
Revised version for the Springer Telecommunication Systems journal

1

Abstract RFC 5180, the IPv6 update of RFC 2544, declared

IPv6 transition technologies out of its scope. RFC 8219

defined a benchmarking methodology for IPv6 transition

technologies including stateless NAT64 (more properly called

SIIT) in the category of single translation solutions. Whereas

several research papers have dealt with the performance of

different stateful NAT64 implementations, none of them used

RFC 8219 compliant measurements or addressed stateless

NAT64 implementations. In this paper, we show, how

stateless NAT64 implementations can be benchmarked

carrying out the most important tests recommended by RFC

8219 without a special purpose NAT64 Tester, using simply

an RFC 2544 / RFC 5180 compliant legacy Tester. We carry

out benchmarking measurements to examine the performance

of three free software NAT64 implementations, namely: Jool,

TAYGA and map646. All the details of our measurements are

disclosed and their results are presented in the paper.

Keywords Benchmarking · IPv6 deployment · IPv6 transition

solutions · SIIT · Stateless NAT64 · Performance analysis

1 Introduction

In the current phase of transitioning from IPv4 to IPv6 it is

becoming more common that Internet Service Providers (ISPs)

would like to use only IPv6 in their core and access networks,

while some content providers still assign only IPv4 addresses

to their servers. The combination of DNS64 [1] and stateful

NAT64 [2] can be a proper solution to facilitate the

communication of an IPv6-only client and an IPv4-only

server. Further issue arises from the fact that certain

applications can use only IPv42. 464XLAT [4] is a good and

widely used solution for this issue. 464XLAT uses stateless

translation from IPv4 to IPv6 (NAT46) at the client side and

stateful translation from IPv6 to IPv4 (NAT64) at the core

network.

Although it is less common, but it is also an increasing

tendency that content providers would like to use solely IPv6

in their internal network, whereas they still need to provide

dual stack access to their services. This situation can be

handled by stateless translation from IPv4 to IPv6 (NAT46).

One of the earliest such solution was done as a part of the

1 Department of Networked Systems and Services, Budapest University of
Technology and Economics, 2 Magyar Tudósok körútja, H-1117 Budapest,

Hungary

Submitted: April 5, 2019, revised August 3, 2019.

2 For example, several IPv4-only applications are listed on slide 10 of [3].

WIDE project [5].

Whereas a connection through a stateful NAT64 gateway

may be initiated exclusively from the IPv6 side, stateless

NAT64 (more properly called SIIT [6]) translators have no

such constraints. Many free software [7] (also called open

source [8]) implementations exist for stateful or stateless

NAT64 and some of them support both. Their stability and

performance may be an important factor, when network

operators are selecting from among them.

RFC 2544 [9] defines a benchmarking methodology for

network interconnect devices to facilitate proper and unbiased

performance measurements. Although it is theoretically IP

version independent, it focuses on IPv4. RFC 5180 [10]

provides a technology update (e.g. regarding the frame rates of

contemporary media) and addresses IPv6 specificities, but it

explicitly states that: “IPv6 transition mechanisms are outside

the scope of this document”. RFC 8219 [11] defines a

benchmarking methodology for IPv6 transition technologies.

Since the number of IPv6 transition technologies is rather high

[12] it classifies them into a small number of categories and it

defines the benchmarking methods for the categories not for

the individual IPv6 transition technologies. Both stateful

NAT64 and stateless NAT64 belong to the category of single

translation solutions, thus the same tests should be used for

their benchmarking. The difference is that there are some

additional tests defined for the stateful solutions, see Section 8

of RFC 8219 for the details.

The purpose of this paper is twofold:

 to develop a method for benchmarking stateless

NAT64 implementations without a special purpose

NAT64 Tester, using simply an RFC 2544 / RFC

5180 compliant legacy Tester,

 to carry out the benchmarking of a few stateless

NAT64 implementations.

The remainder of this paper is organized as follows. In

section 2, we give a short overview of research papers on the

performance analysis of various NAT64 implementations. In

section 3, we highlight the benchmarking method for single

translation solution defined in RFC 8219 and its most

important differences from and similarities to RFC 2544 /

RFC 5180 tests. In Section 4, we examine different

possibilities, how legacy RFC 2544 / RFC 5180 compliant

testers can be used for benchmarking stateless NAT64

implementations. In section 5, we present the details of our

benchmarking measurements and also disclose and evaluate

our results. Section 6 concludes our paper.

Benchmarking Stateless NAT64 Implementations with a Standard

Tester

G. Lencse1

Revised version for the Springer Telecommunication Systems journal

2

2 A Short Survey of Papers on the Performance

Analysis of Various NAT64 Implementations

Several papers on the performance analysis of different

stateful NAT64 implementations were published. The first

group of papers measured together the performance of a given

NAT64 implementation with that of a given DNS64

implementation. In [13] the performance of the TAYGA

NAT64 implementation (and implicitly that of the TOTD

DNS64 implementation) is compared to the performance of

NAT44. In [14], the performance of the Ecdysis NAT64

implementation (and that of its own DNS64 implementation)

is compared to the performance of the authors’ own HTTP

ALG. In [15], the performance of the Ecdysis NAT64

implementation (and implicitly that of its DNS64

implementation) is compared to the performance of both the

NAT-PT and an HTTP ALG. In [16], we argued that: “on the

one hand this is natural, as both services are necessary for the

operation, on the other hand this is a kind of ‘tie-in sale’ that

may hide the real performance of a given DNS64 or NAT64

implementation by itself. Even though both services are

necessary for the complete operation, in a large network they

are usually provided by separate, independent devices; DNS64

is provided by a name server and NAT64 is performed by a

router. Thus, the best implementation for the two services can

be – and therefore should be – selected independently.”

In [17], we have developed a method suitable for

independent performance analysis and stability testing of

NAT64 and DNS64 implementations. In [18], we have

compared the performances of TAYGA and OpenBSD PF

using this method. In [19] we repeated our measurements

using also TCP and UDP over IP besides ICMP, which was

used solely in [18]. Whereas the method we used was suitable

for performance comparison and stability analysis, it has

several limitations, e.g. its results depend on the whole test

setup, not only on the performance of the DUT (Device Under

Test), thus it is not suitable for benchmarking.

In [20], the performance of different IPv6 transition

solutions were measured including the TAYGA and the Jool

NAT64 implementations by means of one way delay and

throughput. Not surprisingly, neither the measurements of this

one comply with the requirements of the later published RFC

8219 as the throughput was measured by iperf.

We note that although TAYGA is a stateless NAT64

implementation it was always used together with iptables to

provide stateful NAT64. Similarly, although Jool can do both

stateful and stateless NAT64, it was used to provide a stateful

NAT64 service.

Whereas we consider the above results important and

useful, we point out that they do not include stateless NAT64

tests and none of them complies with RFC 8219, which was

published later than any of the above mentioned papers.

We are aware of only one paper reported an RFC 8219

compliant stateless NAT64 testing tool [21]. However, this

tool cannot be used for benchmarking in practice due to its

low performance, this is why its author has started re-

implementing it using DPDK [22].

3 Benchmarking Method for NAT64 Gateways

Although RFC 8219 discusses all single translation

solutions together, now we focus on NAT64, under which we

understand both stateful NAT64 and stateless NAT64 as well

as stateless NAT46.

The first and most important difference from the RFC 2544

(RFC 5180) benchmarking is visible on the Test Setup in

Fig. 1. The fact that the two ports use different IP versions has

the consequences that legacy RFC 2544 (RFC 5180)

compliant Testers, which expect the same IP version, fail to

operate (unless an appropriate trick is used).

Except this very important difference, the majority of the

measurement procedures were kept unchanged. They are:

throughput, frame loss rate, back-to-back frames, system

recovery and reset. The measurement procedure for latency

has been redefined to achieve higher accuracy, and further

measurement procedures for packet delay variation and inter

packet delay variation have been added. For more details,

please refer to Section 7 of RFC 8219.

We note that, similarly to its predecessors, RFC 8219

requires bidirectional traffic for testing and allows also uni-

directional tests. For us, it also means that we do not need to

distinguish stateless NAT64 and stateless NAT46.

Section 8 of RFC 8219 describes additional tests for stateful

IPv6 transition solutions, which can be applied to stateful

NAT64. For us, the point is that the basic tests of the stateful

NAT64 are the same as that of the stateless NAT64.

4 How Legacy Testers can be Reused for

Benchmarking Stateless NAT64 Gateways?

4.1 Which Tests can be and should be Reused?

Throughput and frame loss measurement procedures are the

same and they are both very important, thus they definitely

should be reused. As the latency measurement procedure has

been changed, if the old one is reused, its results may give

 +--------------------+
 | |
 +------------|IPvX Tester IPvY|<-------------+
 | | | |
 | +--------------------+ |
 | |
 | +--------------------+ |
 | | | |
 +----------->|IPvX DUT IPvY|--------------+
 | |
 +--------------------+

Fig. 1 Single DUT test setup [11]

 +--------------------+

 | |

+---------------------|IPvX Tester IPvX|<------------------+

| | | |

| +--------------------+ |

| |

| +--------------------+ +--------------------+ |

| | | | | |

+----->|IPvX DUT 1 IPvY |----->|IPvY DUT 2 IPvX |------+

 | | | |

 +--------------------+ +--------------------+

Fig. 2 Dual DUT test setup [11]

Revised version for the Springer Telecommunication Systems journal

3

some valuable insight, but they are not comply with the RFC

8219. Measurement procedures for PDV and IPDV

measurements as well as stateful tests are missing from the

legacy Testers. Procedures for back-to-back frames, system

recovery and reset test should exist, but in our understanding,

they are seldom used, thus we do not deal with them.

Therefore, we focus on throughput and frame loss rate

measurements.

4.2 Reusing Legacy Testers with the Dual DUT

Setup

4.2.1 Feasibility in Theory

Although RFC 8219 recommends the Dual DUT setup for

double translation and encapsulation technologies, it can

provide us a viable solution for reusing the legacy Testers for

benchmarking stateless NAT64 gateways. As it is shown in

Fig. 2, the sequence of two translations that are the inverse of

each other restores the original IP version. As for stateless

NAT64, two equally good solutions are possible:

1. If we use NAT64 first and NAT46 after that, then the

Tester must use IPv6.

2. If we use NAT46 first and NAT64 after that, then the

Tester must use IPv4.

Of course, the dual DUT setup has several limitations and

hindrances, for example:

 In the simplest case, two identical DUTs are used,

which hides any possible asymmetric behavior (e.g.

due to an implementation bug) and causes somewhat

extra cost (as two DUTs are needed).

 One may try using two different DUTs, but it is not

trivial how to make one of them the bottleneck for sure,

due to possible unknown asymmetric behavior.

 It excludes the stateful NAT64 devices from testing.

(Even the stateless tests may not be performed, because

they do not allow connection establishment in the

direction from IPv4 to IPv6.)

However, the most important advantage of the dual DUT

setup is deliberate: the two most important tests may be

performed using an existing legacy Tester.

4.2.2 Feasibility in Practice

In order to test if this setup can be implemented in real life,

we have put together a test system in a virtual environment

using Debian GNU/Linux operating system. From the two,

theoretically equally good solutions, we have chosen the

second one, because it has the important practical advantage

that even an old, IPv4-only Tester is enough, whereas the first

one requires a Tester with IPv6 capabilities.

We have tested three stateless NAT64 implementations,

TAYGA [23], Jool [24] and map646 [25]. We were successful

with the first two ones, but failed with the third one. (We

explain the reason of the failure at the end of this subsection.)

RFC 7757 [26] extended stateless NAT64 with EAM

(Explicit Address Mapping), thus removed the constraints

caused by the limited applicability of IPv4-convertible IPv6

addresses [27]. We have used this approach in our test

systems. Fig. 3 and Fig. 4 show the test setups with virtual

machines using TAYGA and Jool, respectively. Whereas there

are some slight differences between the two setups due to

particularities of TAYGA and Jool, the two figures show the

same solution. The key of this solution is that every single

eth1:
198.18.1.2

eth1:
198.19.1.2

eth1:
198.18.1.1

eth2:
2001:2:2::2

eth1:
2001:2:2::1

eth2:
198.19.1.1

not assigned:
2001:2:1::2

not assigned:
2001:2:3::2

not assigned:
198.18.2.2

not assigned:
198.18.2.1

Tester
(left)

Tester
(right)

NAT46 NAT64

not assigned:
2001:2:3::1

not assigned:
2001:2:1::1

IPv4 and IPv6 routing enabled on all computers
/etc/sysctl.conf:
net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding = 1

IPv4 routing table
destination next hop
198.18.1.0/24 -- (direct)
198.18.2.0/24 198.18.1.1

198.19.1.0/24 198.18.1.1

IPv4 routing table
destination next hop
198.18.1.0/24 198.19.1.1
198.18.2.0/24 199.19.1.1

198.19.1.0/24 -- (direct)

IPv4 -- IPv6 static mapping on NAT46 and NAT64 computers
198.18.1.2 -- 2001:2:1::2
198.18.1.1 -- 2001:2:1::1
198.18.2.2 -- 2001:2:2::2
198.18.2.1 -- 2001:2:2::1
198.19.1.1 -- 2001:2:3::1
198.19.1.2 -- 2001:2:3::2

TAYGA’s own IP addresses
2001:2:2::9 198.19.1.9

TAYGA’s own IP addresses
198.18.1.9 2001:2:2::8

IPv4 routing table
destination next hop
198.18.1.0/24 -- (direct)
198.18.2.0/24 nat64
198.19.1.0/24 nat64

IPv6 routing table
destination next hop
2001:2:1::/64 nat64
2001:2:2::/64 -- (direct)
2001:2:3::/64 2001:2:2::1

IPv4 routing table
destination next hop
198.18.1.0/24 nat64
198.18.2.0/24 nat64
198.19.1.0/24 -- (direct)

IPv6 routing table
destination next hop
2001:2:1::/64 2001:2:2::2
2001:2:2::/64 -- (direct)
2001:2:3::/64 nat64

Fig. 3 Dual DUT test setup with virtual machines using TAYGA

Revised version for the Springer Telecommunication Systems journal

4

network interface has either an IPv4 or an IPv6 address, which

is really assigned to it, and they also “have” IP addresses from

the other IP version, which are not assigned to them, but are

used to represent them, when they need to be referred to using

the other IP version. These peers are mapped to each other by

EAM. The two ports of the Tester are represented by two

virtual machines called “Tester (left)” and “Tester (right)”.

They are assigned only IPv4 address. The IPv6 addresses in

italic font are not assigned to them, they are used to represent

their IPv4 addresses in the IPv6 domain. Similarly, an IPv6

network connects the NAT46 and NAT64 gateways, thus the

interfaces are assigned only IPv6 addresses, which have their

corresponding IPv4 peers (written in italic font).

Routing was set manually to forward the packets according

to the routing tables shown in Fig. 3 and Fig. 4.

We have checked that the first and fourth computers

(representing the left and right side ports of the Tester) were

mutually accessible from each other (using the ping Linux

command).

For those, who would like to follow the operation, we put

here an excerpt of the message flow resulted by a ping

command issued at Tester (left) and targeted to Tester (right)

captured by tshark at various interfaces of the NAT46 and

NAT64 virtual machines. (They are from the TAYGA version,

as TAYGA uses a nat64 virtual interface, which resulted in

more details, thus an easier traceability of what happened.)

NAT46 eth1 198.18.1.2 -> 198.19.1.2 ICMP Echo request
NAT46 nat64 198.18.1.2 -> 198.19.1.2 ICMP Echo request
NAT46 nat64 2001:2:1::2 -> 2001:2:3::2 ICMPv6 Echo request
NAT46 eth2 2001:2:1::2 -> 2001:2:3::2 ICMPv6 Echo request
NAT64 eth1 2001:2:1::2 -> 2001:2:3::2 ICMPv6 Echo request
NAT64 nat64 2001:2:1::2 -> 2001:2:3::2 ICMPv6 Echo request
NAT64 nat64 198.18.1.2 -> 198.19.1.2 ICMP Echo request
NAT64 eth2 198.18.1.2 -> 198.19.1.2 ICMP Echo request
NAT64 eth2 198.19.1.2 -> 198.18.1.2 ICMP Echo reply
NAT64 nat64 198.19.1.2 -> 198.18.1.2 ICMP Echo reply
NAT64 nat64 2001:2:3::2 -> 2001:2:1::2 ICMPv6 Echo reply
NAT64 eth1 2001:2:3::2 -> 2001:2:1::2 ICMPv6 Echo reply
NAT46 eth2 2001:2:3::2 -> 2001:2:1::2 ICMPv6 Echo reply
NAT46 nat64 2001:2:3::2 -> 2001:2:1::2 ICMPv6 Echo reply
NAT46 nat64 198.19.1.2 -> 198.18.1.2 ICMP Echo reply
NAT46 eth1 198.19.1.2 -> 198.18.1.2 ICMP Echo reply

Thus, we have successfully constructed a test setup for

benchmarking stateless NAT64 gateways using legacy Testers

having only IPv4 capabilities.

Now, let us return to map646. Its test setup was very much

similar to that of TAYGA, therefore we do not repeat it. By

studying its behavior using tshark captures, we have

observed that map646 applied our EAM static mapping rules

to the destination IPv4 address only, whereas it completely

ignored them concerning the source IPv4 address, and it rather

synthesized an IPv4-embedded IPv6 address [27] using the

::/96 prefix (as we have not specified a prefix) plus the 32 bits

of the source IPv4 address. We could circumvent this

behavior, but, consistently to this behavior, map646 also

ignores the mapping rule for the destination address, when it

performs the translation from IPv6 to IPv4 and it expects an

IPv4-embedded IPv6 address.

We have contacted its author, Keiichi Shima, who

confirmed that map646 was willfully designed so (to avoid

handling IPv6 neighbor discovery proxy operation, which

would have made the code more complex), as it was

developed to be a NAT46 gateway solution for the WIDE

project, for which this behavior was completely satisfactory,

however, it also means that map646 may not be used in the

Dual DUT setup.

4.3 Reusing Legacy Testers with the Single DUT

Setup

RFC 8219 recommends the Single DUT setup for single

translation technologies.

4.3.1 Single DUT Test Setup using Virtual Machines

First, let us see the test setups with virtual machines for

benchmarking the three before mentioned stateless NAT64

implementations. Fig. 5, Fig. 6 and Fig. 7 show the test setups

with virtual machines using TAYGA, Jool, and map646,

respectively. We believe that the test setups for TAYGA and

Jool are easy to follow after the understanding of their Dual

eth1:
198.18.1.2

eth1:
198.19.1.2

eth1:
198.18.1.1

eth2:
2001:2:2::2

eth1:
2001:2:2::1

eth2:
198.19.1.1

not assigned:
2001:2:1::2

not assigned:
2001:2:3::2

not assigned:
198.18.2.2

not assigned:
198.18.2.1

Tester
(left)

Tester
(right)

NAT46 NAT64

not assigned:
2001:2:3::1

not assigned:
2001:2:1::1

IPv4 and IPv6 routing enabled on all computers
/etc/sysctl.conf:
net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding = 1

IPv4 routing table
destination next hop
198.18.1.0/24 -- (direct)
198.18.2.0/24 198.18.1.1

198.19.1.0/24 198.18.1.1

IPv4 routing table
destination next hop
198.18.1.0/24 198.19.1.1
198.18.2.0/24 199.19.1.1
198.19.1.0/24 -- (direct)

IPv4 -- IPv6 static mapping on NAT46 and NAT64 computers
198.18.1.0/24 -- 2001:2:1::/120
198.18.2.0/24 -- 2001:2:2::/120
198.19.1.0/24 -- 2001:2:3::/120

IPv4 routing table
destination next hop
198.18.1.0/24 -- (direct)

IPv6 routing table
destination next hop
2001:2:2::/64 -- (direct)
2001:2:3::/64 2001:2:2::1

IPv4 routing table
destination next hop
198.19.1.0/24 -- (direct)

IPv6 routing table
destination next hop
2001:2:1::/64 2001:2:2::2

2001:2:2::/64 -- (direct)

Fig. 4 Dual DUT test setup with virtual machines using Jool

Revised version for the Springer Telecommunication Systems journal

5

DUT test setups. Map646 is somewhat similar to TAYGA in

the sense, that it also uses a pseudo interface, tun646,

however, its operation is rather different from that of TAYGA.

To reveal the difference, let us compare their message flows.

First, let us see an excerpt of the message flow of TAYGA

resulted by a ping command issued at Tester (right) and

targeted to Tester (left) captured by tshark at various

interfaces of the NAT64 virtual machine.

eth2 198.19.0.2 -> 198.18.0.2 ICMP 98 Echo request
nat64 198.19.0.2 -> 198.18.0.2 ICMP 84 Echo request
nat64 2001:2:0:1::2 -> 2001:2::2 ICMPv6 104 Echo request
eth1 2001:2:0:1::2 -> 2001:2::2 ICMPv6 118 Echo request
eth1 2001:2::2 -> 2001:2:0:1::2 ICMPv6 118 Echo reply
nat64 2001:2::2 -> 2001:2:0:1::2 ICMPv6 104 Echo reply
nat64 198.18.0.2 -> 198.19.0.2 ICMP 84 Echo reply
eth2 198.18.0.2 -> 198.19.0.2 ICMP 98 Echo reply

This is similar to the message flow of TAYGA with the

Dual DUT setup. However, the message flow of the same ping

command looks differently with map646.

eth2 198.19.0.2 -> 198.18.0.2 ICMP 98 Echo request
tun646 198.19.0.2 -> 198.18.0.2 ICMP 84 Echo request
tun646 64::c613:2 -> 2001:2::2 ICMPv6 104 Echo request
eth1 64::c613:2 -> 2001:2::2 ICMPv6 118 Echo request
eth1 2001:2::2 -> 64::c613:2 ICMPv6 118 Echo reply
tun646 2001:2::2 -> 64::c613:2 ICMPv6 104 Echo reply
tun646 198.18.0.2 -> 198.19.0.2 ICMP 84 Echo reply
eth2 198.18.0.2 -> 198.19.0.2 ICMP 98 Echo reply

As we have mentioned before, when doing the translation

from IPv4 to IPv6, map646 uses EAM only concerning the

destination IPv4 address. In our example, it synthesized an

IPv4-embedded IPv6 address using the specified 64::/96 prefix

eth1:
2001:2::2

eth1:
198.19.0.2

eth1:
2001:2::1

eth2:
198.19.0.1

not assigned:
198.18.0.2

not assigned:
2001:2:0:1::2

not assigned:
198.18.0.1

Tester
(left)

Tester
(right)

Stateless NAT64 gateway

not assigned:
2001:2:0:1::1

IPv4 and IPv6 routing enabled on all computers
/etc/sysctl.conf:
net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding = 1

IPv6 routing table
destination next hop
2001:2::/64 -- (direct)

2001:2:0:1::/64 2001:2::1

IPv4 routing table
destination next hop
198.18.0.0/24 198.19.0.1

198.19.0.0/24 -- (direct)

IPv4 -- IPv6 static mapping on the stateless NAT64 gateway
198.18.0.1 -- 2001:2::1
198.18.0.2 -- 2001:2::2
198.19.0.1 -- 2001:2:0:1::1
198.19.0.2 -- 2001:2:0:1::2

TAYGA’s own IP addresses
2001:2::9 198.19.0.9

IPv6 routing table
destination next hop
2001:2::/64 -- (direct)
2001:2:0:1::/64 nat64

IPv4 routing table
destination next hop
198.18.0.0/24 nat64

198.19.0.0/24 -- (direct)

Fig. 5 Single DUT test setup with virtual machines using TAYGA

eth1:
2001:2::2

eth1:
198.19.0.2

eth1:
2001:2::1

eth2:
198.19.0.1

not assigned:
198.18.0.2

not assigned:
2001:2:0:1::2

not assigned:
198.18.0.1

Tester
(left)

Tester
(right)

Stateless NAT64 gateway

not assigned:
2001:2:0:1::1

IPv4 and IPv6 routing enabled on all computers
/etc/sysctl.conf:
net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding = 1

IPv6 routing table
destination next hop
2001:2::/64 -- (direct)

2001:2:0:1::/64 2001:2::1

IPv4 routing table
destination next hop
198.18.0.0/24 198.19.0.1

198.19.0.0/24 -- (direct)

IPv4 -- IPv6 static mapping on the stateless NAT64 gateway
198.18.0.0/24 -- 2001:2::/120
198.19.0.0/24 -- 2001:2:0:1::/120

IPv6 routing table
destination next hop
2001:2::/64 -- (direct)

IPv4 routing table
destination next hop
198.19.0.0/24 -- (direct)

Fig. 6 Single DUT test setup with virtual machines using Jool

Revised version for the Springer Telecommunication Systems journal

6

as the IPv6 source address. Similarly, in the IPv6 to IPv4

direction, map646 uses EAM only for the source address, and

it expects an IPv4 embedded-IPv6 address as the destination

address, otherwise is does not work. Our example

demonstrated that this functionality is enough to provide an

IPv4 access to IPv6 only servers (the ping command was

successful). This limitation also means that map646 cannot be

tested in the Dual DUT setup, but (in itself) it should not

prevent us from benchmarking a map646 gateway according

to the Single DUT setup with bidirectional traffic.

A ping6 64::198.19.0.2 command issued at Tester

(left) using the IPv4 embedded-IPv6 address of Tester (right)

works perfectly resulting the following message flow.

eth1 2001:2::2 -> 64::c613:2 ICMPv6 118 Echo request
tun646 2001:2::2 -> 64::c613:2 ICMPv6 104 Echo request
tun646 198.18.0.2 -> 198.19.0.2 ICMP 84 Echo request
eth2 198.18.0.2 -> 198.19.0.2 ICMP 98 Echo request
eth2 198.19.0.2 -> 198.18.0.2 ICMP 98 Echo reply
tun646 198.19.0.2 -> 198.18.0.2 ICMP 84 Echo reply
tun646 64::c613:2 -> 2001:2::2 ICMPv6 104 Echo reply
eth1 64::c613:2 -> 2001:2::2 ICMPv6 118 Echo reply

Thus, map646 may be benchmarked according to the Single

DUT setup, but it visibly requires different network settings at

the Tester than TAYGA and Jool.

4.3.2 Application of a Legacy Tester

A legacy Tester must comply with the following two

requirements so that it may be used for benchmarking stateless

NAT64 implementations according to the Single DUT setup:

1. It must support the RFC 2544 (RFC 5180) tests for

both IPv4 and IPv6.

2. It must allow the user not to connect all its “logical

ports” physically. (It is needed for our “trick”.)

As different Testers may use different technical terms, from

now on we use that of a Spirent SPT-N4U Tester, which we

used for our measurements.

Fig. 8 shows the Single DUT test setup using a Dell

PowerEdge T630 NAT64 server as DUT and a Spirent SPT-

N4U Tester with and MX2-10G-S8 card, which we used for

benchmarking TAYGA and Jool.

To provide the Tester with an “acceptable situation”, two

unidirectional flows were set up. IPv6 packets were sent from

virtual device 1 to virtual device 4 and IPv4 packets were sent

from virtual device 3 to virtual device 2. However, only

virtual device 1 and virtual device 3 were actually connected

to the DUT. The IPv6 packets from the Tester were translated

to IPv4 by the stateless NAT gateway and they arrived to the

connected virtual device 3 (instead of the unconnected virtual

device 4). Similarly, the IPv4 packets from the Tester were

translated to IPv6 and they arrived to the connected virtual

device 1 (instead of the unconnected virtual device 2). With

this trick, we could achieve that the Tester sent and received

the appropriate IP version packets for benchmarking the

stateless NAT64 gateway.

As for map646, the same structure was used with a slightly

different addressing as shown in Fig. 9.

The details of the benchmarking measurements are

discussed in Section 5.

5 Benchmarking Measurements

5.1 Frame Size Considerations

RFC 8219 recommends the following frame sizes for

testing Ethernet devices: 64, 128, 256, 512, 768, 1024, 1280,

1518 bytes. It also mentions that 84 bytes should be used for

single-translation transition technologies (e.g., NAT64) in the

IPv6 to Pv4 direction. It is so, because the translation from

IPv6 to IPv4 decreases the frame size by 20 bytes to 64 bytes,

which is the minimum allowed frames size for Ethernet. Of

course, the phenomenon exits in the opposite direction, too:

eth1:
2001:2::2

eth1:
198.19.0.2

eth1:
2001:2::1

eth2:
198.19.0.1

not assigned:
198.18.0.2

not assigned:
198.18.0.1

Tester
(left)

Tester
(right)

Stateless NAT64 gateway

IPv4 and IPv6 routing enabled on all computers
/etc/sysctl.conf:
net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding = 1

IPv6 routing table
destination next hop
2001:2::/64 -- (direct)
64::/64 2001:2::1

IPv4 routing table
destination next hop
198.18.0.0/24 198.19.0.1
198.19.0.0/24 -- (direct)

IPv4 -- IPv6 static mapping on the stateless NAT64 gateway
/etc/map646.conf:
mapping-prefix 64::
map-static 198.18.0.1 2001:2::1
map-static 198.18.0.2 2001:2::2

IPv6 routing table
destination next hop
2001:2::/64 -- (direct)
64::/64 tun646

IPv4 routing table
destination next hop
198.18.0.0/24 tun646
198.19.0.0/24 -- (direct)

not assigned:
64::198.19.0.1

not assigned:
64::198.19.0.2

Fig. 7 Single DUT test setup with virtual machines using map646

Revised version for the Springer Telecommunication Systems journal

7

1498 bytes long IPv4 frames will be converted to 1518 bytes

long IPv6 frames during the NAT46 translation, which is the

maximum allowed frames size for Ethernet. As RFC 8219

does not say anything about which IP version should use the

above specified frames sizes, we decided that we correct the

first or last frame size value, when needed, and keep the other

values untouched for sending, which means that the frame

sizes of the received frames differed from the listed ones.

Table 1 shows the frame sizes we planned to use for

benchmarking. (The above listed and the modified frame sizes

are typeset in bold and italic fonts, respectively.)

Another consequence of the translation is that the traffic

volume measured in bytes is changed by the translation in

both directions. To make our results unambiguous, we either

need to express our results in number of frames per second or,

if we use number of bytes per second, then we must also

mention the IP version besides the frame size, too. We have

chosen the first option, and specified the load always in frames

per second.

5.2 Parameters and Settings

The measurements were performed according to the setups

shown in Fig. 8 and Fig. 9. The Spirent SPT-N4U Tester had

an MX2-10G-S8 card. The most important parameters of the

Dell PowerEdge T630 server were:

 2x Intel Xeon E5-2698 v3 CPUs

 8x 16GB RDIMM, 2133 MT/s, Dual Rank, x4 Data

Width memory modules

 2x 10Gbps SFP+ Ethernet ports

We have switched off Hyper Threading in the BIOS setup,

because it could have caused scattered results according to our

previous benchmarking experience [28]. Thus, the Linux

operating system displayed 32 CPU cores. As for NUMA

situation, CPU cores 0-15 belonged to NUMA node 0, and the

other ones to NUMA node 1. Memory was distributed evenly

between the two nodes and all the I/O devices (NICs, HDD,

etc.) were connected to node 0.

For the repeatability of our measurements, we also

document the software versions:

 TAYGA 0.9.2 [23]

 Jool 3.5.7 [24]

 map646 (GitHub latest commit cd93431 on Mar

31, 2016) [25]

As for the parameters of the benchmarking measurements,

the Trial Duration was set to 60s. Binary search was used

with Rate lower limit 0.001% and Rate upper limit 100%, and

the Resolution was set to 0.01%, which we considered a good

compromise between speed and accuracy.

RFC 8219 requires bidirectional throughput tests with

absolutely 0 frame loss. We used this one, but we note that the

Tester offers a possibility to set non-zero frame loss rate.

The parameters set in the RFC 2544 Throughput

Parameters dialog box of the Spirent Tester apply to all

frames to be sent: the user cannot specify distinct values for

IPv6 and IPv4. Therefore, for bidirectional tests, we were not

able to use the distinct frame size values for IPv6 and IPv4

frames presented in the first and last column of Table 1. Thus,

for bidirectional tests, we used only the 128, 256, 512, 768,

1024, 1280 bytes frame sizes, which were the same for IPv6

and IPv4.

Besides the required bidirectional tests, we also performed

unidirectional tests to gain further insight into the operation of

Spirent port/1/1,
virt.device1
2001:2::2

Spirent port/1/5,
virt.device3
198.19.0.2

ens2f0:
2001:2::1

ens2f1:
198.19.0.1

Spirent port/1/2,
(no physical connection)
virt.device2
198.18.0.2

Spirent port/1/6,
(no physical connection)

virt.device4
2001:2:0:1::2

not assigned:
198.18.0.1

NAT64

not assigned:
2001:2:0:1::1

Dell PowerEdge T630

Fig. 8 Single DUT test setup with a Spirent SPT-N4U Tester for benchmarking TAYGA and Jool

Spirent port/1/1,
virt.device1
2001:2::2

Spirent port/1/5,
virt.device3
198.19.0.2

ens2f0:
2001:2::1

ens2f1:
198.19.0.1

Spirent port/1/2,
(no physical connection)
virt.device2
198.18.0.2

Spirent port/1/6,
(no physical connection)

virt.device4
64::198.19.0.2

not assigned:
198.18.0.1

NAT64

not assigned:
64::198.19.0.1

Dell PowerEdge T630

Fig. 9 Single DUT test setup with a Spirent SPT-N4U Tester for benchmarking map646

Table 1 Frame Sizes used for Benchmarking NAT64 Gateways

NAT64
IPv6 84 128 256 512 768 1024 1280 1518

IPv4 64 108 236 492 748 1004 1260 1498

NAT46
IPv4 64 128 256 512 768 1024 1280 1498

IPv6 84 148 276 532 788 1044 1300 1518

Revised version for the Springer Telecommunication Systems journal

8

the tested NAT64 implementations. With these tests, we used

the frames sizes shown in the first and third rows of Table 1 as

IPv6 and IPv4 frame sizes, respectively.

As for frames loss rate tests, theoretically the entire frame

rate range of the media (10Gbps Ethernet) should have been

tested using at most 10% granularity. However, considering

the results of the throughput tests, we have chosen reduced

ranges with higher resolution to produce meaningful results.

5.3 Throughput Results

First, we present and discuss the results of the three tested

implementations separately and, we compare them after that.

5.3.1 Jool

The throughput results of Jool are shown in Fig. 10. The

horizontal axis shows the frame size. Frame sizes 84 and 1518

belong to frames sent by virtual device 1, similarly, frame

sizes 64 and 1498 belong to frames sent by virtual device 3.

The other frame sizes are common. And all frame sizes are to

be interpreted as the sizes of the sent frames. (Sizes of the

received frames were 20 bytes shorter and 20 longer due to

NAT64 and NAT46 translation, respectively.) In the legend,

IPv6 and IPv4 indicate the types of the sent frames, when

unidirectional traffic was used.

We can observe that the number of frames per second

shows a very slight degradation as the frame size increases,

being the decrease so small that the number of frames per

second could be called roughly independent from the frame

size. (For the explanation of the slight fluctuations, please

refer to the frame loss tests in Section 5.4.1.) This observation

can be explained by the fact that NAT64/NAT46 translation

affects only the IP header, and the bottleneck is surely the

processing capacity of the CPU not the transmission capacity

of the 10Gbps Ethernet. The fact that the unidirectional

throughput was about 230,000 fps for IPv6 and about

250,000 fps for IPv4, whereas bidirectional throughput is

about 430,000fps, which means 215,000fps for each

directions, complies with our observations during preliminary

testing that only a single CPU core was working, when

unidirectional traffic was used, but Jool could utilize two CPU

cores, when bidirectional traffic was used.

5.3.2 TAYGA

The throughput results of TAYGA are shown in Fig. 11.

(The notations of the figure are to be interpreted as that of

Fig. 10.) The results of the IPv4 unidirectional and

bidirectional tests with 1280 bytes long frames seem to be

missing. It is so, because the throughput tests reported 0

packet per second in both cases. (The repeated test gave the

same results.) To investigate the issue, we have checked the

detailed results of the unidirectional IPv4 test, and we have

found that all the frames were lost at 1280 bytes frame size

independently from the load conditions. We have found this

phenomenon very strange, especially that the unidirectional

IPv4 test with 1498 bytes long frames was successful, though

the throughput was about halved compared to other frame

sizes. To find the root causes of this behavior, we have

checked the traffic at the DUT with tshark. Fig. 12 shows a

fraction of the traffic captured at the nat64 interface using

1280 bytes long frames. It is visible that TAYGA has

fragmented the incoming IPv4 packet (no. 86) into two IPv6

packets (no. 87 and 88), which were not recognized as valid

by the Tester, and thus it sent back an ICMPv6 error message

(no. 89), which was then translated to an ICMPv4 error

message (no. 90) by TAYGA. The situation is partially

different with 1498 bytes long frames, as shown in Fig. 13,

which contains the packets belonging to two consecutive test

frames. (The packets of the second one are displayed to show

that the first one did not result in an ICMPv6 error message.)

Fragmentation also happens here, but now the Tester accepts

the fragmented test frames. Of course, fragmentation had its

computational cost, hence the maximum achievable rate

decreased to about less than one half.

Considering the other packet rates, the measured throughput

of TAYGA is roughly independent from the frame size.

The fact that the bidirectional throughput of TAYGA looks

approximately the same as its unidirectional throughput

(which means twice one half per direction), complies with our

observation that TAYGA could utilize only a single CPU core,

even when bidirectional traffic was used.

5.3.3 Map646

The throughput results of map646 are shown in Fig. 14.

(The notations of the figure are to be interpreted as that of

Fig. 10.) Here, the results of the IPv4 test with 1498 bytes

frame size seem to be missing, since all frames of this size

were lost at any packet rate. It is also caused by fragmentation.

We have attempted to test the performance of map646 in

Fig. 10 Throughput of Jool as a function of frame size and traffic type

Fig. 11 Throughput of TAYGA as a function of frame size and traffic type

Revised version for the Springer Telecommunication Systems journal

9

the IPv6 to IPv4 direction, however, we have got the

following error message from map646:
map646: Extention header 59 is not supported.

The value 59 in the Next Header field of an IPv6 datagram

means “No Next Header”. As it can be seen from the captures

in Fig. 12 and in Fig. 13, the Tester sent raw IP packets with

protocol type 2533. However, map646 expected one of TCP,

UDP or ICMPv6. We know it from Keiichi Shima, that the

aim of the checking of the Next Header field was to prevent

incorrect translation of extension headers. (In the IPv4 to IPv6

direction no such checking was necessary, as no extension

headers may occur in the IPv4 packets, thus testing was

possible in that direction.) For us, the point is that we could

not perform the test in the IPv6 to IPv4 direction.

Otherwise the throughput of map646 shows some

fluctuations, but is also roughly independent from the frame

size.

5.3.4 Comparison

As the throughput of all three tested implementations is

independent from the frame size, and we could test map646

only in the IPv4 to IPv6 direction, we compare their IPv4

throughput using 64 bytes long test frames. Fig. 15 shows the

results. We note that the results were not surprising for us, as

Jool is the latest implementation of them, which is still

actively developed and is works in the kernel space [24].

3 The 253 IP protocol field value was reserved for experimentation and

testing purposes by RFC 3692.

TAYGA works in user space and it was “intended to provide

production-quality NAT64 service for networks where

dedicated NAT64 hardware would be overkill” [23], however,

TAYGA is no more developed. Map646 was developed for a

single purpose to serve as stateless NAT46 gateway solution

for the WIDE project [5] and it was published as free software

for public benefit out of courtesy.

5.4 Frame Loss Results

For the comparability of the results, Jool and TAYGA were

tested under the same conditions: their frame loss rate was

measured with IPv6 to IPv4 traffic, and the frame rate was

increased from 50,000fps to 800,000 fps in 50,000fps steps.

However, these limits were inappropriate for map646, which

was tested using IPv4 to IPv6 traffic, and the frame rate was

increased from 40,000fps to 100,000fps in 10,000fps steps.

5.4.1 Jool

The frame loss rate of Jool as a function of frame rate and

frame size is shown in Fig. 16. For all frame sizes, the frame

loss rate is between 0.001% and 0.004% at 250,000fps frame

rate, it is below 0.01% and at 300,000fps, and it is still below

1% at 500,000fps, but it raises sharply from 550,000fps frame

rate.

Our results with very low frame loss rate up to significantly

higher frame rates than the throughput measurement results

taught us two very important lessons:

86 1.768027036 198.19.0.2 → 198.18.0.2 IPv4 1262 Unknown (253)
87 1.768068056 2001:2:0:1::2 → 2001:2::2 IPv6 1280 IPv6 fragment (off=0 more=y ident=0x00007814 nxt=253)
88 1.768076843 2001:2:0:1::2 → 2001:2::2 IPv6 58 Unknown IP Protocol: Unknown (253)
89 1.768489419 2001:2::2 → 2001:2:0:1::2 ICMPv6 1280 Parameter Problem (unrecognized Next Header type encountered)
90 1.768529993 198.18.0.2 → 198.19.0.2 ICMP 576 Destination unreachable (Protocol unreachable)

Fig. 12 A tshark capture of the traffic at the nat64 interface of TAYGA, using 1280 bytes test frames

46 1.821626681 198.19.0.2 → 198.18.0.2 IPv4 1480 Unknown (253)
47 1.821668296 2001:2:0:1::2 → 2001:2::2 IPv6 1280 IPv6 fragment (off=0 more=y ident=0x00007cca nxt=253)
48 1.821677746 2001:2:0:1::2 → 2001:2::2 IPv6 276 Unknown IP Protocol: Unknown (253)
49 1.943062342 198.19.0.2 → 198.18.0.2 IPv4 1480 Unknown (253)
50 1.943103537 2001:2:0:1::2 → 2001:2::2 IPv6 1280 IPv6 fragment (off=0 more=y ident=0x00007ccb nxt=253)
51 1.943112350 2001:2:0:1::2 → 2001:2::2 IPv6 276 Unknown IP Protocol: Unknown (253)

Fig. 13 A tshark capture of the traffic at the nat64 interface of TAYGA, using 1498 bytes test frames

Fig. 14 Throughput of map646 as a function of frame size and traffic type

Fig. 15 Throughput of Jool, TAYGA, and map646 in the IPv4 to IPv6

direction with 64 bytes frame size

Revised version for the Springer Telecommunication Systems journal

10

1. As RFC 2544 based throughput tests use a binary

search to find the highest frame rate, where all frames

are transmitted (that is, there is no frame loss), our

results explain, why the results of multiple repetitions

may differ significantly: tests sometimes fail due to a

the loss of a very small number of frames. (And this

observation also explains our observation in Section

5.3.1 that the throughput results at different frame sizes

fluctuate.)

2. Users may experience significantly higher throughput

(e.g. download speed) than the RFC 2544 throughput

result, if TCP selective acknowledgment is enabled and

the end to end delay is low enough.

5.4.2 TAYGA

The frame loss rate of TAYGA as a function of frame rate

and frame size is shown in Fig. 17. As a function of the frame

rate, frame loss firs appears at 150,000fps, where it is under

0.3% with all frame sizes. Frame loss rate suddenly jumps to

about 20% at 250,000fps, but significantly falls back at

300,000fps, form where it continuously rises, and it is about

65% at 800,00fps.

5.4.3 map646

The frame loss rate of map646 as a function of frame rate

and frame size is shown in Fig. 18. We note that because of

the IPv4 to IPv6 direction, here the smallest frame size was 64

bytes and the largest one was 1498 bytes, however, we have

omitted the results with 1498 bytes frames, as they were all

100%, and thus the scaling of the figure would have been

inappropriate for the other values.

The results of map646 are rather fluctuated, thus we can not

characterize the behavior of the results with relevant

statements that apply for all frame sizes. Less than 0.1% frame

losses occurred occasionally under 60,000fps. Non-zero, but

less than 0.33% frame loss usually appeared at 60,000fps.

Frame loss achieved 13.2% at 75,000 fps with 64 bytes long

frames, but it was under 5% with all other frames sizes. Frame

loss usually achieved 50% at 100,000fps, but it was only about

17% with 768 and 1024 bytes long frames.

5.4.4 Comparison

Whereas the behavior of the frame loss of Jool was

consequent, the frame loss rates of both TAYGA and map646

have shown inconsistent behavior under certain parameter

combinations. Considering also the throughput values, we

consider that Jool is the most matured stateless NAT64

implementation from among the examined ones.

6 Further Work and our Future Plans

During the review process of this paper we have performed

benchmarking measurements using the before mentioned

DPDK-based special purpose test software. The same

implementations were tested, but Jool was the most current

version, that is 4.0.1. Our results will be published in [29].

Unfortunately, the test program had several issues, which we

could temporarily fix, but we plan to redesign and re-

implement it in C++. We also plan to validate the new test

program by comparing its results with the results produced by

using a standard tester, thus our efforts described in this paper

Fig. 16 Frame loss rate of Jool as a function of frame rate and frame size,

using IPv6 to IPv4 traffic

Fig. 17 Frame loss rate of TAYGA as a function of frame rate and frame size

using IPv6 to IPv4 traffic

Fig. 18 Frame loss rate of map646 as a function of frame rate and frame size

using IPv4 to IPv6 traffic

Revised version for the Springer Telecommunication Systems journal

11

will be a great help for us in the validation.

7 Conclusion

We have pointed out that there was a gap in research papers

concerning the benchmarking of stateless NAT64 (SIIT)

implementations. We have demonstrated with virtual

machines, how two kinds of test setups may be built for

benchmarking stateless NAT64 implementations according to

RFC 8219 without using a special purpose NAT64 Tester,

rather by reusing legacy RFC 2544 / RFC 5180 Testers. From

among the tests defined in RFC 8219, the two most important

ones, namely throughput and frame loss tests, can be

performed by this way.

We have demonstrated the feasibility of benchmarking

stateless NAT64 gateways according to the Single DUT setup

by benchmarking three free software stateless NAT64

implementations: Jool, TAYGA and map646. We have found

that Jool showed both the highest throughput and the most

consistent behavior in the frame loss tests, thus we

recommend Jool for new deployments. We hope that our

results may contribute to the global deployment of the IPv6

protocol.

The measurement method described in this paper will also

be useful in the validation of the planned special purpose

NAT64 test software.

Acknowledgements

The author thanks István Pilisi for carrying out all the

measurements and his employer the National Media and

Information Authority, Budapest, Hungary for providing the

equipment.

The author thanks Keiichi Shima, IIJ Innovation Institute,

Tokyo, Japan for his help in map646 related issues and also

for reviewing the manuscript of this paper.

References

[1] Bagnulo, M., Sullivan, A., Matthews, P., & Beijnum, I. (2011). DNS64:
DNS extensions for network address translation from IPv6 clients to
IPv4 servers, IETF RFC 6147, DOI: 10.17487/RFC6147

[2] Bagnulo, M., Matthews, P., & Beijnum, I. (2011). Stateful NAT64:
Network address and protocol translation from IPv6 clients to IPv4
servers, IETF RFC 6146, DOI: 10.17487/RFC6146

[3] Palet, J. (2017). Using 464XLAT in residential networks, RIPE 74,
Budapest, Hungary, May 8-12, 2017, slides of presentation,
https://ripe74.ripe.net/presentations/151-ripe-74-ipv6-464xlat-residential-
v2.pdf Accessed March 1, 2019.

[4] Mawatari, M., Kawashima, M., & Byrne, C. (2013). 464XLAT:
Combination of stateful and stateless translation, IETF RFC 6877, DOI:
10.17487/RFC6877

[5] Shima, K., Ishida, W., & Sekiya, Y. (2012). Designing an IPv6-oriented
datacenter with IPv4-IPv6 translation technology for future datacenter
operation, In: I. Ivanov, M. van Sinderen, F. Leymann, T. Shan (eds)
Cloud Computing and Services Science. (CLOSER 2012). Porto,
Portugal, Apr. 2012. pp. 39–53, Communications in Computer and
Information Science, vol 367. Springer, DOI: 10.1007/978-3-319-04519-
1_3

[6] Bao, C., Li, X., Baker, F., Anderson, T., & Gont, F. (2016). IP/ICMP
translation algorithm, IETF RFC 7915, DOI: 10.17487/RFC7915

[7] Free Software Foundation, The free software definition,
http://www.gnu.org/philosophy/free-sw.en.html Accessed March 1,
2019.

[8] Open Source Initiative, The open source definition,
http://opensource.org/docs/osd Accessed March 1, 2019.

[9] Bradner, S., McQuaid, J. (1999). Benchmarking methodology for
network interconnect devices, IETF RFC 2544, DOI:
10.17487/RFC2544

[10] Popoviciu, C., Hamza, A., Van de Velde, G., & Dugatkin, D. (2018).
IPv6 benchmarking methodology for network interconnect devices,
IETF RFC 5180, DOI: 10.17487/RFC5180

[11] Georgescu, M., Pislaru L., & Lencse, G. (2017). Benchmarking
methodology for IPv6 transition technologies, IETF RFC 8219, DOI:
10.17487/RFC8219

[12] Lencse, G., & Kadobayashi, Y., (2019). Comprehensive survey of IPv6
transition technologies: A subjective classification for security analysis,
IEICE Transactions on Comminications, to be published in E102-B(10),
October 2019.

[13] Llanto, K. J. O., & Yu, W. E. S. (2012). Performance of NAT64 versus
NAT44 in the context of IPv6 migration, in Proceedings of the
International MultiConference of Engineers 2012, vol. I., pp. 638–645.

[14] Monte, C. P., Robles, M. I., Mercado, G., Taffernaberry, C., Orbiscay,
M., Tobar, S., Moralejo, R., Pérez, S. (2012). Implementation and
evaluation of protocols translating methods for IPv4 to IPv6 transition,
Journal of Computer Science & Technology, 12(2) 64–70.

[15] Yu, S., & Carpenter, B. E. (2012). Measuring IPv4 – IPv6 translation
techniques, Dept. of Computer Science, Univ. Auckland, Auckland,
New Zeeland, Technical Report 2012-001, Jan., 2012.
https://www.cs.auckland.ac.nz/~brian/IPv4-IPv6coexistenceTechnique-
TR.pdf Accessed March 1, 2019.

[16] Lencse, G., & Répás, S. (2016). Performance analysis and comparison
of four DNS64 implementations under different free operating systems”,
Telecommunication Systems, 63(4), pp. 557–577, DOI: 10.1007/s11235-
016-0142-x

[17] Lencse G., & Takács, G. (2012). Performance analysis of DNS64 and
NAT64 solutions, Infocommunications Journal, 4(2) pp. 29–36.

[18] Lencse, G., & Répás, S. (2013). Performance analysis and comparison
of the TAYGA and of the PF NAT64 implementations, in Proceedings
of the 36th International Conference on Telecommunications and Signal
Processing, Rome, Italy, doi: 10.1109/TSP.2013.6613894

[19] Répás, S., Farnadi, P. & Lencse, G. (2014). Performance and stability
analysis of free NAT64 implementations with different protocols, Acta
Technica Jaurinensis, 7(4) pp. 404–427, DOI:
10.14513/actatechjaur.v7.n4.340

[20] Quintero, A., Sans, F., & Gamess, E. (2016). Performance evaluation of
IPv4/IPv6 transition mechanisms”, International Journal of Computer
Network and Information Security, 2016(2) pp. 1–14 DOI:
10.5815/ijcnis.2016.02.01

[21] Bálint, P. (2017). Test software design and implementation for
benchmarking of stateless IPv4/IPv6 translation implementations, in
Proc. 40th International Conference on Telecommunications and Signal
Processing (TSP 2017), Barcelona, Spain, Jul. 5-7, pp. 74–78. DOI:
10.1109/TSP.2017.8075940

[22] Scholz, D. (2014). A look at Intel’s dataplane development kit, Proc.
Seminars Future Internet (FI) and Innovative Internet Technologies and
Mobile Communications (IITM), Munich, Germany, pp. 115–122, DOI:
10.2313/NET-2014-08-1_15

[23] Nathan Lutchansky, TAYGA: Simple, no-fuss NAT64 for Linux,
http://www.litech.org/tayga/ Accessed March 1, 2019.

[24] NIC Mexico, Jool: SIIT and NAT64, http://www.jool.mx/en/about.html
Accessed March 1, 2019.

[25] K. Shima, map646, https://github.com/keiichishima/map646 Accessed
March 1, 2019

[26] T. Anderson, A. L. Potter, Explicit address mappings for stateless
IP/ICMP Translatio”, IETF RFC 7757, DOI: 10.17487/RFC7757

[27] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., & Li, X. (2010).
IPv6 addressing of IPv4/IPv6 translators, IETF RFC 6052, DOI:
10.17487/RFC6052

[28] Lencse, G,. Georgescu, M., & Kadobayashi, Y. (2017). Benchmarking
methodology for DNS64 servers, Computer Communications, 109(1),
pp. 162–175, DOI: 10.1016/j.comcom.2017.06.004

[29] G. Lencse, K. Shima, Performance analysis of SIIT implementations:
Theory and practice, unpublished

https://ripe74.ripe.net/presentations/151-ripe-74-ipv6-464xlat-residential-v2.pdf
https://ripe74.ripe.net/presentations/151-ripe-74-ipv6-464xlat-residential-v2.pdf
http://www.gnu.org/philosophy/free-sw.en.html
http://opensource.org/docs/osd
https://www.cs.auckland.ac.nz/~brian/IPv4-IPv6coexistenceTechnique-TR.pdf
https://www.cs.auckland.ac.nz/~brian/IPv4-IPv6coexistenceTechnique-TR.pdf
http://www.litech.org/tayga/
http://www.jool.mx/en/about.html
https://github.com/keiichishima/map646

Revised version for the Springer Telecommunication Systems journal

12

Gábor Lencse received MSc and PhD in

computer science from the Budapest

University of Technology and Economics,

Budapest Hungary in 1994 and 2001,

respectively.

He works for the Department of Tele-

communications, Széchenyi István

University, Győr, Hungary since 1997.

Now, he is an Associate Professor. He is

also a part time Senior Research Fellow at the Department of

Networked Systems and Services, Budapest University of

Technology and Economics since 2005. His research interests

include the performance analysis of communication systems,

parallel discrete event simulation methodology and IPv6

transition methods.

