the preliminary phase, and the original one 

was kept in the test phase. 

4.4.3 Design of the Receiver of the Responder 

The consistency of the state table entries is ensured using 

atomic variables of C++. The type of the entries of the 

state table is defined as follows: 

typedef std::atomic<fourTuple> 

atomicFourTuple; 

Hence, both the reading and the writing of the entries of 

the state table are atomic operations. 

The receiver of the Responder extracts the IPv4 

addresses and port numbers from the received IPv4 test 

frames and writes them first into a local variable of type 

struct fourTuple, then it writes the four tuples 

into the state table in increasing order starting from index 

0. 

Implementation detail: when the receiver of the 

Responder is executed, it extracts its input parameters 

and checks the value of the number of valid entries in the 

state table. If its value is zero, it indicates that the 

execution happens in the preliminary phase, and in this 

case, the receiver allocates NUMA local memory for the 

state table. It also reports the number of valid entries in 

the state table at the end of its execution. The non-zero 

value of the number of valid entries indicates the second 

execution, when the state table is reused and its entries 

are overwritten from index 0. 

We also note that neither the receiver nor the sender of 

the Responder converts IP addresses and port numbers 

between network byte order and host byte order, because 

they are only copied but not manipulated. 

4.4.4 Design of the Sender of the Responder 

The sender of the Responder supports multiple modes of 

operation. If Responder-ports is set to 0, then a 

single IPv4 test frame is generated based on the very first 

element of the state table (index 0), and always this 

frame is sent as foreground traffic without regard to the 

number of destination networks. Background traffic is 

generated using fixed port numbers, but multiple 

destination networks may be used.  

If Responder-ports is set to 1, 2 or 3, then all the 

entries of the state table are used as specified in Section 

4.3.4. 

Following our original approach, we used pre-generated 

templates of Test Frames and modified their IP addresses 

and port numbers. 

4.4.5 Design of the Latency Measurements 

So far, we focused on the design of the stateful extension 

of the siitperf-tp throughput tester. The extension 

of the siitperf-lat latency tester is fairly similar, 

most things are quite straightforward. We mention only a 

few differences. As no tagged frames are sent during the 

preliminary phase, the Initiator of the throughput tester 

and the receiver of the Responder of the throughput 

tester are reused in the preliminary phase.  

We are aware that we could have implemented an 

Initiator for the latency tester that supports port number 

enumeration to provide a completely orthogonal set of 

functionalities, but we decided not to do that to save time. 

Thus, currently port number enumeration is supported 

only in the preliminary phase of the latency 

measurements. (The program gives a warning about it, if 

port number enumeration is specified in the 

configuration file.) 

We note that latency frames (test frames tagged for 

latency measurements) are pre-generated and used as 

templates: they are modified in the same way as the 

templates of the normal test frames, the only difference 

is that they are used only once. 

4.4.5 Design of the PDV Measurements 

The extension of the siitperf-pdv PDV tester was 

completely straightforward. We followed the same 

approach as with the latency tester: the Initiator of the 

throughput tester and the receiver of the Responder of 

the throughput tester are reused in the preliminary phase 

and currently port number enumeration is not supported 

in the test phase. 

5. Functional and Performance Tests 

The aim of this section is threefold: 

1. to demonstrate the operation of the stateful 

NAT64 measurements, 

2. to test the usability of our Tester in a typical 

application scenario, 

3. to make an initial performance assessment of 

the stateful operation of siitperf. 

In our tests, we reused our test systems built in NICT 

StarBED, Japan for stateless NAT64 measurements [17] 

and also used for testing the random port feature of 

siitperf [9]. We have also reused the texts of our 

open access papers [17] and [9] in the description of our 

test systems (with updates). 

We used three Dell PowerEdge C6220 servers with two 

2GHz Intel Xeon E5-2650 CPUs having 8 cores each, 

128 GB 1333 MHz DDR3 SDRAM and Intel 10G dual-

port X520 network adapters. Hyper-threading was 
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switched off and the clock frequency of all servers was 

set to 2 GHz (fixed), because we knew from our previous 

benchmarking experience [18] that they could cause 

scattered measurement results. (We mean under scattered 

measurement results that the results of the 20 repetitions 

of the measurements are significantly different.) We 

aimed to eliminate all circumstances that could cause 

scattered measurement results.  

The Debian Linux operating system was updated to 

version 9.13 on all three computers. The Linux kernel 

version was: 4.9.0-4-amd64. The DPDK version was 

16.11.11-1+deb9u2. 

We used three very similar test setups with somewhat 

different goals. The aim of Test System 1 was to 

demonstrate the operation of a stateful NAT64 

measurement. Test System 2 was used to perform several 

actual stateful NAT44 measurements. Test System 3 

served an initial performance estimation of siitperf. 

The first two of them were identical regarding their 

hardware; they differed only in the configuration of their 

software. 

Except for the demonstration of the operation of a 

stateful NAT64 measurement, we used stateful NAT44 

for all other tests. We had two reasons for that: 

 We wanted to test siitperf in a situation, 

where the DUT can achieve high throughput. 

(We tested the random port feature using IPv4 

for the same reason in [9].) 

 We plan to perform a comprehensive NAT64 

benchmarking and we wanted to avoid possible 

copyright issues (might arise from publishing 

the same results in two different papers). 

5.1. Demonstration of a Stateful NAT64 Test 

We have tested the functional operation of the stateful 

NAT64 measurement using Test System 1, the topology 

of which is shown in Fig. 2. The Tester and the DUT 

were interconnected by two 10GbE direct cable links. 

IPv6 was used on the left side network interfaces of the 

devices, and IPv4 was used on their right side. Stateful 

NAT64 was implemented in two steps using stateless 

NAT64 plus stateful NAT44: 

1. Stateless NAT64 was implemented by the 

tayga stateless NAT64 implementation [19]. 

2. Stateful NAT44 was implemented by 

iptables. 

As for tayga, we have reused our previous Explicit 

Address Mapping (RFC 7757 [20]) settings [17] as 

shown at the bottom of Fig. 2. Please refer to the 

appendix of our open access paper [17] for the detailed 

settings of tayga. 

As for iptables, we used the following command: 

iptables -t nat -A POSTROUTING -o enp3s0f1 

–j MASQUERADE 

To demonstrate the operation of the stateful NAT64 test, 

we performed a very short and low rate test. Only five 

preliminary frames were sent: 4 foreground frames and 1 

background frame (to demonstrate it too). We used port 

number enumeration, and the Responder selected the 

four tuples randomly. 

The new configuration file parameters were set as 

follows: 

Stateful 1 # yes, Initiator is on the Left  

Enumerate-ports 1 # yes 

Responder-ports 3 # 4-tuples random select 

The command line was: 

siitperf-tp 84 5 1 2000 5 4 5 4 5 500 2000 

The first 6 command line parameters were “inherited” 

from the command line of the stateless tester. They 

denote that: 

 The IPv6 frame size was 84 bytes (64 bytes for 

IPv4). 

 The frame rate was 5 frames/s (in each 

direction). 

 The test duration was 1 second. 

 The global timeout was 2000ms. 

 The value of n was 5 and the value of m was 4: 

it means that 4 of every 5 frames belonged to 

the foreground traffic.  

The next 5 parameters are new: 

enp3s0f0:
2001:2::2/64

enp3s0f0:
2001:2::1/64

Tester

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

DUT 
stateful NAT64

gateway

running 
siitperfn017

n018

10GbE w/ direct cables

Test System 1

Explicit Address Mapping
198.18.0.1  --  2001:2::1
198.18.0.2  --  2001:2::2
198.19.0.1  --  2001:2:0:1::1
198.19.0.2  --  2001:2:0:1::2

 

Fig. 2  Test system for the demonstration of the operation of stateful 

NAT64 tests. 
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 N=5 preliminary frames were sent by the 

Initiator. 

 The size of the state table of the Responder was 

M=4. 

 The preliminary frame rate was R=5 frames/s. 

 The global timeout for the preliminary phase 

was T=500ms. 

 The total delay caused by the preliminary phase 

was D=2000ms. (It includes the sending of the 

preliminary frames, the global timeout of the 

preliminary phase and the waiting time before 

the real test phase.) 

We have captured the traffic by tshark on both 

network interfaces of the DUT: enp3s0f0 and 

enp3s0f1. They are shown in Fig. 3 and Fig. 4. As 

siitperf resets the network interfaces, the first two 

lines of both figures contain IPv6 multicast messages. 

(As tshark starts the time measurement from the 

arrival of the first frame, the times of the two captures 

are synchronized approximately, but not completely.) 

Frames 3-6 are the foreground preliminary frames. In 

Fig. 3, the 2001:2:0:1::2 IPv6 destination address 

represents the 198.19.0.2 IPv4 address shown in Fig. 4 as 

the destination address. The 2001:2::2 source IPv6 

address was first mapped to 198.18.0.2 by tayga, and 

then iptables replaced it by 198.19.0.1. Port number 

enumeration can also be observed. 

As frame 7 is a background frame (native IPv6), the 

stateful NAT64 gateway leaves it unchanged. Its port 

numbers are pseudorandom, as background frames do 

not take part in the port number enumeration. 

Frames 8-17 were sent during the test phase. Port 

number enumeration can be observed in the 4 foreground 

frames from Initiator to the Responder. The port numbers 

of the 4 foreground frames from the Responder to the 

Initiator are pseudorandom in the [10000, 10003] range, 

due to the pseudorandom selection of the four tuples. 

We note that we used only a single public IPv4 address 

on the IPv4 interface of the stateful NAT64 gateway, but 

using multiple public IPv4 addresses could cause no 

problem, as the Responder stores the entire four tuple 

and uses its elements for traffic generation. 

 

 

 1 0.000000000 fe80::a236:9fff:fe0e:a2c4 → ff02::16 ICMPv6 150 Multicast Listener Report Message v2  

 2 0.787987018 fe80::a236:9fff:fe0e:a2c4 → ff02::16 ICMPv6 150 Multicast Listener Report Message v2  

 3 2.060717757    2001:2::2 → 2001:2:0:1::2 UDP 80 10000 → 80 Len=18  

 4 2.260718236    2001:2::2 → 2001:2:0:1::2 UDP 80 10001 → 80 Len=18  

 5 2.460718536    2001:2::2 → 2001:2:0:1::2 UDP 80 10002 → 80 Len=18  

 6 2.660724190    2001:2::2 → 2001:2:0:1::2 UDP 80 10003 → 80 Len=18  

 7 2.860727275    2001:2::2 → 2001:2:0:8000::2 UDP 80 13787 → 157 Len=18  

 8 4.060774275    2001:2::2 → 2001:2:0:1::2 UDP 80 10000 → 80 Len=18  

 9 4.060806550 2001:2:0:1::2 → 2001:2::2    UDP 80 80 → 10003 Len=18  

10 4.260758051    2001:2::2 → 2001:2:0:1::2 UDP 80 10001 → 80 Len=18  

11 4.260817745 2001:2:0:1::2 → 2001:2::2    UDP 80 80 → 10000 Len=18  

12 4.460760118    2001:2::2 → 2001:2:0:1::2 UDP 80 10002 → 80 Len=18  

13 4.460819319 2001:2:0:1::2 → 2001:2::2    UDP 80 80 → 10002 Len=18  

14 4.660760326    2001:2::2 → 2001:2:0:1::2 UDP 80 10003 → 80 Len=18  

15 4.660820912 2001:2:0:1::2 → 2001:2::2    UDP 80 80 → 10002 Len=18  

16 4.860769785    2001:2::2 → 2001:2:0:8000::2 UDP 80 21136 → 86 Len=18  

17 4.860778173 2001:2:0:8000::2 → 2001:2::2    UDP 80 28744 → 41552 Len=18 
 

Fig. 3  The tshark capture of a stateful NAT64 test on the enp3s0f0 interface of the DUT. 

 
 1 0.000000000 fe80::a236:9fff:fe0e:a2c6 → ff02::16 ICMPv6 150 Multicast Listener Report Message v2  

 2 0.731995970 fe80::a236:9fff:fe0e:a2c6 → ff02::16 ICMPv6 150 Multicast Listener Report Message v2  

 3 2.036790798   198.19.0.1 → 198.19.0.2   UDP 60 10000 → 80 Len=18  

 4 2.236775622   198.19.0.1 → 198.19.0.2   UDP 60 10001 → 80 Len=18  

 5 2.436775998   198.19.0.1 → 198.19.0.2   UDP 60 10002 → 80 Len=18  

 6 2.636781951   198.19.0.1 → 198.19.0.2   UDP 60 10003 → 80 Len=18  

 7 2.836746677    2001:2::2 → 2001:2:0:8000::2 UDP 80 13787 → 157 Len=18  

 8 4.036763279   198.19.0.2 → 198.19.0.1   UDP 60 80 → 10003 Len=18  

 9 4.036833787   198.19.0.1 → 198.19.0.2   UDP 60 10000 → 80 Len=18  

10 4.236767412   198.19.0.2 → 198.19.0.1   UDP 60 80 → 10000 Len=18  

11 4.236812336   198.19.0.1 → 198.19.0.2   UDP 60 10001 → 80 Len=18  

12 4.436771779   198.19.0.2 → 198.19.0.1   UDP 60 80 → 10002 Len=18  

13 4.436814380   198.19.0.1 → 198.19.0.2   UDP 60 10002 → 80 Len=18  

14 4.636770939   198.19.0.2 → 198.19.0.1   UDP 60 80 → 10002 Len=18  

15 4.636815797   198.19.0.1 → 198.19.0.2   UDP 60 10003 → 80 Len=18  

16 4.836778418 2001:2:0:8000::2 → 2001:2::2    UDP 80 28744 → 41552 Len=18  

17 4.836789464    2001:2::2 → 2001:2:0:8000::2 UDP 80 21136 → 86 Len=18 
 

Fig. 4  The tshark capture of a stateful NAT64 test on the enp3s0f1 interface of the DUT. 
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5.2. Measurement of the Maximum Connection 

Establishment Rate of a Stateful NAT44 Gateway. 

Before an actual stateful NAT44 throughput test could be 

performed, one must determine the maximum connection 

establishment rate, and a rate somewhat lower than that 

should be used during the preliminary phase of the 

throughput test to prevent the failure of the measurement 

during the preliminary phase due to frame loss caused by 

an improper frame rate. 

Therefore, we first determined the maximum connection 

establishment rate of Test System 2 shown in Fig. 5. 

Regarding Test System 2, it is an important condition 

that all cores of the second CPU of the DUT were 

switched off using the maxcpus=8 kernel parameter to 

avoid NUMA issues. (In these servers, cores 0-7 belong 

to NUMA node 0 and cores 8-15 belong to NUMA node 

1.) 

The various settings of the NAT44 gateway may 

drastically influence its throughput. We wanted to imitate 

the conditions of an ISP, therefore, we set the parameters 

of the connection tracking table following the 

recommendations of Vyacheslav Gapon for a high-

loaded NAT server [21]. Namely, the 

nf_conntrack_max and hashsize parameters 

were set to 4,194,304 and 524,288, respectively. 

It is important that the measurement script remotely 

started and stopped iptables on the DUT before and 

after each test in order to delete the content of its 

connection tracking table. 

To avoid the exhaustion of the connection tracking table 

during the tests, we limited the possible port number 

combinations to 4,000,000 by using source port range of 

[10,000; 49,999] and destination port range of [80; 179]. 

We used no background traffic. First, we sent exactly 

N=4,000,000 number of preliminary frames necessary to 

fill the state table (M=4,000,000). The global timeout for 

the preliminary frame sending was T=500ms, and the 

delay of the preliminary phase was calculated as: 

 D=1000*M/N+2*T=2000   (1) 

We used binary search to determine the maximum 

connection establishment rate, that is, the highest frame 

rate for the preliminary test, at which all preliminary 

frames are successfully received and processed by the 

Responder. The binary search was performed 20 times, 

and the median, minimum and maximum were 

determined. In addition to that, we have also determined 

the dispersion of the results calculated as follows: 

 %100
median

minmax
dispersion 


   (2) 

As for frame size to be used, RFC 8219 lists a number of 

standard frame sizes. We used only the first one of them, 

64 bytes. Our previous benchmarking experience gained 

with these test systems shows that the achievable frame 

rate does not significantly decrease with the frame size, 

as the bottleneck is the processing power and not the 

10Gbps Ethernet [17]. We show an example for testing 

with higher a frame size in Section 5.4.  

We have performed the measurements both using 

pseudorandom port numbers and using port number 

enumeration. The results are shown in Table 2. Whereas 

the median of the maximum connection establishment 

rate using pseudorandom port numbers is 1,406,230fps, 

the median of the maximum connection establishment 

rate using port number enumeration is only 669,587fps. 

The second one is less than half of the previous one, 

which needs an explanation. We were aware that when 

we used random port numbers, then some of the 

combinations were repeated and even though the state 

table of the Tester was filled, the connection tracking 

table of the DUT contained fewer elements: its number 

was around 2.5 million, instead of 4 million. We have 

repeated the test with N=M=40,000,000 so that the state 

table of the DUT be filled up, too. Its result is shown in 

the last column of Table 2. Compared to the first case, 

the median value decreased by less than 10% from 

1,406,230fps to 1,271,023fps. It means that the root 

enp3s0f0:
198.18.0.2/24

enp3s0f0:
198.18.0.1/24

Tester

enp3s0f1:
198.19.0.2/24

enp3s0f1:
198.19.0.1/24

DUT 
stateful NAT44

gateway

running 
siitperfn017

n018

10GbE w/ direct cables

Test System 2

 

Fig. 5  Test system performing stateful NAT44 benchmarking 

measurements. 

 

Table 2  Maximum connection establishment rate of iptables 

stateful NAT44 

Port numbers are random enumerated random,  

M: 10x  

Median (fps) 1,406,320 669,587 1,271,023 

1st perc. (fps) 1,400,377 664,030 1,245,115 

99th perc. (fps) 1,410,172 675,941 1,291,504 

Dispersion 0.70 1.78 3.65 
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cause of the much lower rate was not the higher number 

of elements in the connection tracking table of the DUT, 

but the port number enumeration. It is beyond the scope 

of our paper to investigate why the usage of increasing 

port numbers deteriorate the performance of iptables 

to such an extent, but it is an important lesson for us that 

the random or ordered nature of the port numbers of the 

consecutive packets may have a significant effect on the 

maximum connection establishment rate. Thus this 

observation limits the applicability of such tests.  

5.3. Throughput Measurement of a Stateful NAT44 

Gateway. 

Section 5.3 of RFC 8219 requires that all tests be 

performed with bidirectional traffic. Unidirectional tests 

are optional, but we performed them, because we were 

interested, if we could point out any asymmetric 

behaviour of iptables.  

As for the parameters, we kept the settings of the 

connection establishment rate measurements in Section 

5.2 unless stated otherwise. The N number of preliminary 

frames and the M size of the state table requires some 

discussion. If the connection tracking table of the DUT is 

not filled during the preliminary phase, its filling is 

completed during the 60s long throughput test, if there is 

traffic in the forward direction. It will not happen if a 

unidirectional test is performed in the reverse direction. 

Therefore, it is desirable to fill the connection tracking 

table of the DUT in the preliminary phase as much as 

possible. However, we need to consider the timeout 

limitations, too. The timeout of the UDP connections is 

30 seconds. 

First, we have performed some preliminary tests 

allowing that the connection tracking table was filled 

only partially (about 2.5 million entries) to gain some 

insight regarding the order of magnitude of the 

throughput of the DUT. We have found that the 

bidirectional throughput value fell into the [800,000fps, 

1,000,000fps] interval, and the unidirectional throughput 

values fell into the [1,000,000fps, 2,000,000fps] interval. 

We note that siitperf reports the frames/s per 

direction rate, that is, if a bidirectional test is used, then 

the number of all forwarded frames per second is double 

the reported rate. 

As for the bidirectional test, we have chosen 

1,400,000fps as the upper bound of the binary search, 

and we have considered 700,000fps as the lowest frame 

rate to be used. We have chosen N=M=20,000,000. Even 

when sending at only 700,000fps rate, the Responder can 

go through the state table in 28.6s. Based on our results 

for the maximum connection establishment rate, we have 

chosen R=1,000,000 to leave some performance reserve. 

In our case, the delay caused by the preliminary phase is 

D=21s, which is deliberately not the bottleneck, but in 

other cases one should also consider it, when calculating 

the limits of the timeout. As for the unidirectional tests, 

we used 2,000,000fps as the upper bound of the binary 

search. 

We have performed the bidirectional test in two ways to 

check, if it makes a difference. First, we used 

pseudorandom four tuple selection at the Responder (by 

setting Responder-ports to 3), and then we used 

linear scanning of the state table in increasing order 

(Responder-ports: 1). The results are shown in 

Table 3. The difference is quite visible: the second 

setting reduces the median throughput from 932,919fps 

to 875,861 by 6.1%. As for the unidirectional tests, this 

setting was redundant during the test in the forward 

direction (as there was no traffic from the responder to 

the initiator), and linear scanning was the only workable 

solution during the test in the reverse direction. We have 

found a slight asymmetry: whereas the median 

throughput was 1,891,016fps in the forward direction, it 

was only 1,498,951fps in the reverse direction (about 

20.7% less). 

5.4. Frame loss rate measurement 

Frame loss rate measurement is also a part of RFC 8219. 

It can be performed with the same siitperf-tp 

program using a different shell script, which performs 

the tests at different frame rates and records the number 

of successfully received frames.  

As an illustration, we have carried out test series using 

Table 3  The throughput of iptables stateful NAT44  

Traffic bidir. 

rp: 3 

bidir. 

rp: 1 

forward reverse 

Median (fps) 932,919 875,861 1,891,016 1,498,951 

min (fps) 926,945 872,046 1,749,999 1,453,124 

max (fps) 936,891 880,500 1,906,251 1,531,495 

Dispersion 1.07 0.97 8.26 5.23 
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Fig. 6  Frame loss rate of siitperf NAT44 as a function of frame 

rate and frame size using bidirectional traffic 
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Test System 2 with the same parameters used for the 

bidirectional throughput test using random four tuple 

selection in Section 5.3. Besides using the same 64-byte 

long frames as in all other tests, we have used also 512-

byte long frames. (This standard frame size was selected 

to be significantly larger, but still small enough to 

prevent the 10Gbps Ethernet from being a bottleneck.) 

Our results are shown in Fig. 6. The colour bars show the 

median values and the (usually invisible) error bars show 

the minimum and maximum values. The results for 64-

byte frames are in a good agreement with our throughput 

measurement results: there is no frame loss up to 

900kfps rate, and though the frame loss rate is invisible 

in the figure, the median of the frame loss is 0.08% at 

1000kfps frame rate, and it visibly grows from 1100kfps 

frame rate. As for the 512-byte frames, an error bar 

appears at 800kfps, showing that the maximum of the 

frame loss rate was 1.8% and the frame loss rate visibly 

grows from 900kfps frame rate. Except for the case of 

512-byte frames at 800kfps frame rate, the results are 

very stable: the error bars are practically invisible in all 

other cases. 

5.5. An Initial Performance Estimation of the Stateful 

Operation of Siitperf. 

We used Test System 3 for determining the performance 

limits of siitperf. Its topology was very simple as 

shown in Fig. 7. The two 10GbE interfaces of the Tester 

were interconnected by a direct cable. Thus, the 

performance of the looped back Tester was limited by the 

performance of siitperf itself. 

Unless stated otherwise, we used the settings of the 

connection establishment rate measurements in Section 

5.2. 

First, we tested the preliminary phase performance both 

using random ports and port number enumeration. The 

results are shown in Table 4. As we expected, 

siitperf kept its high performance.  

Based on the results, we used R=6,000,000 for the 

throughput tests. 

We performed two sets of throughput tests. In both series, 

pseudorandom port numbers were used by the sender of 

the Initiator. The value of N and M, as well as the size of 

the port range was increased from 4,000,000 through 

40,000,000 to 400,000,000 by using 179, 1079 and 

10,079 as the upper limit of the destination port range. In 

the first series, the sender of the Responder used 

pseudorandom four tuple selection, whereas in the 

second series, the Responder used the four tuples from 

its state table in increasing order. 

The results of the first measurement series are shown in 

Table 5. Throughput as a function of the M size of the 

state table shows a slightly decreasing tendency. We 

attribute it to the fact that caching becomes less and less 

effective as the size of the state table grows. We can 

support it with the results of the second series in Table 6. 

On the one hand, the results are higher than the results in 

Table 5, also because in the second series there was no 

need to generate a random number. However, on the 

other hand, the results are not degrading here, because 

enp3s0f0:
198.18.0.2/24

Tester

enp3s0f1:
198.19.0.2/24

running 
siitperfn019

10GbE w/ direct cable

Test System 3

 

Fig. 7  Test system for determining the performance limits of 

siitperf. 

Table 4  Achieved frame rate for maximum connection establishment 

rate measurement  

Port numbers random enumerated 

Median (fps) 6,251,382 6,701,677 

1st perc. (fps) 6,249,999 6,687,499 

99th perc. (fps) 6,251,709 6,702,881 

Dispersion 0.03 0.23 

 

Table 5  Achieved frame rate for throughput test with pseudorandom 

four tuple selection from the state table of the Tester 

N, M, Port numbers 4,000,000  40,000,000 400,000,000 

Median (fps) 4,045,161 3,801,450 3,733,430 

Minimum (fps) 4,039,061 3,781,249 3,703,001 

Maximum (fps) 4,048,891 3,802,918 3,742,249 

Dispersion 0.24 0.57 1.05 

 

Table 6  Achieved frame rate for throughput test with linear scanning 

of the state table of the Tester 

N, M, Port numbers 4,000,000  40,000,000 400,000,000 

Median (fps) 5,035,116 5,034,443 5,034,109 

Minimum (fps) 5,033,136 5,032,957 5,033,202 

Maximum (fps) 5,039,063 5,035,652 5,035,284 

Dispersion 0.12 0.05 0.04 

 

Table 7  Achieved frame rate of siitperf-pdv with state table 

size M=4,000,000 

four tuple selection random  linear scan 

Median (fps) 3,643,421 4,620,949 

Minimum (fps) 3,642,328 4,619,952 

Maximum (fps) 3,644,532 4,623,047 

Dispersion 0.06 0.07 
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the access of the elements of the state table happened in 

an increasing order, which made caching and likely also 

cache pre-fetching effective. 

As discussed in [9], the low number of latency frames do 

not influence the performance of siitperf, therefore, 

there was no need to measure the performance of 

siitperf-lat. 

As for the performance of siitperf-pdv, we have 

checked it at state table size M=4,000,000 using both 

random and linear four tuple selection. The results are 

shown in Table 7. As we expected, maintaining a 64-bit 

counter in each frame has its costs, and linear four tuple 

selection gives higher performance than random. 

6. Discussion and Future Work 

As far as we know, our stateful extension of siitperf 

is the world’s first RFC 8219 and RFC 4814 compliant 

stateful NAT64 / stateful NAT44 tester. Having no 

sample to follow, we could rely only on our own 

considerations. Our first test results seem to justify our 

design concept in various aspects: 

1. The usage of the four tuples proved to be a 

working solution for generating traffic in the 

direction from the Responder to the Initiator at 

a sufficiently high frame rate.  

2. Separating preliminary phase and test phase 

enabled us to perform a unidirectional test 

having traffic only from the Responder to the 

Initiator. 

3. Letting the user specify a different frame rate at 

the preliminary phase enabled us to properly 

measure the throughput in the case if it is 

higher than the maximum connection 

establishment rate (as seen in Section 5.3). 

4. Making the extension resilient with several 

parameters also proved to be useful, e.g. 

different policies for four tuple selection, 

resilience regarding the number of preliminary 

frames, the size of the state table, etc. 

Port number enumeration was another concept, which 

we expected to be of practical use in benchmarking. We 

expected it to enable us efficiently filling up the 

connection tracking table of the DUT and the state table 

of the Responder. On the one hand, our results in 

Section 5.3 justified our intention to save timeout time. 

However, on the other hand, our results regarding the 

maximum connection establishment rate in Section 5.2 

have shown that the random or ordered nature of the 

port numbers of the consecutive packets may have a 

significant effect on the maximum connection 

establishment rate, hence, the performance of a stateful 

gateway. Therefore, we had to use a more complicated 

method in Section 5.3 to fill up the state table of the 

DUT. However, we still consider it as a useful feature of 

siitperf, which may be applied for special purposes, 

like wilfully exhausting the port number range of a 

stateful NAT64 / NAT44 gateway for simulating a denial 

of service attack. We plan to use it for testing various 

NAT64 implementations, how much they are vulnerable 

to this kind of attack, as we mentioned in [15] and [16]. 

We are aware that still there are several open questions. 

For example, in Section 5.4, we took the liberty of 

creating different number of port number combinations 

by keeping the source port number range as fixed and 

increasing the destination port number range tenfold 

twice. However, we have no idea, how much it is 

different, if we use a source port range of size 10,000 

and a destination port range of size 100 versus if we use 

a source port range of size 40,000 and a destination port 

range of size 25. The number of possible combinations 

is 1 million in both cases, but they may result in 

different performance. 

And it was just one example. We expect to gain more 

experience in stateful testing by carrying out 

comprehensive benchmarking of various stateful NAT64 

implementations like Jool or OpenBSD PF. Our 

experience may show the need for further developments 

of siitperf. 

We believe that having a suitable benchmarking tool is 

important, but not sufficient. For example, network 

operator experience regarding the most important 

parameters of a stateful NAT64 or NAT44 gateway is 

absolutely necessary for producing usable benchmarking 

results. Thus, we are looking for partners. 

We would be grateful to receive any feedback regarding 

the theory and practice of stateful testing and also 

regarding our tool, siitperf. Its stateful extension is 

now available in the “stateful” branch [5], and we plan 

to merge it into the “master” branch, when we consider 

it to be matured enough. 

We are also open to add further functionalities like 

stateful NAT66 testing if there is user demand for it. 

We plan to perform performance optimization when the 

set of functionalities seem to be stable. 

6. Conclusions 

We conclude that our efforts were successful in creating 

the world’s first RFC 8219 and RFC 4814 compliant free 

software stateful NAT64/NAT44 benchmarking tool.  

Our tests proved that it works correctly and it has high 

enough performance for benchmarking stateful NAT64 

and even stateful NAT44 gateway implementations. We 

have also advanced the theory of stateful benchmarking 

by being the first to propose a working solution. 

Our future plans include its comprehensive testing, 

adding further functionalities and its performance 

optimization. We also plan to use our new Tester for 

research in benchmarking methodology issues.  

One of the most crucial methodology issues is the 

problem of using UDP traffic for benchmarking as 
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required by RFC 8219. This can be a serious problem for 

two reasons: 

 The default timeout values of iptables are 

different for TCP and UDP “connections”.  

 The handling of TCP and UDP “connections” is 

very likely also different. 

Therefore, we believe that it is necessary to implement 

testing also with TCP traffic. However, we expect it to be 

more difficult due to the need for proper handling of TCP 

connection establishment and termination. 

We also plan to write an Internet Draft about the 

proposed methodology for stateful testing and submit it 

to the Benchmarking Working Group of IETF. 
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