



Abstract—The virtualized systems are one of the key elements

of the next generation IT infrastructures. Modeling it will

prevent mistakes, and oversized management. Opennebula is one

of the most current open source cloud management solutions.

Together with Haizea, they are a powerful tool to model and

manage a virtualized infrastructure trough the API of

Openebula. Haizea has multiple scheduler algorithms that are

more effective than that of Opennebula. We performed several

experiments to compare simulation and measurement capabilities

of Haizea and we highlighted some difference between them

which can be reduced if required.

Keywords—cloud computing, Haizea, Opennebula, simulation,

I. INTRODUCTION

Virtualized infrastructures are spreading around the world.

They can optimize the performance resulting in lower TCO

(Total Cost of Ownership) and greatly increased

manageability of IT systems. The next evolution jump was the

cloud computing systems. In this solution, the IT engineer

only maintains the hardware, and the end users only rent the

infrastructure. The most accepted definition of cloud

computing was published by NIST [1] which defines the five

essential characteristics of the cloud computing systems.

Modelling these system are one of the most researched

topics. Many companies hosts virtual machines to sell them as

a service. Predicting how many virtual machines can be

operated using a given hardware infrastructure, or how much

time it consumes to create a given number of virtual machines

is very important to them. Opennebula [2] is a virtual

infrastructure engine which can deploy, monitor and control

virtual machines across many physical nodes. Haizea [2] was

developed by the University of Chicago. It is an open source

lease management architecture which can be used by

Opennebula as a regular scheduler. With these two, they can

manage physical nodes to automate the generation of virtual

machines defined by templates. Haizea can also work as a

virtual infrastructure simulator, which can predict (based on a

model) how many virtual machines can be safely run in an

infrastructure.

We simulated and analyzed a system built using a

Bladecenter and Haizea in simulation mode as well as

Opennebula mode to do experiments and compare them to

each other. The remainder of this paper organized as follows.

First, a brief introduction is given about the system, what kind

Manuscript received February 5, 2015.

Á. Kovács is with the Department of Telecommunications, Széchenyi

István University, Egyetem tér 1. H-9026 Győr, Hungary (phone: +36-30-

459-9026; fax: +36-96-613-646; e-mail: kovacs.akos@sze.hu).

G. Lencse is with the Department of Telecommunications, Széchenyi

István University, Egyetem tér 1. H-9026 Győr, Hungary (e-mail:

lencse@sze.hu).

of hardware was used for the experiments. Second, the

modeling with Haizea is illustrated. Third, our experiments

are described. Fourth, the results of our measurements are

presented and discussed. Finally, our conclusions are given.

II. TEST ENVIRONMENT

An IBM Bladecenter was used as the test environment and

VMware virtual machine was used as the cloud engine. The

specifications were the following:

 cloud engine: VMware ESXi Virtual Machine (VM

version 7) 2 CPUs, 2GB RAM 1x20GB Disks

(iSCSI), 1x100GB (NFS), Debian 6.0.4 OS

 cloud nodes: HS21 Bladeserver 2x L5240 Dual-core

Xeon, 8GB DDRII ECC RAM, 73GB SAS Disk,

2x1Gb NIC, Debian 6.0.4 OS

After the installation, we set up Opennebula on the cloud

engine virtual machine. Its hardware requirements were

minimal, it only consumed several MBs of disk space.

Opennebula supports a bunch of virtualization solutions,

including VMware, Xen, and KVM [3].

We used KVM virtualization on the cloud nodes, with access

to two networks. One for management and one for Internet

access.

Opennebula uses remote command execution trough SSH

tunnel, and for that we had to set up key based authentication

between the cloud engine and the cloud nodes. For being able

to manage the cloud nodes, we also had to set up the proper

drivers for the virtualization solution we have chosen. These

were the following:

 im_kvm (Information Manager): this driver gathers

information about the cloud nodes e.g. numbers of

running virtual machine and available memory

 vmm_kvm (Virtual Machine Manager): this driver

monitors the virtual machines on the cloud nodes

 tm_nfs (Transfer Manager) this driver transfers the

virtual machine images which are defined by the

virtual machine template.

For the proper operation, we have to declare a virtual

network in Opennebula with pairs of MAC addresses and IP

addresses. With this, we are able to add a DHCP server with

host directives to manage the Virtual Machines to get the right

IP addresses. Opennebula provides shared storage to the

cloud nodes, which we implemented by an NFS server on the

cloud engine.

III. MODELLING IN HAIZEA

Haizea can be used as a scheduler instead of Openebula’s

default. Haizea supports advance reservation leases such as

Modelling of virtualized servers

Ákos Kovács, Gábor Lencse

Fig. 1. Test system structure

best-effort leases [4] where the virtual resource is allocated as

soon as it is available, or the request is placed in a queue

when it is necessary (as no resource is available).Haizea

leases contain various information which include the hardware

and software resources and the time or availability when these

resources can be accessed. Haizea commands are separated

into three main blocks:

 request block: incoming requests, which can be added

manually through CLI (Command Line Interface) or

can be read from a special formatted XML file

 scheduler block: this block processes the requests

which determine which virtual machine starts or

stops and when

 working block: this block sends orders to the

simulation (or in openebula mode to the

Opennebula) to manage Virtual resources.

To run Haizea instead of the default scheduler of the

Opennebula, the lease must contain the Haizea option in an

Opennebula request. The simulation can be set up by two

files. The first file contains the performance of the

infrastructure and the second one contains the load of the

system. The first file also has information about the transfer

parameters of the virtual machine images (image size and

transmission channel speed) which must be defined based on

the real system [5].

In simulation mode, we have to define the resources for the

Haizea. The most important ones are CPU and memory

parameters and the number of cloud nodes. Also some other

things has to be defined such as the clock is simulated or real

time. We added four CPU cores for each of the nodes, and

7700 MB memory, because the Operating system which runs

the KVM virtualization also uses some system memory from

8192MB.

[general]

loglevel: DEBUG

logfile: log/Haizea_sim_tilb_1.log

lease-failure-handling: exit-raise

mode: simulated

lease-preparation: imagetransfer

[scheduling]

policy-preemption: ar-preempts-everything

wakeup-interval: 10

suspension: none

migration: no

[simulation]

clock: simulated

starttime: 2013-04-04 11:03:15

resources: 3 CPU:400 Memory:7700

imagetransfer-bandwidth: 60

stop-when: all-leases-done

[tracefile]

tracefile: /srv/cloud/one/sims/sze_tilb_sim.lwf

Fig. 2. Haizea configuration file

After that, we created the XML file that describes the load

of the system. The XML file must contains various

information for example the amount of virtual resources

(CPU, memory, and system image file), and the starting time

of the lease. This file also describes the duration of the lease

as well. We added all the leases into one file. We defined

homogenous load for the simulation. All the virtual machines

had 1 CPU core, 1 GB memory and 1 NIC. All the machines

working with the same vanilla Debian image we created

manually. The request of the virtual machines was sent at the

00:00:00 time. The duration of the virtual machine lifecycle

was generally 1 hour for all of them. And the starting time was

generated with Poisson distribution shown in Fig. 3. The

request were overlapping with each other so it forced the

Haizea to use best-effort algorithm.

Fig. 3. The Poisson distribution of the requests

IV. MEASUREMENTS

A. Testing the Starting of the Virtual Machines

For the measuring mode, we generated the same jobs as for

the simulation. We created 18 virtual machine description

files with the same parameters as we defined in the simulation,

only the virtual machine names and the starting times were

different in each file. We used a simple bash script to run the

measurement. It is important to notice that whereas the

simulation finished almost instantly, the execution of the bash

script took 5 seconds in average. Because the whole

measurement took about 6 hours this difference was

negligible. In measurement mode we used Haizea to schedule

the virtual machines and Opennebula for deploying them.

Only a few changes had to be made in the configuration file

because the available resources were given by Opennebula

and not manually and of course we had to define the

Opennebula host, which one, in our case, was the same

machine that executed Haizea.

After we started the measurement, the Opennebula was

filled up with the requests, and at their starting time it copied

the given virtual machine image file to a separate directory.

After that it generated the virtual machine definition file and

finally the virtual machine booted with the given parameters.

After the experiments we used some Linux based text

processing tools (sed, awk, grep) to process the log files for

producing the results.

We did not deal with the stopping time of the virtual

machines, because we modified the shutdown script not to

shut down but delete the virtual machines for simplifying the

experiments.

TABLE I

DIFFERENCE BETWEEN SIMULATION AND MEASUREMENT

Haizea Opennebula Difference

(hh:mm:ss)

8:29:09 8:33:17 0:04:08

8:49:09 8:52:44 0:03:35

9:03:09 9:07:21 0:04:12

9:22:10 9:26:17 0:04:07

9:37:10 9:41:38 0:04:28

9:50:10 9:53:38 0:03:28

10:00:11 10:04:00 0:03:49

10:21:11 10:24:46 0:03:35

10:39:11 10:43:43 0:04:32

10:53:12 10:56:47 0:03:35

11:21:12 11:25:17 0:04:05

11:37:12 11:40:55 0:03:43

11:53:12 11:56:54 0:03:42

12:07:13 12:10:49 0:03:36

12:21:13 12:24:47 0:03:34

12:34:13 12:37:47 0:03:34

12:47:14 12:51:27 0:04:13

12:58:14 13:01:56 0:03:42

13:13:14 13:16:45 0:03:31

Average: 0:03:51

Std. deviation: 0:00:20

Fig 4. The static difference between the simulation and the measurement

As we can see in Table I there is a static difference between

the simulation and the measurement with an average of 3

minutes and 51 seconds. The generated image file size was

4096 MB. It took averagely this time to clone an image file to

the predefined place.

B. Examining the Limits of the System

We examined the available recourses both in simulation

mode and in measurement mode. We generated a special

Virtual machine with only a 40 MB system image, to decrease

the deploying load of the system and minimalize the static

delay. Based on the parameters we defined in the previous

simulation it took about 3 seconds to deploy such a tiny

Virtual Machine. We defined a script that generated 24

requests with homogenous 1 GB memory allocations and

1 CPU. In Linux system, a quad-core CPU is indicated as

400% CPU, whereas in Haizea all the CPUs are specified in

percentage but only scaled up to 100%. To be sure that

Haizea simulation and measurement uses only one core per

Virtual Machine we had to define one core as 25% of the

maximum CPU available in one host.

We got the same results in the simulation and in the

measurement. The system could not generate the 24th Virtual

Machine because the lack of available memory. In the

simulation, we defined 7700MB memory per host total of

23.1 GB memory. It cloud simulate only 23 Virtual Machines

the same as the measurement result.

C. Limits with Maximum Load

To test the stability of the system, we repeated the

experiment with adding high CPU consuming script. To

minimalize system image size, we used a simple script that

copies random numbers from /dev/urandom to

/dev/null. This script generated high CPU usage without

charging the I/O subsystem.

The high load of the system did not cause significant

difference in the starting times. Whereas in the experiment

without high CPU usage the deploying time was about 3

seconds, in the experiment with high CPU usage it took about

4 seconds per Virtual Machine.

V. DISCUSSION OF THE RESULTS

Haizea can manage two cloning techniques. The first called

image preparation which means that we define the moment

when the virtual machine must be reachable and usable. In

that case, Haizea uses the transfer bandwidth which is defined

in the configuration file to calculate how much time it takes to

transfer image files depending on the size. The second one

called unmanaged when we only could define the moment

when Opennebula starts to clone the virtual machine image

file. Unfortunately Haizea supports image preparation only in

simulation mode but not in Opennebula mode [6]. This the

reason of the static delay between simulation and the

measurement results.

As Fig. 4 shows we could compensate the Virtual machine

lifetime in measurement mode, to manage the exact 1 hour

lifetime. However the knowledge of the time necessary for the

image transfer is a prerequisite for this kind of compensation.

In some cases it is not a problem that a virtual machine

deployment is delayed a few minutes. For example, when a

virtual machine will be a productive unit of a system and we

does not want to delete in the near future. But in some special

cases it is necessary to deploy Virtual Machines in time. For

example, a lesson must be started exactly at a predefined time

in a school. It is unacceptable to delay a it because of IT

infrastructure.

VI. RECOMMENDATION FOR THE DEVELOPMENT OF HAIZEA

We miss some parameters from Haizea which should be

implemented in a future version. First, the image preparation

feature in Opennebula mode for better usage. Second, in

simulation mode we can’t define standard deviation for the

deploying. It is unequivocal that when we copy a system

image with the size of 4 GB about 30-40 times its copying

time will not take exactly the same time.

VII. CONCLUSION

We have demonstrated that deployment of the images

causes a static difference between the starting times of the

simulation and the Opennebula mode results.

We have shown that one can minimize the image

deployment time for example with tiny images and using a

remote file system to store non system files therefore the

difference between the simulation and the Opennebula mode

can be efficiently reduced.

We have shown that the high CPU load caused no

significant difference in the starting time of the Virtual

Machines.

REFERENCES

[1] P. Mell, T. Grance, The NIST Definition of Cloud Computing, NIST

Special Publication 800-145, (September 2011) http://dl.acm.org

/citation.cfm?id=2206223

[2] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, “Virtual

Infrastructure Management in Private and Hybrid Clouds”, IEEE

Internet Computing, vol. 13, no. 5, pp. 14-22, (Sep.-Oct. 2009), DOI:

10.1109/MIC.2009.119.

[3] OpenNebula.org, [Online] http://www.opennebula.org

[4] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster. “Capacity

Leasing in Cloud Systems using the OpenNebula Engine”, in

Workshop on Cloud Computing and its Applications 2008 (CCA08)

October 22-23, 2008, Chicago, Illinois, USA

[5] Haizea, [Online] http://haizea.cs.uchicago.edu

[6] Borja Sotomayor, “[Haizea] image transfer not working in Haizea 1.0 +

Opennebula 1.4” [Online] https://mailman.cs.uchicago.edu/pipermail

/haizea/2011-April/000307.html

http://www.computer.org/internet
http://www.computer.org/internet
http://www.cca08.org/

