

Abstract—DNS64 is going to be an important service (together

with NAT64) in the upcoming years of the IPv6 transition

enabling the clients having only IPv6 addresses to reach the

servers having only IPv4 addresses (the majority of the servers

on the Internet today). This paper describes the design of

MTD64, a flexible, easy to use, multi-threaded DNS64 proxy

published as a free software under the GPLv2 license. All the

theoretical background is introduced including the DNS message

format, the operation of the DNS64+NAT64 solution and the

construction of the IPv4-embedded IPv6 addresses. Our design

decisions are fully disclosed from the high level ones to the

details.

Keywords—AAAA record, A record, DNS, DNS64, domain

names, IPv4, IPv6, IPv6 transition.

I. INTRODUCTION

NS64 is expected by the authors to become a widespread

 used service during the upcoming phase of the IPv6

 transition because the ISPs (Internet Service Providers)

will not be able to assign public IPv4 addresses to their new

clients due to the depletion of the public IPv4 address pool

[1]. The clients will get IPv6 addresses instead but the vast

majority of the Internet servers still use IPv4 only. The

combination of the DNS64 [2] service and the NAT64 [3]

gateways can be a suitable solution for this problem [4]. To

use this solution, a DNS64 server has to be set as the DNS

server in the IPv6 only computers. When a client program

(e.g. web browser) requests a domain name resolution for the

domain name of a server which it wants to connect to, then the

DNS64 server acts like a proxy: it uses the normal DNS

system to find out the IP address. If the DNS64 server gets an

IPv6 address from the DNS system then it simply returns the

IPv6 address to the client. However, if it gets no IPv6 address

but only IPv4 address (recall that it happens in the vast

majority of the cases today) then it synthesizes a so called

IPv4-embedded IPv6 address [5] and it returns the

synthesized IPv6 address to the client. In this case, the

communication of the IPv6 only client and the IPv4 only

server will happen with the help of a NAT64 gateway. See

more details later in this paper.

There are a number of free software [6] (also called open

source [7]) DNS64 implementations, e.g. BIND, Unbound,

PowerDNS or TOTD but even the smallest of them, TOTD

has about 10,000 lines of source code (excluding the source of

SWILL, its built-in web server) [8]. In this paper, we propose

Manuscript received January 27, 2015.

G. Lencse is with the Department of Networked Systems and Services,

Budapest University of Technology and Economics, 2 Magyar tudósok

körútja, Budapest, Hungary (e-mail: lencse@hit.bme.hu).

A. Soós was with Department of Networked Systems and Services,

Budapest University of Technology and Economics, 2 Magyar tudósok

körútja, Budapest, Hungary (e-mail: soos.gabor.andras@gmail.com).

MTD64, a tiny Multi-Threaded DNS64 server, which one is

very small in code size but it is still flexible and convenient.

The remainder of this paper is organized as follows. First,

the theoretical background is introduced to the reader: the

DNS message format, the operation of the DNS64+NAT64

solution and the construction of the IPv4-embedded IPv6

addresses are described. Second, our design decisions are

presented from the high level ones to the details. Third, our

future plans are summarized. Finally, our conclusions are

given.

II. THEORETICAL BACKGROUND

A. Format of the DNS Messages

The DNS64 server has to work with various DNS

messages: it must interpret, forward, prepare or synthesize

them. Therefore we give a brief summary of the DNS message

format [9].

DNS messages between a client and a server are usually

travel over UDP because both the requests and replies are

usually short and sending them over UDP is much faster than

establishing a TCP connection using the three-way handshake

before the client-server communication and closing it at the

end using the four-way handshake. If some of the messages

happen to be lost then they can be resent.

1) Top Level Structure

A DNS message is built up by five sections: its Header

section is always 12 bytes long and it is followed by four

variable length sections (some of them may be empty):

Question, Answer, Authority, Additional.

2) Header Section Format

The header section can be further subdivided as shown in

Fig. 1. The 16-bit Transaction ID field is used by the client to

identify the answer of the server for different questions. It is

generated by the requester (client) and it is copied by the

server into the corresponding reply. The QR bit specifies

whether this message is a query (0), or a response (1). The

OPCODE field is used by the originator of the query to

specify the kind of the query and it is copied by the server into

the answer. Only the 0 value is of practical interest for us, it

means standard query. The AA bit is valid only in responses

and it signals if the answer is authoritative.

The TC bit signals if the DNS message was truncated due

to the limitations of the MTU of the transmission channel.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transaction ID

QR OPCODE AA TC RD RA Z RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

Fig. 1. DNS message Header section format.

Design of a Tiny Multi-Threaded DNS64 Server
Gábor Lencse, and András Gábor Soós

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

QNAME

(variable length)

QTYPE

QCLASS

Fig. 2. DNS message Question section format.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NAME

(variable length)

TYPE

CLASS

TTL

(32-bit)

RDLENGTH

RDATA

(variable length)

Fig. 3. DNS message RR format for Answer, Authority, Additional sections.

5 w h a l e 3 h i t 3 b m e 2 h u 0

Fig. 4. DNS encoding of the whale.hit.bme.hu domain name.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 OFFSET

Fig. 5. The structure of a pointer.

3 w w w C0 36

Fig. 6. Compressed encoding of the www.hit.bme.hu domain name

using the fact that the domain name shown in Fig. 4 starts at offset 0x0030.

The usage of the TC bit is clarified in section 9 of [10].

“The TC bit should not be set merely because some extra

information could have been included, but there was

insufficient room.” It also states that: “When a DNS client

receives a reply with TC set, it should ignore that response,

and query again, using a mechanism, such as a TCP

connection, that will permit larger replies.”

→ The DNS64 server program should not set the TC bit for

leaving out some of the Additional RRs at the end of the

message.

The RD bit is used by the requester to ask recursive query.

The RA bit is used by the server to signal if recursion is

available. All the four bits of the Z field must be set to 0 in all

queries and responses (it is reserved for future use). The

RCODE field of the responses specifies the error code: 0

value means no error. The QDCOUNT field specifies the

number of entries in the Question section. In practice, clients

send only one question in a DNS message. The ANCOUNT,

NSCOUNT and ARCOUNT fields specify the number of

resource records in the Answer, Authority and Additional

sections, respectively.

3) Question Section Format

The Question section contains QDCOUNT number of

entries (usually 1). An entry follows the format shown in

Fig 2. The variable length QNAME field contains the domain

name using special encoding (see: Message name encoding

and message compression). The QTYPE filed specifies the RR

(Resource Record) type by 16-bit long binary vales. Some

examples are:

 A (0x01) – IPv4 Address

 AAAA (0x1C) – IPv6 Address (4 times size of A)

 CNAME (0x05) – Canonical NAME (alias)

 MX (0x0F) – Mail eXchanger

 NS (0x02) – Name Server

 PTR (0x0C) – used for reverse mapping (PoinTeR).

The QCLASS field contains the 0x01 16-bit binary value

for denoting the IN (Internet) class. The other theoretically

possible values for CH (Chaos) or HS (Hesiod) are not used.

4) Resource Record Format

The RR (Resource Record) format – used in the Answer,

Authority and Additional sections – is shown in Fig. 3. The

first three fields correspond to that of the Question section.

The 32-bit unsigned integer in the TTL (Time to Live) field

specifies the time interval in seconds while the RR may be

cached. The 16-bit unsigned integer in the RDLEGTH field

gives (in octets) the length of the RDATA field, which

contains the octets of the given resource (e.g. the 4 octets of

the IPv4 address or the 16 octets of the IPv6 address).

5) Domain name encoding and message compression

The domain names stored in the QNAME or NAME fields

follow special encoding. A domain name is built up by so

called labels separated from each other by “.” characters. The

labels must be no longer than 63 characters. When domain

names are encoded in DNS messages, the first character gives

the length of the first label then the characters of the first label

follow. After that, a character stands that specifies the length

of the next label and the characters of the next label follow,

etc. Finally, a zero character after the last label signals the end

of the domain name. Fig. 4 illustrates the encoding of the

whale.hit.bme.hu domain name. The addition of

pointers to this encoding scheme makes possible an efficient

compression if there are repetitions of entire domain names or

label sequences at the end of the domain names in DNS

messages. A pointer is a two octet sequence where the first

two bits of the first octet are ones, see Fig. 5. Note that the

length of a label is at most 63 octets, therefore the first two

bits of the octet expressing its length are always zeros, thus a

pointer can be easily distinguished from a label. The OFFSET

field of the pointer specifies the offset of the pointed label

sequence from the beginning of the DNS message. Let us

demonstrate it with an example. If the domain name in Fig. 4

starts at offset 0x0030 in a DNS message then we can

compress the www.hit.bme.hu domain name in the same

DNS message as it is shown in Fig. 6. The beginning three w

characters are encoded in the usual way and then follows the

0xC0 value. The “11” values of its first two bits show that this

is a pointer and the octet is to be interpreted together with the

next one. The value of the offset field is 0x0036, which points

to the second label of the domain name in Fig. 4.

→ The DNS64 server program must be able to handle

correctly this encoding and compression scheme. (See later

its consequences: the server program must be able to decode

the domain name for logging purposes and it must also be

able to modify the pointer if the pointed RR is moved within

the DNS message.)

B. Operation of the DNS64 + NAT64 Solution

The operation of the DNS64 + NAT64 solution is

demonstrated in Fig. 7. It shows a scenario where an IPv6

only client communicates with an IPv4 only web server. The

DNS64 server uses the 64:ff9b::/96 NAT64 Well-Known

Prefix for generating IPv4-embedded IPv6 addresses. A

prerequisite for the proper operation is that packets towards

the 64:ff9b::/96 network are routed to the NAT64 gateway

(routing must be configured that way). Let us follow the steps:

1. The client asks its DNS server (which one is actually a

DNS64 server) about the IPv6 address of the

www.hit.bme.hu web server.

2. The DNS64 server asks the DNS system about the

IPv6 address of www.hit.bme.hu.

3. No IPv6 address is returned.

4. The DNS64 server then asks the DNS system for the

IPv4 address of www.hit.bme.hu.

5. The 152.66.148.44 IPv4 address is returned.

6. The DNS64 server synthesizes an IPv4-embedded

IPv6 address by placing the 32 bits of the received

152.66.148.44 IPv4 address after the 64:ff9b::/96

prefix and sends the result back to the client.

7. The IPv6 only client sends a TCP SYN segment using

the received 64:ff9b::9842:f82c IPv6 address and it

arrives to the IPv6 interface of the NAT64 gateway

(since the route towards the 64ff9b::/96 network is

set so in all the routers along the path).

8. The NAT64 gateway constructs an IPv4 packet using

the last 32 bits (0x9842f82c) of the destination IPv6

address as the destination IPv4 address (this is

exactly 152.66.248.44), its own public IPv4 address

(198.51.100.10) as the source IPv4 address and

some other fields from the IPv6 packet plus the

payload of the IPv6 packet. It also registers the

connection into its connection tracking table (and

replaces the source port number by a unique one if

necessary). Finally it sends out the IPv4 packet to

the IPv4 only server.

9. The server receives the TCP SYN segment and sends

a SYN ACK reply back to the public IPv4 address

of the NAT64 gateway.

10. The NAT64 gateway receives the IPv4 reply packet.

It constructs an appropriate IPv6 packet using the

necessary information from its state table. It sends

the IPv6 packet back to the IPv6 only client.

The communication may continue on. It seems to the

clients that it communicates to an IPv6 server. Similarly, the

server “can see” an IPv4 client. If it logs the IP addresses of

the clients than it will log the public IPv4 address of the

NAT64 gateway.

Most client-server applications can work well with the

DNS64+NAT64 solution. See more information about the

application compatibility in: [11]-[13].

In practice, the word wide usage of the NAT64 Well-Known

Prefix has several hindrances, see sections 3.1 and 3.2 of [5].

Therefore the network operators allocate a subnet from their

own network for this purpose. It is called Network Specific

Prefix (NSP).

→ The DNS64 server must enable the user to set the

appropriate prefix for synthesizing the IPv4-embedded IPv6

address.

C. Construction of the IPv4-Embedded IPv6 Addresses

The construction of the IPv4-embedded IPv6 addresses is

defined in [5]. When using Network-Specific Prefix, the

network administrator has to decide the size of the prefix.

There are some constraints:

 The prefix size must be exactly one of 32, 40, 48, 56,

64 or 96.

 The 64-71 bits of the IPv6 address must be 0.

 The 32 bits of the IPv4 address are stored right after

the prefix but the above mentioned 0 bits have to be

left out (or jumped over).

 If there are unused bits at the end of the IPv6 address

then they must be filled with 0-s.

→ The DNS64 server should be able to check the prefix size

and accept only the permitted ones.

1 “AAAA” www.hit.b
me.hu ?

DNS64
server

“AAAA” 64:ff9
b::9

842:f8
2c

Domain
Name

 System

SYN 64:ff9b::9842:f82c

NAT64 gateway

SYN 152.66.248.44

IPv4 only server

6

7

IPv6 only client
SYN ACK 198.51.100.10 9

Address: 2001:db8::ac31:b17
IPv6 Address: 2001:db8:abcd::1

IPv4 Address: 198.51.100.10

IPv4 Address: 152.66.248.44

Hostname: www.hit.bme.hu

10SYN ACK 2001:db8::ac31:b17

“AAAA” www.hit.bme.hu ?2

“A” www.hit.bme.hu ?4

“AAAA” (empty) 3

“A” 152.66.248.44 5

8

Fig. 7. The operation of the DNS64+NAT64 solution: an IPv6 only client communicates with and IPv4 only server

D. Operation Requirements for the DNS64 server

The DNS64 server is set as the normal DNS server of the

client.

→ Therefore the DNS64 server must be able to act as a

proxy for any other requests than the AAAA records (e.g. MX)

Even though DNS64 is intended as an IPv6 transition

solution for the IPv6 only clients, the clients might use dual

stack.

→ Therefore the A record requests and their replies must

also be forwarded untouched.

III. DESIGN DECISIONS

A. Design principles

Our intention was to create a DNS64 server program that

can be a viable alternative to the existing free software

DNS64 implementations. Its attributes must include ease of

use, high performance and ease of modification. In our

position, a program like this should be:

 simple and therefore short (in source code)

 fast (written in C, at most some parts in C++)

 extensible (well structured and well documented)

 convenient and flexible in configuration

 free software under GPL or BSD license

B. High Level Design Decisions

1) Forwarder or Recursor

A DNS server may operate in two modes. If it works as a

recursor then it performs the recursion itself: starting from a

top level DNS server it performs a series of iterative queries

until it receives an authoritative answer. If it works as a

forwarder then it acts like a proxy: forwards the queries to

another DNS server and simply returns its answer to the

client. (It may also cache the information.) As for the before

mentioned four free DNS64 implementations, BIND and

PowerDNS can act as both recursor and forwarder. TOTD can

act as a forwarder only. Unbound can be either of them if it is

used as a DNS server only, but it may perform the DNS64

functionality only in the case if it is set as a recursor.

We decided that MTD64 will operate as a forwarder only.

It complies with the principle of simplicity.

2) Caching

On the one hand caching may significantly improve the

performance of a DNS server, but on the other hand it

seriously increases complexity. In addition to that the most

common desktop operating systems, i.e. the different versions

of Windows and Linux use DNS caching, thus they do not

send the subsequent requests of the clients concerning the

same domain name to the DNS server.

We decided to omit caching. It may be added later if

required.

3) Storing the Requests or not

When the DNS64 server receives a request from the client

and forwards it to the DNS system, the DNS64 server should

preserve the information about the client while waiting for the

reply to be able to send back the reply (or the synthesized

IPv6 address) to the client. The requests from the different

clients may arrive in high number therefore an expandable

data structure should be chosen e.g. linked list, balanced or

unbalanced trees. Their operations (insert, find, delete)

involve programming complexity and the operations may

involve significant time complexity if the data structure has

high number of elements. Unfortunately there is a trade-off

between the programming complexity and the speed. E.g. the

operations of the linked list are simple but their time

complexity is O(n), where n denotes the number of elements

in the data structure. The time complexity of the operations of

the balanced trees is O(log n), but their operations require

more programming work. For more information see [14] and

its references.

We decided not to store explicitly the client information but

start a new thread for each request. It means the information is

stored on the stack in the local variables (and on the heap in

dynamically allocated data structures held by pointers). We

hope that this solution will not fight back through high

memory consumption but it will turn out during performance

testing. As a positive consequence of our decision, MTD64

will be able to utilize all the CPU cores of the server.

4) Programming language and program structure

The C++ programming language was chosen mainly for its

thread handling. Only one class is used: its tasks are to store

the parameters set by the user and to make them available by

member function calls. The majority of the source code is

written in the C language to be as fast as possible. One main

source code file contains the most important operation of the

server program and a separate one contains the code for

loading the settings. They both include the same single header

file.

5) Configuration file format

Simple text format was chosen. The configuration file is

line oriented: a keyword is followed by the values for the

given setting. Both “#” and “//” can be used for comments.

6) Logging

The MTD64 program uses the standard syslog facility for

logging. The program uses multiple log levels and the amount

of the logged information can also be set by the user in the

configuration file of MTD64.

7) License

The GPL v2 license was chosen. It ensures that the

derivatives of MTD64 will remain also free software.

C. Important Design Details

1) DNS Servers and Selection Between them

Multiple name servers may be set. They can be added by

using multiple lines. Also the configured name servers from

the (Linux) operating system can be loaded. Two DNS server

selection modes are supported. Round Robin uses the first one

from the list until it replies on time. If time-out occurs, than it

takes the next one from the list. Random chooses one

randomly for every request. Note that this solution makes it

possible to use the DNS servers balanced or unbalanced: e.g.

one of them is specified 10 times and the other one is

specified 20 times.

The random DNS server selection mode will also be useful

when testing the performance of the MTD64 software:

multiple DNS servers can be used so that their performance

will not limit the performance of the MTD64 software.

2) DNS Message Length

DNS messages carried over the UDP transport protocol are

limited to 512 octets. A DNS server may return multiple RR

entries in its answer, thus its size may be close to 512 octets.

When IPv4-embedded IPv6 addresses are synthesized from

IPv4 addresses it results in a 16-4=12 octets growth for each

IP address. Therefore care must be taken to the 512 octet

limit. As certain programs may handle larger datagrams and

others may not, we decided to entrust the decision to the user.

Therefore the maximum length of the response of the MTD64

server can be set in the configuration file. If a resource record

does not fit in the specified size of DNS reply message, the

program leaves out the resource record and also logs the

event. It does not set the TC bit, because by doing so it would

force the client to repeat the query be using TCP, see [10].

3) Client and DNS Server IP Version

The IP version for the client side is obvious: the IPv6 only

clients use IPv6. What IP version should be used to reach the

DNS system? Theoretically the request for the “AAAA”

record might also be sent over IPv6, but we found a safe and

simple choice to use always IPv4. (It simplifies both the

setting of the DNS servers in the configuration file and the

communication with them.)

4) Order of Questions and Answers

Section 5.1.8 of [2] states that: “The DNS64 MAY perform

the query for the AAAA RR and for the A RR in parallel, in

order to minimize the delay.” However this possible speed up

has its price in assembling and sending two questions instead

of one as well as taking care for which one has already

arrived, therefore we decide not to do this, but rather follow

the order shown in Fig 7.

5) Preparation of the Answers to the Clients

If the question of the client was different than an “AAAA”

record (e.g. “A” record, “MX” record, etc.) or the client asked

for an “AAAA” record and the DNS system responded with

an “AAAA” record than it is enough to forward its reply to

the client. (It can be done without any changes, because even

the Transaction ID is matching since MTD64 forwarded the

request of the client untouched to the DNS system which one

also kept the Transaction ID.) When an “AAAA” record must

be synthetized from an “A” record, we saw two possible ways

for completing this task:

1. The complete reply can be assembled step-by-step

“from scratch” using the information piece-by-piece

from the reply of the DNS system. (It requires a lot

of steps, see the fields of the DNS messages.)

2. The reply can be built in larger chunks by copying as

long as possible memory areas from the reply of the

DNS system.

The second one was chosen to achieve higher speed. The

size of the chunks is limited by the occurrences of the “A”

records: the 4 octet long IPv4 addresses have to be replaced

by the synthesized IPv6 addresses which requires 16 octets

space. Special care must be taken for the domain names

containing pointers whether they have to be adjusted. (Recall

that the RRs in the DNS answers also contain the questions

with specially encoded and possibly compressed the domain

names.)

D. Further Design Details

The presentation of all the design details would exceed the

limitations of this paper. They are included in the Programmer

Documentation. For those who would like only to use

MTD64, we recommend the User Documentation. They can

be found together with the commented source code on GitHub

[15]. We also present a simple configuration file in the

appendix, to give an impression of how flexibly MTD64 can

be configured.

IV. FUTURE PLANS

A. Performance Analysis

We plan to test MTD64 under heavy load conditions to

investigate its stability, CPU and memory requirements and

also to check if it complies with the graceful degradation

principle [16]. We also plan to compare its performance to the

before mentioned free DNS64 server programs, namely

BIND, TOTD, Unbound and PowerDNS using the same

method and test environment which was used for their

performance analysis in [17] and [18].

We are especially interested in how the extensive use of

threading influences the memory consumption of the program.

B. Implementing Further Functions

We plan to implement recursion, caching and concurrent

look-up of “AAAA” and “A” records, too. We plan to add

these functions one by one and compare the performance of

the new software to the original one to check whether the

additional complexity required by these functions results in

speed-up or slow-down of the software.

The tiny size of the source code makes it possible to

oversee the program as a whole and thus to change its

behavior and add functions as we find the best.

C. Expecting Feedback from the Users

MTD64 was released as free software, sharing the source

code and documentation on GitHub [15]. The program can be

used, modified and redistributed under the GPLv2 license.

Any questions, comments, suggestions, experiences, testing

reports are welcome by the authors of this paper.

V. CONCLUSION

We have introduced all the necessary details about the DNS

message format, the operation of the DNS64+NAT64 solution

and the construction of IPv4-embedded IPv6 addresses.

We have disclosed our design principles for a high

performance, easy to use and modify DNS64 server.

We have fully described our design decisions from the top

level ones to the details.

We have published the source code and documentation of

our multi-threaded DNS64 server (called MTD64) on GitHub

as a free software under the GPLv2 License.

We conclude that our work may be useful as a workable

DNS64 server and also as a starting point for later

development for anyone interested in.

ACKNOWLEDGEMENT

The development of the MTD64 server was the MSc thesis

(final project) work of the second author at the Department of

the Networked Systems and Services, Budapest University of

Technology and Economics under the supervision of the first

author.

REFERENCES

[1] The Number Resource Organization, “Free pool of IPv4 address space
depleted” [Online]. Available: http://www.nro.net/news/ipv4-free-pool-
depleted

[2] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147)

[3] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF, April 2011. ISSN: 2070-1721 (RFC 6146)

[4] M. Bagnulo, A. Garcia-Martinez and I. Van Beijnum, “The
NAT64/DNS64 tool suite for IPv6 transition”, IEEE Communications
Magazine, vol. 50, no. 7, July 2012, pp. 177-183.
doi:10.1109/MCOM.2012.6231295

[5] C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF RFC 6052, 2010.

[6] Free Software Fundation, “The free software definition”, [Online].
Available: http://www.gnu.org/philosophy/free-sw.en.html

[7] Open Source Initiative, “The open source definition”, [Online].
Available: http://opensource.org/docs/osd

[8] F. W. Dillema, TOTD 1.5.3 source code, [Online]. Available:

https://github.com/fwdillema/totd

[9] P. Mockapetris, “Domain names – implementation and specification”,

IETF, November 1987. (RFC 1035)

[10] R. Elz and R. Bush, “Clarifications to the DNS Specification”, IETF,

July 1997. (RFC 2181)

[11] N. Škoberne and M. Ciglarič, “Practical evaluation of stateful

NAT64/DNS64 translation” Advances in Electrical and Computer

Engineering, vol. 11, no. 3, August 2011, pp. 49-54. doi:

10.4316/AECE.2011.03008

[12] V. Bajpai, N. Melnikov, A. Sehgal and J. Schönwälder, “Flow-based

identification of failures caused by IPv6 transition mechanisms“ in

Proc. 6th IFIP WG 6.6 International Conference on Autonomous

Infrastructure, Management, and Security (AIMS 2012), June 4-8,

2012, Luxembourg, Luxembourg

[13] S. Répás, T. Hajas and G. Lencse, “Application compatibility of the

NAT64 IPv6 transition technology”, in Proc. 37th International

Conference on Telecommunications and Signal Processing (TSP

2014), (Berlin, Germany, 2014. July, 1-3.) Brno University of

Technology, pp. 49-55.

[14] G. Lencse, “Investigation of event-set algorithms”, in Proceedings of

the 9th European Simulation Multiconference (ESM'95) Prague, Czech

Republic, 1995. June 5-7. SCS-Europe, pp. 821-825.

[15] A. Soós, “Multi-Threaded DNS64 server”, source code, [Online].

Available: https://github.com/Yoso89/MTD64
[16] NTIA ITS, “Definition of ‘graceful degradation’ ” [Online]. Available:

http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm

[17] G. Lencse and S. Répás, “Performance analysis and comparison of
different DNS64 implementations for Linux, OpenBSD and FreeBSD”,
in Proc. IEEE 27th Internat. Conf. on Advanced Information
Networking and Applications (AINA 2013), Barcelona, Spain, 2013,
pp. 877-884. DOI: 10.1109/AINA.2013.80

[18] G. Lencse, S. Répás, “Performance analysis and comparison of four
DNS64 implementations under different free operating systems”,
IEEE/ACM Transactions on Networking, submitted for publication,
[Online]. Available: http://www.hit.bme.hu/~lencse/publications/ToN-
2014-DNS64-for-review.pdf

APPENDIX: CONFIGURATION POSSIBILITIES OF MTD64

Sample configuration file for MTD64, a tiny Multi-Threaded DNS64 server

// Uncomment the following line for name servers to be read from /etc/resolv.conf

#nameserver defaults

// Or you can add name servers manually

nameserver 8.8.8.8

nameserver 195.46.39.39

// Set DNS server selection mode

selection-mode random // The given DNS servers will be used in random order

selection-mode round-robin // If a DNS server does not respond until timeout, the next one will be used

// Accepted IPv6 prefix length values are: 32, 40, 48, 56, 64, 96

dns64-prefix 2001:0db8:63a9:2ef5:dead:beef::/96

debugging yes // Results in more verbose logging

Sample settings for the timeout value of 1.35 sec

timeout-time-sec 1 // Maximum value is 32767

timeout-time-usec 350000 // Maximum value is 999999

How many times will the DNS64 server try to resend a DNS query message if there is no answer

resend-attempts 2 // Maximum value is 32767

This will set the maximum length of the IPv6 response message (UDP payload).

Blocks which fall outside this value will be cut off.

It is highly recommended not to change from 512 since it is the RFC standard.

Some programs can accept UDP DNS response messages longer than 512 bytes.

Note that only Answer, Authority, Additional blocks can be cut off.

Queries block is going to be sent even if the message length is longer therewith

response-maxlength 512 // Accepted range for this setting is 0-32767

