
Design and Implementation of a Software Tester for Benchmarking Stateful NATxy
Gateways: Theory and Practice of Extending Siitperf for Stateful Tests

Gábor Lencsea,∗

aDepartment of Telecommunications, Széchenyi István University, Egyetem tér 1, Győr, H-9026, Hungary

Abstract

Our siitperf is the world’s first RFC 8219 compliant free software SIIT (Stateless IP/ICMP Translation, also called
stateless NAT64) benchmarking tool. It was written in C++ using DPDK (Intel Data Plane Development Kit). Our
current effort aims to design and implement a test program for stateful NATxy gateways, including both stateful NAT64
and stateful NAT44 (also called NAPT: Network Address and Port Translation). Due to the object-oriented design of
siitperf, it is feasible to extend it for stateful tests, while keeping its original design and features. In this paper,
we introduce the problem of benchmarking stateful NATxy gateways and propose various solutions. We disclose the
design and the most important implementation decisions of the stateful extension of siitperf. We prove the viability
of our design and implementation by a functional NAT64 test and performing the maximum connection establishment
rate, throughput, and frame loss rate measurements of the Jool stateful NAT64 implementation. We also carry out an
initial performance estimation of the stateful extension of siitperf. Our tester is distributed as free software under
the GPLv3 license for the benefit of the research, benchmarking and networking communities.

Keywords: benchmarking, IPv6 transition technology, performance analysis, stateful NAT44, stateful NAT64

1. Introduction

RFC 8219 [1] has defined a comprehensive benchmark-
ing methodology for IPv6 transition technologies in 2017.
To that end, it classified the high number of IPv6 tran-
sition technologies [2] into a small number of categories:
dual stack, single translation, double translation, and en-
capsulation technologies. Both the SIIT [3] (Stateless
IP/ICMP Translation, also called stateless NAT64) and
the stateful NAT64 [4] IPv6 transition technologies belong
to the single translation category.

We have created siitperf [5], the world’s first RFC
8219 compliant free software SIIT benchmarking tool in
2019. We have implemented it in C++ using DPDK and
documented its design, implementation, and initial perfor-
mance estimation in [6]. As RFC 8219 reused the through-
put benchmarking procedure from RFC 2544 [7], we have
followed its test frame format using fixed source and desti-
nation UDP port numbers in our first implementation [6].
Then we have added the optional use of pseudorandom
port numbers recommended by RFC 4814 [8] and docu-
mented the new feature in [9]. Our experience has shown
that it was relatively easy and straightforward to extend
siitperf to be able to use pseudorandom port numbers
due to its object-oriented design, and we also managed to
preserve its high performance [9].

∗Corresponding author
Email address: lencse@sze.hu (Gábor Lencse)

Our current effort aims to extend siitperf to be able
to benchmark stateful NAT64 gateways because they play
an important role in the current phase of IPv6 transition
[2]. However, in this paper, we point out that this ex-
tension is not at all straightforward, because of the miss-
ing theoretical background. We are not aware of any
other working tester or publication, which would specify,
how stateful NAT64, or even stateful NAT44 (also called
NAPT: Network Address and Port Translation) gateways
can be benchmarked using bidirectional traffic with ran-
dom port numbers. Whereas our primary goal is the
benchmarking of stateful NAT64 gateways, we consider
the benchmarking of stateful NAT44 gateways also impor-
tant and want to support it too. In theory, we design
a method suitable for benchmarking any stateful NATxy
gateway, where x and y are in {4, 6}.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a short survey of related work and then a
general discussion on how stateful NATxy gateways may
be benchmarked using bidirectional traffic with random
port numbers. Section 3 gives a summary of the design and
implementation of siitperf necessary to understand the
following sections. Section 4 discloses our most important
design considerations and implementation decisions. Sec-
tion 5 summarizes the key points of our state-of-the-art
benchmarking methodology for stateful NATxy gateways.
Section 6 presents our functional tests and the maximum
connection establishment rate, throughput, and frame loss
rate measurements of the Jool [10] stateful NAT64 imple-

Preprint submitted to Elsevier Computer Communications February 28, 2022

mentation, as well as an initial performance estimation of
the stateful operation of siitperf. Section 7 provides a
discussion and highlights our plans for further tests, devel-
opment, performance optimization, and research on bench-
marking methodology issues. Section 8 gives our conclu-
sions.

2. Benchmarking Stateful NATxy Gateways using
Bidirectional Traffic and Random Port Num-
bers

2.1. Related Work

In our short survey of relevant research results, we focus
on the performance analysis of stateful NAT64 gateways.
RFC 6146 [4] defined stateful NAT64 in 2011. During the
following years, several papers have been published about
the performance analysis of various stateful NAT64 so-
lutions. Llanto and Yu [11] compared the performance of
stateful NAT64 to that of stateful NAT44 through measur-
ing RTT (Round-Trip Time) and “throughput”. However,
this “throughput” was measured using Apache Benchmark
[12], and not an RFC 2544 compliant tester. Monte et al
[13] compared the performance of stateful NAT64 to that
of their own ALG (Application Layer Gateway) implemen-
tation. They also used Apache Benchmark to measure the
connection time and the full access time of various web-
sites. Yu and Carpenter [14] compared the performance
of stateful NAT64 to that of the NAT-PT and an HTTP
proxy. They used HTTP traffic with various request and
response sizes, and they measured and compared the RTT
of the mentioned three different solutions.

All these papers followed the approach that they mea-
sured the performance of a given NAT64 implementation
along with a given DNS64 implementation. On the one
hand, this could be ordinary (as stateful NAT64 is com-
monly used together with DNS64), however, the results
reflect a kind of “weighted average” of the two and not
the pure performance of the used NAT64 or DNS64 im-
plementations. We have pointed out in [15] that: “even
though both services are necessary for the complete op-
eration, in a large network, they are usually provided by
separate, independent devices; DNS64 is provided by a
name server and NAT64 is performed by a router. Thus,
the best implementation for the two services can be – and
also should be – selected independently.” To support this
selection, we have compared the performance of four dif-
ferent DNS64 implementations under Linux, FreeBSD and
OpenBSD [16] as well as we have compared the perfor-
mance of the TAYGA [17] + iptables and OpenBSD
PF stateful NAT64 implementations [15].

The common feature of all these measurements is that
the traffic through the stateful NAT64 gateway happens
in the following way:

1. First, a request is sent from the IPv6-only client to
the IPv4-only server.

2. Then a reply is sent (or multiple replies are sent) from
the IPv4-only server to the IPv6-only client.

On the one hand, this is ordinary, as connections
through the stateful NAT64 gateway may be initiated only
from the client-side. However, this measurement method
is very far from the measurement method defined by the
de facto industry standard RFC 2544 [7]. Its through-
put measurement requires bidirectional traffic at a given
constant frame rate. An elementary test lasts at least 60
seconds, while the Tester sends test frames through the
DUT (Device Under Test) in both directions and counts
the number of sent and received frames. If the number of
received frames equals the number of sent frames, then the
frame rate is increased and the test is re-run. Otherwise,
the frame rate is decreased, and the test is re-run. (This
is the official wording, but in practice, a binary search is
used.) The throughput is the highest frame rate at which
the number of received frames is equal to the number of
sent frames.

In theory, RFC 2544 was IP version independent, but
it was written with IPv4 in mind (e.g. IPv4 addresses
are used in its examples). RFC 5180 [18] focused on
IPv6, but it excluded IPv6 transition technologies from
its scope. RFC 8219 addressed IPv6 transition technolo-
gies. It reused some measurement procedures from RFC
2544 (e.g. throughput, frame loss rate) redefined the la-
tency measurement procedure, and added others (PDV
and IPDV). Although RFC 8219 explicitly lists stateful
NAT64 among the single translation technologies, but it
says nothing about how the problem of the traffic in the
IPv4 to IPv6 direction through the stateful NAT64 gate-
way is to be handled. In addition, RFC 4814 [8] requires
the usage of a high number of different port number com-
binations in both directions. We have not found any pub-
lications resolving or at least discussing these challenges.
Therefore, we do so in the following subsections.

2.2. Problem Formulation

As the problem is not specific to stateful NAT64, we
discuss it in a general way. We use the example of the
more well-known and widely used IPv4 NAPT (Network
Address and Port Translation, please refer to Section 2.2
of RFC 3022 [19], it is also called stateful NAT44). NAPT
is present in many places from small home networks to
the largest ISP networks, where it is used in the CGN
(Carrier-Grade NAT) gateway. Although we use IPv4 in
our example to give an easy explanation of the problem,
any IP version could be used. Fig. 1 shows the test and
traffic setup for the throughput measurement of NAPT
gateways. Although the arrows would suggest unidirec-
tional traffic, RFC 8219 requires testing with bidirectional
traffic, and testing with unidirectional traffic is optional.
Following our naming convention used in [6] and [9], we
call the direction following the arrows as forward direction
and the opposite one as reverse direction. We used private
IP addresses on the left side of the devices and public IP

2

+--------------------+
10.0.0.2 |private public| 198.19.0.2

+-----------|IPv4 Tester IPv4|<----------+
| | | |
| +--------------------+ |
| |
| +--------------------+ |
| 10.0.0.1 |private public| 198.19.0.1|
+---------->|IPv4 DUT: IPv4|-----------+

| NAPT gw. |
+--------------------+

Figure 1: NAPT gateway test setup (based on RFC 2544)

addresses on their right side. Due to the operation of the
NAPT solution, communication may only be initiated in
the forward direction.

Now, we follow the possible operation of the test sys-
tem. Let the left side port of the Tester send a test frame
with the following IP addresses and port numbers: source:
10.0.0.2:10000, destination: 198.19.0.2:80, where the port
numbers are arbitrary.

We note that the port numbers are UDP port numbers,
because RFC 8219 requires testing with UDP traffic. We
are aware that stateful translators use different timeout
values for TCP and UDP “connections”. Now, we follow
the requirements of RFC 8219, but we return to this issue
in section 7.

Let the connection tracking table of the NAPT gateway
be empty at the beginning of testing, and let the NAPT
gateway does not change the source port numbers when
it is not necessary. Thus, the IP addresses and port num-
bers of the translated test frame are as follows: source:
198.19.0.1:10000, destination: 198.19.0.2:80. When the
right-side port of the Tester receives the translated test
frame, it may store the four tuple of IP addresses and
port numbers, and then it can send a test frame with a
valid four tuple that has a matching entry in the connec-
tion tracking table of the NAPT gateway. The identifiers
of the test frame to be sent in the reverse direction are:
source: 198.19.0.2:80, destination: 198.19.0.1:10000. The
NAPT gateway translates back the test frame using the
information of its connection tracking table, and the iden-
tifiers of the translated frame are: source: 198.19.0.2:80,
destination: 10.0.0.2:10000.

Now, let us consider how pseudorandom source and des-
tination port numbers can be used to comply with the re-
quirements of RFC 4814. Their application in the reverse
direction requires that preliminary traffic be provided in
the forward direction before the actual throughput test:
during this preliminary phase, the four tuples are observed
and stored. After that, the right-side port of the Tester
may randomly choose from among the stored four tuples to
generate valid traffic that can be translated by the NAPT
gateway.

Theoretically, pseudorandom source and destination
port numbers could be used in the forward direction, how-

ever, this approach would be a denial of service attack
against the NAPT gateway, because it would exhaust its
connection tracking table. Let us see some calculations
using the recommendations of RFC 4814:

� Recommended source port range: 1024-65535, its size
is: 65535-1024+1=64512

� Recommended destination port range: 1-49151, its
size is: 49151

� The number of source and destination port number
combinations is: 64512*49151 = 3,170,829,312.

And yet we did not consider the requirement for testing
with also 256 destination networks, which would further
increase the number of connection tracking table entries.

Thus, we have shown that the Tester should not fol-
low the recommendations of RFC 4814 for pseudorandom
source and destination port numbers blindly. However,
on the other hand, we agree with the purpose of RFC
4814, as we are aware that using the same fixed source
and destination port numbers is very far from the opera-
tional conditions of NAPT gateways. Even a small home
NAPT device has to handle a high number of different
source port numbers since web browsers use a high num-
ber of concurrent TCP connections, the number of which
depends on several factors including the content of the
given web page, the type of client operating system and
browser, etc., please refer to [20] for further details. A
CGN NAPT gateway has to handle also a high number of
different source IP addresses besides the high number of
different source port numbers. These parameters have a
significant influence on the number of connection tracking
table entries and thus they should not be overlooked.

2.3. Possible Solutions

To find a reasonable solution, let us consider, what port
numbers usually appear in the outgoing packets arriving
at the NAPT gateway of an ISP. It is likely that:

� The source port numbers will be quite different in the
range of 1024-65535.

� There will be a few very popular ones among the des-
tination port numbers, with the dominance of 443
(HTTPS) and 80 (HTTP), appearing also the port
numbers of several other widely used protocols1 .

Theoretically, it could be possible to capture traffic at
the NAPT gateway of an ISP, count the frequency of the
occurrence of each source and destination port number,
and store the statistics. One could implement a tester,
which loads the statistics, and generates source and desti-
nation port numbers following the distributions recorded
in the statistics. However, several different questions arise,
for example:

1Please refer to the report of Internet Initiative Japan [21] for a
particular observation of the popularity of the different protocols.

3

1. Are source and destination port numbers independent
from each other or is there any correlation between
them?

2. How much similar or different are the statistics of dif-
ferent NAPT gateways and how this difference influ-
ences the benchmarking results?

3. To what extent the statistics are permanent or chang-
ing over time, and how this possible change influences
the benchmarking results?

The answer to the first question may simply make the
random number generation a bit more complex, however,
the answers to the second two questions may make it im-
possible to produce and publish meaningful benchmarking
results that will be usable for others. We would like to
build a more simple and easy-to-use model. Therefore, we
make the following simplifications.

1. Let us omit the possible correlation of the source and
destination port numbers.

2. Let us use uniform distribution for the source port
numbers as recommended by RFC 4814. (Maybe its
distribution is not uniform, but skewed, however, we
hope that using uniform distribution is not a bad
model.)

3. Let us also use uniform distribution for the destina-
tion port numbers, but in a much narrower range than
it is recommended by RFC 4814. (This is a very sig-
nificant simplification, which requires validation.)

The size of the destination port range can be used as a
parameter and the performance of the NAPT gateway may
be examined as a function of this parameter. The results
may be useful when dimensioning a NAPT gateway.

3. Summary of Siitperf

In this section, we give a summary of the design and
implementation of siitperf only to the extent necessary
to understand the following sections. It is done by reusing
some of the text of our open access papers [6] and [9], in
which further details are available.

As for siitperf, we intended it to be a flexible tool
designed for research and experimentation rather than an
automated commodity Tester. Therefore, it is a combi-
nation of binaries and shell scripts. It supports the fol-
lowing benchmarking procedures: throughput, frame loss
rate, latency, and PDV (packet delay variation). There are
three binaries written in C++ using DPDK (Intel Data
Plane Development Kit) [22] to ensure high enough per-
formance. The binaries implement the core business logic
and input a high number of parameters. There are four
bash shell scripts (for the above-mentioned four bench-
marking measurements), and they call the appropriate bi-
nary supplying the command line parameters necessary
for the given measurement step. For example, the 20 rep-
etitions and the binary search of the throughput test are
performed by the binary-rate-alg.sh script, which

Figure 2: The operation of the sender and receiver functions of the
original siitperf

calls the siitperf-tp binary for every 60 seconds long
elementary test providing the required frame rate and sev-
eral further parameters. The same siitperf-tp binary
is used by the frame-loss-rate.sh script to measure
the frame loss rate at various frame rates. Parameters
that may vary among the consecutive executions of the bi-
naries are supplied as command line parameters, whereas
constant parameters (e.g. IP addresses, MAC addresses,
etc.) are supplied in the siitperf.conf configuration
file.

We followed an object-oriented design. The classes for
both the latency and the PDV measurements are extend-
ing their base class, throughput. (They are slightly differ-
ent from each other, as the latency test uses only a spec-
ified number of timestamps, whereas the PDV test uses
timestamps for every single frame.)

The program structure of each C++ program is very
simple: the main program reads the parameters first from
the configuration file and then from the command line.
Next, it calls the init() function of the required mea-
surement, which initializes the EAL (Environment Ab-
straction Layer) of the DPDK, resets and starts the net-
work interfaces, and performs a few sanity checks. Fi-
nally, the main program executes the proper measure-
ment procedure. The measurement procedure prepares
the parameters for the senders and receivers, and starts
one sender and one receiver for each active direction (as
separate threads). They are executed by their exclusively
used CPU cores to ensure guaranteed performance. After
they have finished, the main thread collects and evaluates
their results.

We show in Fig. 2, how the sender and receiver threads
(that is the send() and receive() functions in the
source code) are assigned to the CPU-s denoted with
the self-explanatory names (CPU-{L,R}-{Send,Recv})
used in the configuration file.

From our point of view, it is important to mention that
the four threads (two senders and two receivers) do not

4

Table 1: Specification of which parameters used as source and destination IP addresses for foreground test frames on each side. (L/R means:
Left/Right, the Virt(ual) value is used to represent an IP address from a different address family than the frame belongs to. Please refer to
[6] for the details.)

Case IP version Type of the IP addresses used by the Left Sender IP addresses used by the Right Sender
No. Left Right DUT source destination source destination
1. 6 4 stateless NAT64 gw. IPv6-L-Real IPv6-R-Virt IPv4-R-Real IPv4-L-Virt
2. 4 6 stateless NAT46 gw. IPv4-L-Real IPv4-R-Virt IPv6-R-Real IPv6-L-Virt
3. 4 4 IPv4 router IPv4-L-Real IPv4-R-Real IPv4-R-Real IPv4-L-Real
4. 6 6 IPv6 router IPv6-L-Real IPv6-R-Real IPv6-R-Real IPv6-L-Real

have any common data structures and they work indepen-
dently from each other, except that:

� each receiver receives the test frames sent by the cor-
responding sender,

� receivers and senders on the same side use the same
NIC (network interface card).

We have designed siitperf to be flexible due to using
a high number of parameters. For example, the IP version
can be specified individually and independently for each
side, thus siitperf can also be used for testing IPv4 or
IPv6 routers, not only SIIT gateways. When siitperf
constructs and sends out test frames, their IP version al-
ways follows the IP version specified in the configuration
file by the IP-L-Vers and the IP-R-Vers parameters
for the Left Sender and the Right Sender, respectively. Ta-
ble 1 summarizes which parameters are used as source and
destination IP addresses for the test frames on each side.

RFC 8219 also requires that besides the traffic that is
translated (we called it “foreground traffic”), tests should
also use non-translated native IPv6 traffic (we called it
“background traffic”), and different proportions of the two
types of traffic have to be used. For us, it will be impor-
tant that background traffic is normal IPv6 test frames
and they are always sent from the “real” IPv6 address
of the given side to the “real” IPv6 address of the other
side. Background traffic is indistinguishable from the fore-
ground test frames if the IP version of both sides is 6 (case
no. 4).

We note that a dual stack router may also be bench-
marked using case no. 3 because besides the IPv4 fore-
ground traffic, the background traffic is IPv6 and the pro-
portion of the two may be set arbitrarily.

The proportion of the foreground traffic and background
traffic can be expressed by two command line parameters
called n and m, please refer to our original paper [6] for
the details.

We note that the receiver function is resilient: it does
not take care of the IP version of its side, it rather checks
the value of the Type field of the Ethernet frame and pro-
cesses the payload accordingly (as IPv4 or as IPv6). It
does not check IP or MAC addresses, but it checks an 8-
byte identifier to distinguish the test frames from other
frames.

It is also important that RFC 2544 requires to use fixed
source and destination IP addresses first, and then 256

destination networks for the benchmarking tests. We allow
the user to specify the number of the networks on the left
and right sides independently using any value from 1 to
256 in the configuration file:

Num-L-Nets 1 # Number of Left side networks
Num-R-Nets 1 # Number of Right side networks

The settings apply to both background and foreground
traffic. But they are used only for destination networks
and do not affect the source IP addresses.

There is a further parameter called START DELAY (de-
fined as a C preprocessor constant in the source file
defines.h), which was originally intended to be typ-
ically technical: it facilitated the synchronized start of
frame sending by the senders. (As their startup requires
non-zero time, their frame sending has to be started at a
well-defined time.) During our tests, frame loss was experi-
enced at the beginning of the test, and it turned out that
some part of the test system, perhaps the DUT (Device
Under Test) was not yet ready, right after the initializa-
tion of the interfaces of the Tester. Thus, this parameter
has received a new function to support a predefined delay
between the starting of the network interfaces of the Tester
and the starting of the actual measurement facilitating the
proper initialization of the network interfaces of the DUT.
Its default value was increased to 2 seconds and it may be
further increased if needed.

Further parameters providing factors of freedom can be
found in our original paper [6].

As for the extension of siitperf to use pseudorandom
port numbers, we kept our flexible approach, and thus it
can be specified individually for each direction and for the
source and destination port numbers, whether they should
be fixed or varying. If they are varying, they may be pseu-
dorandom or increasing or decreasing in the consecutive
frames. (The latter two are not RFC 4814 compliant, but
they may be useful in some cases.) The configuration file
allows to set the following parameters:

Fwd-var-sport 3
Fwd-var-dport 3
Rev-var-sport 1
Rev-var-dport 0

The numeric values are interpreted as follows:

0 fixed port number (the hard-wired value defined in Ap-
pendix C.2.6.4 of RFC 2544)

1 increasing port number,

5

2 decreasing port number

3 pseudorandom port number

It is computationally less expensive to use increasing (or
decreasing) port numbers than using pseudorandom port
numbers. Of course, not all combinations are useful, per-
haps, there is no point in increasing both the source and
the destination port numbers.

The configuration file shipped with siitperf contains
the default settings for port number ranges as required by
RFC 4814:

Fwd-sport-min 1024
Fwd-sport-max 65535
Fwd-dport-min 1
Fwd-dport-max 49151
Rev-sport-min 1024
Rev-sport-max 65535
Rev-dport-min 1
Rev-dport-max 49151

It is also an important implementation detail that the
test frames are not built up from scratch during testing,
but pre-generated test frames (templates) are modified to
decrease the amount of work and, thus, to increase the
maximum achievable frame rate.

We note that all sorts of variable port numbers apply to
both foreground and background traffic.

As for the output of siitperf-tp, it reports the num-
ber of the transmitted frames and the received frames for
the active directions (one direction may be missing):

Forward frames sent:
Forward frames received:
Reverse frames sent:
Reverse frames received:

It will be important that the bash shell scripts are ex-
pected to grep for the above expressions in the output of
the program.

So far, we have mainly focused on the siitperf-tp
throughput tester, which can also be used for the frame
loss rate measurements. The design and the operation
of the siitperf-lat latency tester are fairly similar.
The main difference is that a certain number of frames
are tagged for latency measurements. As the maximum
number of latency frames is 50,000, they are always pre-
generated. If the varying port number feature is used, then
the port numbers are updated in the latency frames, too.
When a tagged frame is sent, the sender function stores
its timestamp and when a tagged frame is received, the re-
ceiver function stores its timestamp, too. After the latency
test is finished, siitperf-lat processes the timestamps
and calculates the typical latency and worst-case latency
values for each active direction. The latency tester has
two further command line parameters, the delay param-
eter specifies how much time after the start of the mea-
surement the first tagged frame should be sent, and the
timestamps parameter specifies the number of frames to
be tagged.

The design and the operation of the siitperf-pdv
PDV tester are even more straightforward extensions of
siitperf-tp. It sends only PDV test frames, each of
which contains an 8-byte ordinal number, which is used as
an index for the array of the receiving and sending times-
tamps. These arrays are filled during the sending and re-
ceiving of the PDV test frames, and arrays are processed
after finishing the measurement. The PDV tester has one
further command line parameter called frame timeout. If
the value of this parameter is 0, then the timestamp arrays
are processed as required by RFC 8219 to calculate PDV.
If the value of this parameter is higher than 0, then it is
interpreted as the timeout parameter for each frame indi-
vidually: those frames having higher latency than frame
timeout are reclassified as lost. Hence, this implements a
special throughput test, where the timeout is checked for
each frame individually. Please refer to our original paper
for the details and the justification of the method [6]. For
us, this method is useful for determining the performance
(maximum frame rate) of siitperf-pdv.

4. Design of the Stateful Extension of Siitperf

4.1. General Design Considerations

When we designed a functional extension of siitperf,
we considered its compatibility with its previous versions
very important. The new software should be able to per-
form all the original tests using the original parameters (in
the command line and in the configuration file) and pro-
vide the original output. To do so, special values of the
new parameters may be required, and if possible, these val-
ues should be their default values. (Thus, the usage of an
old configuration file and command line parameters with
the new software should result in its old way of operation.)

4.2. High-level Design Decisions

4.2.1. Considerations for Directions and Flexibility

Due to the nature of the stateful translation, it can only
be used at most in one direction. To keep the flexibility
of the software, we decided to let the user specify the di-
rection. We also wanted to allow stateful translation to be
combined with any IP version (4 or 6). From the set of pos-
sible combinations, stateful NAT44, stateful NAT64, and
stateful NAT66 are surely meaningful. Stateful NAT46
[23] has also been proposed, but its Internet-Draft has
never been published as an RFC.

4.2.2. Design of Stateful Testing

Regarding the stateful operation, let us name the roles
of the two ports of the Tester as Initiator and Responder.
As shown in Fig. 3, the Initiator resides on the “private”2

2We use IPv4 terminology to facilitate an easy understanding for
those, who are more familiar with IPv4 than with IPv6. However,
our design is not at all limited to stateful NAT44. Fig. 4 shows the
test setup for benchmarking stateful NAT64 gateways.

6

+--------------------------------------+
10.0.0.2 |Initiator Responder| 198.19.0.2

+-------------| Tester |<------------+
| private IPv4| [state table]| public IPv4 |
| +--------------------------------------+ |
| |
| +--------------------------------------+ |
| 10.0.0.1 | DUT: | 198.19.0.1 |
+------------>| Sateful NAT44 gateway |-------------+

private IPv4| [connection tracking table] | public IPv4
+--------------------------------------+

Figure 3: Test setup for benchmarking stateful NAT44 gateways

+--------------------------------------+
2001:2::2 |Initiator Responder| 198.19.0.2

+-------------| Tester |<------------+
| IPv6 address| [state table]| IPv4 address|
| +--------------------------------------+ |
| |
| +--------------------------------------+ |
| 2001:2::1 | DUT: | 198.19.0.1 |
+------------>| Sateful NAT64 gateway |-------------+

IPv6 address| [connection tracking table] | IPv4 address
+--------------------------------------+

Figure 4: Test setup for benchmarking stateful NAT64 gateways

side of the DUT, and only the Initiator can initiate con-
nection establishments due to the stateful nature of the
DUT. The Responder resides on the “public” side of the
DUT and it can send only test frames that belong to a
connection already initiated by the Initiator. As both of
them must be able to send proper test frames at the re-
quired frame rate from the very beginning of the test, a
preliminary phase is necessary, while the Responder can
observe and store enough valid four tuples (that belong to
existing connections) in its state table. Thus, the Initiator
and the Responder perform the following tasks:

� During the preliminary phase, the Initiator sends N
number of test frames to the Responder through the
DUT. The Responder extracts the IP addresses and
the port numbers from the tests frames and stores
them in its state table, but it does not send any test
frames yet.

� During the test phase, the Initiator acts the same as
the sender and receiver of the original siitperf.
The Responder receives and processes the test frames
as needed3 and it further updates its state table on
the basis of the IP address and port number informa-
tion of the received frames. The responder also sends
test frames using the IP addresses and port numbers
from its state table.

3E.g. siitperf-tp simply counts them, whereas
siitperf-lat and siitperf-pdv perform further tasks with
timestamps.

As the Initiator is completely free to use any source
and destination port number combinations during the test
phase (even those not used during the preliminary phase),
it is absolutely necessary for the Responder to update its
state table during the test phase. This operation also
means that the sender and receiver of the Responder are
no more independent, but they have a common data struc-
ture, the state table, which is written by the receiver and
read by the sender. Please refer to section 4.5 for the de-
tails.

4.3. Further Design and Implementation Decisions

4.3.1. Considerations for the State Table of the Responder

RFC 8219 defines black-box testing: the user is not
aware of the internals of the DUT. In our case, it also
means that we are not aware of even the size and policy
of the connection tracking table of the DUT. We are not
able to keep the consistency between the state table of the
Responder and the connection tracking table of the DUT
as we may not examine the latter. However, at least, we
need to enable the user to control, how the old four tuples
of IP addresses and port numbers are thrown out from the
state table of the Responder. Allowing the user to spec-
ify a timeout could be handy from the user’s perspective.
However, its handling would consume a significant amount
of processing power. Due to performance considerations,
we decided to implement the state table of the Responder
as a simple ring buffer of size M . If the test frames arrive
at rate r, then the entries of the state table are overwrit-

7

ten in M/r time. (Please refer to section 4.3.6 for another
consistency-related issue.)

4.3.2. Considerations for the Connection Establishment
Rate

Usually, a high number of packets per connection are
transmitted in a typical application scenario of stateful
NATxy gateways. It also means that the connection es-
tablishment rate is significantly lower than the packet rate.

During the test phase of our benchmarking tests, the
number of test frames per connection may be controlled
by the number of possible four tuples (and also by M).

However, at the beginning of the preliminary phase, the
initiator sends all different four tuples, that is, the con-
nection establishment rate is equal to the frame rate. As
the maximum connection establishment rate of a state-
ful device may be significantly lower than its maximum
forwarding rate, we decided to enable the user to specify
a different frame rate for the preliminary phase than the
frame rate used in the test phase. Please see section 6.2,
how siitperf supports the measurement of the maxi-
mum connection establishment rate of a stateful device.

4.3.3. Enumeration of Port Numbers

Our state-of-the-art benchmarking methodology for
stateful NATxy gateways summarized in section 5, re-
quires the pseudorandom enumeration of all possible port
number combinations in the preliminary phase. In addi-
tion to that, we wanted to make siitperf also suitable
for wilfully exhausting the port number range of a stateful
NAT64 / NAT44 gateway for simulating a denial of service
attack to support vulnerability analysis mentioned in [24]
and [25].

Therefore, we have added a new input parameter to
combine source and destination port numbers into a single
counter. It means that the source port number is the lower
two bytes and the destination port number is the higher
two bytes of a 4-byte counter. However, its possible values
are still limited by the specified ranges of the source and
destination port numbers. (Please refer to section 4.3.5,
how to set port number enumeration.)

We note that port number enumeration applies only to
the translated traffic (called foreground traffic). The port
numbers of the non-translated traffic (background traffic)
do not take part in the enumeration.

We also note that port number enumeration is supported
only in the preliminary phase.

4.3.4. Port Numbers of the Responder

Due to the stateful translation, the Responder has to
generate test frames using the four tuples from its state
table. It also means that regarding foreground traffic4,

4We note that the original settings still apply for the background
traffic.

the Responder should simply ignore various settings spec-
ified in the configuration file. (Namely: the number of
destination networks and the port number ranges for the
given direction as well as the values regarding the nature
of the port numbers, that is, the 0, 1, 2 or 3 values of the

*-var-{d|s}port parameters for the given direction.)
In order to keep resilience, now we consider, what ap-

proaches can be reasonable:

0 Use the fixed four tuple learned from the very first pre-
liminary frame.

1 Take the next entry of the state table in increasing order.

2 Take the next entry of the state table in decreasing or-
der.

3 Randomly select from among the state table entries.

We note that case 0 is the same approach, when hard-wired
fixed port numbers are used in the original siitperf, lit-
erally following the test frame format in Appendix C.2.6.4
of RFC 2544.

We believe that case 3 is the true spirit of RFC 4814,
whereas cases 1 and 2 are computationally less expensive
alternatives. (At an early stage of the design of the bench-
marking method there was a practical consideration that
made at least one of them a must. We discuss it in sec-
tion 4.3.6. However, later we found a better solution as
described in section 5.)

4.3.5. New Input Parameters
Following our original policy that parameters that do

not change during the execution of the shell scripts are
put into the configuration file, we added the following pa-
rameters to the configuration file with the default value of
0:

Stateful 0 # valid values: 0, 1, 2

Its values have the following meanings:

0 The original operation of siitperf is kept, no new
command line parameters are accepted.

1 Stateful test is performed, Initiator is on the left side
and Responder is on the right side. New command
line parameters are expected.

2 Stateful test is performed, Initiator is on the right side
and Responder is on the left side. New command line
parameters are expected.

We have introduced a configuration file parameter to con-
trol port number enumeration:

Enumerate-ports 0 # valid: 0, 1, 2, 3

Its values have the following meanings:

0 The original operation of siitperf is kept, the port
numbers behave as usual.

8

1 The port numbers are enumerated in increasing order
(source port number is the low order counter and des-
tination port number is the high order counter), but
the source and destination port numbers are limited
to their specified ranges.

2 Like “1”, but the order of enumeration is decreasing.

3 All possible combinations of the available port numbers
specified by the source and destination port number
ranges are enumerated in a pseudorandom order.

We note that port number enumeration applies only for
the foreground traffic, and it is available only when a single
destination network is set, otherwise, the program gives an
“Input Error:” message.

To express the policy, how the consecutive four tuples
are selected from the state table of the Responder for the
foreground traffic, we introduced the following configura-
tion file parameter:

Responder-ports 0 # valid: 0, 1, 2, 3

The interpretation is defined by the listed items in sec-
tion 4.3.4.

As for the new command line parameters, they follow
the command line parameters of the throughput test, and
they precede the additional parameters of the Latency and
PDV measurements.

They are to be specified in the following order:

N (1 – 232−1) – the number of test frames to send in the
preliminary phase

M (1 – 232 − 1) – the number of entries in the state table
of the Tester

R (in frames per second) – the frame rate, at which the
test frames are sent during the preliminary phase

T (in milliseconds, 1 – 2,000) – the global timeout for the
preliminary frames

D (in milliseconds, 1 – 100,000,000) – the overall delay
caused by the preliminary phase

We note that N denotes the number of all frames (includ-
ing foreground and background frames) sent during the
preliminary phase.

It is important that the sending of the N number of test
frames at the specified R frame rate should happen and
also the T global timeout should elapse within the D time,
otherwise siitperf reports an error message and exits.

We note that setting M to 1 is allowed only in the case
if Responder-ports is set to 0. Please refer to sec-
tion 4.3.8 for an explanation.

4.3.6. The Issue of Active Directions

So far, we considered the general case, when both di-
rections are active, that is, bidirectional traffic is used for
benchmarking. As it is in stateless testing, any of the two
directions may be set inactive also in the case of state-
ful testing. It is trivially not a problem if traffic flows
only from the Initiator to the Responder. When traffic
flows only from the Responder to the Initiator, then the
state table of the Responder is filled during the preliminary
phase and it remains unchanged during the testing phase.
It may cause a serious problem under certain conditions.
Stateful NAT64 or NAT44 gateways use various timeout
values for the connections. Let us consider the following
situation. If traffic flows only from the Responder to the
Initiator during the test phase, and the Responder uses
pseudorandom four tuple selection, it may happen that a
specific four tuple is not used for a specific timeout and
then it is used again. It results in the construction of a
frame that belongs to a no more existing connection in the
gateway. Therefore, it is dropped by the gateway, and the
loss of the frame causes the throughput test to fail. This
issue is properly solved by using an appropriate timeout,
please refer to section 5 for the details.

4.3.7. The Issue of Indistinguishable IPv6 Background
Frames

When the IP version is 4 on the side where the Re-
sponder resides, then frames translated by either state-
ful NAT44 or stateful NAT64 arrive as IPv4 frames, and
IPv6 frames belong to the background traffic. Hence, fore-
ground and background frames can be easily distinguished
by the IP version. However, when the IP version is 6 on
the side where the Responder resides, then frames trans-
lated by either stateful NAT46 or stateful NAT66 arrive
as IPv6 frames, and they are indistinguishable from the
background traffic using only the IP version. The problem
could be easily solved by using a different 8-byte identifier
for the test frames belonging to the background traffic or
by examining also the source IPv6 address. However, we
did not implement it yet, please refer to section 4.4.1 for
more details.

4.3.8. The Issue of Inter-thread Communication

Both high performance and flexibility were our primary
design concerns. As inter-thread communication may neg-
atively influence performance, we had to make a compro-
mise on the following issue.

Originally, we planned to allow the partial filling of the
state table of the Tester during the preliminary phase, and
the receiver of the Responder could fill the remaining en-
tries in the test phase. However, it would have required
continuous communication of the number of valid entries
from the receiver of the Responder to the sender of the
Responder, which could have a significant impact on the
performance of the Tester. Although it could have been
stopped after filling the state table, it would further com-
plicate the code, whereas a single extra “if” statement in

9

the innermost receiving and sending loops was also consid-
ered a hindrance to be avoided. So, we decided that the
state table must be filled in the preliminary phase.

Writing and reading of the state table may slow down
the Tester only in the case if the same entry is affected.
Therefore, we decided to support fixed port numbers by
a separate code, which does not continuously write and
read the single entry. In this case, the very first entry
of the state table is read only once at the beginning of
the test phase, and then the sender and the receiver work
independently.

4.4. Implementation of the Stateful Tests

4.4.1. Scope Decisions

Considering our limited time and the vast difference
between the deployment of stateful NAT44 and stateful
NAT64 versus stateful NAT46 and stateful NAT66, we de-
cided to support only the first two of them. (The support
for the latter two is not an intellectual challenge, but re-
quires a significant amount of coding and testing.)

Our decision means that the Initiator has to be able to
handle both IPv4 and IPv6, but the Responder needs to
be able to handle only IPv4 as foreground traffic.

4.4.2. Design of the Initiator

As we mentioned before, the sender of the Initiator is
a modified version of the sender function of the stateless
siitperf. The main difference is the support for port
number enumeration using a twice two-byte counter in the
preliminary phase5. Let us see an example. If the source
port numbers are set to increase from 10,000 to 49,999
(40,000 different values) and the destination port numbers
are set to increase from 80 to 179 (100 different values)
then 40,000*100 = 4,000,000 different combinations can
be enumerated.

� If the sender of the Initiator has to enumerate the
available port number combinations in a pseudoran-
dom order, then it is checked, if there are enough
unique port number combinations, and if not, then
an Error is reported. (It is so to support proper
measurements as described in Section 5.)

� If increasing or decreasing port number enumeration
is required, then no such check is performed, and the
counter of the combined source and destination port
numbers is allowed to wrap around. (It is so not to
limit the usability of siitperf as a denial of service
attack testing tool.)

Port number enumeration is supported only in the case
when the number of destination networks is set to 1.

During the operation of siitperf, frame sending and
receiving happens twice: first, in the preliminary phase,

5Port number enumeration is supported only in the preliminary
phase. In the test phase, the stateless sender is reused as the sender
of the Initiator.

and second, in the test phase. To protect the bash shell
scripts processing the output of siitperf from confu-
sion, siitperf uses the word “Preliminary” instead of
“Forward” or “Reverse”, when reporting the number of
frames sent and received in the preliminary phase.

As for the receiver function, it is not used on the Ini-
tiator side during the preliminary phase, and the original
one was kept in the test phase.

4.4.3. Design of the Receiver of the Responder
The consistency of the state table entries is ensured us-

ing atomic variables of C++. The type of the entries of
the state table is defined as follows:

typedef std::atomic<fourTuple> atomicFourTuple;

Hence, both the reading and the writing of the entries
of the state table are atomic operations.

The receiver of the Responder extracts the IPv4 ad-
dresses and port numbers from the received IPv4 test
frames and writes them first into a local variable of type
struct fourTuple, then it writes the four tuples into
the state table in increasing order starting from index 0.

We note that neither the receiver nor the sender of the
Responder converts IP addresses and port numbers be-
tween network byte order and host byte order because they
are only copied but not manipulated.

4.4.4. Design of the Sender of the Responder

The sender of the Responder supports multiple modes of
operation. If Responder-ports is set to 0, then a single
IPv4 test frame is generated based on the very first ele-
ment of the state table (index 0), and always this frame is
sent as foreground traffic without regard to the number of
destination networks. Background traffic is generated us-
ing fixed port numbers, but multiple destination networks
may be used.

If Responder-ports is set to 1, 2, or 3, then all
the entries of the state table are used as specified in sec-
tion 4.3.4.

Following our original approach, we used pre-generated
templates of Test Frames and modified their IP addresses
and port numbers.

4.4.5. Design of the Latency Measurements

So far, we focused on the design of the stateful extension
of the siitperf-tp throughput tester. The extension of
the siitperf-lat latency tester is fairly similar, most
things are quite straightforward. We mention only a few
differences. As no tagged frames are sent during the pre-
liminary phase, the Initiator of the throughput tester and
the receiver of the Responder of the throughput tester are
reused in the preliminary phase.

As with the throughput tests, port number enumeration
is supported only in the preliminary phase of the latency
measurements. (The program gives a warning about it if
port number enumeration is specified in the configuration
file.)

10

Figure 5: The operation of sender and receiver functions of the state-
ful siitperf during the preliminary phase

We note that latency frames (test frames tagged for la-
tency measurements) are pre-generated and used as tem-
plates: they are modified in the same way as the templates
of the normal test frames, the only difference is that they
are used only once.

4.4.6. Design of the PDV Measurements

The extension of the siitperf-pdv PDV tester was
completely straightforward. We followed the same ap-
proach as with the latency tester: the Initiator of the
throughput tester and the receiver of the Responder of
the throughput tester are reused in the preliminary phase
and port number enumeration is not supported in the test
phase.

4.4.7. Implementation of the Pseudorandom Enumeration
of the Port Numbers

As the pseudorandom enumeration of all the available
port number combinations is very important for our state-
of-the-art measurement method described in section 5, we
disclose its implementation details.

The pseudorandom port number pairs are generated be-
fore the beginning of the preliminary phase by the CPU
core which is later used for the execution of the sender
of the Initiator to ensure the allocation of NUMA local
memory for the array of the pre-generated port numbers.
First, all possible port number combinations (determined
by the source and destination port number ranges) are
enumerated in the array of port number combinations in
increasing order, and then they are put into pseudorandom
order using Dustenfeld’s random shuffle algorithm [26].

4.5. Summary of the Sending and Receiving Functions

Now we summarize, what was changed and what was
kept from the sending and receiving functions of the orig-

Figure 6: The operation of sender and receiver functions of the state-
ful siitperf during the test phase (using bidirectional traffic)

inal siitperf, as well as when they operate during a
complete throughput test.

We suppose that the value of the Stateful parameter
is set to 1, that is, the Initiator is on the left side and the
Responder is on the right side.

During the preliminary phase, the Sender function
of the Initiator (called isend()) sends preliminary
frames, and the receiver function of the Responder (called
rreceive()) receives them, and extracts and stores the
four tuples into its state table, as shown in Fig. 5.

During the test phase, the Initiator acts completely the
same as in the stateless version. The Responder uses its
new rreceive() and rsend() functions to receive and
send frames. They are not independent from each other,
because they are interconnected by the state table, written
by the receiver and read by the sender of the Responder,
as shown in Fig. 6.

5. State-of-the-Art Benchmarking Method

Until we published it as an Internet-Draft [27], there was
no systematic proposal for benchmarking stateful NATxy
gateways. The basic idea of the measurement method is
to ensure that:

1. During the preliminary phase, all test frames result in
the establishment of a new connection in the DUT.

2. During the test phase, no new connections are estab-
lished in the connection tracking table of the DUT.

3. The connection tracking table of the DUT is empty at
the beginning of the preliminary phase, and no con-
nections are deleted from there until the end of the
test phase.

These conditions are necessary so that the maximum con-
nection establishment rate measurement (performed in

11

enp5s0f0:
2001:2::2/64

enp5s0f0:
2001:2::1/64

Tester

enp5s0f1:
198.19.0.2/24
2001:2:0:8000::2/64

enp5s0f1:
198.19.0.1/24
2001:2:0:8000::1/64

DUT
stateful NAT64

gateway
Jool

running
siitperfp108

p109

10GbE w/ direct cables

Test System 1

Figure 7: Test system for stateful NAT64 tests with Jool

the preliminary phase) and all other measurements (e.g.
throughput, latency, etc.) performed in the test phase give
clear and repeatable results. To that end, it is necessary
to:

1. Use all different and pseudorandom port number com-
binations for all test frames during the preliminary
phase.

2. Enumerate all possible port number combinations
(determined by the specified source and destination
port number ranges) in the preliminary phase.

3. Set the timeout in the DUT to a higher value than
the length of the entire experiment.

4. Make sure that the capacity of the connection tracking
table of the DUT is large enough to store all the con-
nections (defined by the number of all possible port
number combinations).

5. Start each experiment with an empty connection
tracking table of the DUT.

This method proved to be viable when we used it for mea-
suring the scalability of the iptables stateful NAT44
implementation up to 800 million connections and that
of the Jool [10] stateful NAT64 implementation up to 1.6
billion connections [28].

6. Functional and Performance Tests

The aim of this section is threefold:

1. to demonstrate the operation of the stateful NAT64
measurements,

2. to test the usability of our Tester in a typical appli-
cation scenario,

enp5s0f0:
198.18.0.2/24

Tester

enp5s0f1:
198.19.0.2/24

running
siitperfp110

10GbE w/ direct cable

Test System 2

Figure 8: Test system for determining the performance limits of the
stateful operation of siitperf

3. to make an initial performance assessment of the
stateful operation of siitperf.

As a test environment, we used three “P” series nodes
(p108, p109, p110) of NICT StarBED6, Japan. They are
Dell PowerEdge R430 servers with two 2.1GHz Intel Xeon
E5-2683 v4 CPUs having 16 cores each, 384GB 2400MHz
DDR4 SDRAM, and Intel 10G dual-port X540 network
adapters. Hyper-threading was switched off and the clock
frequency of all servers was set to 2.1GHz (fixed) using the
tlp Linux package.

We used two test setups with different goals. The aim of
Test System 1 (shown in Fig. 7) was to demonstrate the
operation of a stateful NAT64 measurement and to per-
form the most important benchmarking measurements of
the Jool [10] stateful NAT64 implementation. Test Sys-
tem 2 (Fig. 8) was used to perform an initial performance
estimation of siitperf.

The Debian Linux 9.13 operating system was used on
p108 and p110 computers. The Linux kernel version
was: 4.9.0-4-amd64. The DPDK version was 16.11.11-
1+deb9u2. The Debian Linux operating system was up-
dated to version 11.2 on p109 because that version con-
tains Jool in its package set. The Linux kernel version
was: 5.10.0-11-amd64. The Jool version was 4.1.5-1.

6.1. Demonstration of a Stateful NAT64 Test

We have tested the functional operation of the stateful
NAT64 measurement using Test System 1, the topology
of which is shown in Fig. 7. The Tester and the DUT
were interconnected by two 10GbE direct cable links. IPv6
was used on the left side network interfaces of the de-
vices, and IPv4 was used on their right side. (IPv6 ad-
dresses are also assigned to the right side interfaces to
facilitate “background” traffic, which is native IPv6 and
not translated.) Stateful NAT64 was implemented by Jool
[10]. We used the 64:ff9b::/64 NAT64 well-known prefix
to construct the IPv4-embedded IPv4 address as follows:
64:ff9b::198.19.0.2.

Jool was set up by the following commands:

6http://starbed.nict.go.jp/en/aboutus/index.html

12

1 0.000000000 fe80::a236:9fff:fec5:d2e4 --> ff02::16 ICMPv6 170 Multicast Listener Report Message v2
2 0.459988669 fe80::a236:9fff:fec5:d2e4 --> ff02::16 ICMPv6 170 Multicast Listener Report Message v2
3 2.097980439 2001:2::2 --> 64:ff9b::c613:2 UDP 80 10000 --> 80 Len=18
4 2.297974826 2001:2::2 --> 64:ff9b::c613:2 UDP 80 10001 --> 80 Len=18
5 2.497975000 2001:2::2 --> 64:ff9b::c613:2 UDP 80 10002 --> 80 Len=18
6 2.697973421 2001:2::2 --> 64:ff9b::c613:2 UDP 80 10003 --> 80 Len=18
7 2.897973228 2001:2::2 --> 2001:2:0:8000::2 UDP 80 28350 --> 101 Len=18
8 4.097972108 2001:2::2 --> 64:ff9b::c613:2 UDP 80 48819 --> 81 Len=18
9 4.098016609 64:ff9b::c613:2 --> 2001:2::2 UDP 80 80 --> 10003 Len=18
10 4.297971298 2001:2::2 --> 64:ff9b::c613:2 UDP 80 46256 --> 97 Len=18
11 4.297993205 64:ff9b::c613:2 --> 2001:2::2 UDP 80 80 --> 10002 Len=18
12 4.497969803 2001:2::2 --> 64:ff9b::c613:2 UDP 80 38671 --> 129 Len=18
13 4.497973784 64:ff9b::c613:2 --> 2001:2::2 UDP 80 80 --> 10003 Len=18
14 4.697971095 2001:2::2 --> 64:ff9b::c613:2 UDP 80 38875 --> 161 Len=18
15 4.697975518 64:ff9b::c613:2 --> 2001:2::2 UDP 80 80 --> 10002 Len=18
16 4.897968973 2001:2::2 --> 2001:2:0:8000::2 UDP 80 33935 --> 142 Len=18
17 4.897977901 2001:2:0:8000::2 --> 2001:2::2 UDP 80 29900 --> 23331 Len=18

Figure 9: The tshark capture of a stateful NAT64 test on the enp5s0f0 interface of the DUT

modprobe jool
jool instance add --netfilter \

--pool6 64:ff9b::/96
jool pool4 add 198.19.0.1 --udp 1-65535

To demonstrate the operation of the stateful NAT64
test, we performed a very short and low rate test. Only
five preliminary frames were sent: 4 foreground frames and
1 background frame (to demonstrate it too). We used port
number enumeration, and the Responder selected the four
tuples randomly.

The new configuration file parameters were set as fol-
lows:

Stateful 1 # yes, Initiator is on the Left
Enumerate-ports 1 # yes, in increasing order
Responder-ports 3 # 4-tuples random select

We used port number enumeration in increasing order
instead pseudorandom enumeration to facilitate an easy
observation.

The command line was:

siitperf-tp 84 5 1 2000 5 4 5 4 5 500 2000

The first 6 command line parameters were “inherited”
from the command line of the stateless tester. They denote
that:

� The IPv6 frame size was 84 bytes (64 bytes for IPv4).

� The frame rate was 5 frames/s (in each direction).

� The test duration was 1 second.

� The global timeout was 2000ms.

� The value of n was 5 and the value of m was 4: it
means that 4 of every 5 frames belonged to the fore-
ground traffic.

The next 5 parameters are new:

� N = 5 preliminary frames were sent by the Initiator.

� The size of the state table of the Responder was M =
4.

� The preliminary frame rate was R = 5 frames/s.

� The global timeout for the preliminary phase was T =
500ms.

� The total delay caused by the preliminary phase was
D = 2000ms. (It includes the sending of the prelim-
inary frames, the global timeout of the preliminary
phase and the waiting time before the real test phase.)

We have captured the traffic by tshark on both net-
work interfaces of the DUT: enp5s0f0 and enp5s0f1,
and they are shown in Fig. 9 and Fig. 10, respectively.
As siitperf resets the network interfaces, the first two
lines of both figures contain IPv6 multicast messages. (As
tshark starts the time measurement from the arrival of
the first frame, the times of the two captures are synchro-
nized approximately, but not completely.)

In both figures, frames 3-6 are the foreground prelimi-
nary frames. In Fig. 9, the 64:ff9b::c613:2 IPv6 destina-
tion address represents the 198.19.0.2 IPv4 address shown
in Fig. 10 as the destination address. And the 2001:2::2
source IPv6 address was replaced with 198.19.0.1 by Jool.
Port number enumeration in increasing order can also be
observed: the source port numbers start from 10,000 and
increase by 1 on the IPv6 side. Jool maps the consecu-
tive source port numbers to different, but also consecutive
source port numbers, and currently it happens from 4,127.

As frame 7 is a background frame (native IPv6), the
stateful NAT64 gateway leaves it unchanged. Its port
numbers are pseudorandom, as background frames do not
take part in the port number enumeration.

Frames 8-17 were sent during the test phase. Now the
port numbers of the “forward” direction frames are ran-
dom. The port numbers of the 4 foreground frames in the
“reverse” direction frames are determined by the pseudo-
random selection of the four tuples.

13

1 0.000000000 fe80::a236:9fff:fec5:d2e6 --> ff02::16 ICMPv6 170 Multicast Listener Report Message v2
2 0.519996603 fe80::a236:9fff:fec5:d2e6 --> ff02::16 ICMPv6 170 Multicast Listener Report Message v2
3 1.938026102 198.19.0.1 --> 198.19.0.2 UDP 60 4127 --> 80 Len=18
4 2.138011732 198.19.0.1 --> 198.19.0.2 UDP 60 4128 --> 80 Len=18
5 2.338011860 198.19.0.1 --> 198.19.0.2 UDP 60 4129 --> 80 Len=18
6 2.537998467 198.19.0.1 --> 198.19.0.2 UDP 60 4130 --> 80 Len=18
7 2.738005376 2001:2::2 --> 2001:2:0:8000::2 UDP 80 28350 --> 101 Len=18
8 3.938008055 198.19.0.1 --> 198.19.0.2 UDP 60 61309 --> 81 Len=18
9 3.938013475 198.19.0.2 --> 198.19.0.1 UDP 60 80 --> 4130 Len=18
10 4.137989195 198.19.0.1 --> 198.19.0.2 UDP 60 9342 --> 97 Len=18
11 4.137993463 198.19.0.2 --> 198.19.0.1 UDP 60 80 --> 4129 Len=18
12 4.337977383 198.19.0.2 --> 198.19.0.1 UDP 60 80 --> 4130 Len=18
13 4.337994824 198.19.0.1 --> 198.19.0.2 UDP 60 21452 --> 129 Len=18
14 4.537976874 198.19.0.2 --> 198.19.0.1 UDP 60 80 --> 4129 Len=18
15 4.538007685 198.19.0.1 --> 198.19.0.2 UDP 60 60800 --> 161 Len=18
16 4.737977770 2001:2:0:8000::2 --> 2001:2::2 UDP 80 29900 --> 23331 Len=18
17 4.737985520 2001:2::2 --> 2001:2:0:8000::2 UDP 80 33935 --> 142 Len=18

Figure 10: The tshark capture of a stateful NAT64 test on the enp5s0f0 interface of the DUT

We note that we used only a single public IPv4 address
on the IPv4 interface of the stateful NAT64 gateway, but
using multiple public IPv4 addresses could cause no prob-
lem, as the Responder stores the entire four tuples and
uses their elements for traffic generation.

6.2. Maximum Connection Establishment Rate Measure-
ment

Before an actual stateful NAT64 throughput test could
be performed, one must determine the maximum connec-
tion establishment rate, and a rate somewhat lower than
that should be used during the preliminary phase of the
throughput test to prevent the failure of the measurement
during the preliminary phase due to frame loss caused by
an improper frame rate.

Therefore, we first determined the maximum connection
establishment rate of Test System 1 shown in Fig. 7.

It is important that the measurement script remotely
started and stopped Jool on the DUT before and after
each test in order to delete the content of its connection
tracking table. For starting Jool, the same commands were
used as disclosed in section 6.1. Jool was stopped after
each test using the following command:

modprobe -r jool

As the default timeout of Jool is 5 minutes, we did not
need to change it. If one needs to set the timeout, it can
be done by the following command:

jool global update udp-timeout <value>

We limited the possible port number combinations to
4,000,0007 by using a source port range of [10,000; 49,999]
and a destination port range of [80; 179].

We used no background traffic. First, we sent exactly
N = 4, 000, 000 number of preliminary frames necessary to
fill the state table (M = 4, 000, 000). The global timeout

7Vyacheslav Gapon recommended this number as the size of the
connection tracking table for a high-loaded NAT server [29].

for the preliminary frame sending was T = 500ms, and the
overall delay before the test phase was calculated as:

D = 1000 ∗ M
R

+ 2 ∗ T (1)

We used binary search to determine the maximum con-
nection establishment rate, that is, the highest frame rate
for the preliminary test, at which all preliminary frames
are successfully received by the Responder. The binary
search was performed 20 times, and the median, fist per-
centile, and 99th percentile of the results were determined.
In addition to that, we have also determined the dispersion
of the results calculated as follows:

dispersion =
99th perc.− first perc.

median
∗ 100% (2)

As for frame size to be used, RFC 8219 lists a num-
ber of standard frame sizes. We used only the first one of
them, 64 bytes for IPv4 and thus 84 bytes for IPv6. Our
previous benchmarking experience gained with these test
systems shows that the achievable frame rate does not sig-
nificantly decrease with the frame size, as the bottleneck
is the processing power and not the 10Gbps Ethernet [30].
We show an example for testing with a higher frame size
in section 6.4.

We have performed the measurements enumerating all
possible port number combinations in pseudorandom or-
der. The results are shown in Table 2. Our maximum con-
nection establishment rate results are quite consistent: the
first percentile (524,999) and the 99-th percentile (534,814)
are quite close to each other.

6.3. Throughput Measurement

Section 5.3 of RFC 8219 requires that all tests be per-
formed with bidirectional traffic. Unidirectional tests are
optional, but we performed them, because we were inter-
ested, if we could point out any asymmetric behavior of
Jool.

14

Table 2: Maximum connection establishment rate and throughput
of the Jool stateful NAT64 implementation (N = M = 4, 000, 000)

Type of connection throughput measurement results
measurement est. rate bidir. forward reverse
Median (fps) 532,368 276,208 523,289 589,493
1st perc. (fps) 524,999 260,470 499,943 561,094
99th p. (fps) 534,814 281,476 544,928 603,132
Dispersion 1.84 7.61 8.60 7.13

As for the parameters, we kept the settings of the con-
nection establishment rate measurement in section 6.2
unless stated otherwise. During the preliminary phase,
R = 500, 000 was used (based on our result in section 6.2).

The results are shown in the last three columns of Ta-
ble 2. We note that siitperf reports the frames/s per
direction rate, that is, if a bidirectional test is used, then
the number of all forwarded frames per second is dou-
ble the reported rate, thus the bidirectional throughput of
276,208fps means a total of 552,416 forwarded frames per
second. The 589,493fps unidirectional throughput in the
reverse (that is, download) direction is somewhat higher
than the 523,289fps in the forward (that is, upload) di-
rection, which seems to be advantageous for the users of
a Jool NAT64 gateway. However, the analysis of the re-
sults is beyond the scope of our paper. Our measurements
aimed to demonstrate the operation of the measurement
method.

6.4. Frame Loss Rate Measurement

Frame loss rate measurement is also a part of RFC 8219.
It can be performed with the same siitperf-tp pro-
gram using a different shell script, which performs the
tests at different frame rates and records the number of
successfully received frames.

As an illustration, we have carried out test series using
Test System 1 with the same parameters used for the bidi-
rectional throughput test in section 6.3. Besides using the
same 84/64-byte long frames as in all other tests, we have
used also 1044/1024-byte long frames. (Another standard
frame size, which is significantly higher.) Our results are
shown in Fig. 11. The color bars show the median val-
ues and the error bars show the first percentile and 99the
percentile values. The results are in good agreement with
our previous experience [30]: the significantly higher frame
size resulted in only a very slightly higher frame loss rate.

6.5. An Initial Performance Estimation of the Stateful
Operation of Siitperf

We used Test System 2 for determining the performance
limits of siitperf. Its topology was very simple as
shown in Fig. 8. The two 10GbE interfaces of the Tester
were interconnected by a direct cable. Thus, the achievable
maximum rates of the looped back Tester were limited by
the performance of siitperf itself. The hardware and
software configuration of p110 was the same as that of
p108.

0

5

10

15

20

25

30

35

200 220 240 260 280 300 320 340 360 380

Fr
am

e
Slo

ss
Sr

at
eS

yL
)

FrameSrateSykfps perSdirection,SbidirectionalStraffic)

JoolSStatefulSNAT64 FrameSLossSRateS

84/64bytes 1044/1024bytes

Figure 11: Frame loss rate of the Jool stateful NAT64 implementa-
tion as a function of frame rate and frame size using bidirectional
traffic

Table 3: Achieved frame rate for maximum connection establishment
rate measurements using pre-generated random numbers for port
number enumeration

N , M , Port numbers 4,000,000 40,000,000 400,000,000
Median (fps) 7,186,798 7,187,276 7,187,228
1st perc. (fps) 7,183,592 7,187,010 7,187,128
99th perc. (fps) 7,187,256 7,187,501 7,187,400
Dispersion 0.05 0.01 0.00

We note that due to our implementation decision that
the Receiver can handle only IPv4 traffic, its “self-test”
for performance estimation can only be performed if the
Initiator sends IPv4 traffic. However, in the knowledge of
the implementation, that is, the isend() function first
sets pointers to the port numbers depending on the IP
version, and then the very same code is used to set the
port numbers and to recalculate the UDP checksum, the
performance of IPv6 preliminary test frame generation is
expected to be very close to that of the IPv4 frames.

We started with the maximum connection establishment
rate measurement, using the pseudorandom enumeration
of all available port numbers. Unless stated otherwise, the
same parameters were used as in section 6.2. The value
of N and M , that is, the number of possible port num-
ber combinations was increased from 4,000,000 through
40,000,000 to 400,000,000 by using 179, 1079, and 10,079
as the upper limit of the destination port range. The re-
sults are shown in Table 3. The results do not decrease
with the increase of the number of port number combi-
nation at all. It can be easily explained by the fact that
the port numbers are pre-generated as described in sec-
tion 4.4.7, and then the array is read in linear order during
the preliminary phase. And the state table of the Respon-
der is written also in linear order. Therefore, their size
does not matter: cache prefetching works efficiently.

For the determination of the limits of siitperf in
throughput testing, we used the same values for port num-
bers and R = 7, 000, 000. The results are shown in Ta-
ble 4. This time the values somewhat deteriorate with the
increase of the M size of the state table, what can be ex-

15

Table 4: Achieved frame rate for throughput test (bidirectional traf-
fic) using pseudorandom four tuple selection from the state table of
the Tester

N , M , Port numbers 4,000,000 40,000,000 400,000,000
Median (fps) 4,582,440 4,263,139 4,199,651
1st perc. (fps) 4,576,166 4,249,968 4,183,592
99th perc. (fps) 4,583,627 4,264,649 4,201,179
Dispersion 0.16 0.34 0.42

Table 5: Achieved frame rate for throughput test (unidirectional
traffic) using pseudorandom four tuple selection from the state table
of the Tester (N = M = 400, 000, 000)

Traffic direction forward reverse
Median (fps) 6,756,371 4,280,200
1st percentile (fps) 6,756,102 4,265,318
99th percentile (fps) 6,757,568 4,281,251
Dispersion 0.02 0.37

plained by the less and less efficiency of caching due to
the pseudorandom 4-tuple selection of the sender of the
Responder.

We have also determined the maximum frame rate using
unidirectional traffic with M = 400, 000, 000 state table
size. The results are shown in Table 5. As expected, the
median frame rate in the forward direction (6,756,371fps)
is significantly higher than the median frame rate of the
bidirectional test (4,199,651fps), because the bottleneck
was the reverse direction. The phenomenon that median
frame rate in the reverse direction (4,280,200fps) is some-
what higher than the bidirectional one can be explained
by the fact that the same NIC is used by the receiver and
the sender of the Responder during the bidirectional test.
(Theoretically, the reading and writing of the same state
table may also have some effect, but we believe that it is
not significant due to the very large size of the state table
(400,000,000 entries).

We have one further interesting observation: the me-
dian frame rate of the throughput in the forward di-
rection (6,756,371fps) is lower than the median of the
maximum connection establishment rate (7,187,228fps).
That is, isend() with pseudorandom enumeration of the
port numbers is faster than the stateless send() func-
tion with RFC 4814 pseudorandom port number genera-
tion. The explanation is deliberate: the port numbers for
isend() are pre-generated, whereas send() generates
random numbers during the test.

7. Discussion and Future Work

As far as we know, our stateful extension of siitperf
is the world’s first RFC 8219 and RFC 4814 compliant
stateful NAT64 / stateful NAT44 tester. Having no sample
to follow, we could rely only on our own considerations.
Our first test results seem to justify our design concept in
various aspects:

1. The usage of the four tuples proved to be a working
solution for generating traffic in the direction from the

Responder to the Initiator at a sufficiently high frame
rate.

2. Separating the preliminary phase and the test phase
enabled us to perform a unidirectional test having
traffic only from the Responder to the Initiator.

3. Letting the user specify a different frame rate for the
preliminary phase than for the test phase enabled us
to properly measure both the maximum connection
establishment rate and the throughput.

4. Making the extension resilient with several parame-
ters also proved to be useful, e.g. different policies for
four tuple selection, resilience regarding the number
of preliminary frames, the size of the state table, etc.

Pseudorandom enumeration of all possible port number
combinations proved to be a key issue of measuring the
maximum connection establishment rate and throughput
separately. However, we included linear enumeration of
port numbers also in the Internet-Draft [27] as an addi-
tional metric. Besides that, linear port number enumer-
ation may also be used for special purposes, like wilfully
exhausting the port number range of a stateful NAT64 /
NAT44 gateway for simulating a denial of service attack.
We plan to use it for testing various NAT64 implementa-
tions, how much they are vulnerable to this kind of attack,
as we mentioned in [24] and [25].

We are aware that still there are several open questions.
For example, in section 6.5, we took the liberty of creating
a different number of port number combinations by keep-
ing the source port number range as fixed and increasing
the destination port number range tenfold twice. However,
we have no idea, how much it is different if we use a source
port range of size 10,000 and a destination port range of
size 100 versus if we use a source port range of size 40,000
and a destination port range of size 25. The number of
possible combinations is 1 million in both cases, but they
may result in different performances.

And it was just one example. We expect to gain more ex-
perience in stateful testing by carrying out comprehensive
benchmarking of various stateful NAT64 implementations
like Jool or OpenBSD PF. Our experience may show the
need for further developments of siitperf.

We believe that having a suitable benchmarking tool is
important, but not sufficient. For example, network oper-
ator experience regarding the most important parameters
of a stateful NAT64 or NAT44 gateway is absolutely nec-
essary for producing usable benchmarking results. Thus,
we are looking for partners.

We would be grateful to receive any feedback regard-
ing the theory and practice of stateful testing and also
regarding our tool, siitperf. Its stateful extension is
now available in the “stateful” branch [5], and we plan to
merge it into the “master” branch when we consider it to
be mature enough.

We are also open to add further functionalities like state-
ful NAT66 testing if there is user demand for it.

16

We plan to perform performance optimization when the
set of functionalities seems to be stable.

One of the most crucial methodology issues is the prob-
lem of using UDP traffic for benchmarking as required by
RFC 8219. However, stateful NATxy gateways may han-
dle TCP and UDP “connections” differently. Therefore,
it may be necessary to implement testing also with TCP
traffic. However, we expect it to be more difficult due to
the need for proper handling of TCP connection establish-
ment and termination.

During the first review of this paper, wrote an Internet-
Draft [27] about the proposed methodology for stateful
NATxy testing and submitted it to the Benchmarking
Working Group of IETF. The presentation of its “02” ver-
sion was received very positively by the session chairs. It is
still under development and we hope that one day it may
be published as an RFC.

8. Conclusion

We conclude that our efforts were successful in creating
the world’s first RFC 8219 and RFC 4814 compliant free
software stateful NATxy benchmarking tool. Our tests
proved that it works correctly and it has high enough
performance for benchmarking stateful NAT64 and even
stateful NAT44 gateway implementations. We have also
advanced the theory of stateful benchmarking by being the
first to propose a working solution.

Our future plans include its comprehensive testing,
adding further functionalities, and its performance opti-
mization. We also plan to use our new Tester for research
in benchmarking methodology issues.

Acknowledgements

The development of siitperf and the measurements
were carried out remotely using the resources of NICT
StarBED, 2-12 Asahidai, Nomi-City, Ishikawa 923-1211,
Japan. The author would like to thank Shuuhei Takimoto
for the possibility to use StarBED, as well as to Satoru
Gonno, Makoto Yoshida, Miku Takuma and Tsukasa
Nishita for their help and advice in StarBED usage related
issues.

The author thanks Keiichi Shima, Sándor Répás,
Ahmed Al-hamadani and Ádám Bazsó for their reading
and commenting on the manuscript.

Funding

This work was supported by the Digital Development
Center in the national framework GINOP-3.1.1-VEKOP-
15-2016-00001—Promotion and support of cooperation be-
tween the educational institutions and ICT enterprises.

References

[1] M. Georgescu, L. Pislaru, G. Lencse, Benchmarking methodol-
ogy for IPv6 transition technologies, IETF RFC 8219 (2017).
doi:10.17487/RFC8219.

[2] G. Lencse, Y. Kadobayashi, Comprehensive survey of IPv6
transition technologies: A subjective classification for security
analysis, IEICE Transactions on Comminications E102-B (10)
(2019) 2021–2035. doi:10.1587/transcom.2018EBR0002.

[3] C. Bao, X. Li, F. Baker, T. Anderson, F. Gont, IP/ICMP trans-
lation algorithm, IETF RFC 7915 (2016). doi:10.17487/
RFC7915.

[4] M. Bagnulo, P. Matthews, I. Beijnum, Stateful NAT64: Net-
work address and protocol translation from IPv6 clients to IPv4
servers, IETF RFC 6146 (2011). doi:10.17487/RFC6146.

[5] G. Lencse, Siitperf: an RFC 8219 compliant SIIT (state-
less NAT64) tester written in C++ using DPDK, source code
(2019).
URL https://github.com/lencsegabor/siitperf

[6] G. Lencse, Design and implementation of a software tester
for benchmarking stateless NAT64 gateways, IEICE Trans.
on Commun. E104-B (2) (2021) 128–140. doi:10.1587/
transcom.2019EBN0010.

[7] S. Bradner, J. McQuaid, Benchmarking methodology for net-
work interconnect devices, IETF RFC 2544 (1999). doi:
10.17487/RFC2544.

[8] D. Newman, T. Player, Hash and stuffing: Overlooked factors
in network device benchmarking, IETF RFC 4814 (2008). doi:
10.17487/RFC4814.

[9] G. Lencse, Adding RFC 4814 random port feature to siitperf:
Design, implementation and performance estimation, Int. J. Ad-
vances in Telecomm., Electrotechnics, Signals and Systems 9 (3)
(2020) 18–26. doi:DOI:10.11601/ijates.v9i3.291.

[10] NIC Mexico, Jool: SIIT and NAT64, online (2022).
URL http://www.jool.mx/en/

[11] K. J. O. Llanto, W. E. S. Yu, Performance of NAT64 versus
NAT44 in the context of IPv6 migration, in: Proc. International
Multiconference of Engineers and Computer Scientists 2012
(IMECS 2012), Hong Kong, Hongkong, 2012, pp. 638–645.
URL http://www.iaeng.org/publication/IMECS2012/
IMECS2012_pp638-645.pdf

[12] Apache Software Foundation, ab - Apache HTTP server
benchmarking tool, online (2022).
URL https://httpd.apache.org/docs/current/
programs/ab.html

[13] C. P. Monte, M. I. Robles, G. Mercado, C. Taffernaberry, M. Or-
biscay, S. Tobar, R. Moralejo, S. Pérez, Implementation and
evaluation of protocols translating methods for IPv4 to IPv6
transition, Journal of Computer Science & Technology 12 (2)
(2012) 64–70.
URL http://sedici.unlp.edu.ar/handle/10915/19702

[14] S. Yu, B. E. Carpenter, Measuring IPv4-IPv6 translation tech-
niques, Computer Science Technical Reports (2012-001), Dept.
of Computer Science, Univ. of Auckland, Auckland, New Zee-
land (2012).
URL http://hdl.handle.net/2292/13586

[15] G. Lencse, S. Répás, Performance analysis and comparison of
the TAYGA and of the PF NAT64 implementations, in: Proc.
36th International Conference on Telecommunications and Sig-
nal Processing (TSP 2013), Rome, Italy, 2013, pp. 71–76.
doi:10.1109/TSP.2013.6613894.

[16] G. Lencse, S. Répás, Performance analysis and comparison
of four DNS64 implementations under different free operating
systems, Telecommunication Systems 63 (4) (2016) 557–577.
doi:10.1007/s11235-016-0142-x.

[17] N. Lutchansky, TAYGA: Simple, no-fuss NAT64 for Linux, on-
line (2011).
URL http://www.litech.org/tayga/

[18] C. Popoviciu, A. Hamza, G. V. de Velde, D. Dugatkin, IPv6
benchmarking methodology for network interconnect devices,
IETF RFC 5180 (2008). doi:10.17487/RFC5180.

17

http://dx.doi.org/10.17487/RFC8219
http://dx.doi.org/10.1587/transcom.2018EBR0002
http://dx.doi.org/10.17487/RFC7915
http://dx.doi.org/10.17487/RFC7915
http://dx.doi.org/10.17487/RFC6146
https://github.com/lencsegabor/siitperf
https://github.com/lencsegabor/siitperf
https://github.com/lencsegabor/siitperf
http://dx.doi.org/10.1587/transcom.2019EBN0010
http://dx.doi.org/10.1587/transcom.2019EBN0010
http://dx.doi.org/10.17487/RFC2544
http://dx.doi.org/10.17487/RFC2544
http://dx.doi.org/10.17487/RFC4814
http://dx.doi.org/10.17487/RFC4814
http://dx.doi.org/DOI: 10.11601/ijates.v9i3.291
http://www.jool.mx/en/
http://www.jool.mx/en/
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp638-645.pdf
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp638-645.pdf
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp638-645.pdf
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp638-645.pdf
https://httpd.apache.org/docs/current/programs/ab.html
https://httpd.apache.org/docs/current/programs/ab.html
https://httpd.apache.org/docs/current/programs/ab.html
https://httpd.apache.org/docs/current/programs/ab.html
http://sedici.unlp.edu.ar/handle/10915/19702
http://sedici.unlp.edu.ar/handle/10915/19702
http://sedici.unlp.edu.ar/handle/10915/19702
http://sedici.unlp.edu.ar/handle/10915/19702
http://hdl.handle.net/2292/13586
http://hdl.handle.net/2292/13586
http://hdl.handle.net/2292/13586
http://dx.doi.org/10.1109/TSP.2013.6613894
http://dx.doi.org/10.1007/s11235-016-0142-x
http://www.litech.org/tayga/
http://www.litech.org/tayga/
http://dx.doi.org/10.17487/RFC5180

[19] P. Srisuresh, K. Egevang, Traditional IP network address trans-
lator (traditional NAT), IETF RFC 3022 (2001). doi:10.
17487/RFC3022.

[20] G. Lencse, Estimation of the port number consumption of web
browsing, IEICE Trans. on Commun. E98-B (8) (2015) 15 80–
1588. doi:10.1587/transcom.E98.B.1580.

[21] T. Kurahashi, Y. Matsuzaki, T. Sasaki, T. Saito, F. Tsutsuji,
Periodic observation report: Internet trends as seen from IIJ
infrastructure - 2020 (2021).
URL https://www.iij.ad.jp/en/dev/iir/pdf/iir_
vol49_report_EN.pdf

[22] D. Scholz, A look at Intel’s dataplane development kit, in: Proc.
Seminars Future Internet (FI) and Innovative Internet Tech-
nologies and Mobile Communications (IITM), Munich, Ger-
many, 2014, pp. 115–122. doi:10.2313/NET-2014-08-1_15.

[23] D. Liu, H. Deng, NAT46 consideration, expired Internet-Draft
(2010).
URL https://tools.ietf.org/html/
draft-liu-behave-nat46-02

[24] G. Lencse, Y. Kadobayashi, Methodology for the identification
of potential security issues of different IPv6 transition technolo-
gies: Threat analysis of DNS64 and stateful NAT64, Computers
and Security 77 (1) (2018) 397–411. doi:10.1016/j.cose.
2018.04.012.

[25] A. Al-Azzawi, G. Lencse, Identification of the possible security
issues of the 464XLAT IPv6 transition technology, Infocommu-
nications Journal 13 (4) (2021) 10–18. doi:10.36244/ICJ.
2021.4.2.

[26] R. Durstenfeld, Algorithm 235: Random permutation, Commu-
nications of the ACM 7 (7) (1964) 420. doi:10.1145/364520.
364540.

[27] G. Lencse, K. Shima, Benchmarking methodology for stateful
NATxy gateways using RFC 4814 pseudorandom port numbers,
active Internet-Draft (2021).
URL https://datatracker.ietf.org/doc/html/
draft-lencse-bmwg-benchmarking-stateful-02

[28] G. Lencse, Scalability of IPv6 transition technologies for
IPv4aaS, active Internet-Draft (2022).
URL https://datatracker.ietf.org/doc/html/
draft-lencse-v6ops-transition-scalability-01

[29] V. Gapon, Tuning nf conntrack, personal blog (2019).
URL https://ixnfo.com/en/tuning-nf_conntrack.
html

[30] G. Lencse, K. Shima, Performance analysis of SIIT implementa-
tions: Testing and improving the methodology, Computer Com-
munications 156 (1) (2020) 54–67. doi:10.1016/j.comcom.
2020.03.034.

About author

Gábor Lencse received MSc and
PhD in computer science from the Bu-
dapest University of Technology and
Economics, Budapest, Hungary in 1994
and 2001, respectively.

He has been working full time
for the Department of Telecommuni-
cations, Széchenyi István University,
Győr, Hungary since 1997. Now, he is a
Professor. He is also a part time Senior

Research Fellow at the Department of Networked Systems
and Services, Budapest University of Technology and Eco-
nomics, Budapest, Hungary since 2005.

His research interests include the performance and se-
curity analysis of IPv6 transition technologies. He is a
co-author of RFC 8219.

18

http://dx.doi.org/10.17487/RFC3022
http://dx.doi.org/10.17487/RFC3022
http://dx.doi.org/10.1587/transcom.E98.B.1580
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf
http://dx.doi.org/10.2313/NET-2014-08-1_15
https://tools.ietf.org/html/draft-liu-behave-nat46-02
https://tools.ietf.org/html/draft-liu-behave-nat46-02
https://tools.ietf.org/html/draft-liu-behave-nat46-02
http://dx.doi.org/10.1016/j.cose.2018.04.012
http://dx.doi.org/10.1016/j.cose.2018.04.012
http://dx.doi.org/10.36244/ICJ.2021.4.2
http://dx.doi.org/10.36244/ICJ.2021.4.2
http://dx.doi.org/10.1145/364520.364540
http://dx.doi.org/10.1145/364520.364540
https://datatracker.ietf.org/doc/html/draft-lencse-bmwg-benchmarking-stateful-02
https://datatracker.ietf.org/doc/html/draft-lencse-bmwg-benchmarking-stateful-02
https://datatracker.ietf.org/doc/html/draft-lencse-bmwg-benchmarking-stateful-02
https://datatracker.ietf.org/doc/html/draft-lencse-bmwg-benchmarking-stateful-02
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-01
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-01
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-01
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-01
https://ixnfo.com/en/tuning-nf_conntrack.html
https://ixnfo.com/en/tuning-nf_conntrack.html
https://ixnfo.com/en/tuning-nf_conntrack.html
http://dx.doi.org/10.1016/j.comcom.2020.03.034
http://dx.doi.org/10.1016/j.comcom.2020.03.034

	Introduction
	Benchmarking Stateful NATxy Gateways using Bidirectional Traffic and Random Port Numbers
	Related Work
	Problem Formulation
	Possible Solutions

	Summary of Siitperf
	Design of the Stateful Extension of Siitperf
	General Design Considerations
	High-level Design Decisions
	Considerations for Directions and Flexibility
	Design of Stateful Testing

	Further Design and Implementation Decisions
	Considerations for the State Table of the Responder
	Considerations for the Connection Establishment Rate
	Enumeration of Port Numbers
	Port Numbers of the Responder
	New Input Parameters
	The Issue of Active Directions
	The Issue of Indistinguishable IPv6 Background Frames
	The Issue of Inter-thread Communication

	Implementation of the Stateful Tests
	Scope Decisions
	Design of the Initiator
	Design of the Receiver of the Responder
	Design of the Sender of the Responder
	Design of the Latency Measurements
	Design of the PDV Measurements
	Implementation of the Pseudorandom Enumeration of the Port Numbers

	Summary of the Sending and Receiving Functions

	State-of-the-Art Benchmarking Method
	Functional and Performance Tests
	Demonstration of a Stateful NAT64 Test
	Maximum Connection Establishment Rate Measurement
	Throughput Measurement
	Frame Loss Rate Measurement
	An Initial Performance Estimation of the Stateful Operation of Siitperf

	Discussion and Future Work
	Conclusion

