
Port Number Consumption of the NAT64
IPv6 Transition Technology

Sándor Répás, Tamás Hajas and Gábor Lencse

Abstract—Due to the depletion of the global IPv4 address pool,

the internet service providers will be able to supply their new

clients with IPv6 addresses only in the near future. The applica-

tion of the DNS64 and NAT64 technologies can enable the IPv6

only clients to communicate with the still dominant IPv4 only

servers. However, the clients of certain applications such as

HTTP and FTP use multiple sessions and thus they consume

multiple ports. This phenomenon may cause a lack of ports

situation at the NAT64 gateway. Therefore the port consump-

tion of the different applications is an important design parame-

ter of the NAT64 gateways. In this paper, the port consumption

of different NAT64 compatible applications was measured. It

was also determined what factors can influence the port con-

sumption of a web or an ftp client. The detailed description of

our measurement method is given. Our results can give a valua-

ble help for careful design and configuration of a NAT64 gate-

way.

Keywords—IPv6 deployment, IPv6 transition solutions, NAT64,

port numbers, lack of ports, Packet Filter, TAYGA.
→→→→

I. INTRODUCTION

It is well known since 1992 that the world is going to run
out of IPv4 addresses. IPv6 addresses could have been used
instead and they are still available since 1998 [1]. But the
deployment of the IPv6 protocol has just been started and
there are only few websites which use this protocol. Accord-
ing to Google statistics only the 2.8% of the network traffic
used IPv6 protocol on January 1, 2014 [2]. The depletion of
the global IPv4 address pool1 will be a huge driving force for
the deployment of IPv6 in the forthcoming years.

ISPs can hardly provide IPv4 addresses to new servers and
will not able to provide them to new subscribers. The lack of
IPv4 addresses may set back the spread of Internet and Inter-
net of things.

→ Manuscript received February 14, 2014.
The work of Sándor Répás was supported in the framework of TÁMOP

4.2.4. A/2-11-1-2012-0001 “National Excellence Program – Elaborating and
operating an inland student and researcher personal support system conver-
gence program” The project was subsidized by the European Union and co-
financed by the European Social Fund.

The work of Gábor Lencse was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0012: “Smarter Transport” – IT for co-operative transport
system – The Project is supported by the Hungarian Government and co-
financed by the European Social Fund.

This publication was supported by the Multidisciplinary Doctoral
School of the Faculty of Engineering Sciences, Széchenyi István University.

Sándor Répás, Tamás Hajas and Gábor Lencse are with the Department
of Telecommunications, Széchenyi István University, 1 Egyetem tér, Győr,
H-9026, Hungary (e-mail: repas.sandor@sze.hu, hajas@tilb.sze.hu,
lencse@sze.hu)

1 IANA delegated the last five “/8” IPv4 address blocks to the five Regional
Internet Registries in 2011 [3], of which APNIC has already depleted its
IPv4 address pool in 2011 and RIPE NCC did so in 2012 [4]. It means that
RIPE NCC also uses a more strict allocation policy for its very last /8 block.

The transition to IPv6 will take a long time, and it is a firm
fact that IPv4 and IPv6 will be in use parallel. The authors are
convinced that using NAT64 [5] and DNS64 [6] together is
one of the best solutions to have proper communication be-
tween an IPv6 only client and an IPv4 only server. There is a
need for further investigations in order to use NAT64 appro-
priately. (A brief description of its operation will be provided
later.)

We have also tested how the most used application proto-
cols could work through a NAT64 gateway [7]. In this paper,
we publish our research results on the port consumption of
those applications that were found NAT64 compatible in [7].

IP based applications need dedicated source and destina-
tion ports to identify each other in a session. The TCP and
UDP headers each contain only (twice) two bytes for this
purpose. It means that 216=65536 is the theoretical limit of
usable number of ports. Some applications need just a few
ports, but others (e.g.: opening a web page in a web browser)
need more. It is not an important topic, if just a few users sit
behind a NAT64 gateway, but in a provider environment it
can be a serious problem.

The authors of [8], [9] and [10] have already made some
research related to the port consumption of different applica-
tions, but not in a NAT64 environment. We believe that fur-
ther research on NAT64 is needed to help network operators.

The remainder of this paper is organized as follows: first,
the port numbers and their problems related to NAT64 solu-
tion is described, second, the research results related with port
numbers are surveyed, third, the applications and NAT64
implementations are selected for testing, fourth, the descrip-
tion of the test network and the testing method of each appli-
cations are given together with their results, and finally, our
conclusions are presented.

The volume of the IPv6 traffic of the Internet is expected
to explode in the following years and the networks should be
ready to cope with it. Thus our results are expected to give
valuable information to many network administrators when
selecting and configuring the appropriate IPv6 transition solu-
tion for their networks.

II. THE PORT NUMBER CONSUMPTION OF NAT64

In a communication process, it is inevitable to identify the
two parties. In a TCP/IP environment, the applications use the
combination of the source address + source port and destina-
tion address + destination port for this purpose. Some applica-
tions use multiple sessions at the same time, and all of the
sessions need different identifiers, consequently different
ports. This is especially significant in the case of browsing a
web page which contains many images or other embedded
objects.

If an IPv6 only client connects to an IPv4 only server, it
needs to use port numbers, too. To provide connectivity be-

tween an IPv6 only client and an IPv4 only server one can use
a stateful NAT64 gateway combined with a DNS64 server.
For an introduction to DNS64+NAT64, see our paper [7].

A stateful NAT64 gateway replaces the source port num-
ber of the incoming IPv6 packet to an unused one, and regis-
ters the original IPv6 source address, source port, the new
IPv4 source address and the new IPv4 source port in its inter-
nal database. Then it sends out an IPv4 packet using its own
IPv4 address as source address thus the IPv4 server addresses
its reply to the NAT64 gateway. When the gateway receives
the IPv4 answer it can look up the original source IP address
and port number of the packet and by using these data it can
create the IPv6 packet and send the IPv6 answer to the origi-
nating client.

Internet Assigned Numbers Authority (IANA) is the re-
sponsible organization, who coordinates the usage of the port
numbers [11]. The full 0-65535 port range is divided into
three segments:

• System ports (earlier: Well Known Ports): 0-1023
• User ports: (earlier: Registered ports): 1024-49151
• Dynamic ports (known as Private ports, too): 49152-

65535
Earlier the Dynamic port range was used for the NAT pro-

cess. Nowadays the NAT44 and NAT64 gateways use the
1024-65535 range. All of the clients behind the NAT gateway
have to share this range. If this range is not enough to serve all
of the clients of the NAT64 gateway because it has many
clients then it needs more public IPv4 addresses to multiply
the numbers of usable ports.

Even though we focus on NAT64, the port number con-
sumption problem exists with NAT44, too.

III. A SHORT SURVEY OF THE CURRENT RESEARCH

RESULTS

The port number usage of different applications was tested
in 2010 by Fourcot and Grelot [8]. First, the authors collected
statistics on a Linux gateway from the conntrack table by a
script in a 150 user environment. Then they made an experi-
ment with limited number of ports. They found that web
browsing and P2P file sharing are the most port eager applica-
tions.

The consequence of lack of ports was tested in 2011 by
Kraemer and Perrin in a DS Lite environment [9]. They con-
cluded that the lack of ports resulted in a very poor user expe-
rience.

Miyakawa presented some spectacular experiment by a
web browser with limited number of session usage [10]. He
also made a survey about how many sessions a web site uses.
He concluded that, some web sites use few hundreds of TCP
sessions concurrently and we have to carefully define how
many sessions will be allowed per user using any address
sharing scheme. For this reason, further study is needed to
satisfy the customers.

It is inevitable to do investigations in a NAT64 environ-
ment, because the port consumption of the various applica-
tions is a serious aspect of selecting and configuring an ap-
propriate NAT64 gateway. We believe that our results could
be utilized with many IP address sharing solutions.

IV. THE SCOPE OF OUR MEASUREMENTS

A. Application Selection for Testing

Only NAT64 compatible applications were chosen for the
tests. These applications and their detailed testing process can
be found in [7].

Protocols and their attributes are listed in table I.

TABLE I. APPLICATION PROTOCOLS, PROTOCOLS AND PORTS

Application protocol Transport

Protocol

Standard port

HTTP TCP 80
SMTP TCP 25
POP3 TCP 110
IMAP4 TCP 143
Telnet TCP 23
SSH, SCP TCP 22
FTP TCP 20,21
OpenVPN UDP/TCP 1194
RDP TCP 3389
Syslog UDP 514

B. NAT64 Implementation Selection

Our considerations of the selection of the NAT64 imple-
mentations can be found in [7]. The selected implementations
were: TAYGA [12] under Linux and the Packet Filter [13] of
OpenBSD.

While TAYGA is a so called one to one NAT64 solution
and needs an external stateful NAT44 solution (iptables under
Linux), Packet Filter is a stateful NAT64 solution. Their most
important characteristics can be found in [7] and their perfor-
mance were analyzed and compared in [14].

C. Our Measurements

The aim of our tests was to examine the port number con-
sumption of the selected applications at the NAT64 gateway.
All of the tests were executed both with TAYGA and Packet
Filter using as a NAT64 gateway, but the results were abso-
lutely the same.

Port consumption of the HTTP protocol was tested with
real web pages, while the other protocols were tested with
dedicated test servers in the laboratory.

The measurement methods and the results are detailed in
the rest of the paper.

V. HTTP MEASUREMENTS AND RESULTS

Ten web sites without IPv6 addresses were selected from
[15] to be used for the measurements. The domain names of
the selected web sites are shown in table II.

TABLE II. TESTED WEB SITES

Web pages

amazon.com

ask.com

baidu.com

ebay.com

linkedin.com

live.com

sohu.com

taobao.com

twitter.com

yandex.ru

Different combinations of operating systems and web
browsers were tested to explore what parameters may influ-
ence the port number consumption. The combinations were
the following:

Windows 7 Enterprise:
• Mozilla Firefox 21.0
• Internet Explorer 10.0.9200.16576
• Google Chrome 27.0.1453.110 m
• Opera 12.15

Debian Wheezy 7.1 Linux + KDE 4.8.4:
• Iceweasel 17.0.6
• Konqueror 4.8.4
• Google Chrome 28.0.1500.45

Ubuntu 12.04 LTS Linux:
• Mozilla Firefox 21.0

A. HTTP measurements

The topology of the network is shown in Fig. 1. The dif-
ferent web browsers were always executed on the IPv6 client
computer and the port usage measurements were taken on the
NAT64 gateway. The measurements were automated by
scripts including the remote starting and stopping of the ap-
propriate sub-scripts with appropriate timing. The timing of a
measurement is shown in Fig. 2.

A single measurement took 65 seconds. First the metering
was started with one second delay, and two more seconds
later the web browser was started. The web browser was

fd5c:6bc1:7bc7:ffff::1/64

fd5c:6bc1:7bc7:ffff::20/64

192.168.100.221/24

NAT64 + DNS64

IPv6 client computer

Lab network

(internet)

Figure 1. Topology of the HTTP test network.

t (s)

3 s
Web browser is running 60 s

Metering port consumption 65 s
1 s

Figure 2. Timing of a measurement.

closed after 60 seconds, and finally the metering was stopped
three more seconds later. These guard intervals were used to
avoid synchronization problems as (remote) starting and stop-
ping of processes took nonzero time.

All of the measurements were performed eleven times by
running a script on the client computer. Now, we start with
the scripts of the Linux clients as they are easier to follow.
Windows clients did the same task but they were more com-
plicated due to the less convenient remote execution of batch
files.

1) Linux Clients

The shell script below (starter.sh) was started and then
this script started all the necessary processes:
#!/bin/bash
a=[Actual URL]
b=[Actual folder]
for c in {1..11}
do
 ssh root@fd5c:6bc1:7bc7:ffff::1 \
 ./http_metering/$b/$a/http_meter.sh $c &
 sleep 3
 [actual browser] www.$a > /dev/null 2>&1 &
 sleep 60
 kill $(ps aux | grep [actual browser] | \
 awk '{print $2}') > /dev/null 2>&1
 sleep 5
done

Notes:
• The values of [Actual URL] and [Actual folder]

were set manually.
• This script is simple as parameters could be conven-

iently given to the remotely executed script.
The cache of Google Chrome was emptied from the script,

while caching was simply switched off in the other browsers
(as they allowed it).

2) Windows Clients

The script below (starter.bat) was started and then this
script started all the necessary processes:
set A=[Actual URL]
set B=[Actual folder]
FOR /L %%C IN (1,1,11) DO (
putty.exe -ssh root@fd5c:6bc1:7bc7:ffff::1 -pw lab –m
C:\Users\Administrator\Desktop\http_metering\%B%\%A%\rem
ote%%C.bat | start
C:\Users\Administrator\Desktop\http_metering\http_get.ba
t
)

Notes:
• The core of the FOR cycle is a single command line

(within parenthesis). It was broken up into several
lines by the word processor only.

• The single command line contains two commands
(putty.exe and start) issued simultaneously with
the help of the pipe (“|”) sign.

• Different batch scripts were used for every single re-
mote execution as we could not figure out how to give
parameters to the script executed remotely by using
putty.exe.

While the script used the SSH protocol to remotely start
the port number measurement script on the NAT64 gateway,
it started the web browsing with another script simultaneous-
ly. The script below (http_get.bat) was responsible for
opening the given web page and closing the browser 60 sec-

onds later. The caching function of Firefox and Opera web
browsers were switched off, and the cache of Internet Explor-
er and Google Chrome were erased with commands in the
previous script.
timeout 3
start www.[Actual URL]
timeout 60
taskkill /f /im [browser].exe
exit

The eleven remote[1-11].bat scripts, which were used
in the starter.bat script, were generated with the following
script:
set A=[Actual URL]
set B=[Actual folder]
cd http_metering
cd "%B%"
mkdir "%A%"
cd "%A%"
FOR /L %%C IN (1,1,11) DO (
echo ./http_metering/%B%/%A%/http_meter.sh %%C > re-
mote%%C.bat
)

3) Measurements with TAYGA

Two shell scripts were used for the measurements on the
NAT64 gateway. The following script (mkall.sh) was started
before every series of measurements:
#!/bin/bash
a=[Actual URL]
b=[Actual folder]
cd /root/http_metering/$b
mkdir $a
cd $a
for i in {1..11}
do
 mkdir $i
done

cat > http_meter.sh <<EOF
#!/bin/bash
conntrack -F
sleep 1
for j in {1..65}
do
 cat /proc/net/ip_conntrack > \
 /root/http_metering/$b/$a/\$1/writeout\$j
 sleep 1
done
EOF
chmod 700 http_meter.sh

This script was responsible to prepare the necessary direc-
tory structure and the measurement script.

The generated scripts emptied the conntrack table first,
and then they recorded the contents of the conntrack table in
every seconds.

The processing of the generated data files was done with
the following script:
#!/bin/bash
a=[Actual URL]
b=[Actual folder]
cd /root/http_metering/$b/$a
for h in {1..11}
do
 for i in {1..65}
 do
 c=$(cat /root/http_metering/$b/$a/$h/writeout$i \
 | grep src=10. | wc -l)
 printf "%s\t" "$c" >> \

 /root/http_metering/$b/$a/results
 done
 printf "\n" >> /root/http_metering/$b/$a/results
done

This script first filtered the private IPv4 addresses which
were generated by TAYGA, and then it counted the number
of them. These numbers were represented the used ports in
every seconds. The numbers were finally stored in the re-
sults file.

4) Measurements with Packet Filter

Two similar scripts were used for the measurements. The
following script (mkall.sh) was started before every series of
measurements:
#!/bin/ksh
a=[Actual URL]
b=[Actual folder]
cd /root/http_metering/$b
mkdir $a
cd $a
for i in $(jot 11 1)
do
 mkdir $i
done

cat > http_meter.sh <<EOF
#!/bin/ksh
pfctl –Fs #empty state table
sleep 1
for j in \$(jot 65 1)
do
 pfctl –ss > /root/http_metering/$b/$a/\$1/writeout\$j
 #print out state table
 sleep 1
done
EOF
chmod 700 http_meter.sh

The processing script was the following:
#!/bin/ksh
a=[Actual URL]
b=[Actual folder]
cd /root/http_metering/$b/$a
for h in $(jot 11 1)
do
 for i in $(jot 65 1)
 do
 c=$(cat /root/http_metering/$b/$a/$h/writeout$i \
 | grep tcp | grep 192.168.100.221 | wc -l)
 printf "%s\t" "$c" \
 >> /root/http_metering/$b/$a/results
 done
 printf "\n" >> /root/http_metering/$b/$a/results
done

B. HTTP results

1) Preleminary overview

A first overview of the results can be found in Table III.
The figures give the maximum number of ports consumed by
the given browser opening the given URL. Our very first
observations are:

• There is a huge difference between the least port con-
suming twitter.com (9-16 ports, depending on the
browser) and the most port consuming sohu.com web
page (122-198 ports).

• While the port consumption of some sites highly de-
pends on the browser (e.g. for baidu.com, it is 8 with
Windows/Explorer and 27 with Ubuntu/Firefox) the

TABLE III. MAXIMUM PORT USAGE OF DIFFERENT HTTP CLIENTS

a
m

a
zo

n
.c

o
m

a
sk

.c
o
m

b
a

id
u

.c
o
m

e
b

a
y

.c
o
m

li
n

k
e
d

in
.c

o
m

li
v

e
.c

o
m

so
h

u
.c

o
m

ta
o

b
a

o
.c

o
m

tw
it

te
r
.c

o
m

y
a

n
d

e
x
.r

u

Windows/Firefox 74 28 25 42 18 26 198 135 11 26
Windows/Opera 58 24 16 32 14 37 140 73 13 20
Windows/Explorer 67 24 8 37 15 21 123 77 14 19
Windows/Chrome 48 25 10 30 14 23 122 67 11 18
Debian/Chrome 52 32 13 48 23 39 122 72 16 23
Debian/Iceweasel 55 31 25 43 19 25 186 131 12 20
Debian/Konqueror 35 26 11 39 12 21 122 135 9 17
Ubuntu/Firefox 52 33 27 40 20 25 166 117 11 21

port consumption varies much less for others (e.g. for
ask.com, it is always between 24 and 33).

• Depending on the URL, the port consumption of the
same browser may differ significantly under different
operating systems (e.g. for ebay.com, Win-
dows/Chrome used 30 ports and Debian/Chrome used
48 ports).

Besides to the observations above, we have to lay down
that these figures are maximum values and if they would be
used instead of the real distribution of the port number con-
sumption, it may lead to too conservative estimations (de-
pending on the nature of the distribution). Thus, on the one
hand, we need to dive deeper. However, on the other hand,
there would be very desirable to replace the distributions by a
single number, because there are so many parameters that
consideration of the complete distributions may prevent us
from understating the main point.

2) Can the average values reflect the distribution?

Two significantly different cases were chosen for the
graphical representation of the minimum, maximum, average
values. Figures 3 and 4 show the [average - standard devia-
tion, average + standard deviation] intervals with the error
bars, too. Fig. 3 suggests that the value of the standard devia-
tion (typical value: about 8) is quite small compared to the
value of the average (typical value: about 139) thus the aver-
age can represent the distribution well enough. Fig. 4 shows a
counter example: here the value of the standard deviation is
comparable with that of the average (especially between 40
and 60 seconds).

Figure 3. Port usage of sohu.com with Ubuntu/Firefox.

However, if we would like to compare the port usage be-
havior of the different browsers in the function of time, the
eight graphs showing the average port usage of the eight test-
ed operating system and browser combinations are more than
enough in a single figure (further lines would make the figure
totally indigestible).

3) How does the browser influence the port number

consumption?

The average values of port consumption of all the tested
operating system and browser combinations with sohu.com
web page can be seen on Fig. 5.

Figure 4. Port usage of twitter.com with Debian/Iceweasel.

Figure 5. Average port usage of sohu.com with different browsers.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50 55

N
u

m
b

e
r

o
f

p
o

rt
s

Time (s)

sohu.com - Ubuntu/Firefox

Max.

Avg.

Min.

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50 55

N
u

m
b

e
r

o
f

p
o

rt
s

Time (s)

twitter.com - Debian/Iceweasel
Max.

Avg.

Min.

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50 55

N
u

m
b

e
r

o
f

p
o

rt
s

Time (s)

sohu.com

Windows/Firefox Windows/Opera Windows/Explorer

Windows/Chrome Debian/Chrome Debian/Iceweasel

Debian/Konqueror Ubuntu/Firefox

The differences of the combinations are clearly visible on
the graph. For example, the maximum value of the used port
numbers is 188.18 (Windows/Firefox), when the minimum
value is 107.82 (Debian/Chrome), which is a significant dif-
ference.

Linkedin.com uses much less number of ports as seen on
Fig. 6. In this case the difference is clearly visible, too. The
maximum value is 18.36 (Debian/Icewiesel), when the mini-
mum one is 10.82 (Debian/Konqueror), which is also a signif-
icant difference.

4) How does the operating system influence the port

number consumption?

There were two different web browsers (Firefox and
Chrome) that were tested on two platforms. While the results
were usually the same with the majority of web pages, signifi-
cant differences can be discovered with some other pages. For

Figure 6. Average port usage of linkedin.com with different browsers.

Figure 7. Average port usage of amazon.com with the same browsers on
different operating systems.

Figure 8. Average port usage of live.com with same browsers on different
operating systems.

example, the results of Firefox with amazon.com can be seen
on Fig. 7. The maximum value of the average port counts is
55 (Windows), when the minimum is 40.18 (Ubuntu).

The results of Chrome on two different operating system
can be seen on Fig. 8.

The maximum value of the number of used ports is 29.81
on Debian system, while at the same time the value on Win-
dows system is 21.27, which is a significant difference.

VI. FTP MEASUREMENTS AND RESULTS

The topology of the network is shown in Fig. 9. The IPv4
only server at the top of the figure was played the FTP server
role.

The scripts of the HTTP measurements were used with the
necessary modifications. Different combinations of operating
systems and FTP clients were tested like with the HTTP pro-
tocol. The combinations were the following:

Windows 7 Enterprise:
• FileZilla 3.7.3 (with 1 and 10 parallel down-

loadable files settings)
• Total Commander 8.01

Debian Wheezy 7.1 Linux:
• command line ftp 0.17-27
• Midnight Commander 4.8.3-10

fd5c:6bc1:7bc7:ffff::1/64

fd5c:6bc1:7bc7:ffff::20/64

192.168.100.221/24

NAT64 + DNS64

IPv6 only client

f2.tilb.sze.hu

192.168.100.22/24

IPv4 only server

Lab network

Figure 9. Topology of the FTP test network

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55

N
u

m
b

e
r

o
f

p
o

rt
s

Time (s)

linkedin.com

Windows/Firefox Windows/Opera Windows/Explorer

Windows/Chrome Debian/Chrome Debian/Iceweasel

Debian/Konqueror Ubuntu/Firefox

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55

N
u

m
b

e
r

o
f

p
o

rt
s

Time (s)

amazon.com

Windows/Firefox Ubuntu/Firefox

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50 55

N
u

m
b

e
r

o
f

p
o

rt
s

Time (s)

live.com

Windows/Chrome Debian/Chrome

The following file sizes and numbers were used for the
measurements:

• 100 MB
• 30 x 1 MB
• 100 x 1 MB
• 500 MB

A. FTP results

The results can be found in Table IV. Evaluation of the re-
sults:

• The number of used ports is nearly proportional
with the number of transferred files.

• The number of ports is always somewhat greater,
then the number of transferred files.

• Midnight Commander transfers different directo-
ry listings, which is the explanation of the high
value in the case of the transfer of just one file.

• Filezilla with the setting of 10 parallel transfers
allowed uses 9 extra ports, in contrast with the 1
transfer case.

TABLE IV. MAXIMUM NEEDS OF PORTS OF DIFFERENT FTP CLIENTS

File size (MB) 100 30 x 1 100 x 1 500

Debian/FTP 2 32 102 2
Debian/MC 10 39 109 10
Windows/TC 3 32 102 3
Windows/Filezilla 1 par. 4 33 103 4
Windows/Filezilla 10 par. - 42 112 -

VII. TELNET, SSH, SCP, OPENVPN, SMTP, POP3,
IMAP4, RDP, SYSLOG

All of these protocols were tested mainly manually, be-
cause of the simplicity. The SCP protocol was tested with the
same files as the FTP one. All of them used just one source
port in the communication process.

VIII. CONSLUSIONS

Due to the exhaustion of the IPv4 address pool, the inter-
net service providers will not be able to provide IPv4 address-
es to an increasing number of clients. The application of
NAT64+DNS64 could be a good solution in this case, but the
network architects have to consider the number of users and
their typical network usage. For a good user experience, it is
indispensable to allocate enough public IPv4 addresses for the
NAT64 gateway to satisfy all users. The number of ports
needed by a user mostly depends on what applications he/she
uses. We have shown that HTTP and FTP applications can
consume a large number of ports while others use just one per
session.

The port consumption of web browsing varies from sever-
al tens to several hundreds and highly depends on the web
site, but also depends on the browser and it may even depend
on the client operating system, too.

The port consumption of the file transfers with FTP de-
pends on the number of the transferred files, on the type of the
FTP client and also on the permitted number of parallel trans-
fers.

We conclude that the port number consumption of espe-
cially of the web applications is a crucial parameter in the
capacity planning of NAT64 gateways and therefore it de-
serves further analysis. We plan to do so and hereby we invite
other researchers to take part in it.

REFERENCES

[1] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification”, IETF, December 1998. (RFC 2460)

[2] Google, “IPv6 Adoption”, http://www.google.com/ipv6/statistics.html

[3] The Number Resource Organization, “Free pool of IPv4 address space
depleted” http://www.nro.net/news/ipv4-free-pool-depleted

[4] RIPE NCC, “RIPE NCC begins to allocate IPv4 address space from the
last /8”, http://www.ripe.net/internet-coordination/news/ripe-ncc-
begins-to-allocate-ipv4-address-space-from-the-last-8

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF, April 2011. ISSN: 2070-1721 (RFC 6146)

[6] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147)

[7] S. Répás, T. Hajas and G. Lencse, "Application Compatibility of the
NAT64 IPv6 Transition Technology" Proc. 37h International
Conference on Telecommunications and Signal Processing (TSP-2014,
July 1-3, 2014) Berlin, Germany

[8] F. Fourcot, B. Grelot, “Migrating to IPv6 with Address+Port
translation”, SLR Project Report, March 2010,
https://svn.fperrin.net/v6fication/documentation/rapport-Fourcot-
Grelot.pdf

[9] I. Kraemer, F. Perrin, “Impact of the lack of ports in a DS-Lite
architecture”, https://svn.fperrin.net/v6fication/article/simulation.pdf

[10] S. Miyakawa, “IPv4 to IPv6 Transformation Schemes”, IEICE
Transactions on Communications, vol. E93-B, no 5, May 2010, pp.
1078-1084

[11] “Service Name and Transport Protocol Port Number Registry”
http://www.iana.org/assignments/service-names-port-numbers/service-
names-port-numbers.txt

[12] “TAYGA: Simple, no-fuss NAT64 for Linux”
http://www.litech.org/tayga/

[13] P. N. M. Hansteen, The Book of PF: A No-Nonsense Guide to the
OpenBSD Firewall, 2nd ed., San Francisco: No Starch Press, 2010.
ISBN: 978-1593272746

[14] G. Lencse and S. Répás, "Performance Analysis and Comparison of the
TAYGA and of the PF NAT64 Implementations", Proceedings of the
36th International Conference on Telecommunications and Signal
Processing (TSP 2013), (Rome, Italy, 2013. July, 2-4.), 71-76.

[15] Alexa, "The top 500 sites on the web", http://www.alexa.com/topsites

