
Design of a Software Tester for Benchmarking

Lightweight 4over6 Devices

Ahmed Al-hamadani, Gábor Lencse

Department of Networked Systems and Services

Faculty of Electrical Engineering and Informatics

Budapest University of Technology and Economics

Budapest, Hungary

Email: alhamadani@hit.bme.hu, lencse@hit.bme.hu

Abstract—Several IPv6 transition technologies have been

developed to overcome the problem of IPv4 depletion and to

accelerate the full deployment of IPv6. The Benchmarking

Working Group of IETF has standardized a benchmarking

methodology for these technologies in the RFC 8219. One of the

most important ones of these technologies is lightweight 4over6

(lw4o6), which is classified as an encapsulation technology in the

RFC 8219. This paper aims at designing an RFC 8219 compliant

test program for the lw4o6 devices, more specifically, the

lightweight Basic Bridging BroadBand (lwB4) and the

lightweight Address Family Transition Router (lwAFTR). For

this purpose, we overviewed the operational requirements,

specified the scope of measurements, and disclosed the design

considerations for this tester.

Keywords—benchmarking; IPv6 transition technologies;

lightweight 4over6; lwAFTR; lwB4

I. INTRODUCTION

The actual depletion of IPv4 addresses in 2011[1] makes
the adoption of IPv6 a necessity more than ever before.
However, the ongoing IPv6 transition seems to be a lengthy
task due to the numerous challenges it faces. Thus, the
coexistence of IPv4 and IPv6 is crucial until, at least, the
dominance of the latter one. As a result, many technologies
have been developed over the past few years to help in this
transition. The IETF’s RFC 8219 [2] classifies these
transition technologies into four categories, namely, Dual
Stack, single translation, double translation, and
encapsulation, and defines a comprehensive methodology for
their benchmarking.

Dual Stack [3] is a mechanism that includes both IPv4 and
IPv6 stacks at the same time in the network nodes, but one of
them can be activated for communication at any given time.
The benchmarking of Dual Stack interconnecting devices can
be sufficiently possible with the existing RFC 2544 [4] and
RFC 5180 [5] compliant measurement tools.

The single translation technologies can be benchmarked
with the help of the single Device Under Test (DUT) setup of
RFC 8219 [2]. Siitperf [6], an RFC 8219 compliant Stateless
IP/ICMP Translation (SIIT), also called stateless NAT64,
Tester, is an example benchmarking tool that uses this type
of setup.

The double translation technologies and encapsulation
technologies can be benchmarked in two ways, either using
the dual DUT setup or using the single DUT setup of RFC
8219. The first one means that devices that implement the two
essential components of the technology, e.g. lwB4 and
lwAFTR of lw4o6, are benchmarked together. However, this
solution hides the potential asymmetries, when one of the
devices becomes a bottleneck. Therefore, RFC 8219 requires
that the above-mentioned two devices are also benchmarked
one by one according to the single DUT setup.

Several benchmarking tools have been proposed in the
literature. Raumer et. al. [7] classified these tools into two
different categories, hardware-based and software-based.
Hardware-based benchmarking tools are powerful at
controlling the transmission rates and can get precise latency
measurements, but they are limited to the set of predefined
benchmarks, not flexible enough to new situations, and
relatively expensive. These are some of the reasons behind
not getting widespread utilization. Examples of such devices
include those of Keysight [8], Spirent [9], and Xena [10]. The
NetFPGA [11], a relatively cheaper and more flexible
hardware solution, is an open-source FPGA-based network
card that can be deployed in implementing benchmarking
measurements [7]. For instance, the traffic generators in [12]
and [13] are NetFPGA-based and they can produce precise
inter-packet delays and latencies results. In contrast, most of
the existing software-based benchmarking tools are
originally packet generators that are used in benchmarking
tasks. It is correct that they rely on inexpensive commodity
hardware and are open-source software, so they can be easily
modified, but they are relatively slower and produce less
accurate measurements than the hardware-based tools [14].
Additionally, most of them (e.g. Iperf [15] and Harpoon [16])
typically cannot handle high packet rates [7]. Several papers
in the literature compare the performance and accuracy
among different hardware-based and software-based tools
under various conditions and using distinct parameters.
Among these papers are [17], [18], and [14]. This paper aims
to design a software-based tester that uses Intel’s DPDK [19]
as it offers high-speed packet processing and typical memory
management. Moreover, most of the existing benchmarking
tools, hardware-based or software-based, rely on the old RFC
2544 [4] and do not comply with RFC 8219 [2], which is

more specific to the IPv6 transition technologies. As far as
we know, the only existing RFC8219 compliant testers are
dns64perf++ for DNS64 [20] and siitperf for SIIT [6].

One of the most important transition technologies that sit
in the encapsulation category is the Lightweight 4over6
(lw4o6) technology [21], which is also considered an IPv4-
as-a-Service (IPv4aaS) technology that gives the IPv6-only
network operators a practical solution to continue providing
customers with IPv4 services [22]. This paper aims at
designing the world’s first RFC 8219 compliant lw4o6
Tester.

The remainder of this paper is organized as follows.
Section 2 gives a brief introduction to the lw4o6 transition
technology. Section 3 presents the basic operational
requirements for the Tester based on RFC 8219. Section 4
discloses the most important design considerations. Section 5
gives our plans for implementing the Tester. Section 6
concludes our paper.

II. LIGHTWEIGHT 4OVER6 (LW4O6) TECHNOLOGY

Lw4o6 [21] helps in the incremental deployment of IPv6
by decoupling it in the operator network and makes it
possible to share IPv4 addresses by combining two popular
technologies: IP in IP, more specifically IPv4 in IPv6, and
stateful Network Address and Port Translation (NAPT).

Lw4o6 operates by deploying two different devices: The
lightweight Basic Bridging BroadBand (lwB4) and the
lightweight Address Family Transition Router (lwAFTR).
The lwB4 device can be either a directly connected host
device or a Customer Premise Equipment (CPE), which acts
as a home gateway for customers and is supplied with a WAN
interface provisioned only with IPv6 by the service provider.
In addition, the lwB4 device represents one of the IPv6 tunnel
endpoints. It encapsulates the customer’s IPv4 traffic into the
service provider’s IPv6 traffic before transmitting it to the
lwAFTR device. In contrast, the lwAFTR device represents
the other IPv6 tunnel endpoint. When it receives the IPv4
embedded IPv6 traffic, it decapsulates it and then routes it to
its intended destination. The reply packets will also traverse
these devices, but now the devices execute reverse
encapsulation/decapsulation processes. Fig. 1 depicts the
architecture of lw4o6 technology.

To manage the traffic activity with the distributed lwB4
devices, the lwAFTR device maintains the so-called
softwires (i.e. binding entries of two different IP versions) in
a particular address binding table. Each entry in the table is

formed on a per-subscriber basis and belongs to a particular
lwB4 device. The lwAFTR device uses this entry to perform
two tasks: the IPv6 encapsulation of ingress IPv4 packets
destined to a customer connected to the related lwB4 device
and the validation of egress IPv4-in-IPv6 packets received
from the related lwB4 to decapsulate them and then forward
the decapsulated IPv4 packets to their intended destinations.

It should also be said that Lw4o6 is actually an
improvement of the DS-Lite technology [23]. In contrast to
DS-Lite, lw4o6 relocates the stateful NAPT function from the
centralized lwAFTR device to the distributed lwB4 devices.
This procedure remarkably reduces the overhead of
maintaining traffic states from per-flow to per-subscriber and
thus logging overhead. It noticeably relieves lwAFTR from
being overloaded by translation tasks as it rather has other
tasks to accomplish like encapsulation/decapsulation,
software maintaining and lookup, and A+P routing.

Finally, the lw4o6 technology also maintains two
important mechanisms: provisioning and hair pinning. The
first one is used to assign a specific IPv4 public address and
a port set for each lwB4 device. This assigned information
should also be synchronized with the corresponding
information stored in the lwAFTR binding table. The other
mechanism (i.e. hair pinning) is used to enable direct
communication between two different lwB4 devices that are
associated with the same lwAFTR device.

III. OPERATIONAL REQUIREMENTS AND SCOPE DECISIONS

Testing under different operational conditions is
important for benchmarking IPv6 transition technologies, as
it emulates, to some extent, the condition of a production
network environment [2]. In this section, a high-level
overview of the requirements of the Tester is given and the
considerations behind the scope decision are disclosed.

A. Test and Traffic Setup

As lw4o6 is considered an encapsulation technology, the
test setup of this technology may, in general, follow the dual
DUT test setup described in section 4.2 of RFC 8219 and
shown in Fig. 2. Here, the lwB4 device can act as DUT 1 and
the lwAFTR device can act as DUT 2. However, both have
asymmetric behavior. Therefore, as RFC 8219 recommends
[2], they should be tested separately using the single DUT test
setup, which is shown in Fig. 3. In this case, the Tester should
have encapsulation/decapsulation capabilities the same as the
two DUTs.

 Private +-------------+ +----------+
 Private | lwB4 | IPv4-in-IPv6| Stateless|
 +------+ IPv4 |------+------| tunnel | lwAFTR | _______
 | IPv4 |------->| |Encap.|------------>|(encap/A+P| (IPv4)
 |Device|<-------| NAPT | / |<------------|bind. tab +--(Internet)
 +------+ | 44 |Decap.| ^ | routing) | (________)
 +------+------+ | +----------+
 Operator IPv6
 network

Fig 1. The architecture of lw4o6 technology [8]

Both test setups (i.e. single DUT and dual DUT) adhere
to the following test specifications which comply with RFC
8219:

• Although unidirectional arrows are used, testing
with bidirectional traffic is required and testing with
unidirectional traffic is optional.

• The two different IP versions are deployed, and they
are expressed as IPvX and IPvY, where X=4 and
Y=6.

• Ethernet is the media type being relied on even
though other media types can also be deployed.

• Frame sizes should be based on the
recommendations of RFC 5180 [5]. However, RFC
8219 recommends, besides that, considering
Maximum Transmission Unit (MTU) in the context
of frame size overhead to avoid frame loss due to
MTU mismatch between the virtual encapsulation
interfaces and the physical network interface
controllers (NICs). Therefore, the larger MTU
between them should be set for all interfaces of the
DUT and the Tester.

• The selected IPv6 addresses should meet the
specifications of Section 5 of RFC 5180 [5], while
the selected IPv4 addresses should meet the
specifications of Section 12 of RFC 2544 [4].

• UDP is used as the transport layer protocol.

• Tests should also include native IPv6 traffic besides
the IPv4 traffic that is encapsulated and different
proportions of the two types of traffic must be used.

To make things more organized, we decided to perform
three different types of testing.

1) lwB4Testing: this test follows the single DUT test
setup, in which the lwB4 device acts as the DUT. Both the
Tester and the DUT should have two interfaces configured as
IPv4 and IPv6 respectively. The Tester should be able to send
IPv4 packets from its IPv4 interface. The DUT receives these
packets from its IPv4 interface, performs NAPT translation,
encapsulates IPv4 packets with an IPv6 header, and then
forwards the encapsulated packets to the Tester from its IPv6
interface. When the Tester receives these packets from its
IPv6 interface, it decapsulates them and gets its original IPv4
traffic. To perform testing in the opposite direction, the Tester
should first encapsulate its IPv4 packets with an IPv6 header
before sending them from its IPv6 interface. When the DUT
receives these packets from its IPv6 interface, it decapsulates
them and gets the IPv4 traffic, performs NAPT translation
based on the information available in its local NAPT table,
and then forwards the IPv4 packets to the Tester from its IPv4
interface. The Tester, in turn, receives these packets from its
IPv4 interface.

2) lwAFTR Testing: this test also follows the single DUT
test setup, in which the lwAFTR device acts as the DUT.
Likewise, both the Tester and the DUT should have two
interfaces configured as IPv6 and IPv4 respectively. The
Tester should be able to send IPv4 packets encapsulated with
an IPv6 header from its IPv6 interface. When the DUT
receives these packets from its IPv6 interface, it decapsulates
them and verifies their information with that of its binding
table. If the verification is successful (i.e. matching is found),
the DUT forwards the verified packets from its IPv4
interface. The Tester, in turn, receives the IPv4 packets from
its IPv4interface.To perform testing in the opposite direction,
the Tester should send IPv4 packets from its IPv4 interface.
When the DUT receives these packets from its IPv4 interface,
it uses their destination address and port for lookup in its
binding table. If a match is found, it encapsulates them with
the appropriate IPv6 header and then forwards them from its
IPv6 interface. The Tester should be able to decapsulate the
IPv6 packets and get the original IPv4 traffic upon receiving
the IPv6 packets from its IPv6 interface.

3) Overall Testing: this test follows the dual DUT test
setup, in which the lwB4 acts as the DUT 1 and the lwAFTR
acts as the DUT 2. This test should be done after performing
the two beforementioned tests. This test aims to wrap up
everything and check the overall performance of the lw4o6
technology. Here, the Tester should have two interfaces
configured as IPv4, while each one of the DUTs should have
two interfaces configured as IPv4 and IPv6 respectively. The
Tester should be able to send native IPv4 packets from one
interface and receive also native IPv4 packets from the other
interface. In contrast, each one of the DUTs should receive
either IPv4 packets from the Tester or IPv6 packets from the
other DUT and send either IPv4 packets to the Tester or IPv6
packets to the other DUT and all these activities should, of
course, be done after performing their relative tasks like
encapsulation/decapsulation.

+------------------+
| |

+--------------|IPvX Tester IPvX|<-------------+
| | | |
| +------------------+ |
| |
| +----------------+ +----------------+ |
| | | | | |
+--->|IPvX DUT1 IPvY|--->|IPvY DUT2 IPvX|----+

| | | |
+----------------+ +----------------+

Fig 2. Dual DUT Test Setup [2]

 +--------------------+
 | |
 +----------|IPvX Tester IPvY|<---------+
 | | | |
 | +--------------------+ |
 | |
 | +--------------------+ |
 | | | |
 +--------->|IPvX DUT IPvY|----------+
 | |
 +--------------------+

Fig. 3 Single DUT Test Setup [2]

B. Scope of Measurements

RFC 8219 recommends applying various types of
measurement tests. However, in practice, some of them are
implemented by some RFC 2544 testers, and others are
omitted or rarely used such as back-to-back frames, system
recovery, and reset. The first two require the Tester to have
the ability to send at the maximum frame rate of the media,
which is practically not possible and is not necessarily met by
different devices the user would like to use to run the Tester.
The third one would need the ability to cause or sense a DUT
reset, which would also require supplementary hardware. So,
we intend to support those measurement tests that we see are
important. The selected types of measurement need different
Tester requirements. In this section, we give an overview of
the measurement procedures and their requirements.

1) Throughput: This is a crucial measurement as it is

important for users and for supporting other measurement

procedures. RFC 8219 depends on the RFC 2544’s definition

of throughput as it is “the fastest rate at which the count of

test frames transmitted by the DUT is equal to the number of

test frames sent to it by the test equipment” [4], that is, no

frame loss occurs. This means that the Tester must have the

ability to transmit frames at any constant rate for any given

period and count the transmitted and received packets in that

period. We can take advantage of the binary search to find

this fastest rate and thus properly apply the measurement.

RFC 8219 has defined standard frame sizes for performing

the throughput test.

2) Latency: This is also an important measurement that

practically depends on throughput. To calculate latency, a

stream of frames at a particular frame size and the calculated

throughput rate should be sent via the targeted DUT. The

duration of the stream should be at least 120 seconds and

some of the sent frames should be tagged. For the test to be

successful, at least 500 tagged frames should be identified

after 60 seconds from the start of sending the stream. For each

tagged frame, two timestamps must be recorded. The first one

is, directly, at the time of fully transmitting the frame,

whereas the second one is, directly, at the time at which the

frame is received. The latency represents the difference

between the values of the two timestamps. Finally, two

quantities should be considered after calculating the latency

of at least 500 tagged frames, the Typical Latency (TL) and

the Worst-Case Latency (WCL). TL represents the median of

all these latencies, while WCL represents their 99.9th

percentile. The test must be repeated at least 20 times and it

then records both the median of all TLs and WCLs.

3) Packet Delay Variation: Two types of tests can be

performed for this measurement, Packet Delay Variation

(PDV) and Inter Packet Delay Variation (IPDV), and they are

considered important, especially for the quality of real-time

applications. However, RFC 8219 recommends PDV and

keeps IPDV optional for a fine-grained analysis of delay

variation. Thus, only PDV will initially be included.

Similarly, To calculate PDV, a stream of frames at a

particular frame size and the calculated throughput rate

should be sent via the targeted DUT. Here, the duration of the

stream should rather be at least 60 seconds and the value of

the one-way delay of all frames should be measured. Then,

the PDV represents the difference between the 99.9th

percentile value and the minimum value in the stream.

Finally, the test must be executed at least 20 times and the

final reported value will be the median of all 20 calculated

PDVs.

4) Frame Loss Rate: This measurement test is similar to the

throughput measurement test. Here, the test is also run by

sending a specific number of frames at a specific rate via the

targeted DUT and then counting the number of received

frames at the Tester. The Frame Loss Rate (FLR) is then

calculated as in (1):

FLR = ((sent− received) /sent) ∗100%. (1)

What differs from the throughput test is that, here, this test
is performed at various frame rates starting from the
maximum frame rate for the media and decreased by some
percentage values (typically 10%) at each new trial until there
are two consecutive trials in which no frames are lost.

IV. DESIGN CONSIDERATIONS

These are some essential design considerations that
should be taken into account when implementing the lw4o6
tester.

C. Integration or Separation

It may be a desirable solution to build a fully integrated
tester that automatically performs all measurement tests, and
this can act as a commodity tester for routine tests. However,
this paper proposes a lw4o6 tester that is designed mainly for
research purposes. Thus, the goal is to design a flexible tool
that runs high-performance programs for the elementary
functions and uses input parameters instead of built-in
constants even though the RFC 8219 allows using constants
like 60 seconds duration or 500 timestamps, and so on.
Additionally, it is intended to use modifiable bash scripts to
run these programs. All these solutions can help the user to
access all intermediate results and experiment easily by
executing only certain sub-tasks when needed.

D. Software Architecture and Hardware Requirements

RFC 8219 requires, in general, using bidirectional traffic.
To build a clear program structure with high enough
performance, a thread pair (i.e. a thread for sending and
another thread for receiving) should be used for the forward
direction and another thread pair for the reverse direction. If
we said that each thread will be executed by one CPU core,
then we need four CPU cores for the execution plus an
additional CPU core for the main program. It may also be
noted that either of the two directions may be primarily
inactive. The Tester and the two DUTs need two NICs each
for testing purposes and a third one for network
communication unless the user prefers to work locally on the
console.

E. Input and Output

The decision of separation described earlier offers the
possibility for the shell scripts to execute the programs
multiple times with two potential forms of parameters, static
and dynamic. Those parameters that will not change during
execution such as IP addresses, MAC addresses, etc., their
values can be statically supplied in a configuration file, while
those parameters that change from time to time such as frame
size, frame rate, etc., their values can be easily provided as
command-line arguments.

The results that are to be used by the shell scripts in
making some decisions (e.g. number of frames sent, number
of frames received, etc.) are to be printed on the standard
output using a clear format to be easily extracted for further
processing. In contrast, those results which are big or no
longer been needed by the shell script should be written into
a separate result file.

V. FUTURE WORK

The most important step to be taken next is to implement
the lw4o6 tester. We plan to write it in C++ and follow similar
implementation steps as that of siitperf [6]. It is always
preferable to use high-performance solutions like Intel’s
DPDK framework[19] during implementation as it offers
fast-packet processing and typical memory, queue, and buffer
management. What follows is the validation of the tester
through comprehensive benchmarking measurements. Once
successfully developed, the lw4o6 tester is planned to be
distributed as free software under GPL license for the benefit
of the research, benchmarking, and networking communities.
Additionally, the developed lw4o6 tester could also be used
as a basis for the development of testers of other important
IPv6 transition technologies, especially those IPv4aaS
technologies that have never been benchmarked yet.

VI. CONCLUSIONS

In this paper, all the necessary details about the operation

of the lw4o6 transition technology have been described, high-

level details of the operational requirements and the scope of

measurements (e.g. throughput, latency, packet delay

variation, and frame loss rate) of the RFC 8219 compliant

lw4o6 test program are given, and the most essential design

considerations and decisions for this test program have been

disclosed.

REFERENCES

[1] A. Al-Azzawi, “Towards the security analysis of the five most
prominent IPv4aaS technologies”, Acta Technica Jaurinensis, vol. 13,

no. 2, pp. 85-98, 2020, doi:10.14513/actatechjaur.v13.n2.530.

[2] M. Georgescu, L. Pislaru, and G. Lencse, “Benchmarking
methodology for IPv6 transition technologies”, IETF RFC 8219, 2017,

doi:10.17487/RFC8219.

[3] E. Nordmark, and R. Gilligan, “Basic transition mechanisms for IPv6
hosts and routers”, IETF RFC 4213, 2005, doi:10.17487/RFC4213.

[4] S. Bradner, and J. McQuaid, “Benchmarking methodology for network

interconnect devices”, IETF RFC 2544, 1999, doi:10.17487/RFC2544.

[5] C. Popoviciu, A. Hamza, G. V. d. Velde, and D. Dugatkin, “IPv6

benchmarking methodology for network interconnect devices”, IETF
RFC 5180, 2008, doi:10.17487/RFC5180.

[6] G. Lencse, “Design and implementation of a software tester for

benchmarking stateless NAT64 gateways”, IEICE Transactions on
Communications, vol. E104-B, no. 2, pp. 128-140, 2021,

doi:10.1587/transcom.2019EBN0010.

[7] D. Raumer, S. Gallenmüller, F. Wohlfart, P. Emmerich, P. Werneck et
al., “Revisiting benchmarking methodology for interconnect devices”,

in Proc. 2016 Applied Networking Research Workshop, Berlin,

Germany, 2016, pp. 55–61, doi:10.1145/2959424.2959430.
[8] KeysightTechnologies, “IxNetwork”,

https://www.keysight.com/zz/en/products/network-test/protocol-load-

test/ixnetwork.html, [cited 23-06-2021].
[9] Spirent, “Spirent Testcenter: RFC2544 benchmarking test package”,

https://assets.ctfassets.net/wcxs9ap8i19s/5Nlwm12wtCKS83GJnlxUk

o/f7c406269e71a8f7b7490e7060d66aea/STC_RFC-
2544_Benchmarking_Test_Package_datasheet.pdf, [cited 24-06-

2021].

[10] XenaNetworks, “Quality of service validation”,
https://xenanetworks.com/whitepaper/quality-of-service-validation/,

[cited 24-06-2021].

[11] NetFPGA. https://netfpga.org/.
[12] G. A. Covington, G. Gibb, J. W. Lockwood, and N. Mckeown, “A

Packet generator on the NetFPGA platform”, in Proc. 2009 17th IEEE

Symposium on Field Programmable Custom Computing Machines,
Napa, CA, USA, 2009, pp. 235-238, doi:10.1109/FCCM.2009.29.

[13] M. Ghobadi, G. Salmon, Y. Ganjali, M. Labrecque, and J. G. Steffan,
“Caliper: Precise and responsive traffic generator”, in Proc. 2012 IEEE

20th Annual Symposium on High-Performance Interconnects, 2012,

pp. 25-32, doi:10.1109/HOTI.2012.16.
[14] P. Emmerich, S. Gallenmüller, G. Antichi, A. W. Moore, and G. Carle,

“Mind the gap - A comparison of software packet generators”, in Proc.

2017 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), Beijing, China, 2017, pp. 191-203,

doi:10.1109/ANCS.2017.32.

[15] Iperf. https://iperf.fr/.
[16] J. Sommers, and P. Barford, “Self-configuring network traffic

generation”, in Proc. 4th ACM SIGCOMM conference on Internet

measurement, Taormina, Sicily, Italy, 2004, pp. 68–81,
doi:10.1145/1028788.1028798.

[17] M. Paredes-Farrera, M. Fleury, and M. Ghanbari, “Precision and

accuracy of network traffic generators for packet-by-packet traffic
analysis”, in Proc. 2nd International Conference on Testbeds and

Research Infrastructures for the Development of Networks and

Communities, 2006, (TRIDENTCOM 2006), Barcelona, Spain, 2006,
pp. 6-37, doi:10.1109/TRIDNT.2006.1649124.

[18] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-

based traffic generator?”, IEEE Communications Magazine, vol. 48,
no. 9, pp. 158-165, 2010, doi:10.1109/MCOM.2010.5560600.

[19] D. Scholz, “A look at Intel’s dataplane development kit”, in Proc.

Seminars Future Internet (FI) and Innovative Internet Technologies
and Mobile Communications (IITM), Munich, 2014, pp. 115-122,

doi:10.2313/NET-2014-08-1_15.

[20] G. Lencse, and D. Bakai, “Design and implementation of a test
program for benchmarking DNS64 servers”, IEICE Transactions on

Communications, vol. E100-B, no. 6, pp. 948-954, 2017,

doi:10.1587/transcom.2016EBN0007.
[21] Y. Cui, Q. Sun, M. Boucadair, T. Tsou, Y. Lee et al., “Lightweight

4over6: An extension to the dual-stack lite architecture”, IETF RFC

7596, 2015, doi:10.17487/RFC7596.
[22] G. Lencse, J. P. Martinez, L. Howard, R. Patterson, and I. Farrer, “Pros

and cons of IPv6 transition technologies for IPv4aaS”, active Internet

Draft, 2021, https://tools.ietf.org/html/draft-ietf-v6ops-transition-
comparison-00

[23] A. Durand, R. Droms, J. Woodyatt, and Y. Lee, “Dual-stack lite

broadband deployments following IPv4 exhaustion”, IETF RFC 6333,
2011, doi:10.17487/RFC6333.

