

Abstract— During the IPv6 deployment there is a frequently

occurring situation where two IPv6 enabled hosts need to

communicate with each other over a network that supports only

IPv4. Application of the 6to4 IPv6 transition method can solve

this problem. The performance and stability of the different 6to4

relay implementations is a very important subject. We measured

the performance and tested the stability of three open source

6to4 relay implementations under Debian Linux, OpenBSD and

OpenWRT platforms. We present and discuss our results,

analyze the stability of the 6to4 relay implementations and

compare their performance metrics. Our measurements methods

may be useful for other researchers, and our results may help the

system architects to choose the appropriate solution.

Keywords—6to4 relay, IPv6 transition, network

communication, performance evaluation, stability analysis

I. INTRODUCTION

OR more than two decades it is a known fact, that the size

of the IPv4 address space is insufficient [1]-[2]. The lack

of the IP addresses withholds the spread of the Internet

and causes social and economic damage.

To prevent the IP address exhaustion, a new version of the

Internet Protocol, the IPv6 has been developed. IPv6 was

standardized in 1998 and published in the RFC 2460 [3], but

it has not been widespread adopted. According to the

statistics, less than 5.5% of the total amount of the traffic

reached the Google servers used IPv6 protocol in December

2014 [4]. Three of the five Regional Internet Registries (RIR)

already run out of their IPv4 address spaces [5]. The five

RIRs have only 5.2 /8 ranges in total, whereas the IANA does

not have more address space to assign to the five RIRs since 3

February 2011 [6]. The RIRs work according to strict policies

and for a service provider it is a harder task than ever to get

IPv4 address spaces. The speed up of the transition to the new

protocol is inevitable. Several IPv6 transition techniques have

been developed, which can help the process in different

phases of the adoption of the new protocol on the Internet.

There are different situations to solve during the

coexistence of the two versions of the IP protocol in the

different phases of the transition process:

In theory, the best solution is the Dual Stack (DS) transition

method [7], but with the requirements that the two

Manuscript received February 20, 2015.

S. Répás is with the Széchenyi István University, Győr, 9026 Hungary

(phone: 36-30-459-9292; e-mail: repas.sandor@sze.hu).

V. Horváth was with the Széchenyi István University, Győr, 9026

Hungary (e-mail: vhorvath@biztributor.hu).

G. Lencse is with the Széchenyi István University, Győr, 9026 Hungary

(E-mail: lencse@sze.hu).

communicating hosts and the network between them have to

support a common version of the IP protocol, and because of

the IPv4 exhaustion, there is not enough IPv4 addresses to use

this solution. Thus, even though it could have been the best

solution, now it is too late for using DS as an IPv6 transition

method.

In a situation where an IPv6 only client computer needs to

communicate with an IPv4 only server the DNS64 [8] and

NAT64 [9] combination is a good solution. The performance,

the stability and the application compatibility of some open

source implementations of DNS64/NAT64 are examined and

proved in [10]-[12].

If two IPv6 enabled hosts need to communicate with each

other over an IPv4 network, they can use different tunneling

methods. The 6in4 (also called manual tunnel) [13] with

tunnel brokers [14]-[15], 6rd [16], Teredo [17] ISATAP [18]

and 6to4 [19] have different requirements, benefits and

drawbacks.

The above list is not exhaustive and a good survey of the

different transition techniques can be found in [20].

The remainder of this paper is organized as follows: first,

some properties of the 6to4 transition technique are

introduced, second, a short survey of the results of the most

current publications is given, third, the selected 6to4 relay

implementations are introduced, fourth, our test environment

is described, fifth, the performance measurement method of

the different implementations is detailed, sixth, the results are

presented and discussed, seventh, the comparison of our

results is presented, finally, our conclusions are given.

II. THE 6TO4 TRANSITION TECHNIQUE

The 6to4 transition technique uses automatic tunnels,

encapsulates the IPv6 packets into IPv4 packets [19] (using

protocol number 41, as the configured IPv6 over IPv4 tunnel

[21]). The main advantage of the automatic tunneling is the

unnecessity of the manual configuration of the endpoint

address of the tunnel. Automatic IPv6-over-IPv4 tunneling

determines the IPv4 tunnel endpoint address from the IPv4

address embedded in the destination address of the IPv6

packet being tunneled. 6to4 protocol uses the reserved

2002::/16 6to4 prefix [22] to determine if a 6to4 tunnel

creation is necessary. A 6to4 address is an IPv6 address

constructed using a 6to4 prefix. The first 16 bits of the 6to4

address contain the 2002 hexadecimal value, whereas the next

32 bits contain the IPv4 address of the 6to4 tunnel endpoint.

The next 16 bits can be used to create subnets, and the final

64 bits of the 6to4 address contain the interface ID.

A 6to4 router is an IPv6 router supporting a 6to4 pseudo-

interface. It is normally the border router between an IPv6 site

Stability Analysis and Performance Comparison of

Three 6to4 Relay Implementations
Sándor Répás, Viktor Horváth, and Gábor Lencse

F

and a wide-area IPv4 network, whereas the 6to4 pseudo-

interface is the point of the encapsulation of the IPv6 packets

in the IPv4 packets (with other words: the tunnel end-point)

[19]. If a 6to4 host have to communicate with a non 6to4 host

(for example: native IPv6, Teredo) it needs to use a 6to4 relay

router.

Several operating systems can work as a 6to4 router or 6to4

relay router, but for the correct operation, the 6to4 routers and

relay routers need public IPv4 addresses.

A 6to4 relay router can be private or public. Public 6to4

relays use the 192.88.99.1 anycast address [23] from the

192.88.99.0/24 6to4 Relay anycast address range [24]. An

estimation of the 6to4 relay routers published in 2006 [25].

According to the publication, 8 autonomous systems (AS-es)

advertised the 192.88.99.0/24, whereas 6 AS-es advertised the

2002::/16 networks. At the end of the year 2014 these values

were 14 and 11, according to the RIPEstat database [26].

It is a good practice, if the Internet Service Provider (ISP)

provides a 6to4 relay for its customers in addition to other

transition solutions. In this case the relay does not have to be

public, and it can use the well-known anycast address, or a

network specific address.

Though some security weaknesses are known of the 6to4

transition technique [27], it helps the implementation of the

IPv6 protocol without the cooperation of the ISP.

More details of the operation of the 6to4 technique can be

found in the publication [28], and in the related RFCs ([19],

[24] and [27].

III. TESTED IMPLEMENTATIONS

The following widely used open source [29] (also called

free software [30]) operating systems and their 6to4

implementations were chosen for the tests: Debian Linux sit,

FreeBSD stf interface, OpenWRT 6to4 plus kmod-sit

packages. The open source software can be freely used by

anyone, and their licenses allow the performance benchmarks.

These two arguments were the most important ones in our

selection of the implementations for testing.

The following software versions were used:

 Debian 7.1.0_x86 – sit (obsolete)

 OpenWRT (Attitude Adjustment) 12.09_x86 – sit

 FreeBSD 9.1_x86 – stf.

D-Link DGS-1100-24

3com Baseline 2948-SFP
Plus 3CBLSG48

Dell Precision 490

10 x Dell Precision 490

debianhost1

6to4 clients

IPv6
responder

IPv4: 193.225.151.66/28

IPv4: 193.225.151.65/28

IPv4: 193.225.151.75/28

6to4: 2002:c1e1:9741::1/16

6to4: 2002:c1e1:9742::1/16 6to4: 2002:c1e1:974b::1/16

Native IPv6:

babe:b00b::2/64

Pentium
III

6to4 relay
router

IPv4: 193.225.151.78/28

6to4: 2002:c1e1:974e::1/16

Native IPv6: babe:b00b::1/64

Fig. 1. Topology of the test network

IV. TEST ENVIRONMENT

A. Topology of the Network

An isolated test network was built for the performance and

the stability measurements. The topology of the network can

be seen in Fig. 1. Due to the isolation, any IPv4 and IPv6

addresses could be used on the network. The computer on the

top of the figure played the role of the “internet” and

responded all of the queries. The queries were generated by

the 10 client computers which can be seen on the bottom of

the figure. These computers played the role of the large

number of the clients. The clients sent their queries by 6to4

through the 6to4 relay router to the “internet” computer.

These queries were generated different levels of load on the

6to4 relay computer during the measurement process. The

load was tuned by the number of the active clients. The laptop

and the connecting switch on the right side of the figure were

used for the control of the experiments.

B. Hardware Configurations

1000Base-TX connections were used on all of the network

segments.

A specially low performance computer was built for the

6to4 relay computer so that the client computers could

produce high enough load for overloading it. The main goal of

the measurements was the comparison of the different

implementations and not any hardware related investigation.

The 6to4 relay computer had an Intel D815EE2U

motherboard, an Intel Pentium III (800MHz) processor,

128MB (100MHz) SDRAM and two TP-LINK TG-3269

REV 3.0 Gigabit PCI Ethernet NICs.

All of the ten clients and the responder computer were Dell

Precision 490 workstations with same configuration: DELL

0GU083 motherboard with Intel 5000X chip-set, two Intel

Xeon 5140 2.33GHz dual core processors (in the responder:

Intel Xeon 5160 3GHz), 4x1GB 533MHz DDR2 SDRAM

(accessed quad channel) and Broadcom NetXtreme BCM5752

Gigabit Ethernet controller (PCI Express).

C. Software configurations

Debian Linux 6.0.7 with 2.6.32-5-amd64 kernel and

OpenBSD 5.3 64 bit version were installed on the clients, and

the responder, respectively.

On the responder, NAT66 was used to simulate servers

with different IPv6 addresses. The packets of the clients were

redirected the computer itself, so that it can reply to them.

All of the client computers used sit interfaces and they used

the network settings shown in Fig 1.

V. MEASUREMENT METHOD

The load was generated by ping6 commands with the

following Bash shell script:
#!/bin/bash
i=`cat /etc/hostname | grep -o '[0-9]'`
for b in {0..255}
do
 rm -rf $b
 mkdir $b
 for c in {0..252..4}
 do

 ping6 2001:738:2c01:8000::193.$i.$b.$c \
 -c8 -i0 >> $b/6to4-193-$i-$b-$c &
 ping6 2001:738:2c01:8000::193.$i.$b.$c \
 -c8 -i0 >> $b/6to4-193-$i-$b-$c &
 ping6 2001:738:2c01:8000::193.$i.$b.$((c+1)) \
 -c8 -i0 >> $b/6to4-193-$i-$b-$((c+1)) &
 ping6 2001:738:2c01:8000::193.$i.$b.$((c+1)) \
 -c8 -i0 >> $b/6to4-193-$i-$b-$((c+1)) &
 ping6 2001:738:2c01:8000::193.$i.$b.$((c+2)) \
 -c8 -i0 >> $b/6to4-193-$i-$b-$((c+2)) &
 ping6 2001:738:2c01:8000::193.$i.$b.$((c+2)) \
 -c8 -i0 >> $b/6to4-193-$i-$b-$((c+2)) &
 ping6 2001:738:2c01:8000::193.$i.$b.$((c+3)) \
 -c8 -i0 >> $b/6to4-193-$i-$b-$((c+3)) &
 ping6 2001:738:2c01:8000::193.$i.$b.$((c+3)) \
 -c8 -i0 >> $b/6to4-193-$i-$b-$((c+3))
 done
done

During the preliminary measurements the script was tuned

to generate about 100% load on the CPU of the 6to4 relay

computer with 10 clients.

The variable i contains the serial number of the actual

client. The script contains two nested for cycles. The outer

cycle with variable b from 0 to 255 runs 256 times, while the

inner cycle with variable c from 0 to 252 (with stepping

interval 4) runs 64 times. The core of the script contains 4

pairs of concurrent ping6 commands. Each of them sends out

8 ICMPv6 echo requests with almost zero time interval, in

parallel, whereas the first 7 of them are started

asynchronously with the & parameter. The last ping6

command at the end of the cycle is started normally thus the

cycle waits for the execution of it. In a measurement, one

client sends out 256*64*8*8= 1048576 ICMP echo requests

in total to 256*64*4= 65536 different IP addresses.

In the series of measurements, the number of the clients

was increased from one to ten. On the 6to4 relay computer,

the vmstat command was used to log the CPU and memory

consumption. For the proper operation of the vmstat, -10 nice

value was used.

VI. MEASUREMENT RESULTS

The results are presented in similar tables for all the tested

6to4 implementations. A detailed explanation is given for the

first table only – the others are to be interpreted in the same

way.

A. Debian 7.1.0_x86 – sit

The results have been listed in Table I. The first row shows

the number of clients that executed the test script at the same

time. The generated load on the 6to4 relay was proportional

with the number of the clients. The second row contains the

packet loss ratio. Rows 3, 4 and 5 show the average, the

standard deviation and the maximum value of the response

time, respectively. The average and the standard deviation of

the CPU utilization of the 6to4 relay computer are shown in

the rows 6 and 7. Row 8 contains the memory consumption of

the 6to4 process on the relay computer. (This parameter can

be measured with high uncertainty, because its value is very

low and other processes than the 6to4 relay implementation

may also influence the size of the used memory of the

computer.) The last row shows the number of forwarded

packets per seconds.

The graphical representation of the forwarded packets per

second and the CPU utilization are shown in Fig. 2.

TABLE I. DEBIAN LINUX – SIT 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10

Packet loss (%) 0.002 0.006 0.008 0.013 0.020 0.035 0.035 0.037 0.048 0.061

Response time

(ms)

Average 0.287 0.353 0.445 0.566 0.710 0.868 1.043 1.209 1.411 1.626

Std. dev. 0.174 0.248 0.353 0.423 0.509 0.588 0.685 0.722 0.832 0.864

Maximum 27.900 28.400 28.500 28.900 29.400 30.700 31.100 34.100 32.800 39.600

CPU Utilization

(%)

Average 1.756 4.821 12.933 31.243 52.964 69.049 81.319 88.941 93.206 96.132

Std. dev. 1.944 2.811 5.619 12.215 16.379 16.493 12.690 9.817 5.289 7.388

Memory consumption (kB) 10.855 10.418 10.363 10.594 10.824 10.996 10.855 10.994 10.828 11.137

Traffic volume (packets/sec) 18051 33953 46856 56534 62853 66947 69663 72304 73129 73050

TABLE II. OPENWRT (ATTITUDE ADJUSTMENT) 12.09_X86 – SIT 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10

Packet loss (%) 0.004 0.006 0.007 0.013 0.018 0.026 0.036 0.064 0.079 0.089

Response time

(ms)

Average 0.314 0.402 0.568 0.733 0.909 1.118 1.358 1.616 1.873 2.160

Std. dev. 0.161 0.239 0.330 0.420 0.508 0.583 0.652 0.705 0.773 0.829

Maximum 25.000 25.300 25.500 25.500 26.500 27.100 27.000 27.100 27.300 28.100

CPU Utilization

(%)

Average 10.067 45.015 70.713 87.188 94.979 97.540 98.467 98.916 99.066 99.288

Std. dev. 3.188 5.593 5.828 9.376 7.954 7.462 4.991 4.567 4.824 4.410

Memory consumption (kB) 10.316 10.414 10.359 10.727 10.469 10.324 10.746 10.492 10.066 10.469

Traffic volume (packets/sec) 17595 32488 41906 49270 54196 56920 58272 58928 59332 58763

TABLE III. FREEBSD 9.1_X86 – STF 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10

Packet loss (%) 0.013 0.008 0.010 0.012 0.013 0.015 0.017 0.018 0.019 0.019

Response time

(ms)

Average 0.315 0.456 0.681 0.941 1.268 1.637 2.011 2.385 2.740 3.126

Std. dev. 0.111 0.171 0.314 0.404 0.450 0.457 0.463 0.466 0.480 0.490

Maximum 22.200 9.220 12.800 15.400 17.600 18.100 18.800 18.500 19.600 19.400

CPU Utilization

(%)

Average 51.525 77.110 88.994 96.380 98.482 99.435 99.395 99.371 99.462 99.859

Std. dev. 6.899 5.140 6.465 7.398 7.593 3.447 5.336 6.445 5.971 0.475

Memory consumption (kB) 0.008 0.012 0.012 0.273 0.395 0.398 0.445 0.406 0.500 0.492

Traffic volume (packets/sec) 17594 30656 37613 41982 43681 43892 43875 43819 43970 43737

Fig. 2. Linux sit forwarded packets and CPU utilization

Fig. 3. OpenWrt sit forwarded packets and CPU utilization

Fig. 4. FreeBSD stf forwarded packets and CPU utilization

Evaluation of the results:

Despite the fact that packet loss occurred in all cases, the

proportion of it was always very low and it increased with

more clients. (The maximum value of it was 0.061% with ten

clients, which means about 6 packets from 10.000 packets

were lost.)

The average, the standard deviation and the maximum

value of the response times were increasing with higher load

on the 6to4 relay computer, but the average value did not

exceed 1.63 milliseconds with ten clients.

The CPU utilization were increasing continuously, but not

linearly.

The deviation of the CPU utilization were higher with 4, 5,

6 and 7 clients, which indicates some fluctuation in the

utilization.

The memory consumption was almost constant and very

low, and the maximum value of it was 11.14kB with ten

clients.

The traffic volume increased until the system reached its

limit with 9 clients. With 10 clients, the number of transferred

packets were slightly decreased from 73129 to 73050.

A. OpenWRT (Attitude Adjustment) 12.09_x86 – sit

The results have been listed in Table II, whereas the

graphical representation of the forwarded packets per second

and the CPU utilization are shown in Fig. 3.

Evaluation of the results:

The packet loss ratio was always very low and it strictly

increased with the number of clients. The maximum value of

it was 0.089% with ten clients.

The average and the standard deviation value of the

response times were increasing with higher load on the 6to4

relay computer, but the average value did not exceed 2.16

milliseconds with ten clients.

The CPU utilization with two clients was 4.5 times greater

than the value of one client. Then the slope was reduced, until

the CPU approached its maximum capacity with 6 clients.

The standard deviation of the CPU utilization were under

10% in each case, which indicates consistent utilization of the

CPU.

The memory consumption was almost constant and very

low, and the maximum value of it was 10.75kB with seven

clients.

The traffic volume increased until the system reached its

limit with 9 clients. With 10 clients, the number of transferred

packets were decreased by 0.97% from 59332 to 58763.

B. FreeBSD 9.1_x86 – stf

The results have been listed in Table III, whereas the

graphical representation of the forwarded packets per second

and the CPU utilization are shown in Fig. 4.

Evaluation of the results:

The packet loss ratio was always very low and starting from

two clients it increased with the number of clients, whereas

the value of it was the same with one and five clients. The

maximum value of it was 0.019% with ten clients.

The average and the standard deviation value of the

response times were increasing with higher load on the 6to4

relay computer, but the average value did not exceed 3.13

milliseconds with ten clients. The maximum value of the

response times showed some fluctuation

One client could generate 51.53% load on the CPU. The

CPU utilization was increasing continuously, but not linearly,

until the CPU reached its almost maximum capacity (99.44%)

with 6 clients.

The standard deviation of the CPU utilization was under

10% in each case, whereas it was very small (0.46%) with ten

clients. This phenomenon indicates consistent utilization of

the CPU.

The memory consumption was extremely low and it was

growing almost continuously.

The traffic volume increased until the system reached its

limit with 6 clients. From this point the throughput of the

system started very slightly fluctuating. The maximum value

of the number of transferred packets per second was 43970

with 9 clients.

VII. COMPARISON OF THE RESULTS

All of the tested implementations proved to be reliable and

the packet loss ratios of the different implementations were

always very low. The packet loss ratio of the Linux and

OpenWrt implementations seriously increased with the

number of clients, whereas the packet loss of FreeBSD stf did

not show much increase in the function of the load.

Under high load conditions, Linux sit tunnel forwarded the

most packets per second and OpenWrt sit was the second one.

The FreeBSD system was the last competitor in the

performance comparison. At 10 clients, Linux outperformed

FreeBSD by 1.67 times.

All of the implementations use negligibly small amount of

memory, which is usually proportional to the generated load.

With one client, all of the implementations forwarded

similar number of packets, but with significantly different

CPU utilization, which property can explain the high degree

of difference in the performance with more clients. Linux sit

6to4 relay implementation used 1.76% of CPU with one

client, whereas FreeBSD stf used 51.53%, which means about

29 times difference.

VIII. CONCLUSION

The 6to4 protocol is a useful transition technique in a

situation, where two IPv6 enabled hosts have to communicate

over an IPv4 only network. All of the tested open source 6to4

relay implementations are viable solutions in production

networks, but Linux sit showed the best performance

characteristics, whereas OpenWrt sit was the second best one.

In an environment, where a BSD system is preferred,

FreeBSD stf is a usable solution as well.

The authors believe that their work has contributed to the

early adoption of the IPv6 protocol and the published results

and methodology are valuable for both researchers and

network professionals.

ACKNOWLEDGEMENT

The measurement of the performances of the different 6to4

implementations was the BSc thesis (final project) work of the

second author at the Dept. of Telecommunications, Széchenyi

István University under the supervision of the third author.

REFERENCES

[1] S. Bradner and A. Mankin, “The recommendation for the IP next

generation protocol,” IETF, January 1995. (RFC 1752)

[2] M. Waiser, “Whatever happened to the Next-Generation Internet?,”

Communications of the ACM, vol. 44, pp. 61-69, Sep. 2001.

[3] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6)

specification,” IETF, December 1998. (RFC 2460)

[4] Google, “IPv6 statistics”, http://www.google.com/ipv6/statistics.html

[5] G. Huston, “IPv4 address report,” Available:

http://www.potaroo.net/tools/ipv4/index.html

[6] L. Smith and I. Lipner, “Free pool of IPv4 address space depleted,”

Number Resource Organization, February 2011. Available:

https://www.nro.net/news/ipv4-free-pool-depleted

[7] E. Nordmark and R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers,” IETF, October 2005. (RFC 4213)

[8] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS

extensions for network address translation from IPv6 clients to IPv4

servers,” IETF, April 2011. ISSN: 2070-1721 (RFC 6147)

[9] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: network

address and protocol translation from IPv6 clients to IPv4 servers,”

IETF, April 2011. ISSN: 2070-1721 (RFC 6146)

[10] G. Lencse and S. Répás, “Performance analysis and comparison of

different DNS64 implementations for Linux, OpenBSD and FreeBSD,”

in Proc. 27th IEEE Int. Conf. on Advanced Information Networking

and Applications (AINA-2013), Barcelona, 2013, pp. 877-884. DOI:

10.1109/AINA.2013.80

[11] G. Lencse and S. Répás, "Performance analysis and comparison of the

TAYGA and of the PF NAT64 implementations," in Proc. 36th Int.

Conf. on Telecommunications and Signal Processing (TSP-2013),

Rome, 2013, pp. 71-76. DOI: 10.1109/TSP.2013.6613894

[12] S. Répás, T. Hajas and G. Lencse, “Application compatibility of the

NAT64 IPv6 transition technology,” in Proc. 37th Int. Conf. on

Telecomm. and Signal Proc. (TSP-2014), Berlin, 2014, pp. 49-55.

[13] A. Conta and S. Deering, “Generic packet tunneling in IPv6

specification,” IETF, December 1998. (RFC 2473)

[14] SixXS - IPv6 Deployment & Tunnel Broker,

https://www.sixxs.net/main/

[15] Hurricane Electric Free IPv6 Tunnel Broker, https://tunnelbroker.net/

[16] R. Despres, “IPv6 rapid deployment on IPv4 infrastructures (6rd),”

IETF, January 2010. ISSN: 2070-1721 (RFC 5569)

[17] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network

Address Translations (NATs),” IETF, February 2006. (RFC 4380)

[18] F. Templin, T. Gleeson and D. Thaler, “Intra-Site Automatic Tunnel

Addressing Protocol (ISATAP),” IETF, March 2008. (RFC 5214)

[19] B. Carpenter and K. Moore, “Connection of IPv6 domains via IPv4

clouds,” IETF, February 2001. (RFC 3056)

[20] P. Wu, Y. Cui, J. Wu, J. Liu, and C. Metz, “Transition from IPv4 to

IPv6: A state-of-the-art survey,” IEEE Communications Surveys &

Tutorials, vol. 15, pp. 1407-1424, Jul. 2013.

[21] R. Gilligan and E. Nordmark, “Transition mechanisms for IPv6 hosts

and routers,” IETF, August 2000. (RFC 2893)

[22] M. Cotton, L. Vegoda, R. Bonica and B. Haberman, “Special-purpose

IP address registries,” IETF, April 2013. ISSN: 2070-1721 (RFC 6890)

[23] C. Partridge, T. Mendez and W. Milliken, “Host anycasting service,”

IETF, November 1993. (RFC 1546)

[24] C. Huitema, “An anycast prefix for 6to4 relay routers,” IETF, June

2001. (RFC 3068)

[25] D. Malone, “Counting 6to4 relay routers,” SIGCOMM Computer

Communication Review, vol. 36, pp. 79-82, Jan. 2006.

[26] RIPEstat, https://stat.ripe.net

[27] P. Savola and C. Patel, “Security considerations for 6to4,” IETF,

December 2004. (RFC 3964)

[28] G. Lencse and S. Répás, “Performance analysis and comparison of 6to4

relay implementations,” International Journal of Advanced Computer

Science and Applications, vol. 4, pp. 13-21, Sep. 2013. DOI:

10.14569/IJACSA.2013.040903

[29] Open Source Initiative, “The open source definition”,

http://opensource.org/docs/osd

[30] Free Software Foundation, “The free software definition”,

http://www.gnu.org/philosophy/free-sw.en.html

