
Application Compatibility of the NAT64
IPv6 Transition Technology

Sándor Répás, Tamás Hajas and Gábor Lencse

Abstract—The proliferation of smart phones and other Internet

capable devices together with the depletion of the global IPv4

address pool will be a huge driving force for the deployment of

IPv6 in the forthcoming years. The communication of an IPv6

only client with an IPv4 only server is a typical practical task to

be solved among the many issues of the co-existence of IPv4 and

IPv6. The usage of DNS64+NAT64 may be a good solution if our

applications can flawlessly work with it. As for NAT64 imple-

mentations, TAYGA running under Linux and Packet Filter

(PF) of OpenBSD were tested with the following application

level protocols: HTTP, HTTPS, SMTP, POP3, IMAP4, Telnet,

SSH, FTP, OpenVPN, RDP, Syslog, BitTorrent, Skype and SIP.

The client-server application protocols could traverse through

the NAT64 gateway flawlessly but the peer to peer ones failed.

In contrast to the results of other researchers, OpenVPN

worked perfectly with NAT64.

Keywords—IPv6 deployment, IPv6 transition solutions, NAT64,

application compatibility, Packet Filter, TAYGA.
→→→→

I. INTRODUCTION

The specification of the Internet Protocol version 6 (IPv6)
exists since 1998 [1]. However, IPv4 is used by the vast ma-
jority of the current Internet sites today. E.g. only 2.8% of the
Internet traffic reaching Google used IPv6 on January 1, 2014
[2]. The proliferation of smart phones and other Internet capa-
ble devices together with the depletion of the global IPv4
address pool 1 will be a huge driving force for the deployment
of IPv6 in the forthcoming years as the internet service pro-
viders (ISPs) will not be able to supply their large number of
new clients with IPv4 addresses. They can get IPv6 addresses
only. However, the IPv6 only devices must reach the Internet
sites that still use IPv4 only. Thus from the many issues of the
co-existence of IPv4 and IPv6, the communication of an IPv6
only client with an IPv4 only server is the first practical task

→ Manuscript received February 4, 2014.
The work of Sándor Répás was supported in the framework of TÁMOP

4.2.4. A/2-11-1-2012-0001 “National Excellence Program – Elaborating and
operating an inland student and researcher personal support system conver-
gence program” The project was subsidized by the European Union and co-
financed by the European Social Fund.

The work of Gábor Lencse was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0012: “Smarter Transport” – IT for co-operative transport
system – The Project is supported by the Hungarian Government and co-
financed by the European Social Fund.

This publication was supported by the Multidisciplinary Doctoral
School of the Faculty of Engineering Sciences, Széchenyi István University.

Sándor Répás, Tamás Hajas and Gábor Lencse are with the Department
of Telecommunications, Széchenyi István University, 1 Egyetem tér, Győr,
H-9026, Hungary (e-mail: repas.sandor@sze.hu, hajas@tilb.sze.hu,
lencse@sze.hu)

1 IANA delegated the last five “/8” IPv4 address blocks to the five Regional
Internet Registries in 2011 [3], of which APNIC has already depleted its
IPv4 address pool in 2011 and RIPE NCC did so in 2012 [4]. It means that
RIPE NCC also uses a more strict allocation policy for its very last /8 block.

to solve in the upcoming years. The authors believe that the
application of NAT64 [5] + DNS64 [6] is the best available
solution that makes it possible for an IPv6 only client to
communicate with an IPv4 only server. (A brief description of
their operation will be provided later.)

Are the different Internet applications compatible with the
NAT64 technology? The authors of [7] and [8] have already
tested the NAT64 compatibility of few popular applications
with a given NAT64 implementation (Ecdysis [9]), but we
believe that further NAT64 implementations should also be
tested to give alternatives to network operators.

The remainder of this paper is organized as follows: first,
the operation of the DNS64+NAT64 solution is described,
second, the application compatibility research results are
surveyed, third, TAYGA and Packet Filer of OpenBSD are
introduced, fourth, the most important applications are select-
ed for testing, fifth, the description of the test network and the
testing method of each applications are given together with
their results, sixth, our results are summarized and discussed,
and finally, our conclusions are given.

The volume of the IPv6 traffic of the Internet is low in
many countries of the western world now and it will probably
grow slowly for some years, but its volume may explode later
on and the networks should be ready to cope with it. Thus our
results are expected to give valuable information to many
network administrators when selecting the appropriate IPv6
transition solution for their networks.

II. THE OPERATION OF DNS64 AND NAT64

To provide connectivity between an IPv6 only client and
an IPv4 only server one can use DNS64+NAT64 as it is
shown in Fig. 1. The explanation of the process is the follow-
ing:

1. The IPv6 only client sends a query to its nameserver
about the IPv6 address of the destination server with
the DNS name of the server (query AAAA record).

2. The DNS64 server tries to resolve the DNS name with
recursive queries or just with a simple forwarding.

3. The DNS server resolves the given name to an IPv4
address, but not IPv6.

4. The DNS64 server generates an answer with an AAAA
record and sends it back as an answer for the query of
its client with a synthesized IPv6 address. This IPv6
address contains the given IPv4 address of the server at
the last 32 bits, while the first 96 bits can be a network
specific prefix or the NAT64 well-known prefix. This
special IPv6 address is called IPv4-Embedded IPv6
Address [10].

5. The client sends an IPv6 packet with a TCP SYN seg-
ment through its (NAT64) gateway with this special
IPv6 address as destination address.

IPv6

CLIENT

DNS64 DNS

WEB

SERVER

NAT64

3. A 192.0.2.14. AAAA 64:ff9b::c000:201

1. h2.example.com ?
2. h2.example.com ?

6. SYN to 192.0.2.1

IPv4

7. SYN-ACK from 192.0.2.1

Figure 1. The operation of the DNS64+NAT64 IPv6 transition solution.

6. The gateway knows from the prefix of the destination
address that the IPv6 packet is destined to an IPv4
server. The NAT64 gateway makes a stateful network
address translation between IPv6 and IPv4 and sends
the IPv4 packet containing the TCP SYN segment to
the IPv4 only server with its own IPv4 address as
source address. The NAT64 gateway needs to have
IPv4 and IPv6 addresses too, to make this process hap-
pen.

7. The IPv4 only web server sends its answer (containing
a TCP SYN-ACK segment to the IPv4 address of the
NAT64 gateway.

8. The NAT64 gateway assembles the IPv6 version of the
received packet using its own state table and the pay-
load of the IPv4 packet and then sends the IPv6 packet
to the originating client.

Thus the IPv6 only client can communicate with the IPv4
only server as if it was an IPv6 capable server and also the
IPv4 only server can see the IPv6 only client as if it was an
IPv4 client. However, the server will log the IPv4 address of
the NAT64 gateway instead of the IPv6 address of the client
and this is true for all the clients of the NAT64 gateway. This
can be a drawback of the usage of NAT64 when collecting
exact statistics is important. However the same drawback
exists when Application Level Gateway (ALG) or Carrier
Grade NAT (CGN) solutions are used.

For a more detailed but still easy to follow introduction to
DNS64+NAT64, see [11] and for the most accurate and de-
tailed information, see the relating RFCs [5] and [6].

III. A SHORT SURVEY OF THE CURRENT RESEARCH

RESULTS

Eighteen widely used application-layer network protocols
were tested theoretically and empirically by Škoberne and
Ciglarič in a virtualized environment in 2011 [7] to find out
how well they traverse Ecdysis, an open source stateful
NAT64 implementation. They were differentiated the follow-
ing three levels of the translation performance: poorly, condi-
tionally and well translated. They concluded that NAT64 and
DNS64 translation might not provide a good experience,
because the VoIP and Instant Messaging were poorly translat-
ed. In a research about the flow-based identification of fail-
ures caused by Dual-Stack Lite and NAT64 transition tech-

niques in 2012 [8], the researchers did not find any problem
with DS Lite, but they successfully identified such problems
with Skype, OpenVPN, BitTorrent and SIP. They did not
mention finding any problem with FTP. Finally they did not
find any usable Flow-based method to automatically detect
the problem in an ISP system.

It is inevitable to do more compatibility tests of different
NAT64 implementations as application compatibility is a
serious aspect of selecting an appropriate NAT64 gateway.

IV. THE SELECTION OF NAT64 IMPLEMENTATIONS

Only free software [12] (also called open source [13]) im-
plementations were considered for testing. We had multiple
reasons for this decision:

• The licenses of certain vendors (e.g. [14] and [15])
do not allow the publication of benchmarking or other results.

• Free software can be used by anyone for any purpos-
es thus our results can be helpful for anyone.

• Free software is free of charge for us, too.
Ecdysis [9] could have been a choice, as it was the first

NAT64 implementation, and it also contains DNS64 support.
However, test of Ecdsys had already been done in both [7]
and [8]. For these reasons, two other NAT64 implementations
were selected for application compatibility analysis: TAYGA
and PF. We have selected them for NAT64 performance test-
ing for our earlier paper [16] and their description below is
taken from there. (For the result of our performance testing of
some free DNS64 implementations, see [17].)

A. TAYGA

TAYGA [18] is free software under GPLv2 license and
according to its developers it was intended to provide produc-

tion quality NAT64 service. TAYGA is a stateless NAT64
solution for Linux. It means that by itself it can create only a
one-to-one mapping between IPv6 and IPv4 addresses. For
this reason TAYGA is used together with a stateful NAT44
packet filter (iptables under Linux): TAYGA maps the
source IPv6 addresses to different IPv4 addresses from a suit-
able size of private IPv4 address range, and from the private
IPv4 addresses the stateful NAT44 packet filter performs an
SNAT (Source Network Address Translation) to the public
IPv4 address of the NAT64 gateway (sometimes also called
Port Address Translation, PAT). In the reverse direction, the
stateful NAT44 packet filter “knows” which private IPv4

address belongs to the reply packet arriving to the IPv4 inter-
face of the NAT64 gateway. After the NAT44 translation
TAYGA can determine the appropriate IPv6 address using its
one-to-one address mapping and then it rewrites the packet to
IPv6.

When configuring TAYGA, a suitably large private IPv4
address range should be provided.

B. Packet Filter

The Packet Filter (PF) of OpenBSD 5.1 [19] includes
NAT64 support that is based on the Ecdysis program code
[20]. PF is free software under the BSD license.

PF [21] was first released in OpenBSD v3.0 in 2001. PF is
a very powerful tool to filter and manipulate IP packets in
modern BSD systems. It can be configured by editing
/etc/pf.conf, and packets can be manipulated by many
attributes. PF supports NAT, load balancing, logging and it
can also operate as stateless and stateful packet filter at the
same time.

PF supports IPv4 and IPv6 stateful NAT for many years,
and now it supports NAT64, too. This feature of PF is called
address family translation. PF in stateful mode can translate
many IPv6 client addresses to one outgoing IPv4 address via
address family translation. Because of stateful translation, PF
needs to build a “states table” to find the correct IPv6 destina-
tion address of the incoming IPv4 packets. There is no need to
use stateless and stateful NAT one after the other. In this case,
a single state table is enough for perfect system operation
against TAYGA’s two-table solution. Therefore PF generates
lower load for the NAT64 gateway [16].

We have made our tests on personal computers because of
their proliferation, but TAYGA exists on OpenWRT, too [22].

V. APPLICATION SELECTION FOR TESTING

First, we had to collect frequently used applications in or-
der to accomplish compatibility tests. HTTP, HTTPS, SMTP,
POP3, IMAP4 protocols are essential ones.

In addition, Telnet, SSH, FTP, OpenVPN, RDP, Syslog,
P2P, SIP are also very common. Protocols and their attributes
are listed in table I.

VI. TESTS AND RESULTS

The aim of our tests was to examine and compare the
compatibility of the selected NAT64 implementations.

A. The Structure of the Test Network

As applications operate in different ways, we had to use
different network structures during our tests. Detailed infor-
mation of these structures is available at each protocol
demonstration below.

It was necessary to separate the testbed from the network
of the laboratory. However, we had to connect to the network
of the laboratory for a few times. Our solution was a VLAN
using a 3Com Baseline 2948-SFP Plus switch.

We used the fd5c:6bc1:7bc7:ffff::/64 Unique Local IPv6
Unicast Address (ULA) and worked with 5 computers with
different roles. Symbols of two different switches in Figures
2, 3, 4 and 5 mean two different VLANs of one physical
switch.

B. NAT64 Gateway Settings

1) Preparation of the TAYGA system

The network interfaces of the freshly installed Debian
Squeeze 6.0.6 Linux operating system on the Pentium III
computer were set according to Fig. 2.

The settings (in the /etc/network/interfaces file) were
the following:
#The loopback network interface
auto lo
iface lo inet loopback
#Internal interface
auto eth1
iface eth1 inet6 static
address fd5c:6bc1:7bc7:ffff::1
netmask 64
post-up /root/nat64-config.sh
#External

auto eth0
iface eth0 inet static
address 192.168.100.221
netmask 255.255.255.0
gateway 192.168.100.1

TABLE I. APPLICATION PROTOCOLS, PROTOCOLS AND PORTS

Application protocol Transport

Protocol

Standard port

HTTP TCP 80
HTTPS TCP 443
SMTP TCP 25
POP3 TCP 110
IMAP4 TCP 143
Telnet TCP 23
SSH TCP 22
FTP TCP 20,21
OpenVPN UDP/TCP 1194
RDP TCP 3389
Syslog UDP 514
P2P (BitTorrent) TCP/UDP 6881-6999
SIP TCP/UDP 5060
RTP/RTCP for SIP UDP 1024-65535

3com Baseline 2948-SFP Plus

192.168.100.211/24

192.168.100.221/24

fd5c:6bc1:7bc7:ffff::1/64

fd5c:6bc1:7bc7:ffff::20/64 fd5c:6bc1:7bc7:ffff::21/64

IPv4 server

NAT64

gateway

DNS64

server

IPv6 clients

3com Baseline 2948-SFP Plus

Figure 2. Topology of the HTTP, HTTPS, Telnet, SSH, FTP, Syslog test
network.

TAYGA 0.9.2 was installed on the test computer and the
content of tayga.conf was set as follows:
tun-device nat64
ipv4-addr 10.0.0.1
prefix fd5c:6bc1:7bc7:ffff:ffff:ffff::/96
dynamic-pool 10.0.0.0/8
data-dir /var/db/tayga

TAYGA was started with the following script:
#!/bin/bash
tayga --mktun
ip link set nat64 up
#Private IPv4 address space for NAT
ip addr add 10.0.0.1 dev nat64
ip route add 10.0.0.0/8 dev nat64
#NAT64 network specific IPv6 address space
ip addr add fd5c:6bc1:7bc7:ffff::2 dev nat64
ip route add fd5c:6bc1:7bc7:ffff:ffff:ffff::/96 \
 dev nat64
#Start TAYGA
tayga
#Enable routing

echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
#Enable NAT44
iptables -t nat -A POSTROUTING -s 10.0.0.0/8 -o eth0 \
 -j MASQUERADE

Some applications required name resolution, thus DNS64
was used. BIND 9.9.2-P1 was chosen. The settings in the file
/etc/bind/named.conf were the following ones:
options {
auth-nxdomain no;
listen-on-v6 { any; };
allow-query { any; };
dns64 fd5c:6bc1:7bc7:ffff:ffff:ffff::/96 { };
};

1) Preparation of the OpenBSD system

The settings (in the /etc/hostname.fxp0 file) were the
following:
inet 192.168.100.221 255.255.255.0
!route add -inet default 192.168.100.1

The settings (in the /etc/hostname.rlp0 file) were the
following:
inet6 alias fd5c:6bc1:7bc7:ffff::1 64

Settings of /etc/pf.conf in order to use NAT64:
#NAT64
pass in on rl0 inet6 from any to \
 fd5c:6bc1:7bc7:ffff:ffff:ffff::/96 af-to inet \
 from 192.168.100.221

Settings of /etc/sysctl.conf were used to permit packet
forwarding:
net.inet.ip.forwarding=1
net.inet6.ip6.forwarding=1

DNS64 settings were the same as with the TAYGA sys-
tem.

C. Preparation of the IPv6 client computers

Debian Wheezy 7.1 operating system was installed on all
clients and servers. Different settings of tests are detailed at
each test. Here are the network settings only.

The settings (in the /etc/network/interfaces file) were
the following:
The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
allow-hotplug eth0
iface eth0 inet6 static
address fd5c:6bc1:7bc7:ffff::[20-21] # on the first \
 client: 20, on the other client: 21
netmask 64

gateway fd5c:6bc1:7bc7:ffff::1
up sleep 1
post-up /etc/network/routeadd.sh

The fd5c:6bc1:7bc7:ffff:ffff:ffff::/96 network specific
NAT64 address range was routed to the NAT64 gateway in
the routeadd.sh script:
route add -A inet6 fd5c:6bc1:7bc7:ffff:ffff:ffff::/96 \
 gw fd5c:6bc1:7bc7:ffff::1

DNS settings (in the /etc/resolv.conf file) were the fol-
lowing:
nameserver fd5c:6bc1:7bc7:ffff::1

The same settings were used at the Windows client.

D. Tests

1) HTTP

The topology of the network is shown in Fig. 2.
The server used Apache 2.2.22-13 of Debian Wheezy dis-

tribution, which was installed by the apt-get install

apache2 command. On the client computers, the Konqueror
web browser was successfully used to open index.html using
the following URL which contains the IPv4 embedded IPv6
address:
http://[fd5c:6bc1:7bc7:ffff:ffff:ffff:192.168.100.211]

2) HTTPS

After the HTTP test, the HTTPS protocol was enabled by
the following commands:
a2ensite default-ssl
a2enmod ssl

Operation had been checked by the same browser again
but using the following URL:
https://[fd5c:6bc1:7bc7:ffff:ffff:ffff:192.168.100.211]

Trouble free operation was observed.
3) Telnet

The server used the telnet daemon 0.17-36 of the Debian
Wheezy distribution, which one was installed by the apt-get
install telnetd command. The client could successfully
connect to the server by the following command:
telnet fd5c:6bc1:7bc7:ffff:ffff:ffff:192.168.100.211

4) SSH

OpenSSH 6.0p1-4 server was installed using the command
apt-get install openssh-server. We applied key-based
authentication from both clients which worked correctly.

The clients used the following command for connecting:
ssh fd5c:6bc1:7bc7:ffff:ffff:ffff:192.168.100.211

5) FTP

Proftpd 1.3.4a-4+nmu1 was installed by the apt-get
install proftpd command. An FTP client program was
installed for each client workstations by the apt-get

install ftp command.
FTP uses two TCP connections: the control connection is

established in the beginning of an FTP session and it is alive
until the end of the session; a data connection is established
for each file transfer and also for each directory listing. FTP

can be used in active mode or in passive mode. When a data
connection is needed in the active mode, the client sends its IP
address and a selected port number to the server (through the
control connection) and the server opens the data connection
towards the client using the received IP address and port
number. In passive mode, the opening of the data connection
happens in the opposite way: the server sends its IP address
and a selected port number to the client and the client opens
the data connection. If the client resides behind NAT then
only passive mode can be used as in active mode the server
cannot open the data connection to the client (unless a so
called FTP protocol helper is used). FTP was tested in both
active and passive mode. The first one failed and the second
one worked correctly, as we expected.

6) Syslog-ng

Version 3.3.5-4 of syslog-ng was installed on the server
and on the two client computers. The modifications in the
syslog-ng.conf configuration file of the clients were the
following:
Destinations
destination server {
tcp6("fd5c:6bc1:7bc7:ffff:ffff:ffff:c0a8:64d3"
port(514)); };
Log paths
log { source(s_src); destination(server); };

On the server the following configuration was used:
Sources
source ipv6client { tcp(port(514) keep-alive(yes)); };
Destinations
destination ipv6client_file {
file("/var/log/ipv6client.log"); };
Log paths
log { source(ipv6client); destination(ipv6client_file);
};

The logging over the NAT64 gateway were working cor-
rectly.

7) OpenVPN

The configuration of the OpenVPN was more complex. To
perform the tests, we had to build a new network based on the
original one, because we needed a connection to the Laborato-
ry network. The topology of the test network of OpenVPN is
show in Fig. 3.

We have used two IPv6 OpenVPN clients, one IPv4
OpenVPN client and one IPv4 only OpenVPN server. All of
the computers were running Debian Linux. The server used
OpenVPN version 2.2.1-8+deb7u2, which was installed by
apt-get istall openvpn.

After the installation we generated the certificates on the
server with the following steps:

The openssl-1.0.0.cnf, wichopensslcnf and pkitool
files were copied from their original location (the
/usr/share/doc/openvpn/examples/easy-rsa/2.0/ direc-
tory) to the /etc/openvpn directory.

A keys subdirectory in the /etc/openvpn was created.
In the /etc/openvpn directory the following commands

were issued:
. /usr/share/doc/openvpn/examples/easy-rsa/2.0/vars
. /usr/share/doc/openvpn/examples/easy-rsa/2.0/clean-all

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/build-ca

. /usr/share/doc/openvpn/examples/easy-rsa/2.0/build-dh

fd5c:6bc1:7bc7:ffff::1/64

fd5c:6bc1:7bc7:ffff::20/64

192.168.100.221/24

NAT64 + DNS64

IPv4 client

IPv6 clients

f2.tilb.sze.hu

192.168.100.22/24

 Lab network

f1.tilb.sze.hu

192.168.100.21/24

OpenVPN server

VPN interface

172.16.0.6/24

VPN interface

172.16.0.1/24

VPN interface

172.16.0.10/24

VPN interface

172.16.0.14/24

fd5c:6bc1:7bc7:ffff::21/64

TCP / UDP

channel

Figure 3. Topology of the OpenVPN test network.

The following commands were issued in the
/usr/share/doc/openvpn/examples/easy-rsa/2.0 direc-
tory:
./build-key-server server
./build-key client

The ca.crt, dh1024.pem, server.crt, server.key files
were copied from the /etc/openvpn/keys directory into the
/etc/openvpn directory.

The sample server configuration file of the OpenVPN dis-
tribution were used with the following modifications:
proto udp #First UDP then TCP communication
dev tun #TUN enabling interface
server 172.16.0.0 255.255.255.0 #The useable private \

 address space
duplicate-cn #Multiple clients can use the same key
group nogroup
client-to-client #VPN clients can communicate each other

The ca.crt, client.crt, client.key files were copied
from the /etc/openvpn/keys directory of the server into the
/etc/openvpn/keys directory of the clients. The sample
client configuration file of the OpenVPN distribution was
used with the following modifications on the IPv4 client:
proto udp #First UDP then TCP
remote 192.168.100.22 1194 #OpenVPN server

And on the IPv6 clients:
proto udp6 #UDP TCP over IPv6
remote fd5c:6bc1:7bc7:ffff:ffff:ffff:c0a8:6416 1194 \
 #OpenVPN server

After OpenVPN processes were started on the server and
on all the client computers, ICMP communication was possi-

ble through the VPN channel between all of the clients using
both UDP and TCP as VPN transport protocols.

Starting from version 2.3.0, OpenVPN fully supports IPv6
and in addition to that OpenVPN in Debian Wheezy system
contains some unofficial developer patches for IPv6 support.
This was the cause of the flawless communication through the
NAT64 gateway [23].

8) E-mail (SMTP, POP3, IMAP4)

The topology of the network is shown in Fig. 4.
Two mail servers were used to provide a lifelike environ-

ment. The DNS names of the mail servers were provided by
the DNS server of the laboratory network.

Windows 7 Enterprise with Mozilla Thunderbird 24.0 and
Debian Wheezy 7.1 with KMail 1.13.7 were used on the client
computers.

Postfix 2.9.6-2 for SMTP, courier-pop 0.68.2-1 for POP3
and courier-imap 4.10.0 for IMAP4 were installed on the
servers. In the main.cf postfix configuration file, the
192.168.100.0/24 network was added to the mynetworks
statement. The mailboxes were created for the tests.

All of the tests were successfully executed with SMTP,
POP3 and IMAP4.

9) RDP

The topology of the SMTP test network was used, but
with just one server. On the server, xrdp 0.5.0-2 was installed.
Both of the clients were able to create RDP connection using
krdc 4.8.4-1+b1 as client software on KDE.

10) P2P

The external interface of the NAT64 gateway was con-
nected to the network of the laboratory to provide Internet
connection.

Version 6.9.0.106 of Skype and version 3.3.2 of μTorrent
were used on a Windows 7 client computer for the test.

Neither the BitTorrent nor the Skype were working.
Skype was unable to authenticate successfully, while Bit-

Torrent was unable to download any files.
11) SIP

The topology of the network is shown in Fig. 5.
Trixbox 2.8.0.4 was used on the SIP proxy computer.

Linphone 3.5.2 and Linphone 3.6.1 were used on the Win-
dows and on the Linux client computers, respectively.

It was possible making calls from any clients, and the
phones were ringing that is the setup of the calls was correct,
but there was silence in the phones that is they could not
communicate over RTP through the NAT64 gateway.

VII. SUMMARY AND DISCUSSION OF THE RESULTS

Our results with those of [7] and [8] can be found in Table
II. The test results of the different FTP protocols in [8] were
not completely clear, so we had to write N/A into the corre-
sponding lines of the table.

Evaluation of the results:

• PF and TAYGA produced exactly the same results.

• The majority of the most used protocols showed flaw-
less operation.

• FTP in passive mode was translated without any is-
sue.

fd5c:6bc1:7bc7:ffff::1/64

fd5c:6bc1:7bc7:ffff::20/64

192.168.100.221/24

NAT64 + DNS64

fd5c:6bc1:7bc7:ffff::21/64

IPv4 mail servers

f2.tilb.sze.hu

192.168.100.22/24

Lab network

f1.tilb.sze.hu

192.168.100.21/24

IPv6 clients

Figure 4. Topology of the E-mail, RDP test network.

fd5c:6bc1:7bc7:ffff::1/64

fd5c:6bc1:7bc7:ffff::20/64

192.168.100.221/24

NAT64 + DNS64

fd5c:6bc1:7bc7:ffff::21/64

IPv4 client

f2.tilb.sze.hu

192.168.100.22/24

Lab network

f1.tilb.sze.hu

192.168.100.21/24

SIP proxy

sipc3

1000

sipc1

2000

sipc2

2100
IPv6 clients

Figure 5. Topology of the SIP test network.

TABLE II. APPLICATION PROTOCOLS COMPATIBILITY

Application protocol PF Tayga Ecdsys

 [7] [8]

HTTP Yes Yes Yes Yes
HTTPS Yes Yes Yes Yes
SMTP Yes Yes Yes Yes
POP3 Yes Yes Yes Yes
IMAP4 Yes Yes Yes Yes
Telnet Yes Yes Yes N/A
SSH Yes Yes Yes Yes
FTP passive mode Yes Yes Cond. N/A
FTP active mode No No Cond. N/A
OpenVPN Yes Yes No No
RDP Yes Yes Yes N/A
Syslog Yes Yes N/A N/A
Skype No No No No
BitTorrent No No Cond. No
SIP No No No No

• The most important difference between the previous
research results and our results is the proper operation
of the OpenVPN.

• The very common P2P and VoIP applications were
not working at all.

• As we expected, Skype was not working, because it
does not support IPv6 protocol actually [24].

• Our results reflect the current status, which could be
improved in the future if protocol helpers will be
available such as they exist for NAT44.

VIII. CONSLUSIONS

Due to the exhaustion of the IPv4 address pool, the inter-
net service providers will not be able to provide IPv4 address-
es to an increasing number of clients. Our research results
proved that the usage of the DNS64/NAT64 is a viable solu-
tion to resolve this problem. The most important application
protocols can traverse through the NAT64 gateway flawlessly.
The very important drawback of the usage of the NAT64
transition technique is the missing support of P2P and VoIP
applications. The development of an Application Level Gate-
way (ALG) or NAT helper for these applications is a must to
satisfy the customers’ needs. Another disadvantage of NAT64
is that the servers can log the IPv4 address of the NAT64
gateway only and not the IPv6 addresses of the clients and
this is true for the ALG and CGN solutions, too.

REFERENCES

[1] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification”, IETF, December 1998. (RFC 2460)

[2] Google, “IPv6 Adoption”, http://www.google.com/ipv6/statistics.html

[3] The Number Resource Organization, “Free pool of IPv4 address space
depleted” http://www.nro.net/news/ipv4-free-pool-depleted

[4] RIPE NCC, “RIPE NCC begins to allocate IPv4 address space from the
last /8”, http://www.ripe.net/internet-coordination/news/ripe-ncc-
begins-to-allocate-ipv4-address-space-from-the-last-8

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF, April 2011. ISSN: 2070-1721 (RFC 6146)

[6] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147)

[7] N. Škoberne and M. Ciglarič, “Practical Evaluation of Stateful
NAT64/DNS64 Translation” Advances in Electrical and Computer
Engineering, vol. 11, no. 3,August 2011, pp. 49-54. doi:
10.4316/AECE.2011.03008

[8] V. Bajpai, N. Melnikov, A. Sehgal and J. Schönwälder, “Flow-based
Identification of Failures Caused by IPv6 Transition Mechanisms“
Proc. 6th IFIP WG 6.6 International Conference on Autonomous
Infrastructure, Management, and Security (AIMS 2012, June 4-8,
2012) Luxembourg, Luxembourg

[9] “Ecdysis: open-source implementation of a NAT64 gateway”
http://ecdysis.viagenie.ca

[10] C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF, October 2010. ISSN: 2070-
1721 (RFC 6052)

[11] M. Bagnulo, A. Garcia-Martinez and I. Van Beijnum, “The
NAT64/DNS64 tool suite for IPv6 transition”, IEEE Communications
Magazine, vol. 50, no. 7, July 2012, pp. 177-183.
doi:10.1109/MCOM.2012.6231295

[12] Free Software Fundation, “The Free Software Definition”,
http://www.gnu.org/philosophy/free-sw.en.html

[13] Open Source Initiative, “The Open Source Definition”,
http://opensource.org/docs/osd

[14] Cisco, “End user licence agreement”,
http://www.cisco.com/en/US/docs/general/warranty/English/EU1KEN
_.html

[15] Juniper Networks, “End user licence agreement”,
http://www.juniper.net/support/eula.html

[16] G. Lencse and S. Répás, "Performance analysis and comparison of the
TAYGA and of the PF NAT64 implementations" Proc. 36th
International Conference on Telecommunications and Signal
Processing (TSP-2013, July 2-4, 2013) Rome, Italy, pp. 71-76.

[17] G. Lencse and S. Répás, “Performance analysis and comparison of
different DNS64 implementations for Linux, OpenBSD and FreeBSD”,
Proc. 27th IEEE International Conference on Advanced Information
Networking and Applications (AINA-2013, March 25-28, 2013) Barce-
lona, Spain, pp. 877-884.

[18] “TAYGA: Simple, no-fuss NAT64 for Linux”
http://www.litech.org/tayga/

[19] Theo de Raadt, “The OpenBSD 5.1 Release”, May 1, 2012, ISBN 978-
0-9784475-9-5, http://www.openbsd.org/51.html

[20] Simon Perreault, “[Ecdysis-discuss] NAT64 in OpenBSD”,
http://www.viagenie.ca/pipermail/ecdysis-discuss/2011-
October/000173.html

[21] P. N. M. Hansteen, The Book of PF: A No-Nonsense Guide to the
OpenBSD Firewall, 2nd ed., San Francisco: No Starch Press, 2010.
ISBN: 978-1593272746

[22] “IPv6 HowTo for Backfire and Attitude Adjustment until 12.09”,
http://wiki.openwrt.org/doc/howto/ipv6

[23] “OpenVPN Community Wiki and Tracker”,
https://community.openvpn.net/openvpn/wiki/IPv6

[24] S. J. Vaughan-Nichols, “VoIP and instant messaging problem looming:
Skype doesn't support IPv6”, http://www.zdnet.com/voip-and-instant-
messaging-problem-looming-skype-doesnt-support-ipv6-7000007058/

