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Abstract—Several IPv6 transition technologies have been 

developed to overcome the problem of IPv4 depletion and to 

accelerate the full deployment of IPv6. The Benchmarking 

Working Group of IETF has standardized a benchmarking 

methodology for these technologies in the RFC 8219. One of the 

most important ones of these technologies is lightweight 4over6 

(lw4o6), which is classified as an encapsulation technology in the 

RFC 8219. This paper aims at designing an RFC 8219 compliant 

test program for the lw4o6 devices, more specifically, the 

lightweight Basic Bridging BroadBand (lwB4) and the 

lightweight Address Family Transition Router (lwAFTR). For 

this purpose, we overviewed the operational requirements, 

specified the scope of measurements, and disclosed the design 

considerations for this tester. 

Keywords—benchmarking; IPv6 transition technologies; 

lightweight 4over6; lwAFTR; lwB4 

I. INTRODUCTION 

The actual depletion of IPv4 addresses in 2011[1] makes 
the adoption of IPv6 a necessity more than ever before. 
However, the ongoing IPv6 transition seems to be a lengthy 
task due to the numerous challenges it faces. Thus, the 
coexistence of IPv4 and IPv6 is crucial until, at least, the 
dominance of the latter one. As a result, many technologies 
have been developed over the past few years to help in this 
transition. The IETF’s RFC 8219 [2] classifies these 
transition technologies into four categories, namely, Dual 
Stack, single translation, double translation, and 
encapsulation, and defines a comprehensive methodology for 
their benchmarking.  

Dual Stack [3] is a mechanism that includes both IPv4 and 
IPv6 stacks at the same time in the network nodes, but one of 
them can be activated for communication at any given time. 
The benchmarking of Dual Stack interconnecting devices can 
be sufficiently possible with the existing RFC 2544 [4] and 
RFC 5180 [5] compliant measurement tools. 

The single translation technologies can be benchmarked 
with the help of the single Device Under Test (DUT) setup of 
RFC 8219 [2]. Siitperf [6], an RFC 8219 compliant Stateless 
IP/ICMP Translation (SIIT), also called stateless NAT64, 
Tester, is an example benchmarking tool that uses this type 
of setup. 

The double translation technologies and encapsulation 
technologies can be benchmarked in two ways, either using 
the dual DUT setup or using the single DUT setup of RFC 
8219. The first one means that devices that implement the two 
essential components of the technology, e.g. lwB4 and 
lwAFTR of lw4o6, are benchmarked together. However, this 
solution hides the potential asymmetries, when one of the 
devices becomes a bottleneck. Therefore, RFC 8219 requires 
that the above-mentioned two devices are also benchmarked 
one by one according to the single DUT setup. 

Several benchmarking tools have been proposed in the 
literature. Raumer et. al. [7] classified these tools into two 
different categories, hardware-based and software-based. 
Hardware-based benchmarking tools are powerful at 
controlling the transmission rates and can get precise latency 
measurements, but they are limited to the set of predefined 
benchmarks, not flexible enough to new situations, and 
relatively expensive. These are some of the reasons behind 
not getting widespread utilization. Examples of such devices 
include those of Keysight [8], Spirent [9], and Xena [10]. The 
NetFPGA [11], a relatively cheaper and more flexible 
hardware solution, is an open-source FPGA-based network 
card that can be deployed in implementing benchmarking 
measurements [7]. For instance, the traffic generators in [12] 
and [13] are NetFPGA-based and they can produce precise 
inter-packet delays and latencies results. In contrast, most of 
the existing software-based benchmarking tools are 
originally packet generators that are used in benchmarking 
tasks. It is correct that they rely on inexpensive commodity 
hardware and are open-source software, so they can be easily 
modified, but they are relatively slower and produce less 
accurate measurements than the hardware-based tools [14]. 
Additionally, most of them (e.g. Iperf [15] and Harpoon [16]) 
typically cannot handle high packet rates [7]. Several papers 
in the literature compare the performance and accuracy 
among different hardware-based and software-based tools 
under various conditions and using distinct parameters. 
Among these papers are [17], [18], and [14]. This paper aims 
to design a software-based tester that uses Intel’s DPDK [19] 
as it offers high-speed packet processing and typical memory 
management. Moreover, most of the existing benchmarking 
tools, hardware-based or software-based, rely on the old RFC 
2544 [4] and do not comply with RFC 8219 [2], which is 



more specific to the IPv6 transition technologies. As far as 
we know, the only existing RFC8219 compliant testers are 
dns64perf++ for DNS64 [20] and siitperf for SIIT [6].  

One of the most important transition technologies that sit 
in the encapsulation category is the Lightweight 4over6 
(lw4o6) technology [21], which is also considered an IPv4-
as-a-Service (IPv4aaS) technology that gives the IPv6-only 
network operators a practical solution to continue providing 
customers with IPv4 services [22]. This paper aims at 
designing the world’s first RFC 8219 compliant lw4o6 
Tester. 

The remainder of this paper is organized as follows. 
Section 2 gives a brief introduction to the lw4o6 transition 
technology. Section 3 presents the basic operational 
requirements for the Tester based on RFC 8219. Section 4 
discloses the most important design considerations. Section 5 
gives our plans for implementing the Tester. Section 6 
concludes our paper. 

II. LIGHTWEIGHT 4OVER6 (LW4O6) TECHNOLOGY 

Lw4o6 [21] helps in the incremental deployment of IPv6 
by decoupling it in the operator network and makes it 
possible to share IPv4 addresses by combining two popular 
technologies: IP in IP, more specifically IPv4 in IPv6, and 
stateful Network Address and Port Translation (NAPT).  

Lw4o6 operates by deploying two different devices: The 
lightweight Basic Bridging BroadBand (lwB4) and the 
lightweight Address Family Transition Router (lwAFTR). 
The lwB4 device can be either a directly connected host 
device or a Customer Premise Equipment (CPE), which acts 
as a home gateway for customers and is supplied with a WAN 
interface provisioned only with IPv6 by the service provider. 
In addition, the lwB4 device represents one of the IPv6 tunnel 
endpoints. It encapsulates the customer’s IPv4 traffic into the 
service provider’s IPv6 traffic before transmitting it to the 
lwAFTR device. In contrast, the lwAFTR device represents 
the other IPv6 tunnel endpoint. When it receives the IPv4 
embedded IPv6 traffic, it decapsulates it and then routes it to 
its intended destination. The reply packets will also traverse 
these devices, but now the devices execute reverse 
encapsulation/decapsulation processes. Fig. 1 depicts the 
architecture of lw4o6 technology. 

To manage the traffic activity with the distributed lwB4 
devices, the lwAFTR device maintains the so-called 
softwires (i.e. binding entries of two different IP versions) in 
a particular address binding table. Each entry in the table is 

formed on a per-subscriber basis and belongs to a particular 
lwB4 device. The lwAFTR device uses this entry to perform 
two tasks: the IPv6 encapsulation of ingress IPv4 packets 
destined to a customer connected to the related lwB4 device 
and the validation of egress IPv4-in-IPv6 packets received 
from the related lwB4 to decapsulate them and then forward 
the decapsulated IPv4 packets to their intended destinations.  

It should also be said that Lw4o6 is actually an 
improvement of the DS-Lite technology [23]. In contrast to 
DS-Lite, lw4o6 relocates the stateful NAPT function from the 
centralized lwAFTR device to the distributed lwB4 devices. 
This procedure remarkably reduces the overhead of 
maintaining traffic states from per-flow to per-subscriber and 
thus logging overhead. It noticeably relieves lwAFTR from 
being overloaded by translation tasks as it rather has other 
tasks to accomplish like encapsulation/decapsulation, 
software maintaining and lookup, and A+P routing.  

Finally, the lw4o6 technology also maintains two 
important mechanisms: provisioning and hair pinning. The 
first one is used to assign a specific IPv4 public address and 
a port set for each lwB4 device. This assigned information 
should also be synchronized with the corresponding 
information stored in the lwAFTR binding table. The other 
mechanism (i.e. hair pinning) is used to enable direct 
communication between two different lwB4 devices that are 
associated with the same lwAFTR device. 

III. OPERATIONAL REQUIREMENTS AND SCOPE DECISIONS 

Testing under different operational conditions is 
important for benchmarking IPv6 transition technologies, as 
it emulates, to some extent, the condition of a production 
network environment [2]. In this section, a high-level 
overview of the requirements of the Tester is given and the 
considerations behind the scope decision are disclosed. 

A. Test and Traffic Setup 

As lw4o6 is considered an encapsulation technology, the 
test setup of this technology may, in general, follow the dual 
DUT test setup described in section 4.2 of RFC 8219 and 
shown in Fig. 2. Here, the lwB4 device can act as DUT 1 and 
the lwAFTR device can act as DUT 2. However, both have 
asymmetric behavior. Therefore, as RFC 8219 recommends 
[2], they should be tested separately using the single DUT test 
setup, which is shown in Fig. 3. In this case, the Tester should 
have encapsulation/decapsulation capabilities the same as the 
two DUTs.  

 
                 Private +-------------+             +----------+ 
                 Private |    lwB4     | IPv4-in-IPv6| Stateless| 
         +------+  IPv4  |------+------|    tunnel   |  lwAFTR  |    _______ 
         | IPv4 |------->|      |Encap.|------------>|(encap/A+P|   ( IPv4  ) 
         |Device|<-------| NAPT |  /   |<------------|bind. tab +--( Internet ) 
         +------+        |  44  |Decap.|      ^      | routing) |   (________) 
                         +------+------+      |      +----------+ 
                                        Operator IPv6 
                                            network 
 

Fig 1.    The architecture of lw4o6 technology [8] 



Both test setups (i.e. single DUT and dual DUT) adhere 
to the following test specifications which comply with RFC 
8219: 

• Although unidirectional arrows are used, testing 
with bidirectional traffic is required and testing with 
unidirectional traffic is optional. 

• The two different IP versions are deployed, and they 
are expressed as IPvX and IPvY, where X=4 and 
Y=6. 

• Ethernet is the media type being relied on even 
though other media types can also be deployed. 

• Frame sizes should be based on the 
recommendations of RFC 5180 [5]. However, RFC 
8219 recommends, besides that, considering 
Maximum Transmission Unit (MTU) in the context 
of frame size overhead to avoid frame loss due to 
MTU mismatch between the virtual encapsulation 
interfaces and the physical network interface 
controllers (NICs). Therefore, the larger MTU 
between them should be set for all interfaces of the 
DUT and the Tester. 

• The selected IPv6 addresses should meet the 
specifications of Section 5 of RFC 5180 [5], while 
the selected IPv4 addresses should meet the 
specifications of Section 12 of RFC 2544 [4]. 

• UDP is used as the transport layer protocol. 

• Tests should also include native IPv6 traffic besides 
the IPv4 traffic that is encapsulated and different 
proportions of the two types of traffic must be used. 

To make things more organized, we decided to perform 
three different types of testing. 

1) lwB4Testing: this test follows the single DUT test 
setup, in which the lwB4 device acts as the DUT. Both the 
Tester and the DUT should have two interfaces configured as 
IPv4 and IPv6 respectively. The Tester should be able to send 
IPv4 packets from its IPv4 interface. The DUT receives these 
packets from its IPv4 interface, performs NAPT translation, 
encapsulates IPv4 packets with an IPv6 header, and then 
forwards the encapsulated packets to the Tester from its IPv6 
interface. When the Tester receives these packets from its 
IPv6 interface, it decapsulates them and gets its original IPv4 
traffic. To perform testing in the opposite direction, the Tester 
should first encapsulate its IPv4 packets with an IPv6 header 
before sending them from its IPv6 interface. When the DUT 
receives these packets from its IPv6 interface, it decapsulates 
them and gets the IPv4 traffic, performs NAPT translation 
based on the information available in its local NAPT table, 
and then forwards the IPv4 packets to the Tester from its IPv4 
interface. The Tester, in turn, receives these packets from its 
IPv4 interface.  

2) lwAFTR Testing: this test also follows the single DUT 
test setup, in which the lwAFTR device acts as the DUT. 
Likewise, both the Tester and the DUT should have two 
interfaces configured as IPv6 and IPv4 respectively. The 
Tester should be able to send IPv4 packets encapsulated with 
an IPv6 header from its IPv6 interface. When the DUT 
receives these packets from its IPv6 interface, it decapsulates 
them and verifies their information with that of its binding 
table. If the verification is successful (i.e. matching is found), 
the DUT forwards the verified packets from its IPv4 
interface. The Tester, in turn, receives the IPv4 packets from 
its IPv4interface.To perform testing in the opposite direction, 
the Tester should send IPv4 packets from its IPv4 interface. 
When the DUT receives these packets from its IPv4 interface, 
it uses their destination address and port for lookup in its 
binding table. If a match is found, it encapsulates them with 
the appropriate IPv6 header and then forwards them from its 
IPv6 interface. The Tester should be able to decapsulate the 
IPv6 packets and get the original IPv4 traffic upon receiving 
the IPv6 packets from its IPv6 interface. 

3) Overall Testing: this test follows the dual DUT test 
setup, in which the lwB4 acts as the DUT 1 and the lwAFTR 
acts as the DUT 2. This test should be done after performing 
the two beforementioned tests. This test aims to wrap up 
everything and check the overall performance of the lw4o6 
technology. Here, the Tester should have two interfaces 
configured as IPv4, while each one of the DUTs should have 
two interfaces configured as IPv4 and IPv6 respectively. The 
Tester should be able to send native IPv4 packets from one 
interface and receive also native IPv4 packets from the other 
interface. In contrast, each one of the DUTs should receive 
either IPv4 packets from the Tester or IPv6 packets from the 
other DUT and send either IPv4 packets to the Tester or IPv6 
packets to the other DUT and all these activities should, of 
course, be done after performing their relative tasks like 
encapsulation/decapsulation.    

+------------------+ 
|                  | 

+--------------|IPvX  Tester  IPvX|<-------------+ 
|              |                  |              | 
|              +------------------+              | 
|                                                | 
|    +----------------+    +----------------+    | 
|    |                |    |                |    | 
+--->|IPvX  DUT1  IPvY|--->|IPvY  DUT2  IPvX|----+ 

|                |    |                | 
+----------------+    +----------------+ 

 

Fig 2.    Dual DUT Test Setup [2] 

 
                +--------------------+ 
                |                    | 
     +----------|IPvX   Tester   IPvY|<---------+ 
     |          |                    |          | 
     |          +--------------------+          | 
     |                                          | 
     |          +--------------------+          | 
     |          |                    |          | 
     +--------->|IPvX     DUT    IPvY|----------+ 
                |                    | 
                +--------------------+ 

 

Fig. 3    Single DUT Test Setup [2] 



B. Scope of Measurements 

RFC 8219 recommends applying various types of 
measurement tests. However, in practice, some of them are 
implemented by some RFC 2544 testers, and others are 
omitted or rarely used such as back-to-back frames, system 
recovery, and reset. The first two require the Tester to have 
the ability to send at the maximum frame rate of the media, 
which is practically not possible and is not necessarily met by 
different devices the user would like to use to run the Tester. 
The third one would need the ability to cause or sense a DUT 
reset, which would also require supplementary hardware. So, 
we intend to support those measurement tests that we see are 
important. The selected types of measurement need different 
Tester requirements. In this section, we give an overview of 
the measurement procedures and their requirements. 

1) Throughput: This is a crucial measurement as it is 

important for users and for supporting other measurement 

procedures. RFC 8219 depends on the RFC 2544’s definition 

of throughput as it is “the fastest rate at which the count of 

test frames transmitted by the DUT is equal to the number of 

test frames sent to it by the test equipment” [4], that is, no 

frame loss occurs. This means that the Tester must have the 

ability to transmit frames at any constant rate for any given 

period and count the transmitted and received packets in that 

period. We can take advantage of the binary search to find 

this fastest rate and thus properly apply the measurement. 

RFC 8219 has defined standard frame sizes for performing 

the throughput test. 

2) Latency: This is also an important measurement that 

practically depends on throughput. To calculate latency, a 

stream of frames at a particular frame size and the calculated 

throughput rate should be sent via the targeted DUT. The 

duration of the stream should be at least 120 seconds and 

some of the sent frames should be tagged. For the test to be 

successful, at least 500 tagged frames should be identified 

after 60 seconds from the start of sending the stream. For each 

tagged frame, two timestamps must be recorded. The first one 

is, directly, at the time of fully transmitting the frame, 

whereas the second one is, directly, at the time at which the 

frame is received. The latency represents the difference 

between the values of the two timestamps. Finally, two 

quantities should be considered after calculating the latency 

of at least 500 tagged frames, the Typical Latency (TL) and 

the Worst-Case Latency (WCL). TL represents the median of 

all these latencies, while WCL represents their 99.9th 

percentile. The test must be repeated at least 20 times and it 

then records both the median of all TLs and WCLs.  

3) Packet Delay Variation: Two types of tests can be 

performed for this measurement, Packet Delay Variation 

(PDV) and Inter Packet Delay Variation (IPDV), and they are 

considered important, especially for the quality of real-time 

applications. However, RFC 8219 recommends PDV and 

keeps IPDV optional for a fine-grained analysis of delay 

variation. Thus, only PDV will initially be included. 

Similarly, To calculate PDV, a stream of frames at a 

particular frame size and the calculated throughput rate 

should be sent via the targeted DUT. Here, the duration of the 

stream should rather be at least 60 seconds and the value of 

the one-way delay of all frames should be measured. Then, 

the PDV represents the difference between the 99.9th 

percentile value and the minimum value in the stream. 

Finally, the test must be executed at least 20 times and the 

final reported value will be the median of all 20 calculated 

PDVs.  

4) Frame Loss Rate: This measurement test is similar to the 

throughput measurement test. Here, the test is also run by 

sending a specific number of frames at a specific rate via the 

targeted DUT and then counting the number of received 

frames at the Tester. The Frame Loss Rate (FLR) is then 

calculated as in (1): 

FLR = ((sent− received) /sent) ∗100%.                  (1) 

What differs from the throughput test is that, here, this test 
is performed at various frame rates starting from the 
maximum frame rate for the media and decreased by some 
percentage values (typically 10%) at each new trial until there 
are two consecutive trials in which no frames are lost. 

IV. DESIGN CONSIDERATIONS 

These are some essential design considerations that 
should be taken into account when implementing the lw4o6 
tester. 

C. Integration or Separation 

It may be a desirable solution to build a fully integrated 
tester that automatically performs all measurement tests, and 
this can act as a commodity tester for routine tests. However, 
this paper proposes a lw4o6 tester that is designed mainly for 
research purposes. Thus, the goal is to design a flexible tool 
that runs high-performance programs for the elementary 
functions and uses input parameters instead of built-in 
constants even though the RFC 8219 allows using constants 
like 60 seconds duration or 500 timestamps, and so on. 
Additionally, it is intended to use modifiable bash scripts to 
run these programs. All these solutions can help the user to 
access all intermediate results and experiment easily by 
executing only certain sub-tasks when needed. 

D. Software Architecture and Hardware Requirements 

RFC 8219 requires, in general, using bidirectional traffic. 
To build a clear program structure with high enough 
performance, a thread pair (i.e. a thread for sending and 
another thread for receiving) should be used for the forward 
direction and another thread pair for the reverse direction. If 
we said that each thread will be executed by one CPU core, 
then we need four CPU cores for the execution plus an 
additional CPU core for the main program. It may also be 
noted that either of the two directions may be primarily 
inactive. The Tester and the two DUTs need two NICs each 
for testing purposes and a third one for network 
communication unless the user prefers to work locally on the 
console. 



E. Input and Output 

The decision of separation described earlier offers the 
possibility for the shell scripts to execute the programs 
multiple times with two potential forms of parameters, static 
and dynamic. Those parameters that will not change during 
execution such as IP addresses, MAC addresses, etc., their 
values can be statically supplied in a configuration file, while 
those parameters that change from time to time such as frame 
size, frame rate, etc., their values can be easily provided as 
command-line arguments.  

The results that are to be used by the shell scripts in 
making some decisions (e.g. number of frames sent, number 
of frames received, etc.) are to be printed on the standard 
output using a clear format to be easily extracted for further 
processing. In contrast, those results which are big or no 
longer been needed by the shell script should be written into 
a separate result file. 

V. FUTURE WORK 

The most important step to be taken next is to implement 
the lw4o6 tester. We plan to write it in C++ and follow similar 
implementation steps as that of siitperf [6]. It is always 
preferable to use high-performance solutions like Intel’s 
DPDK framework[19] during implementation as it offers 
fast-packet processing and typical memory, queue, and buffer 
management. What follows is the validation of the tester 
through comprehensive benchmarking measurements. Once 
successfully developed, the lw4o6 tester is planned to be 
distributed as free software under GPL license for the benefit 
of the research, benchmarking, and networking communities. 
Additionally, the developed lw4o6 tester could also be used 
as a basis for the development of testers of other important 
IPv6 transition technologies, especially those IPv4aaS 
technologies that have never been benchmarked yet. 

VI. CONCLUSIONS 

In this paper, all the necessary details about the operation 

of the lw4o6 transition technology have been described, high-

level details of the operational requirements and the scope of 

measurements (e.g. throughput, latency, packet delay 

variation, and frame loss rate) of the RFC 8219 compliant 

lw4o6 test program are given, and the most essential design 

considerations and decisions for this test program have been 

disclosed. 

REFERENCES 

 

[1] A. Al-Azzawi, “Towards the security analysis of the five most 
prominent IPv4aaS technologies”, Acta Technica Jaurinensis, vol. 13, 

no. 2, pp. 85-98, 2020, doi:10.14513/actatechjaur.v13.n2.530. 

[2] M. Georgescu, L. Pislaru, and G. Lencse, “Benchmarking 
methodology for IPv6 transition technologies”, IETF RFC 8219, 2017, 

doi:10.17487/RFC8219. 

[3] E. Nordmark, and R. Gilligan, “Basic transition mechanisms for IPv6 
hosts and routers”, IETF RFC 4213, 2005, doi:10.17487/RFC4213. 

[4] S. Bradner, and J. McQuaid, “Benchmarking methodology for network 

interconnect devices”, IETF RFC 2544, 1999, doi:10.17487/RFC2544. 

[5] C. Popoviciu, A. Hamza, G. V. d. Velde, and D. Dugatkin, “IPv6 

benchmarking methodology for network interconnect devices”, IETF 
RFC 5180, 2008, doi:10.17487/RFC5180. 

[6] G. Lencse, “Design and implementation of a software tester for 

benchmarking stateless NAT64 gateways”, IEICE Transactions on 
Communications, vol. E104-B, no. 2, pp. 128-140, 2021, 

doi:10.1587/transcom.2019EBN0010. 

[7] D. Raumer, S. Gallenmüller, F. Wohlfart, P. Emmerich, P. Werneck et 
al., “Revisiting benchmarking methodology for interconnect devices”, 

in Proc. 2016 Applied Networking Research Workshop, Berlin, 

Germany, 2016, pp. 55–61, doi:10.1145/2959424.2959430. 
[8] KeysightTechnologies, “IxNetwork”, 

https://www.keysight.com/zz/en/products/network-test/protocol-load-

test/ixnetwork.html, [cited 23-06-2021]. 
[9] Spirent, “Spirent Testcenter: RFC2544 benchmarking test package”, 

https://assets.ctfassets.net/wcxs9ap8i19s/5Nlwm12wtCKS83GJnlxUk

o/f7c406269e71a8f7b7490e7060d66aea/STC_RFC-
2544_Benchmarking_Test_Package_datasheet.pdf, [cited 24-06-

2021]. 

[10] XenaNetworks, “Quality of service validation”, 
https://xenanetworks.com/whitepaper/quality-of-service-validation/, 

[cited 24-06-2021]. 

[11] NetFPGA. https://netfpga.org/. 
[12] G. A. Covington, G. Gibb, J. W. Lockwood, and N. Mckeown, “A 

Packet generator on the NetFPGA platform”, in Proc. 2009 17th IEEE 

Symposium on Field Programmable Custom Computing Machines, 
Napa, CA, USA, 2009, pp. 235-238, doi:10.1109/FCCM.2009.29. 

[13] M. Ghobadi, G. Salmon, Y. Ganjali, M. Labrecque, and J. G. Steffan, 
“Caliper: Precise and responsive traffic generator”, in Proc. 2012 IEEE 

20th Annual Symposium on High-Performance Interconnects, 2012, 

pp. 25-32, doi:10.1109/HOTI.2012.16. 
[14] P. Emmerich, S. Gallenmüller, G. Antichi, A. W. Moore, and G. Carle, 

“Mind the gap - A comparison of software packet generators”, in Proc. 

2017 ACM/IEEE Symposium on Architectures for Networking and 
Communications Systems (ANCS), Beijing, China, 2017, pp. 191-203, 

doi:10.1109/ANCS.2017.32. 

[15] Iperf. https://iperf.fr/. 
[16] J. Sommers, and P. Barford, “Self-configuring network traffic 

generation”, in Proc. 4th ACM SIGCOMM conference on Internet 

measurement, Taormina, Sicily, Italy, 2004, pp. 68–81, 
doi:10.1145/1028788.1028798. 

[17] M. Paredes-Farrera, M. Fleury, and M. Ghanbari, “Precision and 

accuracy of network traffic generators for packet-by-packet traffic 
analysis”, in Proc. 2nd International Conference on Testbeds and 

Research Infrastructures for the Development of Networks and 

Communities, 2006, (TRIDENTCOM 2006), Barcelona, Spain, 2006, 
pp. 6-37, doi:10.1109/TRIDNT.2006.1649124. 

[18] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-

based traffic generator?”, IEEE Communications Magazine, vol. 48, 
no. 9, pp. 158-165, 2010, doi:10.1109/MCOM.2010.5560600. 

[19] D. Scholz, “A look at Intel’s dataplane development kit”, in Proc. 

Seminars Future Internet (FI) and Innovative Internet Technologies 
and Mobile Communications (IITM), Munich, 2014, pp. 115-122, 

doi:10.2313/NET-2014-08-1_15. 

[20] G. Lencse, and D. Bakai, “Design and implementation of a test 
program for benchmarking DNS64 servers”, IEICE Transactions on 

Communications, vol. E100-B, no. 6, pp. 948-954, 2017, 

doi:10.1587/transcom.2016EBN0007. 
[21] Y. Cui, Q. Sun, M. Boucadair, T. Tsou, Y. Lee et al., “Lightweight 

4over6: An extension to the dual-stack lite architecture”, IETF RFC 

7596, 2015, doi:10.17487/RFC7596. 
[22] G. Lencse, J. P. Martinez, L. Howard, R. Patterson, and I. Farrer, “Pros 

and cons of IPv6 transition technologies for IPv4aaS”, active Internet 

Draft, 2021, https://tools.ietf.org/html/draft-ietf-v6ops-transition-
comparison-00 

[23] A. Durand, R. Droms, J. Woodyatt, and Y. Lee, “Dual-stack lite 

broadband deployments following IPv4 exhaustion”, IETF RFC 6333, 
2011, doi:10.17487/RFC6333. 

 

 


